r.Itr-l 150- - Ranchi University Department of MCA

Transcription

r.Itr-l 150- - Ranchi University Department of MCA
c
J
UN
I VE RS I
T
Y
DE
PAF.TMENT OL- MATHEI4/IT I
syslSl':;tffiHTl]lr.
semesrer
201
CS
1-
2013
l
wise distribution
Semester
S eme s
| ""Lrr
of cour.ses, credits, Lectures,
Dc
Credi t s
lILIE
Mar ks
Univ.
Sessional
3
3
25
3
3
25
3
3
25
3
3
1
Core (Theory)
Computer Fundamentals
3
1
I'l
25
Core ( Practical )
C Prosranrming Lahr
3
1
15
25
18
1B
6
I qso
3
3
1
3
3
1
15
25
3
3
1
75
25
3
3
1
75
25
?
3
.1
't5
25
3
3
1
15
25
18
1B
ned_L AIra]-ySfS
Aigebra
102
[ru
\-ul[rf)Iex
1 II
103
I
1
c
I{nalys
-l_s
\.rnr
MATH I Differential
104
I
105
Max.
Exam
75
tvlA'1'.t.l
MATH
Lectur es / week
Lectures
Tutoriai
I rr^^r
I
1o-1 l(rr.)
ffi
I-Jf1
:
er I
I Code
t\/tnmu
r'.r.-r.rrr.
Marks
Geometry
\.nl
25
and C programmirlg
MATH
106
T"
t"I
I
15C
Semester fI
,'rArn
2oi.
MATH
202
MATH
203
MATH
204
MATH
20s
I Kear AnalysLs
II
lpU
Discrete Mathematics
(Thl
Analytical Dynamics
(.n)
Optimi zation Techniques
trh)
Core (Theory)
Data Structure with
|I25
C
uore ( practrCaf )
Lab on Data Structure
with C
Total
15
-t
r.I tr-l
t-
150-
qcafl-
M
71 ,o6
ruB;_H
begmrtxarelr
-ReseJh:r {}j
I
t
UNIVERS
ITY
DEPARTMENT
OF MA?HEMATICS
RANCHI UNIVERSITY
Sernester system syll-abus w.e.f . 20I\-20
13
Semester III
Course
Title
Credi t s
Code
Lecture s /week
Lectures
Tutorial
Univ.
Sessi-onaI
Exam
i\{athematrcal_ MoCel ing
PDE
Max. Marks
13
Special ( Theory)
fntegral Equations
Special (Theory)
Nunerical- Analys i s
MATH I Sp"cial (Theory)
306
| ToPology
6
Tot a l-
laso lrso
Semester IV
MATH
Core Paper (Th)
near algebra
Lj
401
Specj-al (Theory)
Functional Analysis
Speci.al. (Theory)
Operations Research
Special (theory)
Numerical Solution
PDE
Special
MATH
4
MATLAB
05
of
3
-o
(Theo Ty / pr
)
t
Proj ect
Tota
I
oRzL
6,zot
t
a
a
UI']IVERS
ITY
DEPAF.TMENT OF . MATHEIV]ATICS
RANCHI UI{IVERSITY
Seme-.ter system syf labus w. e . f
. 20Ir-20
1J
M. Sc. (ITIATHED4ATf CS)
SYLIJ\BUS BASED ON SEMESTER SYSTEM
w. E. E'. THE SESSTON 201 1-20 13
SEMESTEFi T
o
o
UNIVERSITY DEPAR.TMEIIT. OF MATI]EI4ATTCS
P.ANCHI UNIVERSITY
Paper Code: I{ATH 101- -teal Analysis
Ful1 Marks :75 , Pass Marks:30
I I Cred,its :3,
10 questions wii-l be set . An examinee wil_I be
required to answer any 5 questions out of them in 3
hours duration.
Each question witl carry 15 marks. A qrrestion of 15
rnarks rftay be divicled in twc parts: Part(a) of B marks
and Part(b)of I marks.
Definition
and 'existence of Riemann-Stieltjes "lc e( L
i-ntegral .
Condit.ions for
R-S integrability.
Properties of 'the R-S integral, R--S integrability of )L
functions of frrnct j-on. INo . of questions : 3 ]
\.
,,
-f ,.
\
I
1\
Series of arbitrary terms. Convergence, divergence
and oscil-lation, Abel's and Dirichil-et, s tests. I iU,rO
Multiplicat:-on cf series. Rearrangements of terms of _l
a series, Riemann's theorem. Iirio. o'f questions r3]
I
Sequences and series of functions, pointwise and
rrniform .convergence, Cauchy's criter-ioh for uniform
convergence. weierstrass
M-tesL,
AbeI' s
and
Dirichlet's tests for uniform convergence,. uniform
converg-ence and continuity. uniform convergence and
Riemann-stieltjies integration, uniform convergence
and. differentiation.
t\o. of questions:31
Weibrstrass
questions
Re
approximatj on
theorem.
[No. - of
:1l
f erences;
Walter Rudin,
PrincipLe of
Mathem aticaf
Anal-ysLs
edition)
McGraw-Hi11,
1916, Internat,ional S.tudent Edition.
2. K. Kneppr Theortl ano Application
of I nf in ite
Se ries
3.T. Ivi. Apostol, Mathenatical- -' AnaLysis, Irlarosa
1.
(
3rd
r
o
Publishing House,
New
Delhi,
1985.
"-1,O(oZo
tt
Anrq
A t*tt
fe-
lL
o
UNIVERSTTY DEPAF.TIIENT OF MATHEMATICS
RANCH] UNIVEF.SITY
Semester system syJ-Iabus w'e ' f ' 2011-201-?
L
l-"
Paper Code: I4ATH LOz Algebra, CreCits
FuIl Marks :75, Pass Marks:30
l.-
L
I
:3,
10 questions wilt be set. An examinee wi I1 in be3
required tc answer any 5 questions out o f thern
hours d-uration.
Each question wiJ. I carry 15 marks. A question of, 15
marks may be divided in turo part-s: part(a) of B marks
and part (b)of .7, marks
Group of permutations, symmetric and Al-ternating
Groups
[No. of questions:2]
J
J
I
J
-'
O\'/
.1Y
"/
c
The clas s
sub groups
/
.theorem/ Sylow Pequation,
Sylowt s thecrems. [No. of questions: 2l
Cauchy's
Direct product of groups. Structure theorem for
[No' of
generated abelian groups '
iinitely
questions z2j
\,
r.
\f.,,!
\\
1'/.
