Electrostatics Note Packet - Hicksville Public Schools / Homepage
Transcription
Electrostatics Note Packet - Hicksville Public Schools / Homepage
Name: Date: __________________ Do Now: An electron orbits a proton at a speed of 5.1 x 104 m/s at a radial distance of 5.3 x 10-11 m. What is the centripetal acceleration of the electron? What is the kinetic energy of the electron if its mass is 1.7 x 10-27 kg? Electrostatics All matter is electrical in nature Atoms - Neutral Atom Ion Positive ion Negative ion Objects are charged when they have an excess or deficiency of electrons Conductor Insulator The smallest charge found in nature is the charge found on The elementary charge: 1e= Does it make sense for an atom or group of atoms to have half an electron? Charge is quantized. Charge on any object is an integer multiple of the elementary charge ‘e’ q = net charge = 1 Example: q = -8 x 10-19 C Example: q = -1.92 x 10-19 C Conservation of Charge In a closed system Charges cannot be created or destroyed; only transferred. Example: 2 identical conducting spheres Example: 2 identical conducting spheres Problems: 1. Which of the following net charges could be found on an object? a) 7 elementary charges b) 1.6 x 10-19 elementary charges c) -1.8 x 10-19 C d) +3.2 x 10-19 C 2. A conducting sphere with net charge q = -16 elementary charges is touched by an identical conducting sphere with 0 charge. a) What is the net charge on the conducting sphere in elementary charges? b) What is the net charge on the conducting sphere in Coulombs? 2 3. What is the net charge of an object with 5,000 excess electrons? Transferring Charge – 3 methods for charging an object Only electrons move when transferring charge. Positively charged objects lose electrons, they do not gain protons 1 – Charging by Friction Both objects begin neutral. When one object is rubbed against the other (friction) electrons are transferred. This occurs because one object has a higher affinity for electrons than the other. Examples: Rubber & Fur Glass & Silk 2 – Charging by contact A charged object touches another object. The objects then share the charge. A conducting sphere with charge +8 is brought in contact with an identical sphere which is neutral. What is the net charge on each sphere after contact? Electroscope – The electroscope was an early invention for detecting the presence of charge. There is a conductor at the top which connects to leaf(s) which will move depending on the charge of the electroscope. Neutral electroscope Negatively charged Positively Charged Grounding – A ground is any large object that can accept or donate electrons. Best ground is the Earth. Grounding an object makes the object neutral Negatively charged object Positively charged object 3 “Be the electron” 3 – Charging by Induction 1. What would happen if a charged object was brought near an electroscope? 2. And then the electroscope is grounded? 3. The ground is disconnected 4. And the charged object is removed What happens to the electroscope? Is it charged? Did it ever touch the original charged object? Where did the charge come from? Charge Polarization Opposite charges ___________ Similar charges ___________ What happens when a charged object is brought near a neutral object? The neutral object is still neutral, 4 4. What is the force due to gravity between an electron and a proton, separated by 0.6 x 10-10 m? Electrostatic Force - Coulomb’s Law Four Fundamental Forces 1. Strong (nuclear) force – keeps protons in atomic nuclei together 2. Electromagnetism 3. Weak (nuclear) force – responsible for radioactive decay 4. Gravity Electrostatic force – responsible for: Electrostatic force studied by Charles Coulomb (France, 1785) Fe Fg Both gravity and electrostatic force follow an inverse square law Unlike gravity, 5. What is the electrostatic force between two 1 Coulomb charges separated by 1 m? 5 6. What is the electrostatic force between an electron and a proton, separated by 0.6 x 10-10 m? In what direction is the force? How does the magnitude of this force compare to Fg (from the Do Now)? 7. What is the electrostatic force exerted between two charged spheres at a distance of 5 nanometers if the first sphere has a charge of -5 micro-coulombs and the second has a charge of -2 micro-coulombs? 8. When two spheres, each with charge Q, are positioned a distance R apart, they are attracted to one another by a force of magnitude F. By what factor of F would this force change if… a) …one of the charges was tripled, while the other was doubled? b) …one of the charges was doubled, while the separation distance was tripled? c) …both of the charges were halved, while the separation distance was doubled? d) …one of the charged was doubled, while the separation distance was halved? 9. Sphere A has an excess of 5 x 1016 electrons. Sphere B has an excess of 6 x 1017 electrons. a) Determine the charge on each sphere in coulombs. b) Calculate the electrostatic force that sphere A exerts on sphere B when they are separated by a distance of 2 x 103 meter. 6 10. What is the electrostatic force between a 3 nC (nanoCoulomb) object and a 6 nC object separated by 0.5 m? Electric Fields Review: Gravitational field Electric fields: The region in which electrical forces act on a charge The direction of the field is the direction a force acts on a positive test charge (test charge = infinitely small positive charge) Electric field lines 7 Electric Field E= E= Example: What is the electric field strength for a 0.1 C charge experiencing a 100 N electrostatic force? Electric field lines never cross 2 Parallel Plates Practice 11. Sketch the electric field lines that surround each of the following arrangements of charged objects. 