r.Itr-l 150- - Ranchi University Department of MCA
Transcription
r.Itr-l 150- - Ranchi University Department of MCA
c J UN I VE RS I T Y DE PAF.TMENT OL- MATHEI4/IT I syslSl':;tffiHTl]lr. semesrer 201 CS 1- 2013 l wise distribution Semester S eme s | ""Lrr of cour.ses, credits, Lectures, Dc Credi t s lILIE Mar ks Univ. Sessional 3 3 25 3 3 25 3 3 25 3 3 1 Core (Theory) Computer Fundamentals 3 1 I'l 25 Core ( Practical ) C Prosranrming Lahr 3 1 15 25 18 1B 6 I qso 3 3 1 3 3 1 15 25 3 3 1 75 25 3 3 1 75 25 ? 3 .1 't5 25 3 3 1 15 25 18 1B ned_L AIra]-ySfS Aigebra 102 [ru \-ul[rf)Iex 1 II 103 I 1 c I{nalys -l_s \.rnr MATH I Differential 104 I 105 Max. Exam 75 tvlA'1'.t.l MATH Lectur es / week Lectures Tutoriai I rr^^r I 1o-1 l(rr.) ffi I-Jf1 : er I I Code t\/tnmu r'.r.-r.rrr. Marks Geometry \.nl 25 and C programmirlg MATH 106 T" t"I I 15C Semester fI ,'rArn 2oi. MATH 202 MATH 203 MATH 204 MATH 20s I Kear AnalysLs II lpU Discrete Mathematics (Thl Analytical Dynamics (.n) Optimi zation Techniques trh) Core (Theory) Data Structure with |I25 C uore ( practrCaf ) Lab on Data Structure with C Total 15 -t r.I tr-l t- 150- qcafl- M 71 ,o6 ruB;_H begmrtxarelr -ReseJh:r {}j I t UNIVERS ITY DEPARTMENT OF MA?HEMATICS RANCHI UNIVERSITY Sernester system syll-abus w.e.f . 20I\-20 13 Semester III Course Title Credi t s Code Lecture s /week Lectures Tutorial Univ. Sessi-onaI Exam i\{athematrcal_ MoCel ing PDE Max. Marks 13 Special ( Theory) fntegral Equations Special (Theory) Nunerical- Analys i s MATH I Sp"cial (Theory) 306 | ToPology 6 Tot a l- laso lrso Semester IV MATH Core Paper (Th) near algebra Lj 401 Specj-al (Theory) Functional Analysis Speci.al. (Theory) Operations Research Special (theory) Numerical Solution PDE Special MATH 4 MATLAB 05 of 3 -o (Theo Ty / pr ) t Proj ect Tota I oRzL 6,zot t a a UI']IVERS ITY DEPAF.TMENT OF . MATHEIV]ATICS RANCHI UI{IVERSITY Seme-.ter system syf labus w. e . f . 20Ir-20 1J M. Sc. (ITIATHED4ATf CS) SYLIJ\BUS BASED ON SEMESTER SYSTEM w. E. E'. THE SESSTON 201 1-20 13 SEMESTEFi T o o UNIVERSITY DEPAR.TMEIIT. OF MATI]EI4ATTCS P.ANCHI UNIVERSITY Paper Code: I{ATH 101- -teal Analysis Ful1 Marks :75 , Pass Marks:30 I I Cred,its :3, 10 questions wii-l be set . An examinee wil_I be required to answer any 5 questions out of them in 3 hours duration. Each question witl carry 15 marks. A qrrestion of 15 rnarks rftay be divicled in twc parts: Part(a) of B marks and Part(b)of I marks. Definition and 'existence of Riemann-Stieltjes "lc e( L i-ntegral . Condit.ions for R-S integrability. Properties of 'the R-S integral, R--S integrability of )L functions of frrnct j-on. INo . of questions : 3 ] \. ,, -f ,. \ I 1\ Series of arbitrary terms. Convergence, divergence and oscil-lation, Abel's and Dirichil-et, s tests. I iU,rO Multiplicat:-on cf series. Rearrangements of terms of _l a series, Riemann's theorem. Iirio. o'f questions r3] I Sequences and series of functions, pointwise and rrniform .convergence, Cauchy's criter-ioh for uniform convergence. weierstrass M-tesL, AbeI' s and Dirichlet's tests for uniform convergence,. uniform converg-ence and continuity. uniform convergence and Riemann-stieltjies integration, uniform convergence and. differentiation. t\o. of questions:31 Weibrstrass questions Re approximatj on theorem. [No. - of :1l f erences; Walter Rudin, PrincipLe of Mathem aticaf Anal-ysLs edition) McGraw-Hi11, 1916, Internat,ional S.tudent Edition. 2. K. Kneppr Theortl ano Application of I nf in ite Se ries 3.T. Ivi. Apostol, Mathenatical- -' AnaLysis, Irlarosa 1. ( 3rd r o Publishing House, New Delhi, 1985. "-1,O(oZo tt Anrq A t*tt fe- lL o UNIVERSTTY DEPAF.TIIENT OF MATHEMATICS RANCH] UNIVEF.SITY Semester system syJ-Iabus w'e ' f ' 2011-201-? L l-" Paper Code: I4ATH LOz Algebra, CreCits FuIl Marks :75, Pass Marks:30 l.- L I :3, 10 questions wilt be set. An examinee wi I1 in be3 required tc answer any 5 questions out o f thern hours d-uration. Each question wiJ. I carry 15 marks. A question of, 15 marks may be divided in turo part-s: part(a) of B marks and part (b)of .7, marks Group of permutations, symmetric and Al-ternating Groups [No. of questions:2] J J I J -' O\'/ .1Y "/ c The clas s sub groups / .theorem/ Sylow Pequation, Sylowt s thecrems. [No. of questions: 2l Cauchy's Direct product of groups. Structure theorem for [No' of generated abelian groups ' iinitely questions z2j \, r. \f.,,! \\ 1'/. NorLn-aI and Jordan-Holder derived series. Composition theorern. INo._ of questions i2] ca7-'t \)\--l- a aQ J-\yr-, f Solvablegroups.Inso.lvabilityofSnfor.n.5 Ii'{o. of qr:estions : 2] References; 1 . N. S . Gopalkrishnbn, University AJgebra' New Age PubI., 1986 2. M. Artin, Algebra, PHI r. 3. S Singh, Q Zln,".trrddin,Modern Algebra' Vikas Publ. House 4. Dummit. and Foote, AbstracL Algebra' Wiley trndia - .: 'r' ,t UN IVERS ITY CF MATHEMAT ICS I Ui'i iVERS ITY DEPAR.TMEI,IT RAt\iCH Paper Code: I{ATH 103: COMPLEX FuII Marks:75 I Pass Marks:30 ANALYSIS I CrediLs i3, be wiil 1C questions will be seL. An examinee in 3 required to answer any 5 questions out of them hours duration. A question of 15 Each question witl ca rrY 15 marks ' part (a) of B marks marks may be divideo in two parts: and part (b ) of 1 marks ' of power series: Formuia f or radius of convergence and f Absolut e pl Lpower series and related problems -of power ' series. INo. uniform convergence theorem of questions : 021 Morera Thlorem I Complex Integration, Cauchy Theorem' Meromorphi \ Laurt"lt u theorem' trrlot.