NorLn-aI and
Jordan-Holder
derived series. Composition
theorern. INo._ of questions i2]
ca7-'t
\)\--l-
a
aQ
J-\yr-,
f
Solvablegroups.Inso.lvabilityofSnfor.n.5
Ii'{o. of qr:estions : 2]
References;
1 . N. S . Gopalkrishnbn,
University AJgebra'
New
Age
PubI., 1986
2. M. Artin, Algebra, PHI
r.
3. S Singh, Q Zln,".trrddin,Modern Algebra' Vikas Publ.
House
4. Dummit. and Foote, AbstracL Algebra' Wiley trndia
-
.:
'r'
,t
UN IVERS
ITY
CF MATHEMAT ICS
I Ui'i iVERS ITY
DEPAR.TMEI,IT
RAt\iCH
Paper Code: I{ATH 103: COMPLEX
FuII Marks:75 I Pass Marks:30
ANALYSIS
I
CrediLs i3,
be
wiil
1C questions will be seL. An examinee
in 3
required to answer any 5 questions out of them
hours duration.
A question of 15
Each question witl ca rrY 15 marks ' part
(a) of B marks
marks may be divideo in two parts:
and part (b ) of 1 marks '
of
power series: Formuia f or radius of convergence and
f
Absolut e
pl Lpower series and related problems
-of power ' series.
INo.
uniform convergence theorem
of questions : 021
Morera Thlorem I
Complex Integration, Cauchy Theorem'
Meromorphi \
Laurt"lt u theorem'
trrlot.*,
I
function theorem' prl-nciple of the arguments
Rouche,stheorem,Fundamentaltheoremofalgebra.[No
q"u"tior, :' o: I J
- Taylor's
f,\\:
i.
,. !"
r\
i*"J
n\
"isingularity o clFunction:
Anal-ytic
of
$-ingurarities
conLour integratio n
f] tunctions, nlsidu.e. and- poles and
Cauchy Residue theorern
r;4ftt
and relateJ problems,
[No. of questions : 03]
picard, s theorem. '
I
I
$\{
Books Reconlmencied
1. Churchill, qomplex variables
Mc-
and APPlicat,icn
Hill ( 1 97 6)
of functioils r
Theo rY
2 .Titehmarsh t
UniversitY Press
'
3.E T Copson' Theory of Functions oi
Variable, Oxf otd:
Graw
aleel$-
h
G.zot I
;
Oxf or:d
ComPIex
UN IVEF.S
ITY . DEPARTMEN'I OF MATI{EMAT ICS
R.ANCHI UNIVERSITY
Paper Code: t"lATH 104 - DTF;'ERENTIAL
Credits : 3 / E'uIl Marks :75 / Pass i"Iarks:30
GEOMETRY I
0 que stions wilf be set. An examinee wilf be
required to answer any 5 que st ions out o f thern in 3
1
hours duration.
Each quest.i-on will carry 15 marks. A question of 15
marks *uy be d.ivicled in two parts: part(a) of B marks
part (b) of 7 marks.
. and
Space Curves: Curvature and Torsion, Serret-Frenet
f ormulae, hel-ix, Uniqueness- theorem f or space cLlrve,
The circle of curvatuxQr. osculating sphgre, Locus of.
centre of curvature, spherical Curvature, ]OcuS of
centre of spheri-cal curvature, Bertrand curves . [No .
of question : 041
*A
'\.,jtq/\ b,rrrr"" on Surfaces: Parametric curves, Curvature of
'"i
ncrmal section, Meusnier' s ti:eQrern, Principal
curvature, tines of
anc. principal
direction
curvaturg, theorem of Eulert s and Durpin, conjugate
cirection s and a3ymptotic lir,es . [No . of question =
.on,
.Geodesics: Differential- equation of 'Geodesics via
geodesics . on
devel-cpabie,
.. **" i normal properti-es,
question of
\ Curvature and torsion of geodesics " [No
l--
..'
it---ozt
Book
'Recomniende,C
l.C.E.Weatherbutrlr
Di fferential
Geometry of Three
Dimens-ions /
Radha publishlng House (19 47 )
)-o(et)o(,
UNIVERS-ITI DEPARTi'IENT OF MATHEMAT, ICS
RANCHI UNIVERSITY
Code: t"lATII 105 Cornputer Euncarnenta]-s and cl
Credits:3, Full Marks :75 , Pass l"Ia::ks:30
Sub.
10 questions wil-I be set and students will be
required to answer any 5 of them in 3 hours duration.
nacfr question witl carry 15 marks. A question of. 15
marks may be divided in two parts: Part (a) of B marks
and Part. (b)of 7 marks
(
Evo}ution of Digital computers, Major components of
digital
comput ar
,
Memor\,,
Cache
RAM,
Microprocessors, - Motherboard,
network,
computer "
classification,
(10)
application.
Computer
computer
Number System
\
--.l
Decimal- number, Binary Number, Octai Number,
Hexadecimal- Numlcer and rel-ateci conversion. BCD
codes, EtsCDIC codes,'ASCII code .(10)
e.P.tf, I Memory a;rd I/O Devices
InSt ructiOIf S r
O rgan LZationT
C. P-. {J .
Timing Diagraln. Main memo tY ,
MOdes t
nemoTy o fnput devices, Output devices/
(1Q)
C PROGRAMMING
I.ANGUAGE
'i
Addr^es
s
ing
second arY
T
/"O porl.
.
C Introd,uction
HiStorical development, character SeL, constants,
variables; keywords, data typ€s, -type conve rq iofr,
oper_ators, Struct,ure- of C programme_. (10)
'Decision, Loop & Control Structure
If statement, Multiple statements within if , the
.
if-else 'statement, nested if - - else, Loops, -the
white-Ioop, the Eor Loop, multiple initializations
break statement; conLinue
in. 'the . For Loop',
.do-while
Loop, SwiLch-Case
statement, the
statement, Goto'.statemefrt. (10)
lrunction & Storage Classes
What is a functio.n, passing v4lues between
functions. returning values from functions function
declaration and prototyP€s, CaIl by va'lue 'and caLl
variable concepts -'
by reference, tocal and global
-register
storage class,
Automatic storage class'.
stat.ic storaqe cl-assr €Xternal storage -class. (1Q)
Dre€S
7ol 6t>o(t
UNI.VERSITY DE?ARTI"iENT OF MATHEI4ATICS
RANCHI UI{IVERSITY
Arrays & Pointer
Arrays, inputting and accessing ar-ray elements,
manipulation of ei'emencs, Bounds checking, passing
array to a function, tvro dimerrsi.onal arrays '
pointer introductj-cn, representation of Arrays in
Memory,pointer to a function, pointer to an array.
