MATH1014 Tutorial 4
Transcription
MATH1014 Tutorial 4
MATH1014 Tutorial 4 7.1 Integration by Parts Corresponding to product rule in differentiation, the formula of integration by parts is ˆ ˆ 0 u(x)v (x) dx = u(x)v(x) − v(x)u0 (x) dx, or a compact form of the formula ˆ ˆ u dv = uv − v du. Usually we will choose u(x) to be a function that becomes simpler when differentiated, and v 0 (x) to be a function with antiderivative immediately available. When working with definite integrals, the formula becomes ˆ ˆ b u(x)v 0 (x) dx = [u(x)v(x)]ba − a b v(x)u0 (x) dx. a ˆ x tan2 x dx. 1. (J. Stewart, section 7.1, ex.20) Evaluate Solution The function tan2 x is easily integrated by rewriting into sec2 x − 1, thus ˆ ˆ x tan2 x dx = x(sec2 x − 1) dx ˆ ˆ 2 = x sec x dx − x dx ˆ x2 = x d tan x − 2 ˆ 2 x − tan x dx = x tan x − 2 x2 = x tan x − + ln | cos x| + C. 2 ˆ √ 3 tan−1 2. (J. Stewart, section 7.1, ex.30) Evaluate 1 1 dx. x Solution ˆ √ 3 −1 tan 1 √3 ˆ √3 1 1 −1 1 dx = x tan − x d tan−1 x x 1 x 1 ˆ √3 √ x −1 1 −1 = 3 tan √ − tan 1 + dx 2+1 x 3 1 √ ˆ √3 3π π 1 d(x2 + 1) = − + 6 4 2 1 x2 + 1 √ √3 3π π 1 = − + ln |x2 + 1| 1 4 2 √6 3π π ln 2 = − + . 6 4 2 Prepared by Leung Ho Ming Homepage: http://ihome.ust.hk/~malhm 1 3. (a) For a 6= 0, use integration by parts to derive the reduction formulas ˆ ˆ ˆ ˆ xn sin ax n xn cos ax n xn cos ax dx = − xn−1 sin ax dx and xn sin ax dx = − + xn−1 cos ax dx. a a a a ˆ (b) Evaluate x3 sin 2x dx. Solution (a) Using integration by parts, ˆ ˆ 1 x cos ax dx = xn d sin ax a ˆ xn sin ax 1 sin ax dxn − = a a ˆ xn sin ax n = xn−1 sin ax dx, − a a n and ˆ ˆ 1 xn d cos ax a ˆ xn cos ax 1 =− + cos ax dxn a a ˆ xn cos ax n =− + xn−1 cos ax dx. a a xn sin ax dx = − (b) By (a), ˆ x3 cos 2x 2 x3 cos 2x =− 2 x3 cos 2x =− 2 x3 cos 2x =− 2 x3 sin 2x dx = − ˆ ˆ 3 x2 cos 2x dx 2 ˆ 3 x2 sin 2x 2 + − x sin 2x dx 2 2 2 ˆ 3 x2 sin 2x x cos 2x 1 + − − + cos 2x dx 2 2 2 2 3x2 sin 2x 3x cos 2x 3 + + − sin 2x + C. 4 4 8 + 1 (1 − x2 )n dx, where n ≥ 1 is a positive integer. 4. Let In denote the integral 0 2n In−1 . (a) Show that In = 2n + 1 ˆ 1 22n (n!)2 (b) Show that , where n! = 1 · 2 · 3 · · · (n − 1) · n. (1 − x2 )n dx = (2n + 1)! 0 Solution (a) Using integration by parts, ˆ ˆ 1 (1 − x2 )n dx = [x(1 − x2 )n ]10 − In = 0 ˆ 1 x d(1 − x2 )n 0 1 2 (−x )(1 − x2 )n−1 dx = −2n 0 ˆ 1 (1 − x2 − 1)(1 − x2 )n−1 dx = −2n 0 = −2n(In − In−1 ) = 2nIn−1 − 2nIn . Hence (2n + 1)In = 2nIn , and In = 2n In−1 . 