*, I function theorem' prl-nciple of the arguments Rouche,stheorem,Fundamentaltheoremofalgebra.[No q"u"tior, :' o: I J - Taylor's f,\\: i. ,. !" r\ i*"J n\ "isingularity o clFunction: Anal-ytic of $-ingurarities conLour integratio n f] tunctions, nlsidu.e. and- poles and Cauchy Residue theorern r;4ftt and relateJ problems, [No. of questions : 03] picard, s theorem. ' I I $\{ Books Reconlmencied 1. Churchill, qomplex variables Mc- and APPlicat,icn Hill ( 1 97 6) of functioils r Theo rY 2 .Titehmarsh t UniversitY Press ' 3.E T Copson' Theory of Functions oi Variable, Oxf otd: Graw aleel$- h G.zot I ; Oxf or:d ComPIex UN IVEF.S ITY . DEPARTMEN'I OF MATI{EMAT ICS R.ANCHI UNIVERSITY Paper Code: t"lATH 104 - DTF;'ERENTIAL Credits : 3 / E'uIl Marks :75 / Pass i"Iarks:30 GEOMETRY I 0 que stions wilf be set. An examinee wilf be required to answer any 5 que st ions out o f thern in 3 1 hours duration. Each quest.i-on will carry 15 marks. A question of 15 marks *uy be d.ivicled in two parts: part(a) of B marks part (b) of 7 marks. . and Space Curves: Curvature and Torsion, Serret-Frenet f ormulae, hel-ix, Uniqueness- theorem f or space cLlrve, The circle of curvatuxQr. osculating sphgre, Locus of. centre of curvature, spherical Curvature, ]OcuS of centre of spheri-cal curvature, Bertrand curves . [No . of question : 041 *A '\.,jtq/\ b,rrrr"" on Surfaces: Parametric curves, Curvature of '"i ncrmal section, Meusnier' s ti:eQrern, Principal curvature, tines of anc. principal direction curvaturg, theorem of Eulert s and Durpin, conjugate cirection s and a3ymptotic lir,es . [No . of question = .on, .Geodesics: Differential- equation of 'Geodesics via geodesics . on devel-cpabie, .. **" i normal properti-es, question of \ Curvature and torsion of geodesics " [No l-- ..' it---ozt Book 'Recomniende,C l.C.E.Weatherbutrlr Di fferential Geometry of Three Dimens-ions / Radha publishlng House (19 47 ) )-o(et)o(, UNIVERS-ITI DEPARTi'IENT OF MATHEMAT, ICS RANCHI UNIVERSITY Code: t"lATII 105 Cornputer Euncarnenta]-s and cl Credits:3, Full Marks :75 , Pass l"Ia::ks:30 Sub. 10 questions wil-I be set and students will be required to answer any 5 of them in 3 hours duration. nacfr question witl carry 15 marks. A question of. 15 marks may be divided in two parts: Part (a) of B marks and Part. (b)of 7 marks ( Evo}ution of Digital computers, Major components of digital comput ar , Memor\,, Cache RAM, Microprocessors, - Motherboard, network, computer " classification, (10) application. Computer computer Number System \ --.l Decimal- number, Binary Number, Octai Number, Hexadecimal- Numlcer and rel-ateci conversion. BCD codes, EtsCDIC codes,'ASCII code .(10) e.P.tf, I Memory a;rd I/O Devices InSt ructiOIf S r O rgan LZationT C. P-. {J . Timing Diagraln. Main memo tY , MOdes t nemoTy o fnput devices, Output devices/ (1Q) C PROGRAMMING I.ANGUAGE 'i Addr^es s ing second arY T /"O porl. . C Introd,uction HiStorical development, character SeL, constants, variables; keywords, data typ€s, -type conve rq iofr, oper_ators, Struct,ure- of C programme_. (10) 'Decision, Loop & Control Structure If statement, Multiple statements within if , the . if-else 'statement, nested if - - else, Loops, -the white-Ioop, the Eor Loop, multiple initializations break statement; conLinue in. 'the . For Loop', .do-while Loop, SwiLch-Case statement, the statement, Goto'.statemefrt. (10) lrunction & Storage Classes What is a functio.n, passing v4lues between functions. returning values from functions function declaration and prototyP€s, CaIl by va'lue 'and caLl variable concepts -' by reference, tocal and global -register storage class, Automatic storage class'. stat.ic storaqe cl-assr €Xternal storage -class. (1Q) Dre€S 7ol 6t>o(t UNI.VERSITY DE?ARTI"iENT OF MATHEI4ATICS RANCHI UI{IVERSITY Arrays & Pointer Arrays, inputting and accessing ar-ray elements, manipulation of ei'emencs, Bounds checking, passing array to a function, tvro dimerrsi.onal arrays ' pointer introductj-cn, representation of Arrays in Memory,pointer to a function, pointer to an array. (10) Structures Declaring a structurerTypes of Structure accessing st-ructure, array of structure. in's.Lances, (10) C Preprocessor Features of C-Preprocessor, Macro with arquments, and Macro versus functions, File incltrsion. (10) File Management In C and opening a f ile, closing a f il-e Def ining Input/Output operatj-ons on filesr. Error handli.g, (10) Random accessing to 'f iles. Text Books: 1)B.RAM, - COMPUTER TUNDAMENTAL, }JEW AGE PUBLISHERS Fourth Edition (2001) OF COM.PUTER, HALL II.]DIA, (20C1), Fburth Edition. z-) V. RA"TARAMA\'I, FUNDAMENTAL 3) E. BALAGURUSAMY, PROGRAMMTNG Edition PREIIT ICE_. rN ANSTC, TMH, Third "(2004) 4) K .R VENUGOPAL, SUTJEEP R PRASAD, C TMI-I (200 4 ) , Reprint