(10)
Structures
Declaring a structurerTypes of Structure
accessing st-ructure, array of structure.
in's.Lances,
(10)
C Preprocessor
Features of C-Preprocessor, Macro with arquments,
and Macro versus functions, File incltrsion. (10)
File Management In C
and opening a f ile, closing a f il-e
Def ining
Input/Output operatj-ons on filesr. Error handli.g,
(10)
Random accessing to 'f iles.
Text
Books:
1)B.RAM,
-
COMPUTER TUNDAMENTAL, }JEW AGE PUBLISHERS
Fourth Edition (2001)
OF COM.PUTER,
HALL II.]DIA, (20C1), Fburth Edition.
z-)
V. RA"TARAMA\'I, FUNDAMENTAL
3)
E. BALAGURUSAMY, PROGRAMMTNG
Edition
PREIIT ICE_.
rN ANSTC, TMH, Third
"(2004)
4) K .R VENUGOPAL, SUTJEEP R PRASAD,
C TMI-I (200 4 ) , Reprint l6th.'
PORGRAMMING VfITH
oc<s
%1"6 l>tct
i
o
UN
I VE RS I
TY
DE
PARTMENT
O
F
IUATHEMAT I
CS
1@
RANCHI UNIVER.SITY
;
Paper Code: I'IATH 106, Lab cn C, Creditsi
Marks z'l-5 , Pass Marks : 30
3,
FuI]-
There shall be a 3 Hour practical examination. The marks are
divided into three parts: i) Practical Note Book:- 25 marks,
(ii) Prograirming efficiency in Lab:40 marks and (iii) Qral-:10
Prcgralls. to display various messages on the screen in.warious. forrns:
I.l. j-ustratior: of use of \n, td, $e, tf ecc.
programs !o illustrate
the concepts of constants, wariables and, data t1pes.
Five programs viz. Use of printf(.) and.scanfQrProgram to compute average
of N numbers, Temperature conversion problemr' P::inting ASCII values.
Program for simple arithmet-ic operations
program to illustrate
operaiors and expressions in C: Coinputing the roots
Itlustration of mathematical furlctibns given
quadratic
equation,
given
of a
,floor(x) ,pow(x,y)
in <math.h), v!z.cos(x),sin(x),tan(x),sqrt(x),ceiI(x)
etc, programs to evaluate area of square' area of circle, volume of sphere
etc'
rrla rtani'<ian
r in C: Determine
Determine that a
making and branching
deci'sion nalc
Program to illustrate
'usi-ng
statement,
if-else
number
or
even
given integer is odd number
'numbers,
a simple
Developgiven
three
among
largest
the
Determine
mathema.tical calcrrlator using Switch-Case statement' Accept two integers A
and B from keyboard. If A is greater than B then compute A-B, else compute
A+B using ternary oPerator.
pqugrams to illustratc
Decision rnaking and loopirrg in C: Program to compute
.n
using while loop, Reverse a given integer- using while
x to the power of
loop eg. Obtain 3241 when 1423 in entered, Program to compute.fact<;ria!of,
given number, Program to print patterns on screen using loops'e.9.
L2
.
L23
L231
'.
etc
.
:
Progra6s to illustrat5 arays in C: Reading and printing vflues in one
diml.nsional array, Reading -- rnatrix in two dimensional airay and displayirig
j-n on the screen, Uatrix multiplicalion prograrn., Obtaining trelnspose of a
given niatrix. (Some other programs using 2D-arrays)..'
-Il-lusLration of user defined functions: Simple arithm6tic operatibns using
user defined functions. Computations of areaO,volumeO, Simple nterestsO'
etc using functiohs.Calling functions using CaIl by
_ Cornpound interestg
and illustration pros and cons of both melhods.
Reference
va1le and CaIL by
programs.to'illustrate structures. and unions: Creatingostructure to store
maiiing address, student data etc,Date manipulation - prograrir using
structures, Creating . unions 'and to handle above data fnd comparing
stnictures & unions with illustration of pros and cons.
.
Small progJrams to illustrate.concept of pointers (Mininum 5 proqrams).
Introuduction of Charact€r strings and smalL programs for string
manipulation (Minimum 10 programs)
I\t--->'
d 1x\\
.,-/\
>a I bt)0r
I
UNIVERS ITY DEPARTMENT OF I{ATHEMATICS
RANCHI UNIVERSITY
Semester system syllabus w. e. f.
.
2OII-2013
I CS)
SYLI,ABUS BASED ON SEI{ESTER SYSTEM
M.Sc
-
(D,IATHEI4AT
w. e. f.
TIrE SESSTON 201 1-2013
SEMESTER
II
o
ITY
UN IVER.S
DEPARTMENT
e
OF }4ATHEMATICS
RANCHI U}JIVBRS ITY
Paper
Code : l"IATIi 2OL
Marks ;75
, Real Analysis -I I , Credi ts
Ful1
, Pass Marks:30
10 questions wi.l-l- be set. An examinee wil-l be
required to answer any 5 questi-ons out of them in 3
A
hours duration.Each question will carry 15 marks.
j-n
two
question of 15 marks may be divided
pai:ts: Part (a) of B marks and Part (b) of 7 marks '
of
Derivative
Functions of several variables.
linear
a
functions in an" open Subset of R' into R* as
s''.k"u
Chain rule . Partial- derivat ives . h
transformation.
Taylort s theorem- InverSe function theorem. Impi-icit
function theorem. Jacobians. INo. of questions : 4]
r
Measures and- outer measures. Measure induced by an
ou.Ler measure, Extension of a measure. Uniqueness of
Extension, Completion of a measure. tebesgue outer
measure. .Measurable . sets . Non-Lebesgue measurable
sets. [No. of questions:3]
Re'gularity.,Measurable functions. Borel.
measurabilii:y . [i{o . cf questions z 2]
and" Lebesgue
'The . general
Integration of non-negative functions.
integral. convergence theorems. Riemann and Lebesgue
INo. of questions : 1]
inte grals
tF
Rereren ces:
1. Walter Rudin, PrineipTe of lIath'ematical 'AnaTysis
(3rd edition) McGraw-Hi11 Kogakusha, Intetnational
Student Edition, I976.
2.H.L.,Royden,Real'Analysis,4thEdition'
Macmillani 1993.
3.P.R.I{atrmos,MeasureTheory,Van.Nostrand't95!.:
4. .G.' de Barra, Lleasure Thegty an.d Integtation, wiley
.
Eastein,
.t981.
E. HeWitt and K. Stromb€rg, Rea-Z and Abstract
Analysis, SPringer, L96g .
and
6 . p . K. ..fiin and V. P . Gupta , .Lebesgue Meas.ure
InteEration, - New Age International, New. Delhi.' 2000.
