Control Allocation Aircraft maneuvering
Transcription
Control Allocation Aircraft maneuvering
Control Allocation What, why, and how? Ola Härkegård Aircraft maneuvering T he pilot controls • Pitch • R oll • Yaw • (S peed) 33 DOF DOF 1 T raditional configuration Modern configuration Canard wings R udder L eading edge flaps T railing edge flaps 2 Control allocation How Howdo dowe wedis distribute tributethe thecontrol control action action among amongaaredundant redundantsset etof of actuators actuators?? Modular control des ign • Aircraft dynamics : ~ ~ x& = f (x, u) ≈ f (x, m(x, u)) = f (x, v) dim ≈10 dim 3 1. 1. Des Design ignv=k(x,r) v=k(x,r) for for clos closed edloop loop performance. performance. 2. S olve m(x,u) ≈ Bu=v for u. 3 Controller overview Prefilter r S tate feedback v Control alloc. u x Why is modularity good? • Not all control des igns methods handle redundancy. • S eparate control allocation s implifies actuator cons traint handling. • If an actuator fails , only control reallocation is needed. 4 Practical cons iderations ... while s olving Bu=v: • u is cons trained in pos ition and in rate. u≤u≤ u • Minimum-phas e res pons e. • Want to minimize – drag • T he actuators have – radar s ignature limited bandwidth. – s tructural load • Actuators s hould not • We are in a hurry! counteract (50-100 Hz) eachother. S olutions Bu = v u≤u≤ u • Optimization bas ed approaches • Direct control allocation • Dais y chaining 5 Dais y chaining 1. Us e elevators 2. Us e T VC for until they s aturate. additional control. Direct control allocation v=Bu v u 6 Optimization bas ed CA min f(u) u Bu = v u≤u≤ u • How do we choos e f(u)? • Can we s olve the problem in real time? Ps eudo-invers e T he optimal s olution to min u 2 u Bu = v is given by u = B T (BB T ) v = B† v −1 E xtens ion: min W(u − up ) u 2 7 Half-time s ummary S o far, s tatic CA: u(t) = h(v(t)) S ame relative control dis tribution regardles s of s ituation: •maneuvering (trans ient) •trimmed flight (s teady s tate) Dynamic control allocation • E xplicit filtering: v LP u1 HP u2 How can we impos e Bu = v u≤u≤ u ? Incorporate Incorporatefiltering filteringinto intoan an optimization optimization framework. framework. 8 Main idea min W1(u(t) − us (t)) 2 + W2 (u(t) − u(t − 1)) 2 2 2 u(t) = W(u(t) − u0 (t)) 2 + K 2 Bu = v u≤u≤ u • S tability? • Control dis tribution? T he non-s aturated cas e min W1(u(t) − us (t)) 2 + W2 (u(t) − u(t − 1)) 2 2 2 u(t) Bu = v is s olved by u(t) = Eus (t) + Fu(t − 1) + Gv(t) 9 Is v→u s table? T hm: If W1 is non-s ingular then all eigenvalues of F s atis fy 0 ≤ λ (F ) < 1 • As ymptotically s table. • Not os cillatory. S teady s tate dis tribution? T hm: If us s atis fies then Bus = v lim u(t) = us t→∞ us can be computed from min W(us − up ) us Bus = v 10 Des ign example • Mach 0.5, 1000 m • Pitching only – canards – elevons – T VC • T rimmed flight: elevons only • Canards : high frequencies • T VC: midrange frequencies Parameters • Dynamics : v = Bu = [8 .0 − 20 .2 − 0 .87 ] u • Des ign variables : 0 us = − 1/ 20 .2 v W1 = 0 1 0 0 1 0 0 0 1 0 W = 0 10 0 2 0 0 0 .1 0 0 2 11 F requency dis tribution 100 Control effort distribution —Canards 10-1 —E levons —T VC 10-2 10-3 10-4 10-2 10-1 100 101 102 Frequency (rad/sec) Aircraft res pons e 25 5 q r 20 u [deg] q [deg/s] 15 10 0 5 —Canards —E levons 0 —T VC -5 0 2 4 time [s] 6 8 -5 0 2 4 time [s] 6 8 12 Computing the s olution min W(u − u0 ) 2 u u ∈ argmin Bu W = av(Bu − v) 2 u≤u≤ u Can this problem be s olved in real-time? Not according to the litterature. Problem s pecific info • S imple inequality bounds . • F rom t-1: –u – active cons traints • Convergence in one s ample not neces s ary. TTrim rimexis existing ting methods methods!! 13 S ummary • Dynamic control allocation new concept. a • Need for efficient s olvers . • New field ⇒ lot’s to do! 14