l6th.' PORGRAMMING VfITH oc<s %1"6 l>tct i o UN I VE RS I TY DE PARTMENT O F IUATHEMAT I CS 1@ RANCHI UNIVER.SITY ; Paper Code: I'IATH 106, Lab cn C, Creditsi Marks z'l-5 , Pass Marks : 30 3, FuI]- There shall be a 3 Hour practical examination. The marks are divided into three parts: i) Practical Note Book:- 25 marks, (ii) Prograirming efficiency in Lab:40 marks and (iii) Qral-:10 Prcgralls. to display various messages on the screen in.warious. forrns: I.l. j-ustratior: of use of \n, td, $e, tf ecc. programs !o illustrate the concepts of constants, wariables and, data t1pes. Five programs viz. Use of printf(.) and.scanfQrProgram to compute average of N numbers, Temperature conversion problemr' P::inting ASCII values. Program for simple arithmet-ic operations program to illustrate operaiors and expressions in C: Coinputing the roots Itlustration of mathematical furlctibns given quadratic equation, given of a ,floor(x) ,pow(x,y) in <math.h), v!z.cos(x),sin(x),tan(x),sqrt(x),ceiI(x) etc, programs to evaluate area of square' area of circle, volume of sphere etc' rrla rtani'<ian r in C: Determine Determine that a making and branching deci'sion nalc Program to illustrate 'usi-ng statement, if-else number or even given integer is odd number 'numbers, a simple Developgiven three among largest the Determine mathema.tical calcrrlator using Switch-Case statement' Accept two integers A and B from keyboard. If A is greater than B then compute A-B, else compute A+B using ternary oPerator. pqugrams to illustratc Decision rnaking and loopirrg in C: Program to compute .n using while loop, Reverse a given integer- using while x to the power of loop eg. Obtain 3241 when 1423 in entered, Program to compute.fact<;ria!of, given number, Program to print patterns on screen using loops'e.9. L2 . L23 L231 '. etc . : Progra6s to illustrat5 arays in C: Reading and printing vflues in one diml.nsional array, Reading -- rnatrix in two dimensional airay and displayirig j-n on the screen, Uatrix multiplicalion prograrn., Obtaining trelnspose of a given niatrix. (Some other programs using 2D-arrays)..' -Il-lusLration of user defined functions: Simple arithm6tic operatibns using user defined functions. Computations of areaO,volumeO, Simple nterestsO' etc using functiohs.Calling functions using CaIl by _ Cornpound interestg and illustration pros and cons of both melhods. Reference va1le and CaIL by programs.to'illustrate structures. and unions: Creatingostructure to store maiiing address, student data etc,Date manipulation - prograrir using structures, Creating . unions 'and to handle above data fnd comparing stnictures & unions with illustration of pros and cons. . Small progJrams to illustrate.concept of pointers (Mininum 5 proqrams). Introuduction of Charact€r strings and smalL programs for string manipulation (Minimum 10 programs) I\t--->' d 1x\\ .,-/\ >a I bt)0r I UNIVERS ITY DEPARTMENT OF I{ATHEMATICS RANCHI UNIVERSITY Semester system syllabus w. e. f. . 2OII-2013 I CS) SYLI,ABUS BASED ON SEI{ESTER SYSTEM M.Sc - (D,IATHEI4AT w. e. f. TIrE SESSTON 201 1-2013 SEMESTER II o ITY UN IVER.S DEPARTMENT e OF }4ATHEMATICS RANCHI U}JIVBRS ITY Paper Code : l"IATIi 2OL Marks ;75 , Real Analysis -I I , Credi ts Ful1 , Pass Marks:30 10 questions wi.l-l- be set. An examinee wil-l be required to answer any 5 questi-ons out of them in 3 A hours duration.Each question will carry 15 marks. j-n two question of 15 marks may be divided pai:ts: Part (a) of B marks and Part (b) of 7 marks ' of Derivative Functions of several variables. linear a functions in an" open Subset of R' into R* as s''.k"u Chain rule . Partial- derivat ives . h transformation. Taylort s theorem- InverSe function theorem. Impi-icit function theorem. Jacobians. INo. of questions : 4] r Measures and- outer measures. Measure induced by an ou.Ler measure, Extension of a measure. Uniqueness of Extension, Completion of a measure. tebesgue outer measure. .Measurable . sets . Non-Lebesgue measurable sets. [No. of questions:3] Re'gularity.,Measurable functions. Borel. measurabilii:y . [i{o . cf questions z 2] and" Lebesgue 'The . general Integration of non-negative functions. integral. convergence theorems. Riemann and Lebesgue INo. of questions : 1] inte grals tF Rereren ces: 1. Walter Rudin, PrineipTe of lIath'ematical 'AnaTysis (3rd edition) McGraw-Hi11 Kogakusha, Intetnational Student Edition, I976. 2.H.L.,Royden,Real'Analysis,4thEdition' Macmillani 1993. 3.P.R.I{atrmos,MeasureTheory,Van.Nostrand't95!.: 4. .G.' de Barra, Lleasure Thegty an.d Integtation, wiley . Eastein, .t981. E. HeWitt and K. Stromb€rg, Rea-Z and Abstract Analysis, SPringer, L96g . and 6 . p . K. ..fiin and V. P . Gupta , .Lebesgue Meas.ure InteEration, - New Age International, New. Delhi.' 2000. 