2n + 1 2 ˆ 1 (1 − x2 ) dx = (b) Note that I1 = 0 ˆ 2 . By (a), 3 1 2n In−1 2n + 1 2n − 2 2n · In−2 = 2n + 1 2n − 1 = ··· 2n 2n − 2 4 = · · · · I1 2n + 1 2n − 1 5 2n − 2 4 2 2n · ··· · = 2n + 1 2n − 1 5 3 2 2 (2n) (2n − 2) · · · (4)2 (2)2 = (2n + 1)(2n) · · · (5)(4)(3)(2) 22n (n!)2 = . (2n + 1)! (1 − x2 )n dx = In = 0 7.2 Trigonometric Integrals ˆ For integrals in the form ˆ sinm x cosn x dx, try to convert the integral to p(u) du where u = sin x or u = cos x, and p(u) is a sum of powers of u. When this is impossible (m and n are both even), apply identities sin2 x = 1 + cos 2x sin 2x 1 − cos 2x , cos2 x = , sin x cos x = 2 2 2 to reduce the powers sine and cosine. ˆ ˆ For integrals in the form tanm x secn x dx, try to convert the integral to p(v) dv where v = tan x or sec x, and p(v) is a sum of powers of v. ˆ ˆ ˆ For integrals in the forms sin mx cos nx dx, sin mx sin nx dx and cos mx cos nx dx, apply identities sin(A − B) + sin(A + B) , 2 cos(A − B) − cos(A + B) , sin A sin B = 2 cos(A − B) + cos(A + B) cos A cos B = . 2 Any other transformations may also be necessary in dealing with trigonometric integrals. ˆ π/2 5. (J. Stewart, section 7.2, ex.4) Evaluate sin5 x dx. sin A cos B = 0 Solution ˆ ˆ π/2 π/2 5 sin4 x d cos x sin x dx = − 0 0 ˆ π/2 (1 − cos2 x)2 d cos x =− 0 ˆ 0 (1 − 2u2 + u4 ) du =− 1 1 2 1 = u − u3 + u5 3 5 0 8 = . 15 The same integral can be calculated using integration by parts (try it yourself). 3 ˆ π sin2 t cos4 t dt. 6. (J. Stewart, section 7.2, ex.10) Evaluate 0 Solution ˆ ˆ π 2 π 4 sin t cos t dt = 0 0 ˆ = = = = = 1 − cos 2t · 2 1 + cos 2t 2 2 dt 1 π (1 − cos2 2t)(1 + cos 2t) dt 8 0 ˆ 1 π (sin2 2t + sin2 2t cos 2t) dt 8 0 ˆ π ˆ 1 1 − cos 4t 1 π 2 sin 2t d sin 2t dt + 8 2 2 0 0 π 3 π ! 1 sin 4t sin 2t t− + 16 4 3 0 0 π . 16 7. (a) (J. Stewart, section 7.2, ex.68) Suppose m and n are positive integers, show that ( ˆ π 0, m 6= n . sin mx sin nx dx = π, m = n −π (b) (J. Stewart, section 7.2, ex.70) A finite Fourier series is given by the sum f (x) = N X n=1 Show that each coefficient am = 1 π an sin nx = a1 sin x + a2 sin 2x + · · · + aN sin N x. ˆ π f (x) sin mx dx. −π Solution (a) If m 6= n, π ˆ π ˆ 1 π 1 sin(m − n)x sin(m + n)x = 0, − sin mx sin nx dx = [cos(m − n)x − cos(m + n)x] dx = 2 −π 2 m−n m+n −π −π since m + n and m − n are nonzero integers, and sin kπ = 0 for all integers k. If m = n, the integral becomes π ˆ π ˆ 1 π 1 sin 2nx 2 sin nx dx = (1 − cos 2nx) dx = = π. x− 2 −π 2 2n −π −π (b) Multiplying by sin mx and integrating over [−π, π], ˆ π ˆ π f (x) sin mx dx = −π N X −π = N X ! an sin nx sin mx dx n=1 ˆ π an sin nx sin mx dx −π n=1 ˆ π sin2 mx dx = am −π Thus am = 1 π ˆ = am π. π f (x) sin mx dx. −π Remark The functions {sin nx} and {cos nx} defined on [−π, π] are central in the study of Fourier series. Instead ∞ X of finite series, one looks for infinite series in the form a0 + (an cos nx + bn sin nx) to represent functions on n=1 [−π, π]. These series have wide range of applications in science and engineering. 4