Sections 8-1 and 8-2 - Gordon State College
Transcription
Sections 8-1 and 8-2 - Gordon State College
5/6/2015 HYPOTHESIS TESTING Sections 8-1 and 8-2 Review and Preview and Basics of Hypothesis Testing Instatistics,ahypothesis isaclaimor statementaboutapropertyofapopulation. Ahypothesistest (ortestofsignificance)is aprocedurefortestingaclaimabouta propertyofapopulation. Critical Value Method RARE EVENT RULE Thischapter,asthelastchapter,reliesonthe RareEventRuleforInferentialStatistics. If,underagivenassumption,the probabilityofaparticularobservedevent isexceptionallysmall,weconcludethatthe assumptionisprobablynotcorrect. OBJECTIVES FOR SECTION 8-2 Inthissection,wewilllearn: • Howtoidentifythenullhypothesisandalternative hypothesisfromagivenclaim,andhowtoexpressboth insymbolicform. • Howtocalculatethevalueoftheteststatistic,givena claimandsampledata. • Howtoidentifythecriticalvalue(s),givena significancelevel. • HowtoidentifytheP‐value,giventhevalueofthetest statistic. • Howtostatetheconclusionaboutaclaiminsimpleand nontechnicalterms. NULL HYPOTHESIS Thenullhypothesis (denotedbyH0)isastatement thatthevalueofapopulationparameter(suchas proportion,mean,orstandarddeviation)isequal to someclaimedvalue.(Thetermnull isusedtoindicate no changeornoeffectornodifference.)Hereare someexamples: H0: 0.3 H0: 63.6 Wetestthenullhypothesisdirectlyinthesensethat weassumeitistrueandreachaconclusiontoeither rejectH0 orfailtorejectH0. 1 5/6/2015 ALTERNATIVE HYPOTHESIS Thealternativehypothesis (denotedbyH1 orHa or HA)isthestatementthattheparameterhasavalue thatsomehowdiffersfromthenullhypothesis.Forthe methodsofthischapter,thesymbolicformofthe alternativehypothesismustuseoneofthesesymbols: <or>or≠.Forexample: Proportions: H1:p >0.3 Means: H1:p <0.3 H1:p ≠0.3 H1:μ >63.6 H1:μ <63.6 H1:μ ≠63.6 NOTE ABOUT FORMING YOUR OWN CLAIMS Ifyouareconductingastudyandwanttousea hypothesistesttosupport yourclaim,theclaim mustbewordedsothatitbecomesthealternative hypothesis.Youcanneversupportaclaimthat someparameterisequal toaspecificvalue. Forexample,ifyouwanttosupporttheclaimthat yourIQimprovementcourseraisestheIQmean above100,youmuststatetheclaimasμ > 100.So, thenullhypothesisisH0:μ = 100andthe alternativehypothesisisH1:μ > 100. CRITICAL REGION Thecriticalregion (orrejectionregion)istheset ofallvaluesoftheteststatisticthatcauseusto rejectthenullhypothesis.Forexample,seethered shadedregioninthegraph. NOTE ABOUT IDENTIFYING H0 AND H1 Start Identify the specific claim or hypothesis to be tested and express it in symbolic form. Give the symbolic form that must be true when the original claim is false. Of the two symbolic expressions obtained so far, let the alternative hypothesis H1 be the one not containing equality, so that H1 uses the symbol < or > or ≠. Let the null hypothesis H0 be the symbolic expression that the parameter equals a fixed value. TEST STATISTIC Theteststatistic isavaluecomputedfromthesample data,anditisusedinmakingthedecisionaboutthe rejectionofthenullhypothesis. ̂ Teststatisticfor proportion Teststatisticfor mean Teststatisticfor standarddeviation ̅ or ̅ 1 SIGNIFICANCE LEVEL Thesignificancelevel (denotedbyα)isthe probabilitythattheteststatisticwillfallinthecritical regionwhenthenullhypothesisisactuallytrue.The isthesameα introducedinSection7‐2withthe confidencelevel. 2 5/6/2015 CRITICAL VALUE Thecriticalvalue isanyvaluethatseparatesthe criticalregionfromthevaluesoftheteststatisticthat donotleadtorejectionofthenullhypothesis. TWO-TAILED TEST Two‐tailedtest: Thecriticalregionisinthe twoextremeregions(tails)underthecurve. CorrespondstoH1:≠ Theareaα is dividedequally between thetwotailsof thecritical region LEFT-TAILED TEST Left‐tailedtest: Thecriticalregionisinthe extremeleftregion(tail)underthecurve. CorrespondstoH1:< Theareaα is entirelyinthe lefttail. RIGHT-TAILED TEST Right‐tailedtest: Thecriticalregionisinthe extremerightregion(tail)underthecurve. CorrespondstoH1:> Theareaα is entirelyinthe righttail. P-VALUE TheP‐value (orp‐value orprobabilityvalue) istheprobabilityofagettingavalueofthetest statisticthatisatleastasextreme astheone representingthesampledata,assumingthe nullhypothesisistrue.Thenullhypothesisis rejectediftheP‐valueisverysmall,suchas 0.05orless.P‐valuescanbefoundbyusingthe procedureintheflowchartonthenextslide. 3 5/6/2015 CONCLUSIONS Ourinitialconclusionwillalwaysbeoneofthe following: 1.Rejectthenullhypothesis. 2.Failtorejectthenullhypothesis. WORDING THE FINAL CONCLUSION “There is sufficient evidence to warrant rejection the claim that . . . (original claim).” “There is not sufficient evidence to warrant rejection the claim that . . . (original claim).” “There is sufficient evidence to support the claim that . . . (original claim).” DECISION CRITERION P‐value Method: • IfP‐value≤α, rejectH0.(IfP islow, thenullmustgo.) • IfP‐value>α, failtorejectH0. Critical Value Method: • Iftheteststatisticfallswithinthe criticalregion,rejectH0. • Iftheteststatisticdoesnotfall withinthecriticalregion,failto rejectH0. TYPE I ERROR AtypeIerror isthemistakeofrejectingthe nullhypothesiswhenitisactuallytrue. Thesymbolα isusedtorepresentthe probabilityofatypeIerror. “There is not sufficient evidence to support the claim that . . . (original claim).” TYPE II ERROR AtypeIIerror isthemistakeoffailingto rejectthenullhypothesiswhenitisactually false. Thesymbolβ isusedtorepresentthe probabilityofatypeIIerror. 4 5/6/2015 Critical Value Method CONTROLLING TYPE I AND TYPE II ERRORS • Foranyfixedα,anincreaseinthesample size willcauseadecreaseinβ. • Foranyfixedsamplesize ,adecreaseinα willcauseanincreaseinβ.Conversely,an increaseinα willcauseadecreaseinβ. • Todecreasebothα andβ,increasethe samplesize. 5