7. R. G. Bartle, T]l'e E]-ements of Integration, John WiI"y, 200 0 5. . ,/ 0rt1 J"-', \ \ \\ 4^\\ @ \t(rlvr r N\fri UI.] I\/ERS ITY G DEPARTME}JT OF MATHEMA,I] ICS I UNi VER.S i TY P.AN CFI DISCRETE Paper Code: D4ATH 202 , Cred.its:3, Fitll Marks: 75 / Pas.s Marks :3C MABflEyIATTCi, 10 questions wi-l] be set. An examinee wil-l- be out of them in 3 required to answer any 5 questions'carry 15 rnarks . A hours duration. Each question wiII question of 15 marks may be divided in t-wo parts: Part (a) of B marks and Part'(b) of 1 marks ' Partiatly iatrices, Geometrical Lattic€s r orclered sets / Distributive l-attices, Modular lattice, [No. of question _ 02) Complemented latti-ce Expressl-on/ Boolean algebra, Boolean Logi ct - Application to swithching circuits. : 021 Hole {eigeon Inclusion and principle, cie Principle iangement {b{ INo. of questio of cxclusio"r\ [No. of question _ ,. 021 graph and its Eulerian sum t.heorem/ properti€s, Harnittcn j-an . graPh, Tree s, planaritY of gra-phs, Euf er' s thecrem on planar graph anC number ch romatic appf icatioo, Di j algorithm, s theorem/ KruSkal' [No. of question ,: 04] \ ttl AY De gree - Books 'Reconlmended Joshi, Foundations pf Discrete Mathematics, pvt. Ltd. (1989) New Age internaiional 2.John Clark & Derek Allan HoILonrGraph Theory, 1 . K. D. scientific publishing Company. (1991) 3. Garrett Birkhof f and .Thornas c. Bartee, Modern Applied Algebra, I"i.C.Graw HiIl (1970)' 4.M. K Cufta, Discrete M.athematics, Krishna Worl-d b,rze* \\\ >nt 6t)ot1 nr UNIVERS I.TY DEPARTMEIT]T OF I,IATHEMATIC.S RANCHI UNIVERSITY : Paper Code: I"IATH 203, AI{ALYTTCAI. Fu].I Marks: 75, Pass Marks:30 DY}IAMTC$, Credit,s:3, 10 questions wil-l be set. An examinee wil_l_ be required to answer any 5 questions out of them in 3 hours duration. Each . quest.ion wil-l carry 15 marks. A question of 15 marks may be divided in two parts: part(a) of B marks and part (b)of 7 marks Motion in Two' Dimen-qiqns: Motion of C. G and motion about C.G, K. E. , sf ipping of rods, m.otion of sphere on incl-ined plane, when rolling and sliding are combined, motion of a circular disc on a plane and c- ! r*F* \ vt .?" ,t*- t\ rts' t1,. * I related problems [No. of question - 02] Equation Of Motion And Its Dimensicns: ^ General equation C- Application fn Three motion/ of Euler's equation of motion, mcmenLurri cf rigid body, moment about instantaneous axes, K.E. of rigid body and related problems . [No. of cjuestion : 02) o Lagrange's Equat.ion cf Mot-ion and Small Oscil_lation Generalized co-ordinates, constraints, classificati-o ;] of mechanical' systems, Lagrange's equation of motion ,rf principal of energy, co-ordinates [No. snrall-' , oscil.l-ation, of questj-on - 03] and dorrna Hamilton's Canonical Equations: CanonicAl variable Hamil-tonian, Hamifton's canonical equations, equatio f rom Lag::ange t s equation of motion. [No . o question : 031 Books Recommended:. 1 . P. P. Gupt.a an(C G. S . Malik, Krishna Prakashan L9B0 ir Rrgad Dynamics I I : 2. A. S . Rams€y, Dynamics Part- I I , CBS publ-ishers anC Distributors 1985 qret+.F )-o t6 t>o( $u *t UI{ .VERS TTY DEPAR'IMENT OF MATHEMATICS RAiiCi{ i U}{ i VERS i TY .: Paper Code : I"IATH 20 4 , oPTrMrzATrON Marks:75, Pass Marks: 30 TECHNTQUES, { Cred.its:3, FuIi "- i: 10 questions will be set . An examinee wi 1l be required to answer any 5 questions olrt of them in 3 hours duration. Each question will carry 15 -marks. A queslion of 15 marks may be divi-ded in two parts: Part{a) of B marks and Part (b) of 1 marks. Dual- SirnpJ-ex Method: f nf easible optimal initial sol-ution, procedure .of dual_ simplex method, Advantage of dual- simplex method over s j-mplex me Lhod, difference between simplex and. dual- simplex mechod [No. of question : 02] Fd{ Sensitivity .Analysis: Changes in coefficients in functionr' changes in the struct,ure of 1. Additicn of new variabie 2. Deleting of existing variab.r-e 3, Addition of new constraints 4. Del-etion of exi.sting constrain!s [No. of- questi-on :' 02 ] obj ectirze LPP due to '(. :,T) Theory Of Games: Characteristics of gdme theory, Maximin criteria .and optimal strategy, solution of game with saddl-e points,. Rectangular games without saddle point a.nd its . solution by .linear progrdrnmi.rg. .[No. of quest,ion _ 03 ] Queueing Theory: Basic characteristics of queuing syst,€rTr, dif ferent pe rformance measure s, Steady state solution of Markovian queuing models: Nr/M/ 1, M /vt/t with l-imited waiting space, NI/M/c, NI/rq/c with limited waiting space . [No .' of guestion .= 03 ] Books Recommended: 1 . S . D. Sharmar. Operat'i,bnr Research, Kedar Nath Ram . Nath and'Comp.any publ-ishers , Ig72 tq{ { \ 2'. H-A.Taha, 2002 Operat,ions Research, .pearson Education DRq+>{ { 6lLot r UN]VEn.JITY DEPAKTMENT oF MATHEMATICS Paper Code: I'IATH Credits : 3, E PG,}ICHI UI.II\./ERSITY . 