Positive-Feedback Oscillators
Transcription
Positive-Feedback Oscillators
1 Positive-Feedback Oscillators: Illustrations © Eugene PAPERNO, 2006 I. PHASE-SHIFT OSCILLATOR β ( s) = 1 1 ⎞ ⎛ ⎜1 + ⎟ sRC ⎝ ⎠ 3 Σ Sin Sε So AOL RC = 1 β(s) A f ( s) = AOL 1 − AOL β ( s ) Im[β (s)]=0 Fig. 3. Abs[Af(s)] for AOL=8. [AOLβ(ω1) =1.] Fig. 1. Abs[β(s)]. AOL=2 1 3 AOL=3.3 1 0.3 1 2 0.2 0.75 0.75 0.125 0.1 0.08 0.5 0.06 Im[β(s)]=0 0.25 jω AOL=8 AOL=12.5 AOL=25 0.25 0.04 0.02 0 jω − 0.25 − 0.5 − 0.5 − 0.75 − 0.75 − 1.5 −1 − 0.5 σ Fig. 2. Abs[β(s)]. 0 0.5 Im[β(s)]=0 0 − 0.25 −2 AOL=8 0.5 − 1.5 −1 − 0.5 0 σ Fig. 4. Abs[Af(s)] for AOL=8. [AOLβ(ω1) =1.] 0.5 2 Note that AOLβ(ω1) >1 shifts the poles to the right of the jω axis. 1 1 0.75 0.75 AOL=8 0.5 0.5 A OL=25 0.25 jω Im[β(s)]=0 0.25 jω 0 0 − 0.25 − 0.25 − 0.5 − 0.5 − 0.75 − 0.75 − 1.5 −1 − 0.5 0 Im[β(s)]=0 0.5 −1.5 −1 σ 1 0.75 0.75 A OL=12.5 0.25 jω 0 − 0.25 − 0.5 − 0.5 − 0.75 − 0.75 − 0.5 0 σ Fig. 6. Abs[Af(s)] for AOL=12.5. [AOLβ(ω1) =1.56.] 0.5 Im[β(s)]=0 0 − 0.25 −1 A OL=3.3 0.5 Im[β(s)]=0 − 1.5 0.5 Fig. 7. Abs[Af(s)] for AOL=25. [AOLβ(ω1) =3.125.] 1 0.5 jω 0 σ Fig. 5. Abs[Af(s)] for AOL=8. [AOLβ(ω1) =1.] 0.25 − 0.5 − 1.5 −1 − 0.5 0 σ Fig. 8. Abs[Af(s)] for AOL=3.3. [AOLβ(ω1) =0.41.] 0.5 3 II. WIEN-BRIDGE (HEWLETT) OSCILLATOR 1 sC 1 R+ ⎞ ⎛1 sC − ⎜ − 0.1⎟ β ( s) = 1 ⎠ ⎝3 R sC + R + 1 1 sC R+ sC R Σ Sin Sε So AOL β(s) R =1 C =1 A f ( s) = AOL 1 − AOL β ( s ) Fig. 1. Abs[β(s)]. Fig. 3. Abs[Af(s)] for AOL=8. [AOLβ(ω1) =1.] 1.5 1.5 1 1 0.5 0.5 0 0 − 0.5 − 0.5 −1 −1 − 1.5 −1 − 0.5 Fig. 2. Abs[β(s)]. 0 0.5 1 − 1.5 −1 − 0.5 0 Fig. 4. Abs[Af(s)] for AOL=10. [AOLβ(ω1) =1.] 0.5 1 4 Note that AOLβ(ω1) >1 shifts the poles to the right of the jω axis. 1.5 1.5 1 1 0.5 0.5 0 0 − 0.5 − 0.5 −1 −1 − 1.5 −1 − 0.5 0 0.5 − 1.5 1 1.5 1.5 1 1 0.5 0.5 0 0 − 0.5 − 0.5 −1 −1 −1 − 0.5 0 Fig. 6. Abs[Af(s)] for AOL=20. [AOLβ(ω1) =2.] − 0.5 0 0.5 1 0.5 1 Fig. 7. Abs[Af(s)] for AOL=106. [AOLβ(ω1) =105.] Fig. 5. Abs[Af(s)] for AOL=10. [AOLβ(ω1) =1.] − 1.5 −1 0.5 1 − 1.5 −1 − 0.5 0 Fig. 8. Abs[Af(s)] for AOL=5. [AOLβ(ω1) =0.5.] 5 III. HARTLEY-COLPITTS OSCILLATORS 1 sC sL 1 R+ sC β ( s) = 1 R sC + sL 1 R+ sC R Σ Sin Sε R =1 L =1 C =1 A f ( s) = β(s) AOL 1 − AOL β ( s ) Fig. 3. Abs[Af(s)] for AOL=8. [AOLβ(ω1) =1.] Fig. 1. Abs[β(s)]. 