7. R. G. Bartle, T]l'e E]-ements of Integration, John
WiI"y, 200 0
5.
.
,/
0rt1
J"-',
\ \ \\
4^\\
@
\t(rlvr
r
N\fri
UI.]
I\/ERS
ITY
G
DEPARTME}JT OF MATHEMA,I] ICS
I UNi VER.S i TY
P.AN CFI
DISCRETE
Paper Code: D4ATH 202 ,
Cred.its:3, Fitll Marks: 75 / Pas.s Marks :3C
MABflEyIATTCi,
10 questions wi-l] be set. An examinee wil-l- be
out of them in 3
required to answer any 5 questions'carry
15 rnarks . A
hours duration. Each question wiII
question of 15 marks may be divided in t-wo
parts: Part (a) of B marks and Part'(b) of 1 marks '
Partiatly
iatrices,
Geometrical
Lattic€s r
orclered sets /
Distributive l-attices, Modular lattice,
[No. of question _ 02)
Complemented latti-ce
Expressl-on/
Boolean
algebra,
Boolean
Logi ct -
Application to swithching circuits.
: 021
Hole
{eigeon
Inclusion and
principle,
cie
Principle
iangement
{b{
INo. of questio
of cxclusio"r\
[No. of question _
,.
021
graph and its
Eulerian
sum t.heorem/
properti€s, Harnittcn j-an . graPh, Tree s, planaritY of
gra-phs, Euf er' s thecrem on planar graph anC
number
ch romatic
appf icatioo,
Di j
algorithm,
s
theorem/ KruSkal'
[No. of question ,: 04]
\
ttl
AY
De gree
-
Books 'Reconlmended
Joshi, Foundations pf Discrete Mathematics,
pvt. Ltd. (1989)
New Age internaiional
2.John Clark & Derek Allan HoILonrGraph Theory,
1 . K. D.
scientific publishing Company. (1991)
3. Garrett Birkhof f and .Thornas c. Bartee, Modern
Applied Algebra, I"i.C.Graw HiIl (1970)'
4.M. K Cufta, Discrete M.athematics, Krishna
Worl-d
b,rze*
\\\
>nt 6t)ot1
nr
UNIVERS
I.TY
DEPARTMEIT]T OF I,IATHEMATIC.S
RANCHI UNIVERSITY
:
Paper Code: I"IATH 203, AI{ALYTTCAI.
Fu].I Marks: 75, Pass Marks:30
DY}IAMTC$,
Credit,s:3,
10 questions wil-l be set. An examinee wil_l_ be
required to answer any 5 questions out of them in 3
hours duration.
Each . quest.ion wil-l carry 15 marks. A question of 15
marks may be divided in two parts: part(a) of B marks
and part (b)of 7 marks
Motion in Two' Dimen-qiqns: Motion of C. G and motion
about C.G, K. E. , sf ipping of rods, m.otion of sphere
on incl-ined plane, when rolling and sliding are
combined, motion of a circular disc on a plane and
c-
!
r*F*
\
vt
.?"
,t*-
t\
rts'
t1,. *
I
related problems
[No. of question - 02]
Equation Of Motion And Its
Dimensicns: ^ General
equation
C-
Application fn Three
motion/
of
Euler's
equation of motion, mcmenLurri cf rigid body, moment
about instantaneous axes, K.E. of rigid body and
related problems .
[No. of cjuestion : 02)
o
Lagrange's Equat.ion cf Mot-ion and Small Oscil_lation
Generalized co-ordinates, constraints, classificati-o ;]
of mechanical' systems, Lagrange's equation of motion ,rf
principal of energy,
co-ordinates
[No.
snrall-' , oscil.l-ation,
of questj-on - 03]
and
dorrna
Hamilton's Canonical Equations: CanonicAl variable
Hamil-tonian, Hamifton's canonical equations, equatio
f rom Lag::ange t s equation of motion.
[No . o
question : 031
Books Recommended:.
1 . P. P.
Gupt.a an(C
G. S . Malik,
Krishna Prakashan L9B0
ir
Rrgad
Dynamics I I
:
2. A. S . Rams€y, Dynamics Part- I I , CBS publ-ishers anC
Distributors
1985
qret+.F
)-o t6 t>o(
$u
*t
UI{ .VERS
TTY
DEPAR'IMENT OF MATHEMATICS
RAiiCi{ i U}{ i VERS i TY
.:
Paper Code : I"IATH 20 4 , oPTrMrzATrON
Marks:75, Pass Marks: 30
TECHNTQUES,
{
Cred.its:3, FuIi
"-
i:
10
questions will be set . An examinee wi 1l be
required to answer any 5 questions olrt of them in 3
hours duration.
Each question will carry 15 -marks. A queslion of 15
marks may be divi-ded in two parts: Part{a) of B marks
and Part (b) of 1 marks.
Dual- SirnpJ-ex Method: f nf easible optimal initial
sol-ution, procedure .of dual_ simplex method, Advantage
of dual- simplex method over s j-mplex me Lhod,
difference between simplex and. dual- simplex mechod
[No. of question : 02]
Fd{
Sensitivity .Analysis: Changes in coefficients in
functionr' changes in the struct,ure of
1. Additicn of new variabie
2. Deleting of existing variab.r-e
3, Addition of new constraints
4. Del-etion of exi.sting constrain!s
[No. of- questi-on :' 02 ]
obj ectirze
LPP due to
'(.
:,T)
Theory Of Games: Characteristics of gdme theory,
Maximin criteria .and optimal strategy, solution of
game with saddl-e points,. Rectangular games without
saddle point a.nd its . solution by .linear progrdrnmi.rg.
.[No. of quest,ion _ 03 ]
Queueing Theory: Basic characteristics of queuing
syst,€rTr, dif ferent pe rformance measure s, Steady state
solution of Markovian queuing models: Nr/M/ 1, M /vt/t
with l-imited waiting space, NI/M/c, NI/rq/c with limited
waiting space . [No .' of guestion .= 03 ]
Books Recommended:
1 . S . D. Sharmar. Operat'i,bnr Research, Kedar Nath Ram
. Nath and'Comp.any publ-ishers , Ig72
tq{
{
\
2'. H-A.Taha,
2002
Operat,ions Research, .pearson Education
DRq+>{ { 6lLot
r
UN]VEn.JITY DEPAKTMENT oF MATHEMATICS
Paper Code: I'IATH
Credits : 3,
E
PG,}ICHI UI.II\./ERSITY .