2OS I Data Structure uJ.l Marks :75 , Pass with MarlGs : 30 ( C, ; , 10 questions wil-r be -set. An examinee witl be required to ansrder any 5 quest-ions out of them in 3 hours duration. Each question will carry 15 marks. A question of 15 marks may be divided in two parts: marks f\' ,til Parc(a) of 8 marks and part(b)of 1 . rnt.roduction to Data structures: Data types, Abstrac! Data types, Arrays, Arrays, as abstract data type, Arrays row major and co]umn ma j oi, - se.quences, Biq oh notations . stacks : Definitron and Example, Repre".rrii.rg Stack using st.aCrc implementat'i-on, Applications, Inf ix, pref ix and postf ix, converting infix to postfix, Expression Evaluation, Matching parentheses, Recursion and Simulating Recursion. [No of questions :2 l Queues and Linked r,ists: Definition and exampres, Representing -Queues using static implementation, .circular gueues, eriority queues, Doub'l-e-ended queues. Linked Iistg: List Types (singly, doubly, si;rgly circular, doubly circular) roperations on arl- types of Lists create, insert, delete, Generalj-zed Lists, Applications, Dynamic inplementation of- stack and . queues, polynomial Adcition, Dyrramic Memory Arrocation - Ei-rst- Fit, Best - Fit, worst-fit INo. of questions :'2 1 Trees and Graphs: Basic concepts, Rooted Tree, Binar-y T-ree Linkeci and slatic Represe.ntationr' Tree Traversals (pre-order-, rn-order..- Post-.order using recursion) , Binary search Tree -(create, delete, search, insert, display)rAVL Trees Graphs: Represent'ation using.c, Adjacency matrix and adjacency 1ists, BFS and DFS by static and dynamic imptrementation. lNo of questions : 3 I Sorting sort and Searching : Bubble sort, fnsertion sort, Quick recursive ) , Merge sort, Heap sort/ Searching: equentidl, Bina ry , Hashing, Hash tables, Haslr functions, Overf,low handling techniques { [No of questions:3] Text Books:' 1: Data Structurbs Using C - Aaron Tenenbaurn 2. Database Managbment Systems - Ramkrishnan Gehrkd (McGraw Hill Third Edition) . 6\ce{L )-gfel)-ott L]NIVERSITI DEPARTMENT OF TvIATHEMATICS RAi.iCH i UN I VERSI TY . l -T ': Paper Code: MILTH 206, Lab on Data Structure with Cl Credits : 3, E\rLl l'larks :75 , Pass l"Iarks : 30 There shall be a 3 Hour practical examination. The-marks are divided int.o three parts : i ) Practical Note Booh. : 25 marks, (ii1 Programming efficiency in Lab: 40 marks and (iii) oral: l-0 rntroduction to data structures: Defining simple data structures, classifying various data structtrres. Defining operations on data structures, Primitive and Non primitive Data Structures etc. Arrays: Programs to create simple arrays, programs to fllustrate Storage Representation for ID and 2D arrays, Insertion and deletion on L dimensional array. Linked Lists': Defining and creating rinked lists, programs to illustrate Dynamic Memory Allocation, programs to creale singly Linked r,ists, Performing operations on linked l-ists such as rnsertion and deletion of a'node, rntrodrrction to cj-rcular linked lists and Doubly linked lists. si,icks: Stack concepts, creating Stacks, Programs to PusHrPoP etc operations on stacks, Application of -illustrate stacks ,programs Lo il-lustrate variops concepts using stacks viz.. recursion, tower -of Hanoi etc. pr.ogru*" to i-llustrate infix, prefix, postfix etc no€ations. Queues: Queue-concepls, programs to. itl-ustrate operations on queu.les, sequential and l-inked impleuientation, circrrlar queues, PrioriLy queues and 'Dequeues (rntruductory concepts), Applicat-i qn of queues. Trees: Definitions.and concepts - Binary trees, sequential- and Linked Representation of Binary Trees, rnsertion and deretion on binary trees, Binary Tyree Traversal technigues. searching and 3orting: rntroductions to various search techniques, programs to illustrate several search techniques viz.Linear and- Binary searchr - gorting concepts:- rntroduction to sorting, various'sorting types of sorting, piograms to irrustrate several typeq of techniques. v!2. serection sort, fnsertion 'sort, Quick sort etc. Dfzqfr 2{(6 t>or I (G \_r' UN I VERS I TY DE T,ARTMEN-T O F MATH EMAT RA}{CHI UNiVERSITY I CS Sernester s\rstem syllabus w,'e.f . 2AII-20 M .Sc . (I4ATHEI'IATf CS ) 13 SYLLABUS BASED ON SEMESTER STSTEM !t. g. f . THE SESSTON 201 1_2013 SEMESTER TTI UN Paper I VERS T TY PAR'I MENT oF' MATHEI,4AT I F{ANCHT; UNTVER.SITY DE CS Code: I,IATH 301, MathernaEical ' Mode1ing, pass r- Ful-l Marks: 25, Marks :3o credits:3 10 questions will be set. An examinee wil-l- be required to answer any 5 questions out of them iir 3 hours duration. Each question will carry 15 marks. A question of 15 marks may be divided in two . parts : part ( a ) of B marks and Part (b) of 1 marks. simpre situalions. requiring mathematical mode 1i ng , te chni_ que s of mat,hernatical modeli.tg I crassifications , Characteris tics . and limitations of mathematical moders, sorne simple iltustrations. [No. of question-03] t., ,t/ ', Mathematical modeling through differential equations Linear growt,h and decay nioders, Non linear qrowth and de ca\,', _mode 1s compartment models, Mathematical modeting in dynamics through, ordinary di fferential eguations of fi rs t order. [No. of gues tion:0 3 l Mathematical- models -through difference equat.ions, some si_nple models, Basic theory of rinear difference equations with constant coefficients, Mathematical modeling through differcnce equations in economic and finance, Mathematical modeling through - difference ^ equations in population dynamic and ge-qetics. INo" of question:Q+] J<eterences: 1-. J.. N. Kapur, Mathentati-caL M<tdel.ing, Wiiey Uastern , 'Mathematical l4odeling in the .sociaL and Life science, El-rie Herwood and John wiIey. lanag-efient . 3. F. char]ton,. ordinary Differentiai and oiffereice Equations, Van Nostrand. 2 , ' D - i\ . tsurghes ?r{zep-;. o v-20'l I UN IVEF.S ITY DE-PARTI'[E}]' OF MATHEIV]AT ICS UNIVER.SITY RANCHI -.. ; .i Paper Cod,e: I'IATH 30 2 , PARTIAL DIFEERETIAL EQUATIONS AITD ITS APPLICATIONS , Credits:3 , Fut1 Marks: 75 , Pa'ss Marks:30 10 questions wili be set. An examinee will be required to answer any 5 questions out of them in 3 hou-rs duration. Each question wil] carry l-5 marks. A quest-ion- of 15 marks may be aivioea iir two parts : .Part (a ) of- B marks and Part (b) of 1 .marks, Classifrcation of second 'order partial differential equation, [No. of question:01] Reduction to cannonical fornLs. /.r< l.t r,\ .\\ \ \ Solut.ions of partial djfferential equations through LaPJace trans f orm. [No. of questicn:O2] Laplace Eqations : Frlndatuental solution f or two variable s variable separable method ,Mean value theorem for Harmoni c firto. of Functions, Propcrties of Harmonic functions ' question:02 l in Heat Equaticn': one-dimensional heat f1ow, heat flow -Fou::ier inf inite bar,. Fundamenial- solution, soluticn by series, properties of solutions. [No. oi q"."f ion='02] . c Wave equat-ion: Derivation of One-dimensional wave 'equation' so.l-ution by separation . .of variable, solut-ion by Fourier series , D' Alembert's solution qt wave' equati'on' INo' of question:03 l Books Recommended: Di fferential IntrOduCt.ion to partial 1 . K. Sankara Rao I Equation, Prentice-Hall of India Private Limi ted (20 0 5 ) Di f f erentialPa rtial P Chauhan, J S ingh, 2. S. Meerut Prakashan, Equatioos r Shikha Sahitya ffi,,,, uN r vE R's'" .: i^?T'f iXi''H -i1 #l' HE MAr r c s Pape= Code: I*IATH 3O3, oRDTNARY DTFFERSNTTAL Credits:3, FulI Marks :75 , Pass Marks:30 @ EQUATTON, questions will be set . An examinee will be required to answer any 5 questions out of them in 3 I0 hours Curation. Each quest,ion wil-I carry 15 marks. A question of 15 marks may be divided in two parts: Part(a) of 8 mdrks and Part (b)of 1 marks. Existence and Uniqueness of ordinary differential equation, -Cauchy-Peano existence theorem, Lipsch:-tz condition, Uniqueness theorem. [No. of quest.ion:02 ] Linear system of ordinary ciifferential equations, Existence and Uniqueness of Linear system, l_inear homogeneous and non-homogenous system: Variation of -Parameters, -Method of Eigen val-ue and Eigen vector, Fundamental sol-rrtion, Reduction of highe.r order linear equation .into first order l-i.near equalicns [No. of_ question=05f Green' s functi-on, . Sturm-Liouvil-le Eigen'value pr:oblem [No. of question=O3] b.oundary. problem, Books Rqcommended : 1. E.A.Coddington and N.Levinson,Theory of ordinary G . Differential equations, Tata Mc Graw Hill publishing company Ltd. (1955) 2.M.Brawn , Dif ferential- Equati-ons and their Applic'ations', Springer-Verlag New York (L992) (abiaged version published by Narosa Book Agency) 3.. A. chakrabarti, Elemenl-s of ordinary Dj.,f feren!,ia1 equations and Special functiorrs r New Age fnternational Publishers (1990) 'o ,"$. d ">'o\'bl xtl UNIVERSITY DEPARTMENT OF MAl'IIET4ATICS RANCHI UNIVERSITY : paper Code: I'iATfi 3C4 | Integtral Equation Credits: 3, EuIJ. Marks :75 , Pass Marks:30 10 questions wil-I be set. An examinee will be required to .rr"rlr any 5 quescions out of them in 3 hours durationEach qr"ution will carry 15 marks. A quescion of 15 marks may be aiviaea in two parts: Part (a) of B marks and Part- (b) of 7 marks Integral Equations Credits : 4, clas.sifieation. Modeling of problems as integral equations' conversion of init.ial and boundary value problem into integral equations into differential equations. conversion of integral 'equations and their mrmerical e{r;ations . Volterra irrtegral Greens function for Fredholm Integral equations ' "ototiorrs. Fredholm integral equations: Degenerate kernels, symmetric kernels ' .Fredholm I nte gra lFredholm equacionofsecondkind.Numericalsolutionof Integral equations. Existence of the solutions: Basic fixed point theo::ems Integral equations and transformations: Fourier, Laplace and Hilbert transformatio-n. References.' 65dr:I J. Jerry, Introduction to Integral Equat ions with 1- . applications, Marcel Dekkar Inc' NY' 2-. L.G.Chambers, Integral Equations: A short courser.Int Book ComPanY-Ltd' 1916, 3. R.' P. Kanwal , Lineat'integtai Eqaaticns 4. Harry Hochsdecit, IntegraT Equ7tions' 5.MurryR.Spiegal-,LapTaceTransform(SCHAUMoutline Series), McGraw-HitI Ml}J 309 $o*'t 5r:{ { - G c^r-<Fr "'2J1'bl7P\ I @ UN IVF,RS ITY DEPARTT'IEI\T OF MATHEI{ATICS RANCHI UNIVERSTTY Paper Code: t'IATIi 305 Cr-edits:3, E\rIl Marks >rical AnalYsis 275 , Pass l"Iarks:30 Nurn€ l0questionsrvillbeset.Anexamineewillberequiredto answer any 5 questions out of them in 3 hours durati-on' 15 marks Each question will carry 15 marks' A question of may bedividedintvroparts:Pa.rt(a)ofBmarksandPart(b)of7 marks. direct ?td Norrns of vectors and Matrices, Linear systems: anal'1'5i5 ; iterative schemes, ill conditionil,rg and 'coirvergence \ \,.v l'_ 1L.' 1\ r, .' "./ I Nunericalschemesfornon-Iinearsystems'Re'lression' step and Numerical solution of differentiai equaLions: single multi-stepmethods,order,consistency,stabilityand equations' two point boundary convergence analysis, stiff valueproblems:Shootingandfinitedifferencemethods. Books --i:;;dt Recommended : ni'ciad & ward Cheney, Numerical AnaJ-:7-s-is and mathematics 6hs"r"ntif ic corflputing, Iirooks /col e,@2o0h 2..JDLambert,ComputationalmeLhodsinordinary '. d.ifferential equa-tions, Wiley and Sons 3.JCButcher,Therrumericalanalysisoford.ii^,ary. ' d'iffererrtial equations, 'Tohn wiley' Ner,ru.vica..0 A<r.clgcrs y '),13"+arh"-l 2u'E € !2q""r.