Jakso 3: Newtonin lait ja niiden sovellutuksia
Transcription
Jakso 3: Newtonin lait ja niiden sovellutuksia
Jakso 3: Newtonin lait ja niiden sovellutuksia Näiden tehtävien viimeinen palautus- tai näyttöpäivä on maanantai 3.8.2015. Tässä jaksossa harjoittelemme Newtonin toisen lain soveltamista. Newtonin toinen laki on yhtälön muodossa ΣFi = ma. Muutamissa tämän jakson tehtävissä pitää muistaa, että ympyräliikkeessä normaalikiihtyvyys eli kiihtyvyys kohtisuoraan liikettä vastaan on . T 3.1 (pakollinen): Luettele alla esitetyissä tilanteissa kaikkiin kappaleisiin vaikuttavat kaikki voimat ja niiden suunnat. Voimien suuruutta tai kiihtyvyyttä ei tarvitse laskea tässä tehtävässä. a) Henkilö vetää vaakasuoralla narulla voimalla F kolmen kelkan muodostelmaa tasaisella jäällä siten, että systeemi on kiihtyvässä liikkeessä. Kelkkojen massat kuormineen ovat mA (oikeanpuolimmainen), mB ja mC (vasemmanpuolimmainen). Kitkakerroin kelkkojen jalasten ja jään välillä on µ. C A B b) Henkilö vetää kolmen kelkan muodostelmaa mäkeä ylös mäen pinnan suuntaisella narulla voimalla F siten, että systeemi on kiihtyvässä liikkeessä oikealle. Kelkkojen massat kuormineen ovat mA (oikeanpuolimmainen), mB ja mC (vasemmanpuolimmainen). Kitkakerroin kelkkojen jalasten ja jään välillä on µ. Mäen kaltevuuskulma on 27o. A B C c) Alla olevan kuvan mukainen systeemi on kiihtyvässä liikkeessä oikealle. Massat ovat mA ja mB. Kaltevuuskulma α on 30o. Kappaleen mA ja pinnan välinen kitkakerroin on µ. mA mB α d) Heiluri koostuu kappaleesta, jonka massa on m, ja langasta, jonka pituus on L. Aluksi heiluri on levossa kohdassa A (katso kuvaa). Heiluria poikkeutetaan tasapainoasemastaan ja vapautetaan kohdassa B, missä langan ja pystysuoran suunnan välinen kulma on 15o. Määritä kappaleeseen kohdistuvat voimat kohdissa A ja B. o L 15 B A e) Alla olevassa kuvassa on kartioheiluri. Siinä kappale, jonka massa on m, liikkuu pitkin vaakasuoraa ympyrärataa (säde r) vakionopeudella v kulman α pysyessä vakiona. Langan pituus on L ja kulma α = 15o. L α r f) Volkswagen Golfia (massa m) ajetaan vakionopeudella v pitkin tietä, jossa on ympyränkaaren muotoinen mutka (kaarevuussäde r). Tietä on kallistettu 10o sisäkaarretta kohden. Lepokitkakerroin auton renkaiden ja tien pinnan välillä on µ. Ilmoita vain ne voimat, jotka ovat kohtisuorassa auton kulkusuuntaa vastaan. Huomaa: Kitkavoima voi osoittaa kahteen eri suuntaan eri tapauksissa. T 3.2: Henkilö vetää vaakasuoralla narulla voimalla F kolmen kelkan muodostelmaa tasaisella jäällä siten, että systeemi saa kiihtyvyyden 0,23 m/s2. Kelkkojen massat kuormineen ovat mA = 125 kg, mB = 75 kg ja mC = 142 kg. Kitkakerroin kelkkojen jalasten ja jään välillä on 0,015. Määritä kaikkien kolmen köyden jännitys. C A B T 3.3: Alla olevan kuvan mukaisessa systeemissä massat ovat mA = 3,25 kg ja mB = 2,0 kg. Kaltevuuskulma α on 30o. Määritä kappaleen mA ja pinnan välinen liukukitkakerroin µ, kun systeemi liikkuu oikealle kiihtyvyydellä 0,12 m/s2. Laske myös langan jännitys. mA mB α T 3.4: Heiluri koostuu kappaleesta, jonka massa on m = 120 g ja langasta, jonka pituus on L = 1,50 m. Heiluria poikkeutetaan tasapainoasemastaan A ja vapautetaan kohdassa B, missä langan ja pystysuoran suunnan välinen kulma on 15o. Määritä langan jännitys ja kappaleen kiihtyvyys kohdassa B. o 15 L B A T 3.5: Ihminen (m = 70,2 kg) seisoo hississä, joka liikkuu ylöspäin kiihtyvyyden ollessa 1,41 m/s2. Kuinka suurella voimalla ihminen painaa hissin lattiaa? Kuinka suuri tämä lattiaan kohdistuva voima olisi, jos hissi liikkuisi alaspäin samalla kiintyvyydellä 1,41 m/s2? T 3.6: Alla olevassa kuvassa on kartioheiluri. Siinä kappale, jonka massa on m = 25 g, liikkuu pitkin vaakasuoraa ympyrärataa (säde r) vakionopeudella v kulman α pysyessä vakiona. Langan pituus on L = 24 cm ja kulma α = 15o. Määritä langan jännitys ja kappaleen nopeus v. L α r T 3.7: Volkswagen Golfia (massa m) ajetaan vakionopeudella pitkin tietä, jossa on ympyränkaaren muotoinen mutka (kaarevuussäde r = 52 m). Tietä on kallistettu 10o sisäkaarretta kohden. Lepokitkakerroin auton renkaiden ja tien pinnan välillä on (huonolla ajokelillä) 0,15. Mikä on pienin ja suurin nopeus, jolla kaarteessa voi ajaa ilman, että auto joutuisi sivuluisuun? Jakso 3: Vastaukset T 3.2: Vasemmalta oikealle: 54 N, 82 N, 129 N T 3.3: 0,11, 19 N T 3.4: 1,14 N, 2,54 m/s2 T 3.5: 788 N, 590 N T 3.6: 0,25 N, 0,40 m/s T 3.7: