Tentamen Relativitetsteori
Transcription
Tentamen Relativitetsteori
KOD: Tentamen Relativitetsteori 9.00 – 14.00 , 22/8 2015 Hjälpmedel: Miniräknare, linjal och bifogad formelsamling. Observera: Samtliga svar ska lämnas på dessa frågepapper. Det framgår ur respektive uppgift när en fullständig lösning eller ett resonemang ska presenteras, och när endast ett svar krävs. Maxpoäng är 45 p. För godkänt krävs minst 19 p. Preliminära betygsgränser: 19 – 21 p betyg E 22 – 26 p betyg D 27 – 33 p betyg C 34 – 40 p betyg B 41 – 45 p betyg A 1. Diagrammet till höger föreställer tre händelser p, q och r. (a) Ange för vart och ett av de tre avstånden q-p, q-r och r-p om det är rumslikt eller tidslikt. (1 p) q-p: q-r: r-p: (b) Rita ut världslinjerna för tre olika inertialobservatörer – en observatör för varje par av punkter q-p, q-r respektive r-p – sådana att var och en av dem anser att händelserna i hens par antingen är samtidiga eller inträffar i samma position. (Det ska framgå vilken världslinje som hör till vilket par av händelser.) (2 p) (c) Ange farten hos var och en av de tre observatörerna. (1 p) Fart observatör q-p: Fart observatör q-r: Fart observatör r-p: 2. Redogör kortfattat innebörden i Einsteins två postulat! Ange även vad respektive postulat kallas. (4 p) Postulat I: Postulat II: 3. En partikel med massa m rör sig åt höger med farten c/2. Den träffas av en foton som rör sig åt vänster, och som har samma totala energi som partikeln. Partikeln absorberar fotonen. Diagrammet visar världslinjer och världsvektorer för partikeln och fotonen före kollisionen. (a) Rita i diagrammet in världslinje och världsvektor för partikeln efter att den absorberat fotonen. Det ska framgå varför du ritar som du gör. (2 p) (b) Med vilken fart rör sig partikeln efter absorbtionen? (1 p) (c) Hur mycket större är partikelns massa efter kollisionen jämfört med innan? Visa hur du räknar. (2 p) 4. År 2145 får jorden oväntat besök av utomjordingar. De förklarar att de rest från stjärnan Sirius, som ligger 8,6 ljusår från jorden, och att resan tagit dem 5,1 år – dvs. det har förflutit 5,1 år ombord sedan avresan. Rita ett rumtidsdiagram och förklara kortfattat hur du räknar i uppgifterna nedan. (a) Vilket år enligt jordens tideräkning lämnade de Sirius? (3 p) (b) Vilken fart höll deras rymdskepp under färden? (1 p) 5. Ge korta svar på följande frågor – det räcker med ett eller några få ord. (5 p) (a) Vad kallas den kärnprocess som får solen och andra stjärnor att lysa? (b) Hur kan man definiera ett inertialsystem enligt den allmänna relativitetsteorin? (c) Hur stor blir ett föremåls rörelsemängd när dess fart närmar sig ljusets? (d) Vilken situation är enligt ekvivalensprincipen liktydig med att accelerera? (e) Vilket problem råkar man ut för om man försöker tillverka en negativt krökt yta av en positivt krökt yta? 6. Rumtidsdiagrammet visar en observatör A som rör sig åt vänster med farten c/4 och ett stort interstellärt objekt B som rör sig åt höger med farten c/2. (Ingen motivering behövs nedan.) (a) Markera objektet B:s vilolängd i diagrammet och ange dess storlek. (Använd axlarnas gradering.) (2 p) (b) Markera den längd som observatören A anser att objektet har i diagrammet och ange denna längd. (2 p) 7. Ange för vart och ett av följande påståenden om det är korrekt eller felaktigt. (Rätt svar ger 1 p. Fel svar ger -1 p. Inget svar ger 0 p. Uppgiften som helhet kan dock inte ge negativ poäng.) (10 p) (a) En neutron i en järnkärna har lägre massa än en neutron i en kolkärna. (b) Den totala energin för ett föremål som befinner sig i vila är noll. (c) En organism som rör sig längs en krokig världslinje åldras inte lika mycket som en som rör sig längs en rak. (d) Genom att klyva lätta atomkärnor, som t.ex. natrium ( 2311Na) kan man utvinna energi. (e) Tidvattenkrafterna vid ett svart hål är som störst vid händelsehorisonten. (f) Alla stjärnor slutar antingen som neutronstjärnor eller som svarta hål. (g) En neutronstjärna kan ha en massa 100 gånger så stor som solens. (h) En klocka vid Eiffeltornets fot går långsammare än en likadan klocka i Eiffeltornets topp. (i) Dvärgplaneten Pluto rör sig längs en tidslik geodet. (j) 168O och 169O är två olika isotoper av syre. 8. Markera de punkter i diagrammet som ligger i p:s framtid men i det förflutna till q. (2 p) □ Rätt □ Rätt □ Fel □ Fel □ Rätt □ Fel □ Rätt □ Fel □ Rätt □ Rätt □ Rätt □ Fel □ Fel □ Fel □ Rätt □ Rätt □ Rätt □ Fel □ Fel □ Fel 9. Du är en nyckelpiga som utför geometriska mätningar på en yta. Vilken slutsats om ytans krökning kan du dra ur följande mätresultat positiv negativ noll ingen entydig slutsats möjlig (a) Du ritar en fyrkant vars alla fyra sidor är 15 cm och alla vinklar är 80 grader. □ □ □ □ (b) Oavsett åt vilket håll du går, och i vilken punkt du startar, kommer du tillbaka till utgångspunkten om du promenerar rakt fram sträckan 120 cm. □ □ □ □ (c) Du märker upp punkterna längs en geodet A. Därefter promenerar du 2 decimeter rakt fram i rät vinkel ut från geodeten. Du vänder dig 90 grader åt vänster och går sedan rakt fram i denna riktning. Du fortsätter länge rakt fram men korsar aldrig geodet A. □ □ □ □ (d) Du ritar en cirkel och mäter upp dess radie till 10 cm och dess omkrets till 73 cm. □ □ □ □ (Helt rätt 3 p; tre rätta svar 2 p; två rätta svar 1 p; annars 0 p.) 10. Förklara kortfattat följande begrepp. (4 p) (a) gravitationslins (b) händelsehorisont (c) vit dvärg (d) atomära massenheten