*" - AtraL )s<v\(s, d, Cu T Zoo.t . ,:. G{r, '\.=/ UNIVERSITY DEPARTYIEIJT OF MATHEMATI(-J RANCHI UN]VERSITY Semester system syilabus w.e.f . 2.CI7-20I3 li' Paper Code: I"IATH 306: Topologi'y, credits: 3, Full Marks :75, Pass Marks:30 10 questions will be set. An exami-nee will be required to answer any 5 questions out of them in 3 hours duration. Each question wj 11 carry l-5 marks. A question of 15 marks may be divided in two parts: Part (a) of B marks and Part (b) of 1 ma rks Definition /I,\ L*.. J and exanples of Topological" spaces, Comparison of Topologies, Closed sets, Closure, Dense subsets, Neighbourhoods, Int.erior, exterior and boundary ,Accumul-ation points and Derived sets, Bases arfd subbases, Topology in terms of Kuratowski closure operator, cont j-nuity and homeomorphism, open and .closed maps, product space and Quotient space, Examples of Quotient space, First and second axiom spaces, Lindelof f space. []lo. of quest'i on = 041 Tychonoff's Compact space, Compactnes [No. of question _ 02] theorern, LocaI Connectedness and its properties. No. -of question _ 01] T1 space, T2 space, Normal and completely regular -epaces., Uryshon'.s l-emma, T.ietze extension theolem, Uryshon' s metrizaLion theorem.. No. of question : 031 Books Recommended,: 1. -G,F.Simmonsr. Introduction to Topology and Moddrn Ana1ysis, Mc-Graw Hill 1963 2. James R,Munkers, Topology, Pearson Education / , ffiq,, 2OOO t]NIVERS ITY DEPARTMENT CF MATHEMATICS R.ANCH I UN IVER.S I TY Semester s\rstem sytlabus w.e.f . 20IL-2013 i; M .Sc . (}4ATHEI"IAT I CS) SYLLABUS BASED ON SEI.{ESTER SYSTEM !Y. g. f,. THE SESSION 201 1-2013 SEMESTER IV UNIVERSITY DEPARTMENT OF MATIIEMATICS :, RAI{CHI Ui{IVERSITY PsPer :Ode: t"lATH 407- Linear Algebra, Credits Mar lts 15, Pass: Marks:30 w - .-:. :' : Fu]-1 3, : lstions will be set. An examinee will be requi i td to answer any 5 questions out of them in 3 10 qL hours lurat ion . Each rlestion witl carrv 15 marks. A question of 15 marks nay : be ,Civided in ito part s : Fart (a ) of B marks and Pa :t(b)of l mar.ks. ( ctimensional vector Fini t e field*. ' a a i spaces over i ! arbitrarv -1" - Direct , '. Subspa res questj )n-02 ] sum of subspaces. [No. ion. I A Lt of ---l j transf ormat.ions and their mat.rices . ziTheorem, NuItit Grahm Smith orthogonal-ization. . question:O2 ; c [No. ] Linear Rank- : -i The rcl limal and the characterigtic polynomials. Eigen -.4 rnalue s i eigen vectors and dilonarizati-on of l-inear tran.s f >imatlons. The primarlz n d".o*position theo::em. R af= ior, rl- and Jordan forms. [No. of question:O3] i Inner pgoduct spaces. Hermitian, unitary and normal linear i, operators. Spectral- theorem and . polar tt, decomp rsition. [No. of question:}2] i'ii '.t '; "Y*et CL . and quadratj-c forms. D-fional Liation of :ic bil-inear formS. [No . of q}estiqn-011 Bi f ine lr t . t . a I, ?L, i,: ..4- * i{ Re feren l-. Ho . -AQ 2\'L) : a fman & 'Kun .:a ''i // ':- !l' :: t ;.. { ''it .i t', . rn. I F:, .rii. :if. l:" : l-. 'i' :; :f, '1' ,:i . , 'i-'i' .:,i .5 'i' - ,,.i. :!i r?, Linear Algebra, -PHI *1 I l UNIVERSITY DEPARTMENT OF MATHEMATICS RANCHI UNIVERSITY :' MATH 4'O2- Functional Anal-ysis , Credits : 3 , Ful-i Marks :75 , Pass Marks : 30 . 10 questions will- be set . An examinee wj-11 be required to answer any 5 questions out of them in 3 Faper Code hours duration. Each question wil.l car:ry 15 marks. A question of 15 marks 1nay be divided in 'L.wo parls: Par+;(a) of B marks anci Part (b)of 7 marks linear Space, Branch Space, continuous lj near maps , B (N. N' ) , dual (conjugate) space of N, Natural embedding t_heorem, Duel of R' and lp, Riesz Lemma. [No. of question : 02] Normed I r*; \ I I 't^/ L|-t t i *Lt i" .". 't\ {.t gt, It' fi : i- i;" '*'." Hahtr Branch Theorem, open mapping theorem and projection on Banach space, closed graph theorem and uni form bouncied ness principle. [No. of question : 03] space: Definition and examples, Swartz tlitbert Inequaiities, characteri zaticil, [No. of question : complet.eness orthogonal Gram-Schmidt crrthogonalisat j-on. 03J t,heorem, Dual cf Hilbert space, Riesz.representation 'of question refl-exivity. Adjoint. of an operator. [No. = 021 Book Re.commended: 1 . G. F. Simmons, Inttoduction to Topolof y and t.