2OS I Data Structure
uJ.l Marks :75 , Pass
with
MarlGs : 30
(
C,
;
,
10 questions wil-r be -set. An examinee witl be required to
ansrder any 5 quest-ions out of them in 3 hours duration. Each
question will carry 15 marks. A question of 15 marks may be
divided in two parts:
marks
f\'
,til
Parc(a) of 8 marks and part(b)of
1
.
rnt.roduction to Data structures: Data types, Abstrac! Data
types, Arrays, Arrays, as abstract data type, Arrays row major
and co]umn ma j oi, - se.quences, Biq oh notations . stacks :
Definitron and Example, Repre".rrii.rg Stack using st.aCrc
implementat'i-on, Applications, Inf ix, pref ix and postf ix,
converting infix to postfix, Expression Evaluation, Matching
parentheses, Recursion and Simulating Recursion.
[No of
questions :2 l
Queues and Linked r,ists: Definition and exampres, Representing
-Queues using static implementation, .circular gueues, eriority
queues, Doub'l-e-ended queues.
Linked Iistg: List Types (singly, doubly, si;rgly circular,
doubly circular) roperations on arl- types of Lists
create,
insert, delete, Generalj-zed Lists, Applications, Dynamic
inplementation of- stack and . queues, polynomial Adcition,
Dyrramic Memory Arrocation - Ei-rst- Fit, Best - Fit, worst-fit
INo.
of questions
:'2
1
Trees and Graphs: Basic concepts, Rooted Tree, Binar-y T-ree
Linkeci and slatic Represe.ntationr' Tree Traversals (pre-order-,
rn-order..- Post-.order using recursion) , Binary search Tree
-(create, delete, search,
insert, display)rAVL Trees Graphs:
Represent'ation using.c, Adjacency matrix and adjacency 1ists,
BFS and DFS by static and dynamic imptrementation.
lNo of
questions : 3 I
Sorting
sort
and Searching : Bubble sort,
fnsertion sort, Quick
recursive ) ,
Merge
sort, Heap
sort/
Searching: equentidl, Bina ry , Hashing, Hash tables, Haslr functions,
Overf,low handling techniques
{
[No of questions:3]
Text Books:'
1: Data Structurbs Using C - Aaron Tenenbaurn
2. Database Managbment Systems - Ramkrishnan Gehrkd
(McGraw Hill Third Edition)
.
6\ce{L
)-gfel)-ott
L]NIVERSITI DEPARTMENT OF TvIATHEMATICS
RAi.iCH
i
UN
I VERSI TY
.
l
-T
':
Paper Code: MILTH 206, Lab on Data Structure with Cl
Credits : 3, E\rLl l'larks :75 , Pass l"Iarks : 30
There shall be a 3 Hour practical examination. The-marks are
divided int.o three parts : i ) Practical Note Booh. : 25 marks,
(ii1 Programming efficiency in Lab: 40 marks and (iii) oral: l-0
rntroduction to data structures: Defining simple data
structures, classifying various data structtrres. Defining
operations on data structures, Primitive and Non primitive Data
Structures etc.
Arrays: Programs to create simple arrays, programs to
fllustrate
Storage Representation for ID and 2D arrays,
Insertion and deletion on L dimensional array.
Linked Lists': Defining and creating rinked lists, programs to
illustrate
Dynamic Memory Allocation, programs to creale
singly Linked r,ists, Performing operations on linked l-ists
such as rnsertion and deletion of a'node, rntrodrrction to
cj-rcular linked lists and Doubly linked lists.
si,icks: Stack concepts, creating Stacks,
Programs to
PusHrPoP
etc
operations
on
stacks,
Application of
-illustrate
stacks ,programs Lo il-lustrate
variops
concepts
using stacks
viz.. recursion, tower -of Hanoi etc. pr.ogru*" to i-llustrate
infix, prefix, postfix etc no€ations.
Queues: Queue-concepls, programs to. itl-ustrate operations on
queu.les, sequential and l-inked impleuientation, circrrlar queues,
PrioriLy
queues and 'Dequeues (rntruductory concepts),
Applicat-i qn of queues.
Trees: Definitions.and concepts - Binary trees, sequential- and
Linked Representation of Binary Trees, rnsertion and deretion
on binary trees, Binary Tyree Traversal technigues.
searching and 3orting: rntroductions to various search
techniques, programs to illustrate several search techniques
viz.Linear and- Binary searchr - gorting concepts:- rntroduction
to sorting, various'sorting
types of sorting, piograms to irrustrate
several typeq of
techniques. v!2. serection sort,
fnsertion 'sort, Quick sort etc.
Dfzqfr
2{(6 t>or I
(G
\_r'
UN
I VERS I
TY
DE
T,ARTMEN-T
O
F
MATH EMAT
RA}{CHI UNiVERSITY
I
CS
Sernester s\rstem syllabus w,'e.f . 2AII-20
M .Sc
. (I4ATHEI'IATf
CS )
13
SYLLABUS BASED ON SEMESTER STSTEM
!t. g. f .
THE SESSTON 201 1_2013
SEMESTER
TTI
UN
Paper
I VERS
T
TY
PAR'I MENT oF' MATHEI,4AT I
F{ANCHT; UNTVER.SITY
DE
CS
Code: I,IATH 301,
MathernaEical ' Mode1ing,
pass
r- Ful-l Marks: 25,
Marks :3o
credits:3
10 questions will be set. An examinee wil-l- be required to
answer any 5 questions out of them iir 3 hours duration.
Each question will carry 15 marks. A question of 15 marks may
be divided in two . parts : part ( a ) of B marks and Part (b) of 1
marks.
simpre situalions. requiring mathematical mode 1i ng , te chni_ que s
of mat,hernatical modeli.tg I crassifications , Characteris
tics . and
limitations of mathematical moders, sorne simple iltustrations.
[No. of question-03]
t.,
,t/
',
Mathematical modeling through differential
equations
Linear
growt,h and decay nioders, Non linear qrowth and de ca\,', _mode 1s
compartment models, Mathematical modeting in dynamics through,
ordinary di fferential
eguations of fi rs t order. [No. of
gues tion:0 3 l
Mathematical- models -through difference equat.ions, some si_nple
models, Basic theory of rinear difference equations with
constant
coefficients,
Mathematical modeling through
differcnce equations in economic and finance, Mathematical
modeling through - difference ^ equations in population dynamic
and ge-qetics. INo" of question:Q+]
J<eterences:
1-. J.. N. Kapur, Mathentati-caL M<tdel.ing, Wiiey Uastern
, 'Mathematical l4odeling in the .sociaL
and Life science, El-rie Herwood and John wiIey.
lanag-efient
.
3. F. char]ton,.
ordinary Differentiai
and oiffereice
Equations, Van Nostrand.
2
,
'
D
-
i\
.
tsurghes
?r{zep-;.
o v-20'l
I
UN IVEF.S
ITY
DE-PARTI'[E}]' OF MATHEIV]AT ICS
UNIVER.SITY
RANCHI
-..
;
.i
Paper Cod,e: I'IATH 30 2 , PARTIAL DIFEERETIAL EQUATIONS
AITD ITS APPLICATIONS , Credits:3 , Fut1 Marks: 75 , Pa'ss
Marks:30
10 questions wili be set. An examinee will be required to
answer any 5 questions out of them in 3 hou-rs duration.
Each question wil] carry l-5 marks. A quest-ion- of 15 marks may
be aivioea iir two parts : .Part (a ) of- B marks and Part (b) of 1
.marks,
Classifrcation of second 'order partial differential equation,
[No. of question:01]
Reduction to cannonical fornLs.
/.r<
l.t
r,\
.\\
\
\
Solut.ions of partial
djfferential
equations through LaPJace
trans f orm.
[No. of questicn:O2]
Laplace Eqations : Frlndatuental solution f or two variable s
variable separable method ,Mean value theorem for Harmoni c
firto. of
Functions, Propcrties of Harmonic functions '
question:02
l
in
Heat Equaticn': one-dimensional heat f1ow, heat flow
-Fou::ier
inf inite bar,. Fundamenial- solution, soluticn by
series, properties of solutions.
[No. oi q"."f ion='02] . c
Wave equat-ion: Derivation of One-dimensional wave 'equation'
so.l-ution by separation . .of variable, solut-ion by Fourier
series , D' Alembert's solution qt wave' equati'on' INo' of
question:03 l
Books Recommended:
Di fferential
IntrOduCt.ion to partial
1 . K. Sankara Rao I
Equation, Prentice-Hall of India Private Limi ted (20 0 5 )
Di f f erentialPa rtial
P Chauhan,
J
S ingh,
2. S.
Meerut
Prakashan,
Equatioos r Shikha Sahitya
ffi,,,,
uN r vE
R's'"
.:
i^?T'f iXi''H -i1 #l'
HE
MAr r c s
Pape= Code: I*IATH 3O3, oRDTNARY DTFFERSNTTAL
Credits:3, FulI Marks :75 , Pass Marks:30
@
EQUATTON,
questions will be set . An examinee will be
required to answer any 5 questions out of them in 3
I0
hours Curation.
Each quest,ion wil-I carry 15 marks. A question of 15
marks may be divided in two parts: Part(a) of 8 mdrks
and Part (b)of 1 marks.
Existence and Uniqueness of ordinary differential
equation, -Cauchy-Peano existence theorem, Lipsch:-tz
condition, Uniqueness theorem.
[No. of quest.ion:02 ]
Linear system of ordinary ciifferential equations,
Existence and Uniqueness of Linear system, l_inear
homogeneous and non-homogenous system: Variation of
-Parameters, -Method of Eigen val-ue and Eigen vector,
Fundamental sol-rrtion, Reduction of highe.r order
linear equation .into first order l-i.near equalicns
[No. of_ question=05f
Green'
s functi-on, . Sturm-Liouvil-le
Eigen'value pr:oblem
[No. of question=O3]
b.oundary. problem,
Books Rqcommended :
1. E.A.Coddington and N.Levinson,Theory of ordinary
G
.
Differential equations, Tata Mc Graw Hill
publishing company Ltd. (1955)
2.M.Brawn , Dif ferential- Equati-ons and their
Applic'ations', Springer-Verlag New York
(L992) (abiaged version published by Narosa
Book
Agency)
3.. A. chakrabarti, Elemenl-s of ordinary Dj.,f feren!,ia1
equations and Special functiorrs r New Age
fnternational Publishers (1990)
'o
,"$.
d
">'o\'bl xtl
UNIVERSITY DEPARTMENT OF MAl'IIET4ATICS
RANCHI UNIVERSITY
:
paper Code: I'iATfi 3C4 | Integtral Equation Credits: 3,
EuIJ. Marks :75 , Pass Marks:30
10 questions wil-I be set. An examinee will be required to
.rr"rlr any 5 quescions out of them in 3 hours durationEach qr"ution will carry 15 marks. A quescion of 15 marks may
be aiviaea in two parts: Part (a) of B marks and Part- (b) of 7
marks
Integral Equations Credits : 4,
clas.sifieation. Modeling of problems as integral equations'
conversion of init.ial and boundary value problem into integral
equations into differential
equations. conversion of integral
'equations
and their mrmerical
e{r;ations . Volterra irrtegral
Greens function for Fredholm Integral equations '
"ototiorrs.
Fredholm integral equations:
Degenerate kernels, symmetric kernels ' .Fredholm I nte gra lFredholm
equacionofsecondkind.Numericalsolutionof
Integral equations.
Existence of the solutions: Basic fixed point theo::ems
Integral equations and transformations: Fourier, Laplace and
Hilbert transformatio-n.
References.'
65dr:I J. Jerry, Introduction to Integral Equat ions with
1- .
applications, Marcel Dekkar Inc' NY'
2-. L.G.Chambers, Integral Equations: A short courser.Int
Book ComPanY-Ltd' 1916,
3. R.' P. Kanwal , Lineat'integtai Eqaaticns
4. Harry Hochsdecit, IntegraT Equ7tions'
5.MurryR.Spiegal-,LapTaceTransform(SCHAUMoutline
Series), McGraw-HitI
Ml}J 309
$o*'t
5r:{
{
-
G
c^r-<Fr
"'2J1'bl7P\
I
@
UN
IVF,RS
ITY
DEPARTT'IEI\T
OF MATHEI{ATICS
RANCHI UNIVERSTTY
Paper Code: t'IATIi 305
Cr-edits:3, E\rIl
Marks
>rical AnalYsis
275 , Pass l"Iarks:30
Nurn€
l0questionsrvillbeset.Anexamineewillberequiredto
answer any 5 questions out of them in 3 hours durati-on'
15 marks
Each question will carry 15 marks' A question of
may
bedividedintvroparts:Pa.rt(a)ofBmarksandPart(b)of7
marks.
direct ?td
Norrns of vectors and Matrices, Linear systems: anal'1'5i5
;
iterative schemes, ill conditionil,rg and 'coirvergence
\
\,.v
l'_
1L.'
1\
r,
.'
"./
I
Nunericalschemesfornon-Iinearsystems'Re'lression'
step and
Numerical solution of differentiai equaLions: single
multi-stepmethods,order,consistency,stabilityand
equations' two point boundary
convergence analysis, stiff
valueproblems:Shootingandfinitedifferencemethods.
Books
--i:;;dt Recommended
:
ni'ciad & ward Cheney, Numerical AnaJ-:7-s-is
and mathematics 6hs"r"ntif ic corflputing,
Iirooks /col e,@2o0h
2..JDLambert,ComputationalmeLhodsinordinary '.
d.ifferential equa-tions, Wiley and Sons
3.JCButcher,Therrumericalanalysisoford.ii^,ary.
' d'iffererrtial equations, 'Tohn wiley'
Ner,ru.vica..0 A<r.clgcrs
y
'),13"+arh"-l
2u'E €
!2q""r.*" - AtraL )s<v\(s,
d,
Cu
T Zoo.t
.
,:.
G{r,
'\.=/
UNIVERSITY DEPARTYIEIJT OF MATHEMATI(-J
RANCHI UN]VERSITY
Semester system syilabus w.e.f . 2.CI7-20I3
li'
Paper Code: I"IATH 306: Topologi'y, credits: 3, Full
Marks :75, Pass Marks:30
10 questions will be set. An exami-nee will be required to
answer any 5 questions out of them in 3 hours duration.
Each question wj 11 carry l-5 marks. A question of 15 marks may
be divided in two parts: Part (a) of B marks and Part (b) of 1
ma
rks
Definition
/I,\
L*..
J
and exanples of Topological" spaces,
Comparison of Topologies, Closed sets, Closure, Dense
subsets, Neighbourhoods, Int.erior, exterior and
boundary ,Accumul-ation points and Derived sets, Bases
arfd subbases, Topology in terms of Kuratowski closure
operator, cont j-nuity and homeomorphism, open and
.closed maps, product space and Quotient space,
Examples of Quotient space, First and second axiom
spaces, Lindelof f space. []lo. of quest'i on = 041
Tychonoff's
Compact space,
Compactnes [No. of question _ 02]
theorern,
LocaI
Connectedness and its properties.
No. -of question _ 01]
T1 space, T2 space, Normal and completely regular
-epaces., Uryshon'.s l-emma, T.ietze extension theolem,
Uryshon' s metrizaLion theorem..
No. of question : 031
Books Recommended,:
1. -G,F.Simmonsr. Introduction to Topology and Moddrn
Ana1ysis, Mc-Graw Hill 1963
2. James R,Munkers, Topology, Pearson Education
/
,
ffiq,,
2OOO
t]NIVERS ITY DEPARTMENT CF MATHEMATICS
R.ANCH I UN IVER.S I TY
Semester s\rstem sytlabus w.e.f . 20IL-2013
i;
M .Sc
.
(}4ATHEI"IAT I
CS)
SYLLABUS BASED ON SEI.{ESTER SYSTEM
!Y. g. f,.
THE SESSION 201 1-2013
SEMESTER
IV
UNIVERSITY DEPARTMENT OF MATIIEMATICS
:,
RAI{CHI Ui{IVERSITY
PsPer :Ode: t"lATH 407- Linear Algebra, Credits
Mar lts 15, Pass: Marks:30
w
-
.-:.
:'
:
Fu]-1
3,
:
lstions will be set. An examinee will be
requi i td to answer any 5 questions out of them in 3
10
qL
hours lurat ion
.
Each rlestion witl carrv 15 marks. A question of 15
marks nay
: be ,Civided in ito part s : Fart (a ) of B marks
and Pa :t(b)of l mar.ks.
(
ctimensional vector
Fini t e
field*.
'
a
a
i
spaces over
i
!
arbitrarv
-1"
-
Direct
,
'.
Subspa res
questj )n-02 ]
sum of
subspaces.
[No.
ion. I A Lt
of
---l
j
transf ormat.ions and their mat.rices .
ziTheorem,
NuItit
Grahm Smith orthogonal-ization.
.
question:O2
;
c
[No.
]
Linear
Rank-
:
-i
The rcl limal and the characterigtic polynomials. Eigen
-.4
rnalue s i eigen vectors and dilonarizati-on
of l-inear
tran.s f >imatlons. The primarlz n d".o*position theo::em.
R af= ior, rl- and Jordan forms.
[No. of question:O3]
i
Inner pgoduct spaces. Hermitian, unitary and normal
linear i, operators. Spectral- theorem and . polar
tt,
decomp
rsition. [No. of question:}2]
i'ii
'.t
';
"Y*et
CL
.
and quadratj-c forms. D-fional Liation of
:ic bil-inear formS. [No . of q}estiqn-011
Bi f ine lr
t
.
t
.
a
I,
?L,
i,:
..4-
*
i{
Re
feren
l-. Ho
.
-AQ
2\'L)
:
a
fman & 'Kun
.:a
''i
//
':-
!l'
::
t
;..
{
''it
.i
t',
.
rn.
I
F:,
.rii.
:if.
l:"
: l-.
'i'
:;
:f,
'1'
,:i
.
,
'i-'i'
.:,i
.5
'i'
-
,,.i.
:!i
r?, Linear Algebra,
-PHI
*1
I
l
UNIVERSITY DEPARTMENT OF MATHEMATICS
RANCHI UNIVERSITY
:' MATH 4'O2- Functional Anal-ysis , Credits : 3 ,
Ful-i Marks :75 , Pass Marks : 30 .
10 questions will- be set . An examinee wj-11 be
required to answer any 5 questions out of them in 3
Faper
Code
hours duration.
Each question wil.l car:ry 15 marks. A question of 15
marks 1nay be divided in 'L.wo parls: Par+;(a) of B marks
anci Part (b)of 7 marks
linear Space, Branch Space, continuous lj near
maps , B (N. N' ) , dual (conjugate) space of N, Natural
embedding t_heorem, Duel of R' and lp, Riesz Lemma.
[No. of question : 02]
Normed
I r*;
\
I
I
't^/
L|-t
t
i
*Lt
i"
.". 't\
{.t gt,
It'
fi
:
i-
i;"
'*'."
Hahtr Branch Theorem, open mapping theorem and
projection on Banach space, closed graph theorem and
uni form bouncied ness principle. [No. of question : 03]
space: Definition and examples, Swartz
tlitbert
Inequaiities,
characteri zaticil,
[No. of question :
complet.eness
orthogonal
Gram-Schmidt crrthogonalisat j-on.
03J
t,heorem,
Dual cf Hilbert space, Riesz.representation
'of
question
refl-exivity. Adjoint. of an operator. [No.
=
021
Book Re.commended:
1 . G. F. Simmons, Inttoduction to Topolof y and t.{odern
Analysis, Mc-Graw Hitt Book.Company, (1963)
Functional- Analysis, New Age
2. B. V. Limaye,'
International Publ- . , 2'd Ed.