1.5 1.5 1 1 0.5 0.5 0 0 − 0.5 − 0.5 −1 −1 − 1.5 −1 − 0.5 Fig. 2. Abs[β(s)]. So AOL 0 0.5 1 − 1.5 −1 − 0.5 0 Fig. 4. Abs[Af(s)] for AOL=1. [AOLβ(ω1) =1.] 0.5 1 6 Note that AOLβ(ω1) >1 shifts the poles to the right of the jω axis. 1.5 1.5 1 1 0.5 0.5 0 0 − 0.5 − 0.5 −1 −1 − 1.5 −1 − 0.5 0 0.5 − 1.5 1 1.5 1.5 1 1 0.5 0.5 0 0 − 0.5 − 0.5 −1 −1 −1 − 0.5 0 Fig. 6. Abs[Af(s)] for AOL=1.4. [AOLβ(ω1) =1.4.] − 0.5 0 0.5 1 0.5 1 Fig. 7. Abs[Af(s)] for AOL=2. [AOLβ(ω1) =2.] Fig. 5. Abs[Af(s)] for AOL=1. [AOLβ(ω1) =1.] − 1.5 −1 0.5 1 − 1.5 −1 − 0.5 0 Fig. 8. Abs[Af(s)] for AOL=0.8. [AOLβ(ω1) =0.8.] 7 IV. OSCILLATOR WITH AN UNSTABLE FEEDBACK NETWORK β (s) = −25 1 − ( −25) Sin 1 1 ⎞ ⎛ ⎜1 + ⎟ sRC ⎠ ⎝ Σ Sε So AOL 3 −25 Σ RC = 1 b(s) AOL A f ( s) = 1 − AOL β ( s ) Phase-shift oscillator Fig. 1. Abs[β(s)]. Fig. 3. Abs[Af(s)] for AOL=0.85. [AOLβ(ω1) =1.] 1 1 0.75 0.75 0.5 0.5 0.25 0.25 0 0 − 0.25 − 0.25 − 0.5 − 0.5 − 0.75 − 0.75 − 0.1 0 Fig. 2. Abs[β(s)]. 0.1 0.2 − 0.1 0 0.1 Fig. 4. Abs[Af(s)] for AOL=0.085. [AOLβ(ω1) =1.] 0.2 8 Note that AOLβ(ω1) >1 shifts the poles to the left of the jω axis. Fig. 5. Abs[Af(s)] for AOL=0.085. [AOLβ(ω1) =1.] Fig. 7. Abs[Af(s)] for AOL=0.01. [AOLβ(ω1) =0.012.] Fig. 6. Abs[Af(s)] for AOL=0.05. [AOLβ(ω1) =0.59.] Fig. 8. Abs[Af(s)] for AOL=0.2. [AOLβ(ω1) =2.35.] 9 SUMMARY Hartley-Colpitts Oscillators AOL1 < AOL2 < AOL3 AOL1 β(s) =1 AOL2 β( jω1) =1 AOL3 β(s) =1 β(s) AOL Im[β (s)]=0 Oscillator with an unstable feedback network Im[β (s)]=0 β(s) AOL1 β(s) =1 AOL AOL2 β( jω1) =1 AOL1 > AOL2 > AOL3 AOL3 β(s) =1 Filename: 1._Positive_Feedback_Oscillators_Illustrations Directory: D:\1. Positive-feedback oscillators Template: C:\Documents and Settings\Paperno_E\Application Data\Microsoft\Templates\Normal.dot Title: Positive-Feedback Oscillators Subject: Author: Paperno_E Keywords: Comments: Creation Date: 12/28/2006 1:06:00 PM Change Number: 147 Last Saved On: 12/30/2006 5:55:00 PM Last Saved By: Paperno_E Total Editing Time: 1,097 Minutes Last Printed On: 12/30/2006 6:56:00 PM As of Last Complete Printing Number of Pages: 9 Number of Words: 399 (approx.) Number of Characters: 2,316 (approx.)