Final Exam Review Answer Key
Transcription
Final Exam Review Answer Key
MAC 2233 Final Exam Review Instructions: The final exam will consist of 10 questions and be worth 150 points. The point value for each part of each question is listed in the question, and the total point value of each question is listed below. Only a basic calculator or scientific calculator may be used, although a calculator is not necessary for the exam. NO GRAPIDNG CALCULATORS OR CALCU LATORS ON A D EV ICE (SUCH AS iPOD, CELL P HONE, ETC.) WmCH CAN B E U SED FOR ANY P URPOSE OTHER THAN A S A CALCULATOR WILL B E ALLOWED! The concepts and types of questions on the final exam will be similar to the previous tests, previous reviews, and this review, although the numbers and functions may be different on each question on the exam. The questions on the exam will be taken from the previous four exams. Each of the 10 questions can be found in the following places: 1. Exam #1, Problem #2 or Section 1.5 (18 points) 2. Exam #2, Problem # 1 or Section 2.5 (8 points) 3. Exam #2, Problem #2 or Section 2.6 (12 points) 4. Exam #2, Problem # 5 or Section 3.1 & 3.2 (20 points) 5. Exam #2, Problem #6 or Section 3.3 (8 points) 6. Exam #3, Problem # 2 or Section 3.5 (12 points) 7. Exam #3, Problem #4 or Section 4.3 & 4.5 (20 points) 8. Exam #4, Problem #1 or Section 5.1 (16 points) 9. Exam #4, Problem #2 or Section 5.2 (16 points) 10. Exam #4, Problem #4 or Section 5.4 (20 points) 1. Find each limit. If a limit does not exist, explain why it does not exist. (6 points each) (a) . vx+3-2 1I m - - - x-I x-+ l - ~-~ - {\{ -L. _2-~ __ 0 I-l»- /-l-O ~ 1r<k.felM;WA-k - -- --_\.(\f +J. \ - -- . a+d- (b) x 2 - 6 lim - x-+-4 x-I (c) . 11m x-+-2 {D -~ x (x + 2)2 ~ --- 0 - ~ J. 2. Find slope of t he tangent line to the graph of f(x) at the point (5,2) . (8 points) -t()():: (x.~ - foX t i )'/l. -f ' (lc.) ~ i (X>- - lox +i Y-}. (2l< -(") r. of' (s-j :=. ~ (SL-(.(,} rl ~ (2 (,) -"J - -i (;}.':)-3D +1y-i - ~(~r~ . (~) I .. (~\ ~0\ . (10 -fo) = vx 2 - 6x + 9 3. (a) Find ~ for the function y = (2X2 - 3x + 4)5. (6 points) (b) Find f(5)(x) for t he function f(x) = 2x 5 + 4x 3 points) .f' (~\=. lOx. '1 +- 12k 2 - 2 f \I (>c\ ="{OK~ FZ-'1)c ·r\( ()()-: : 110 >? -\- '2- ~ -t C'" (X) ~ Zl{O)( - 2x. (6 = 2~:;8. 4. Let f(x) (a) Find the critical numbers. (5 points) f'('IC)-:: 2'(~(~Xl) - (2x"-&)('{,..) =- \2x'1 -(~x'f-'2X) ~x1.y· 4x'{ -r)2~_ _ C(~'i ~k'" 'ir( _ ;:; K,3 +~) 'Ix.'13 = - J\'+~ X.~ -F \(l()~vwkH~ 1...'J -= 0 ·r(x)~() X:~~::o =i-:!. ~-::~ X"J '=- ~ ~3 ~~~ Lx ::. -2 ) (b) Find t he open intervals on which t he function is increasing or decreasing. (5 points) rr :t \ <cVO~ -L r ritl /I.=-?> ~ :IT: : ? iQ ]I ', ~ m: \ yO?> () r (-3) -= :rg ~ fOs X::-\: .f' h\" V; ~ ~ V,Q X~\~ i\ (\'r~ -F~F \V\CJ!'9<,i'j : (-pO, -i) V (0, o.i) cltcr~~'4 : (-~,O) (c) Find the local maximum and local minimum values of the function. (5 points) -t'(~\ ~. ~ -11> tiw-~"\'j ~ (-1..) t[a1IJi 1<. ~ = LIt- fb(,"\M -II) ~@.'vt ..t ~~ - 2, t' ~ ;;l(-2')"!. -~ 'i>D a. .1\.