Wall-liquid and wall-crystal interfacial free energies via

Transcription

Wall-liquid and wall-crystal interfacial free energies via
Wall­Liquid and Wall­Crystal interfacial excess free energies via Thermodynamic Integration: A Molecular Dynamics simulation study
Ronald Benjamin and Jürgen Horbach
Theoretical Physics II: Soft Matter
Universität Düsseldorf, Germany
Crystal growth from melt Melt
 CL
Crystal 
 WC
 WL
Wall
Young's Equation
WL −WC
cos =
CL
Goal is to determine wl and wc via Thermodynamic Integration (TI) using MD simulation.
Computational methods to determine 
1.) Pressure anisotropy (PA) Henderson & van Swol (1984, HS,  WL)
Miguel & Jackson (2006, HS,  WL)
L
G 1
Nijmeijer et al. (1990, LJ, 

'=lim
=
[
P

z−P

z
]
dz
∫
A0
T
Tang & Harris (1995, LJ , 
A
2 0 N
)
WL
)
WL
Varnik et al. (2000, LJ,  WL )
2.) Thermodynamic integration (TI) Deb et al. (2011, 2012, HS, A0,  WL &  WC )
Heni & Loewen (1999, HS,  WL &  WC)
1
1
G
〈
〉
∂G  1
∂U  Fortini & Djikstra (2006, HS,  &  )
1
if
=
=
d
=
d
WL WC
A
A
∂
A
∂
 Laird & Davidchack (2007, HS,  &  ) 0
0
WL WC
Leroy et al. (2009, LJ,  WL)
∫
∫
3.) Non­equilibrium work method (BAR)
NF
∑
i=1
NR
1
NF
[1
expW F −G]
NR
−∑
i=1
i
Mu & Song (2006, LJ,  CL )
1
NR
[ 1
exp−W R −G]
NF
i
4.) Gibbs­Cahn integration (GC)
d  /T =−
e N P v N
T
2
=0
Davidchack (2010, HS,  CL)
vN
dT 
dP
T
Laird et al. (2009, LJ,  CL )
Laird & Davidchack (2010, HS,  WL) Which Model? Hard Spheres vs. Lennard Jones
U r  = 0 r
∞ r≤
1.) Hard Spheres
purely repulsive
entropic
Number of parameters limited (packing fraction)
predicts complete wetting of a hard wall [Deb et al. (2011, 2012 )]
2.) Lennard Jones
U r=4 
repulsive and attractive
forces
[    ]

r
12
−

r
vary different parameters (density and interaction strength).
6
 from Thermodynamic Integration
Step 1: Bulk LJ system
 = 0
0< <1
LJ + Flat Wall (fw)
 = 1
 from Thermodynamic Integration
Step 2 : LJ + Flat Wall
LJ + Structured Wall
Uwall=Ufw
 = 0
0< <1
2
2
U wall =1−  U fw  U struct. wall
 = 1
Uwall=U struct. wall
 from Thermodynamic Integration
Step 1
Step 2
Tcrystal =0.5
Tcrystal =0.5
Tliquid =2.0
Tliquid =2.0
 from Thermodynamic Integration
Computational aspects
of PA method (Deb at al., IJMPC, 2012)
c
WC
WL
Contact Angle
Flat Wall (WCA)
WL −WC
cos =
CL
CL from Laird et. al. (JCP, 2008)
Structured Wall (WCA)
Structured Wall (LJ)
 from Non­Equilibrium Work Method
〈W 〉≥ G
Second Law
〈W 〉=G〈W diss 〉
Quasistatic process
W rev =G
〈W diss 〉≥0
TI
Jarzynski (1997, PRL)
Jarzynski Equality 〈exp −W 〉=exp −G 
Ns
1
G=−K B T ln
exp−W i 
∑
N s i=1
 from Non­Equilibrium Work Method
〈W 〉=∫ dW W P W 
〈exp −W 〉=∫ dW exp − W  P W 
W = G
P(W)
exp(­W)
Number of trajectories needed increases exponentially with system size
 from Non­Equilibrium Work Method
Crook's Non­Eq. Fluct. Thm. (PRE, 2000 )
Combine Forward and Reverse trajectories
−W F −G
〈 f W e
−W R − G
〉 F =〈 f −W 〉 R , 〈 f W 〉 F =〈 f −W e
f W =1
〉R
Jarzynski Equality
1
f W =
[1 N F / N R  expW −G ]
Bennett Acceptance Ratio
(BAR)
(Shirts et al., PRL, 2003)
NF
∑
i=1
NR
1
NF
[1
expW F −G ]
NR
−∑
i=1
i
1
NR
[1
exp−W R − G]
NF
=0
i
Least statistical error
 from Non­Equilibrium Work Method
<W>F /A
<W>F /A
GFJarz /A
GFJarz /A
+ BAR
X BAR
-G
Jarz B
TI
­<W>B /A
/A
­<W>B /A
More Complex potentials (EAM)
Simulations at coexistence, requiring long equilibration times
-GBJarz /A
Difficult to find a reversible path
 from Gibbs­Cahn integration
Idea: Apply Cahn's generalization of Gibbs's interfacial thermodynamics to obtain a differential equation for  along pressure, temperature or coexistence curve.
(Cahn, Interf. Seg., 1979)
G = E ­TS + PV, Gbulk=N
A.) Bulk system: E­TS+PV­N=0
Bulk system with interface: E­TS+PV­N=A
Taking the differential,
B.) Bulk system: 0=­SbdT+VdP­Nbd
Bulk system with interface: d(A)=­SdT+VdP­Nd
(Gibb's­Duhem Equation)
Applying Cramer's rule to (B), we get,
∣ ∣
1 Y
[Y / X ]= b
X X
Ad=­[S/X]dT+[V/X]dP­[N/X]d
Ad=­[S/N]dT+[V/N]dP
Choosing X=N, d  /T =−
At constant T, d=vN dP
e N P v N
T2
vN
dT 
dP
T
∞
[
v N =∫ 1−
0
]
z
dz
b
b
Y
b
X
 from Gibbs­Cahn (GC)integration
Liquid in contact with flat structureless wall
Gibb's­Cahn integration works well for  WL . Summary
A novel thermodynamic integration scheme to calculate
the interfacial free energy of liquid/crystal in contact with a
wall.
Non-equilibrium Work measurements in good agreement
with TI results and offer improvement over TI in terms of
computational speed besides being an additional check of
our TI scheme.
Gibbs-Cahn integration method useful when  WL is needed
at many points along the pressure, temperature or
coexistence curve.
Reference
R. Benjamin and J. Horbach, J. Chem. Phys. 137, 044707 (2012)
Thank You!

Similar documents