-Krshna Prakashan,
3. P P Gupta, Functiona'l Analysis,
Meerut
$\>otr
\\
@
UNIVERSITY DEPARTT4ENT OF MATHEMATICS
( .
F.ANC;{I UNIVERSITY
-
Paper Code: I'IATII 403- OPERATfONS RESfARCH, Credits:3,
Full Marks :75 , Pass Marks:30
10 questioirs will be set . An examinee will- be
required to answer any 5 questions out of Lhem in 3
hours durat.ion.
Each question will carry 15 marks. A question of 15
marks may be div-ided in two parts: Part(a) of B marks
and Part (b)'of 7 marks
r
1f
i
-f..r
\)
L,
-
f^=
Integer Programming: Branch and Bound technique,
Gomory's cutti-ng plane method. [No. of question:O2]
Progranrming:
Linear
"Multi
One
and
variable, lJncons tra ined
optimi zatioD,
Kuhn-Tucker
Conditions for constrained opLimization,Quadratic
programming Wol-f ' s and Beal-' s method. [No. .of
question:03 l
Non
fnventory: Known demandr probabilistic
demand,
"ngdels
Deterministic Model-s and probabilistic
without
lead-time. INo. of suestion=021
Project P.t-anning And Control With PERT-CPM: Rul-es of
network construction, Time calculation in' networks
Cr j.tical
path
method,
PERT I PERT calculati-on,
advantages pf neturork (PERT/CPM) rDifference between
CPM and PERT.
lNo.' of question=921
Deterministic Dynamic Programming : Bqll-man's
principle of optimality, soluLion of problem with
finite
number of stages, forward and Backward
Recursion. [No. of question=0]- l
Books Recommended
:
Operat.ion P,bsearch, Kedar' NaEh Ram
Nath and Company (191?)
2. H.A.Taha, Operations Research,'Prentic- HalI of
India Private Limited (2003)
@
CD^eF-
?'O ' b 'z)cU
G}
ql
UNIVERS
*)
qr,
ITY
DEPARTI.IENT OF MATHEMATICS
RANCHI UNIVERSITY
Paper , Code r i }'IATH 40 4- Numerical
Equations Credits : 4
Differential
qt
Soluti )ns
of
Partial
be
stions rvj-Il be set . An examinee will
required to answer any 5 questions out of them in 3
hours duration.
Each question will carry 15 marks. A question of 15
marks may be divided" in two parts: Part (a ) of B marks
an,C Part (b)of 1 rnarks.
10
t.k
Y\
i
,
9
\
"v
que
Numerical solutions of parabolic PDE jn orre space: two and
and implicit
di-fference schemes.
three levels explicit
Convergence and stability analysis.
Numerical solution of parabolic PDE of second order in two
methods, alternating direction
space dimension: implicit
implicit (ADI) methods. Non linear initial BVP.
I
,
Difference schemes for parabclic PDE in sptrerical
cyJ-indrical coordinate systems in one dimenston.
and
Numerical sol-ucion of hyperbolic PDE in one and two space
dinrension: exp.l.icit end implicit' . schemes . ADI methods Difference schemes for fj-rst ordei equations'.
*
^[-murnerical sclutions of e11i ptic equations, app.roximations of
I laplace and biharmonic operators. Solutions 'of Dirichlet,
I N"u*u.r and mixed type problems.
Refe r;ences
.1
;
.
.M. K. Jain, S. R. K. Iyenger and *. K; Jain, Computational
MeLhods for Partiaf Dif f erential- Equations, Wiley EasLern,
1,99 4
.
2.M. K. Jain, Numericai SoI-ition of Di-fferential Equations,
2nd editj-on, Wiley Eastern
3 . S . S . Sastry, Introductory l4ethods 'of NumeticaJ- AnaTysis, ,
2002.
Prentice-Hall of India,'l.tl.S*ith,
'Numerical Methods of
and
4.D.V.Griffiths
Engineers, Oxford University Press, L993
5.C.F.General and p. O. Wheatley, App.Tied Numerical Analysis,
Addison- Wesley,
L99.8.
.DCIN
?.,a\r
9
ITY
DEPARTMENT OF MATHEMATICS
RANCI]I UNIVERS ITY
Semester system syllabus w. e. f. 2AIL-2013
UI'iIVERS
F
P
qt
qt
$r
d.
c!
,1
f
J,'
Paper Code: l"lATH 405: l"IAflAE" Progranuning (Practical-)
Credits :3, FuJ.j- l'Iarks z'15 , Pass t'larks t 90 .
There shali be a ;a Hour practical examination. The marks are
divided into three parts: i ) P::aclical Note Book : 25 m-arks,
(ii) Prcgramming efficiency in Lab:40 narks and (iii) Oral-:10
I
;i
ctc
Introrluction to Matlab: - Matlab as {best} calculator
Standard Matlab windows, Operations with variables such as
Narning b) Checking existen.ce c) Clearing etc.
Arrays: Col-umns and rows: creation and indexing, Size
length, Multiplication, division, power Operaticns elc.
,
a)
&
Writingr script files: Logical variables and operators, Flow
control, Loop opcrators.
functions:
fnpu L / output
argument
path, Example: Matlab starti:p.
Writingr
-visibility,
Function
s,
Simple graphics: 2D.piots, Figures and subplots.
"D.t. and data flow in Matiab: Data types, Matrix, string, cell
and structure, Creating, dccessing elements and manipulating
of data of different types.
a
Refe rerTces
:
'1. Amos Gildt, I"IATLAB: An Introd,uction with ' Applications,
Wiley India, 2009.
2. Hunt, A Guide to MATLAB , Caxnbridge Univ . Pre s s
3. Krishnamurty, Programming in MATLAB I Eas! West, 2003
r
It
I
ffi\\
ry
$
Cr
+
TTY
DEPARTMENT OF MA.THEMATICS
RANCHI UNIVERSTTY
Semester system syllabus w.e.f . 2aLL-20 13
UNIIVERS
/t'-\
't.1
(:--Z
t'/
Ct
$
{"
Paper Code: I'IATH 405: Project
fi
fr
proj ect based. on the topics in mathemat.ics,
str
€t
dr
tr
Sr
tt
*
tr
\
\e
Each'student is required to work on some innovative
he
/
s:re
has tead under the supervision of a teacher of the
Department. The topic'of the p.oject wirl be decidec
at the beginning of the t.hird semester. Students may
use c programming/ ,MATLAB /VAPLE tools, if reguired.
They will
present their
dissertation for evaluation.
work
c
in
f orm
of
There shall be project presentation at the end of the
semest,er" The ma::ks are divided into three parts: .i)
Dissertation : frffmarks,
(ii ) Presentation , @.^urks
.
'gv
'X*
I