= - 2, S~ .t(l<) cJ.oae~ ~ 'l"U~~lj lnJ """'" ::- c";l(-~) - ~ _ -((, - ~ ~ - '2.~ ;tl-l~2- J(~) - ~ tU- it. =- 2. =- - :5 <l yrqv)I ::: (- 2, - ))] \." 0.. w-\\cJ a..tf'to:;' 'i>O \\- C/NV\no+ ~" (ocJ MIll< or \louJ - """" J ruN (d) Find the absolute maximum and extreme minimum of the function on the interval [-4, -1] . (5 points) J.(- I) - g.. +-C-1.) ~ - ~ < Cl1i~ f()\Y\\ ~,crs+ ~"'Sb\U~ ~::: a~So)u~ ~\V\ (- ~ --S) -:: ( - \) - s) _ ""," 5. Find the inflection points and the open intervals on which the function f(x) = X4 - 6x 3 + 12x2 + 7x - 6 is concave upward or concave downward. (8 points) -f'\\Gt)~ 11x't -?:kx -t2~ :: (2(~ - 3Xf;;l.) -::: 12 ( X-2\ (~-\) l\-J 12- ::;'0 ~ n~ 5 0\"'" Il" Xl:OO +-- ±L =-v +:l. x. ~ \ K::...;l \ 11'1 t(tUi()o'\ fO' ",~ : m: < -p>s \ fOs r' (())= 1C~ ViUt ~::o t: -fl' \ I,~ T I : Y\v\t- x~o '. ]I ~ X= ~Itk K::. ?,.~ C.6v\C!A.\rt t \l (r~(~)~)~ (tl= (~o» (-,)(t ll) 4 ( 6) ~ (f05)( e()~ fbS) =-pos 'f ~ (- 00) l) V (at 00) l ~tcA~ ~n ~ lLl) 6. A car rental company rent s 20 cars per week at $100 each . However, for each $15 rebate offered, the rentals increase by 5 per week. It costs t he company $10 each week to maintain each car it rents. How much of a rebate should the company offer in order to maximize their profit from renting cars? (12 points) 1:: 100- 3 (x-U» 1:: f DR IOo-")x +(00 (oO+~.i f X---"3 ~ 3 -= llao - 3x x= ~S c., V :: ltoox - 3x 2 ~ - (Dx \' ::: lSbx _)'1."2 -p ~ I~o- 3(~S) f -=-l (00 - -=fS f =~5" 'f~ I'M -h> au .<.- proh+ f' =- lSD-CoX ISD- Cof t!£.t =0 +bX_ I~~¥ _ O(\"~ y(){.t =_ ~OO .. DetlO\J Py\<!. = $~- T£tJo~-K - $ fS J ~ ..... 7. Differentiate each function. (5 points each) 8. Find the indefinite integral. (8 points each) (a) f Yh~ cI.K - sh.cAIK 1(~)-<5(f) \ )C'l -t X~ -I- (4x 3 - 5x + l)dx J1M< H +C 1 of He (b) (i J. 3/z \ (1..\ 3/1f ) :t -s t ) -\- ~ ~ t +-~ 9. Find the indefinite integral. (8 points each) (a) (b) u=- J3 _ ~ ck~ "3.fd J clV\ u - "\ (1 _'-{ + L. _ ru""- z.)-~ - U - '; - +C 10. Evaluate each definite integral. (10 points each) (a) 1: 1.,2 "'?~ - CJtx 2 (3x -l)dx 7> ~~l-X\~, x; _)(\'2, ..... (1-' -2)- (~I)~ - h~ (~ -2) - (-r oH) ~ - O (hl (b) 1 3 (y+ 3)2dy U. =-J+3 ~ ~~.:~ : U = 3t3 ~b du ~ 'j =: '4) : U~ lCo ~ IA -=-ot "3 _ - =- 3 Co"}, _ 3~ '3 3 '3 O?llo ~+ -:= ~- ~
Similar documents
centrifugal fans and in-line duct extractors
• SV/PLUS: Multi-blade impeller for all models • SV/ECO: Backward-curved impeller for all models • Standard flanged inlet and outlet to aid installation on duct • They are supplied with 4 base ...
More informationlow-pressure centrifugal fans
CBD-1919-4M 1/5 CBD-1919-6M 1/10 CBD-2525-4M 1/2 CBD-2525-4M 3/4 CBD-2525-6M 1/5 CBD-2525-6M 1/3 CBD-2828-4M 1/2 CBD-2828-4M 3/4 CBD-2828-6M 1/3 CBD-2828-6M 3/4 CBD-3333-6T 1 1/2 CBD-333...
More information