12. An electron is placed within a uniform electric field with strength of 5.0 x10-8 newtons per coulomb. a. Calculate the electrostatic force that is experienced by the electron. b. Calculate the acceleration of the electron. [electron mass = 9.11 x 10-31 kg] 13. An object with a charge of -4 x 10-3 coulombs is placed between a set of oppositely charged, parallel plates. The object experiences a force of 5 x 10-6 newtons while between the plates. a. Sketch a set of vectors showing the direction in which the electric field lines point between the plates. b. Sketch a vector showing the direction in which the object will travel when placed between the plates. c. Calculate the strength of the electric field between the plates. 8 Review Checklist Convert between elementary charge and charge in coulombs. Determine if a charge is possible. Determine how charge will be distributed in conservation of charge problems. 1. What is the charge on an object with four excess electrons in Coulombs? 2. What is the charge on an object that contains 35 electrons and 85 protons? 3. Which set of particles would produce a charge of +3.2 x 10-18 coulombs? (1) 400 electrons and 200 protons (2) 40 electrons and 20 protons (3) 200 electrons and 400 protons (4) 20 electrons and 40 protons 4. Which charges could NOT exist on a real-world object? (a) 3.2 x 10-19 C (e) 0.5 x 10-19 C (b) 6.5 C (f) 3.2 x 10-21 C (c) 3.5 e (g) -20 e (d) 1.2 x 102 e (h) 1.6 x 10-19 e 5. Object A begins with a charge of -3.0 coulombs; object B begins with a charge of -7.0 coulombs; and object C begins with no charge. Object A is touched to object B then removed. Object B is then touched to object C and removed. What is the final charge on each of the three objects? Determine the direction in which electrons flow. Explain the process of conduction, induction, and charging by induction. Explain the rules for testing an object to determine its charge. Explain how an uncharged object will react to the presence of a charge one. Explain how electroscopes become charged and how to test them. 6. Using the pictures to the right, which best describes the charges of neutral metal spheres x, y, and z when a. A negative object is held to the left b. A negative object is held to the right c. A positive object is held to the left d. A positive object is held to the right 7. When a neutral metal sphere is charged by contact with a positively charged glass rod, the sphere 1. loses electrons 3. loses protons 2. gains electrons 4. gains protons 8. A negatively charged plastic comb is brought close to, but does not touch, a small piece of paper. If the comb and the paper are attracted to each other, the charge on the paper 1. may be negative or neutral 2. may be positive or neutral 3. must be negative 4. must be positive 9. Describe the process of charging an electroscope by induction, and what happens to the leaves. Use equation to determine electrostatic force; charge; and/or distance. Determine the effects of changing parameters on strength of electrostatic force. 10. Determine the electrostatic force that a +4.0 coulomb charge exerts on a -6.0 coulomb charge when 2.0 meters apart. 9 11. If two charged objects are attracted to one another by an electrostatic force of 5.0 newtons, what force would they be attracted by if the charge on both of them were doubled? 12. An electrostatic force F acts between two objects with charges +q and +q when they are a distance R apart. If the distance between the objects is halved, the electrostatic force would become. 13. An object with 12,000 excess electrons is brought 0.5 meters away from an object with 20,000 excess electrons. Determine the electrostatic force between them. Use equation to determine electric field strength; force; and/or charge. Map or recognize proper electric field maps for point charges or systems of charges. Explain the effect of charged parallel plates on electric field strength, electrostatic force, and acceleration of charges between such plates. 14. A +2.0 coulomb charge experiences a force of 10 newtons while in an electric field. What is the strength of the electric field? 15. What force will a 3.0 coulomb charge experience if place in an electric field with a strength of 15 newtons per coulomb? 16. What is the charge on an object that experiences a force of 20 newtons when it is placed in an electric field with a strength of 4.0 newtons per coulomb? 17. Determine the direction of the electric field at the points selected in each picture. 18. An proton is fired into the space between two parallel, oppositely charged plates that produce an electric field of strength 2.0 x 10-11 newtons per coulomb. a. Sketch the path of the electron as it passes between the plates. b. Determine the amount of force exerted on the proton. c. Determine the acceleration of the proton. Answers 1. -6.4 x 10-19 C 2. +8 x 10-19 C 3. (4) 4. c,e,f,h 5. A:-5C B:-2.5C C:-2.5C 6. a (3) b (4) c (4) d (3) 7. (1) 8. (2) 9. – 10. 5.4 x 1010 N 11. 20 N 12. F/4 13. 2.2 x 10-19 N 14. 5 N/C 15. 45 N 16. 5 C 17. A left, B right, C right, D left, E, right 18. a. up b. 3.2 x 10-30 N c. 1.9 x 10-3 m/s2 10