Introduction to MPI, Monte Carlo integration and some parallel
Transcription
Introduction to MPI, Monte Carlo integration and some parallel
Introduction to MPI, Monte Carlo integration and some parallel software Benson Muite [email protected] http://kodu.ut.ee/˜benson http://en.wikibooks.org/wiki/Parallel_Spectral_Numerical_Methods 1 April 2015 Outline • Parallel Programs, Hello World • Monte Carlo Method • Fast Fourier Transform Libraries • Some Simulation Packages • References Parallel Computing • Due to limitations in device physics to get faster results, instead of increasing the clock frequency, want to have many devices at not took high frequency. That is many under clocked chips rather than a few over clocked chips • For more on this, take parallel computing course. We give a brief glimpse here. • Will use Rocket, Fortran (primarily Fortran90 though knowledge of Fortran77 is still useful) and MPI, though similar ideas and methods work on other parallel computers such as your cell phone, laptop, video game console etc. Parallel Computing • Main idea is to split up work into independent tasks with as few synchronisations as possible • Kalev, Kamau and Khruschev (or Akhmatova, Algi and Atieno) need to make 99 salads • Possible organizational options: • Kalev, Kamau and Khruschev each make 33 salads. • Simultaneously Kalev chops beetroots, Kamau chops tomatoes, Khruschev chops carrots. They then mix the ingredients in one bowl. • Can you come up with others? What is the fastest assuming each of the three people are identically good at all the tasks? What if some are better at some tasks than others? Parallel Computing: MPI • MPI (Message Passing Interface) - one way of making a program parallel • Standard can be found at: http://www.mpi-forum.org • Use a library to allow computers to talk to each other by sending messages and having some explicit co-ordination • MPI works for C and Fortran programs. Some unofficial bindings available for other programs, such as Python: http://mpi4py.scipy.org/ http://pythonprogramming.net/ learning-use-mpi-python-mpi4py-module/ • Many online resources available including: https://computing.llnl.gov/tutorials/mpi/ http://www.shodor.org/refdesk/Resources/ Tutorials/BasicMPI/ Hello World Example Program - Sage + Python + MPI4PY from mpi4py import MPI comm = MPI .COMM WORLD print ( ” h e l l o world ” ) p r i n t ( ”my rank i s : %d ”%comm. rank ) Listing 1: A Python program which demonstrates parallelizm using MPI. Hello World Example Rocket Submission Script Sage + Python + MPI4PY # ! / b i n / bash #SBATCH −N 1 #SBATCH −−ntasks−per−node=5 #SBATCH −t 0 0 : 1 0: 0 0 module l o a d sage −6.1.1 mpirun sage −python mpi 1 . py Listing 2: An example submission script for use on Rocket. Hello World Example Program - Fortran https://bitbucket.org/bkmbitbucket/ parallelintrorocket/src/ 9ebbb5407c524f170ca5c32b8a794bf7c7ff0036/ HelloworldMPI/helloworld.f90?at=master Hello World Example Rocket Submission Script Fortran # ! / b i n / bash #SBATCH −N 2 #SBATCH −−tasks−per−node=20 #SBATCH −t 0 0 : 1 0: 0 0 module l o a d i n t e l p a r a l l e l s t u d i o x e 2 0 1 5 export I MPI PMI LIBRARY = / u s r / l i b 6 4 / l i b p m i . so srun h e l l o # c l e a n up rm h e l l o Listing 3: An example submission script for use on Rocket. Monte Carlo Method: A Probabilistic Way to Calculate Integrals • Recall ¯f = 1 b−a Z b f (x) dx a • Hence given ¯ f Z b f (x)dx = (b − a)¯f a • Doing the same in 2 dimensions and estimating the error using the standard deviation s ZZ f (x, y ) dA ≈ A(R)¯f ± A(R) f 2 − (¯f )2 , N R • Approximate ¯ f by random sampling ¯f ≈ PN i=1 f (xi , yi ) N PN and f2 ≈ 2 i=1 (f (xi , yi )) N Monte Carlo Method: Python Program ””” A program t o approximate an i n t e g r a l u s i n g a Monte C a r l o method T h i s c o u l d be made f a s t e r by u s i n g v e c t o r i z a t i o n , however i t i s k e p t as s i m p l e as p o s s i b l e f o r c l a r i t y and ease o f t r a n s l a t i o n i n t o o t h e r languages ””” import math import numpy import t i m e numpoints =65536 # number o f random sample p o i n t s I 2 d =0.0 # i n i t i a l i z e value I2dsquare =0.0 # i n i t i a l i z e to allow f o r c a l c u l a t i o n of variance f o r n i n xrange ( numpoints ) : x=numpy . random . u n i f o r m ( ) y =4.0∗numpy . random . u n i f o r m ( ) I 2 d = I 2 d +x∗x +2.0∗ y∗y I2dsquare = I2dsquare +( x∗x +2.0∗ y∗y)∗∗2 # we s c a l e t h e i n t e g r a l by t h e t o t a l area and d i v i d e by t h e number o f # p o i n t s used I 2 d = I 2 d / numpoints I2dsquare = I2dsquare / numpoints E s t i m E r r o r =4.0∗numpy . s q r t ( ( I2dsquare − I 2 d ∗∗2)/ numpoints ) # e s t i m a t e d e r r o r I 2 d = I 2 d ∗4.0 p r i n t ” Value : %f ” %I 