{odern Analysis, Mc-Graw Hitt Book.Company, (1963) Functional- Analysis, New Age 2. B. V. Limaye,' International Publ- . , 2'd Ed. -Krshna Prakashan, 3. P P Gupta, Functiona'l Analysis, Meerut $\>otr \\ @ UNIVERSITY DEPARTT4ENT OF MATHEMATICS ( . F.ANC;{I UNIVERSITY - Paper Code: I'IATII 403- OPERATfONS RESfARCH, Credits:3, Full Marks :75 , Pass Marks:30 10 questioirs will be set . An examinee will- be required to answer any 5 questions out of Lhem in 3 hours durat.ion. Each question will carry 15 marks. A question of 15 marks may be div-ided in two parts: Part(a) of B marks and Part (b)'of 7 marks r 1f i -f..r \) L, - f^= Integer Programming: Branch and Bound technique, Gomory's cutti-ng plane method. [No. of question:O2] Progranrming: Linear "Multi One and variable, lJncons tra ined optimi zatioD, Kuhn-Tucker Conditions for constrained opLimization,Quadratic programming Wol-f ' s and Beal-' s method. [No. .of question:03 l Non fnventory: Known demandr probabilistic demand, "ngdels Deterministic Model-s and probabilistic without lead-time. INo. of suestion=021 Project P.t-anning And Control With PERT-CPM: Rul-es of network construction, Time calculation in' networks Cr j.tical path method, PERT I PERT calculati-on, advantages pf neturork (PERT/CPM) rDifference between CPM and PERT. lNo.' of question=921 Deterministic Dynamic Programming : Bqll-man's principle of optimality, soluLion of problem with finite number of stages, forward and Backward Recursion. [No. of question=0]- l Books Recommended : Operat.ion P,bsearch, Kedar' NaEh Ram Nath and Company (191?) 2. H.A.Taha, Operations Research,'Prentic- HalI of India Private Limited (2003) @ CD^eF- ?'O ' b 'z)cU G} ql UNIVERS *) qr, ITY DEPARTI.IENT OF MATHEMATICS RANCHI UNIVERSITY Paper , Code r i }'IATH 40 4- Numerical Equations Credits : 4 Differential qt Soluti )ns of Partial be stions rvj-Il be set . An examinee will required to answer any 5 questions out of them in 3 hours duration. Each question will carry 15 marks. A question of 15 marks may be divided" in two parts: Part (a ) of B marks an,C Part (b)of 1 rnarks. 10 t.k Y\ i , 9 \ "v que Numerical solutions of parabolic PDE jn orre space: two and and implicit di-fference schemes. three levels explicit Convergence and stability analysis. Numerical solution of parabolic PDE of second order in two methods, alternating direction space dimension: implicit implicit (ADI) methods. Non linear initial BVP. I , Difference schemes for parabclic PDE in sptrerical cyJ-indrical coordinate systems in one dimenston. and Numerical sol-ucion of hyperbolic PDE in one and two space dinrension: exp.l.icit end implicit' . schemes . ADI methods Difference schemes for fj-rst ordei equations'. * ^[-murnerical sclutions of e11i ptic equations, app.roximations of I laplace and biharmonic operators. Solutions 'of Dirichlet, I N"u*u.r and mixed type problems. Refe r;ences .1 ; . .M. K. Jain, S. R. K. Iyenger and *. K; Jain, Computational MeLhods for Partiaf Dif f erential- Equations, Wiley EasLern, 1,99 4 . 2.M. K. Jain, Numericai SoI-ition of Di-fferential Equations, 2nd editj-on, Wiley Eastern 3 . S . S . Sastry, Introductory l4ethods 'of NumeticaJ- AnaTysis, , 2002. Prentice-Hall of India,'l.tl.S*ith, 'Numerical Methods of and 4.D.V.Griffiths Engineers, Oxford University Press, L993 5.C.F.General and p. O. Wheatley, App.Tied Numerical Analysis, Addison- Wesley, L99.8. .DCIN ?.,a\r 9 ITY DEPARTMENT OF MATHEMATICS RANCI]I UNIVERS ITY Semester system syllabus w. e. f. 2AIL-2013 UI'iIVERS F P qt qt $r d. c! ,1 f J,' Paper Code: l"lATH 405: l"IAflAE" Progranuning (Practical-) Credits :3, FuJ.j- l'Iarks z'15 , Pass t'larks t 90 . There shali be a ;a Hour practical examination. The marks are divided into three parts: i ) P::aclical Note Book : 25 m-arks, (ii) Prcgramming efficiency in Lab:40 narks and (iii) Oral-:10 I ;i ctc Introrluction to Matlab: - Matlab as {best} calculator Standard Matlab windows, Operations with variables such as Narning b) Checking existen.ce c) Clearing etc. Arrays: Col-umns and rows: creation and indexing, Size length, Multiplication, division, power Operaticns elc. , a) & Writingr script files: Logical variables and operators, Flow control, Loop opcrators. functions: fnpu L / output argument path, Example: Matlab starti:p. Writingr -visibility, Function s, Simple graphics: 2D.piots, Figures and subplots. "D.t. and data flow in Matiab: Data types, Matrix, string, cell and structure, Creating, dccessing elements and manipulating of data of different types. a Refe rerTces : '1. Amos Gildt, I"IATLAB: An Introd,uction with ' Applications, Wiley India, 2009. 2. Hunt, A Guide to MATLAB , Caxnbridge Univ . Pre s s 3. Krishnamurty, Programming in MATLAB I Eas! West, 2003 r It I ffi\\ ry $ Cr + TTY DEPARTMENT OF MA.THEMATICS RANCHI UNIVERSTTY Semester system syllabus w.e.f . 2aLL-20 13 UNIIVERS /t'-\ 't.1 (:--Z t'/ Ct $ {" Paper Code: I'IATH 405: Project fi fr proj ect based. on the topics in mathemat.ics, str €t dr tr Sr tt * tr \ \e Each'student is required to work on some innovative he / s:re has tead under the supervision of a teacher of the Department. The topic'of the p.oject wirl be decidec at the beginning of the t.hird semester. Students may use c programming/ ,MATLAB /VAPLE tools, if reguired. They will present their dissertation for evaluation. work c in f orm of There shall be project presentation at the end of the semest,er" The ma::ks are divided into three parts: .i) Dissertation : frffmarks, (ii ) Presentation , @.^urks . 'gv 'X* I