Theoretical and Observational Aspects of Coupled Dark Energy
Transcription
Theoretical and Observational Aspects of Coupled Dark Energy
Theoretical and Observational Aspects of Coupled Dark Energy Andresa Campos, Rogerio Rosenfeld IFT-Unesp, ICTP-SAIFR XIX Swieca Summer School on Particles and Fields February 10, 2017 Andresa Campos [email protected] Theoretical and Observational Aspects of Coupled Dark Energy 1/ 10 1/10 I - Introduction Standard Cosmological Model - ΛCDM Andresa Campos [email protected] Theoretical and Observational Aspects of Coupled Dark Energy 2/ 10 2/10 I - Introduction Standard Cosmological Model - ΛCDM Andresa Campos [email protected] Several issues!! Theoretical and Observational Aspects of Coupled Dark Energy 2/ 10 2/10 I - Introduction Standard Cosmological Model - ΛCDM Dark Matter Andresa Campos [email protected] Several issues!! Dark Energy Theoretical and Observational Aspects of Coupled Dark Energy 2/ 10 2/10 I - Introduction Standard Cosmological Model - ΛCDM Dark Matter Several issues!! Dark Energy Coupled Quintessence Andresa Campos [email protected] Theoretical and Observational Aspects of Coupled Dark Energy 2/ 10 2/10 I - Introduction Standard Cosmological Model - ΛCDM Dark Matter Coupled Quintessence Andresa Campos [email protected] Several issues!! Dark Energy Phenomenological Fluids Theoretical and Observational Aspects of Coupled Dark Energy 2/ 10 2/10 II - Coupled Dark Energy (Phen. Approach) • Energy-momentum tensor: ν = Q(α)µ , ∇ν T(α)µ with the constraint X Q(α)µ = 0. α • The choice of Q(α)µ specifies the strength of the coupling. Q = 3Hλρd . λ: new parameter Other choices can be made!! ν ν where u = (−a, 0, 0, 0) and w ≡ p /ρ . = (ρα + pα )uµ uν + pα δµ Recall T(α)µ µ α α α Andresa Campos [email protected] Theoretical and Observational Aspects of Coupled Dark Energy 3/ 10 3/10 III - Background Conservation equations ρ̇d + 3Hρd (1 + wd ) = −3Hλρd ρ̇c + 3Hρc = +3Hλρd Andresa Campos [email protected] DM −→ DE • λ > 0: DE −→ DM • λ < 0: Theoretical and Observational Aspects of Coupled Dark Energy 4/ 10 4/10 IV - Perturbations Linear perturbations in synchronous gauge δ̇c = −(kvc + ḣ/2) + 3Hλ(δd − δc )ρd /ρc , v̇c = −Hvc (1 + λρd /ρc ), δ̇d = −(1 + w)(kvc + ḣ/2) + 3H[(w − c2e ) − 3H(c2e − c2a )(1 + w + λ)vd /k], 3H δd v̇d = −H(1 − 3c2e )vd + (1 + c2e )λvd + kc2e . 1+w 1+w CAMB, CLASS, CMBFAST etc. Andresa Campos [email protected]sp.br Theoretical and Observational Aspects of Coupled Dark Energy 5/ 10 5/10 V - Modified CAMB We use a modified version of CAMB† to solve these equations. • Shift in the matterradiation equality; • Change in location and amplitude of the BAO; • Change in velocity of perturbation growth. † Andre Costa, Xiao-Dong Xu, Bin Wang, and Elcio Abdalla. Andresa Campos [email protected] (ArXiv:1605.04138) Theoretical and Observational Aspects of Coupled Dark Energy 6/ 10 6/10 VI - Dark Energy Survey Photometric Galaxy Survey Andresa Campos [email protected] Theoretical and Observational Aspects of Coupled Dark Energy 7/ 10 7/10 VI - Dark Energy Survey Photometric Galaxy Survey High redshift Andresa Campos [email protected] Theoretical and Observational Aspects of Coupled Dark Energy 7/ 10 7/10 VI - Dark Energy Survey Photometric Galaxy Survey High redshift Poor redshift precision Andresa Campos [email protected] Theoretical and Observational Aspects of Coupled Dark Energy 7/ 10 7/10 VI - Dark Energy Survey Photometric Galaxy Survey High redshift Poor redshift precision Standard approach: split the data into redshift bins and use ω(θ) or C` . Andresa Campos [email protected] Theoretical and Observational Aspects of Coupled Dark Energy 7/ 10 7/10 VI - Dark Energy Survey Photometric Galaxy Survey High redshift Poor redshift precision Standard approach: split the data into redshift bins and use ω(θ) or C` . C`,Limber = Andresa Campos [email protected] Z 2 dzφ (z)P ` + 1/2 r(z) ! 1 r2 (z) Theoretical and Observational Aspects of Coupled Dark Energy . 7/ 10 7/10 VI - Angular Matter Power Spectrum Angular Power Spectrum 0.45 ≤ z ≤0.55 103 `C` 101 w= -0.9999 λ=-0.03 w= -1.0000 λ=0.00 w= -1.0001 λ=0.03 0 10 101 Andresa Campos [email protected] ` 102 Theoretical and Observational Aspects of Coupled Dark Energy 8/ 10 8/10 VII - Fisher Information Matrix Assuming a Gaussian likelihood, the Fisher matrix elements are given by Fαβ = X 1 ∂Xi ∂Xi σi2 ∂θα ∂θβ i Xi C` θ λ and w λf id = 0 and wf id = −1.0001 The variance in the C` ’s can be estimated as σ`2 ≈ 2 C`2 . fsky (2` + 1) For DES, fsky ∼ 1/8. Andresa Campos [email protected] Theoretical and Observational Aspects of Coupled Dark Energy 9/ 10 9/10 VII - Fisher Information Matrix Assuming a Gaussian likelihood, the Fisher matrix elements are given by Fαβ = Xi X 1 ∂Xi ∂Xi σi2 ∂θα ∂θβ i C` θ λ and w λf id = 0 and wf id = −1.0001 The variance in the C` ’s can be estimated as σ`2 ≈ 2 C`2 . fsky (2` + 1) For DES, fsky ∼ 1/8. -0.94 -0.96 [F]−1 = C = σλ2 σλ σw σλ σw 2 σw Preliminary results! -0.98 -1.00 -1.02 -1.04 -1.06 Andresa Campos [email protected] -0.5 0.0 Theoretical and Observational Aspects of Coupled Dark Energy 0.5 9/ 10 9/10 Next • All parameters • Photo-z error • Beyond Limber • More redshift bins • Redshift-space distortions • Binning in ` Andresa Campos [email protected] Theoretical and Observational Aspects of Coupled Dark Energy 10 / 10 10/10 Next • All parameters • Photo-z error • Beyond Limber • More redshift bins • Redshift-space distortions • Binning in ` Data from first year of observations of Dark Energy Survey Andresa Campos [email protected] Theoretical and Observational Aspects of Coupled Dark Energy 10 / 10 10/10 Next • All parameters • Photo-z error • Beyond Limber • More redshift bins • Redshift-space distortions • Binning in ` Data from first year of observations of Dark Energy Survey Thank you! Andresa Campos [email protected] Theoretical and Observational Aspects of Coupled Dark Energy 10 / 10 10/10