2 d p r i n t ” E r r o r e s t i m a t e : %f ” %E s t i m E r r o r Listing 4: A Python program which demonstrates how to use the Monte Carlo method to calculate the volume below z = x 2 + 2y 2 , with (x, y ) ∈ (0, 1) × (0, 4). Sample Results of Monte Carlo Program N 16 256 4096 65536 ∞ Value 37.09 44.49 44.50 43.80 44 Error Estimate +/- 10.89 +/- 2.40 +/- 0.60 +/- 0.14 0.0 See http://en.wikibooks.org/wiki/Parallel_ Spectral_Numerical_Methods/Introduction_to_ Parallel_Programming for more information Monte Carlo Method: Serial Fortran Program https://bitbucket.org/bkmbitbucket/ parallelintrorocket/src/ 9ebbb5407c524f170ca5c32b8a794bf7c7ff0036/ montecarloserial/montecarloserial.f90?at= master Monte Carlo Method: MPI Fortran Program https://bitbucket.org/bkmbitbucket/ parallelintrorocket/src/ 9ebbb5407c524f170ca5c32b8a794bf7c7ff0036/ montecarloparallel/montecarloparallel.f90?at= master Parallel Fast Fourier Transform Libraries • FFTW http://www.fftw.org/ • 2decomp&fft 2decomp&fft.org • p3dfft https://code.google.com/p/p3dfft/ • pfft https://github.com/mpip/pfft Simulation Packages • Lattice Boltzmann • OpenLB http://optilb.org/openlb/ • Finite Volume • Fire Dynamics Simulator https://code.google.com/p/fds-smv/ • OpenFOAM http://www.openfoam.org/index.php • PyClaw http: //www.clawpack.org/doc/pyclaw/index.html • Finite Element • Deal II http://www.dealii.org/ • Elmer https://www.csc.fi/web/elmer • Fenics http://fenicsproject.org/ • FreeFEM++ http://www.freefem.org/ff++/index.htm • Moose http://mooseframework.com/ New Key Concepts • Parallel Computing – MPI • Monte Carlo Method – method of calculating integrals • Many parallel packages freely available – become part of a community References • Barth, T. and Ohlberger, M. “Finite Volume Methods: Foundation and Analysis” https://archive.org/details/nasa_techdoc_20030020790 • Boyd, J.P. “Chebyshev and Fourier Spectral Methods” 2nd. edition http: //www-personal.umich.edu/˜jpboyd/BOOK_Spectral2000.html • Chen G., Cloutier B., Li N., Muite B.K., Rigge P. and Balakrishnan S., Souza A., • • • • • • • • West J. “Parallel Spectral Numerical Methods” http://shodor.org/ petascale/materials/UPModules/Parallel_Spectral_Methods/ Corral M. Vector Calculus http://www.mecmath.net/ Cooley J.W. and Tukey J.W. “An algorithm for the machine calculation of complex Fourier series” Math. Comput. 19, 297–301, (1965) ¨ T. and Herbin, R. “Finite Volume Methods” Eymard, R. Gallouet, http://www.cmi.univ-mrs.fr/˜herbin/BOOK/bookevol.pdf Greenbaum A. and Chartier T.P. Numerical Methods Princeton University Press (2012) Heideman M.T., Johnson D.H. and Burrus C.S. “Gauss and the History of the Fast Fourier Transform” IEEE ASSP Magazine 1, 14–21, (1984) Ketcheson, D. “Hyperpython” https://github.com/ketch/HyperPython/ Lawler, G.F. “Random Walk and the Heat Equation” American Mathematical Society (2010) Macqueron, C. “Computational Fluid Dynamics Modeling of a wood-burning stove-heated sauna using NIST’s Fire Dynamics Simulator” http://arxiv.org/abs/1404.6774 References • McGrattan, K. et al. Fire Dynamics Simulator http://www.nist.gov/el/fire_research/fds_smokeview.cfm • Petersen W.P. and Arbenz P. Introduction to Parallel Computing Oxford University Press (2004) • Quarteroni, A. Sacco, R. and Saleri, F. “Numerical Mathematics” http://link.springer.com/book/10.1007%2Fb98885 • Sauer T. Numerical Analysis Pearson (2012) • Suli, ¨ E. “Finite element methods for partial differential equations” people.maths.ox.ac.uk/suli/fem.pdf • Trefethen, L.N. “Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations” http://people.maths.ox.ac.uk/trefethen/pdetext.html • Vainikko E. “Scientific Computing Lectures” https://courses.cs.ut.ee/2013/scicomp/fall/Main/Lectures ¨ • Vainikko E. Fortran 95 Ja MPI Tartu Ulikool Kirjastus (2004) http://kodu.ut.ee/˜eero/PC/F95jaMPI.pdf Acknowledgements • Oleg Batra˘sev • Leonid Dorogin • Michael Quell • Eero Vainikko • The Blue Waters Undergraduate Petascale Education Program administered by the Shodor foundation • The Division of Literature, Sciences and Arts at the University of Michigan Extra Slides Fun with Fourier Series • A Fourier series can represent a regular k-gon in the complex plane P −2 exp [i(1 + kn)t] • f (t) = +∞ n=−∞ (1 + kn) t ∈ (−π, π) Robert, A “Fourier Series of Polygons” Amer. Math. Monthly 101(5) pp. 420-428 (1994) Schonberg, IJ “The Finite Fourier Series And Elementary Geometry” Amer. Math. Monthly 57(6) pp. 390-404 (1950)
Similar documents
Holly Clegg - Thehealthycookingblog
Easy diabetic recipes for patients and professional cookbook guide for cancer and arthritis patients. Find new healthy cajun recipes that can keep your heart and immunity system healthy. Subscribe Holly Clegg health blog for daily health updates.
More information