Cristaux Photoniques, PO-014 Ecole doctorale photonique Romuald
Transcription
Cristaux Photoniques, PO-014 Ecole doctorale photonique Romuald
Cristaux Photoniques, PO-014 Ecole doctorale photonique Romuald Houdré Semestre été 2007 IV Techniques de mesures Plan 1 Introduction, survol du domaine. •Introduction •Histoire des cristaux photoniques •Les principaux concepts 2 Théorie •Cristal infini -Equations de base -Structure de bandes -Ondes planes •Cristal fini -Matrice de transfert -FDTD 3 Propriétés physiques •Contrôle des ondes électromagnétiques -Miroir -Guide d’onde -Résonateurs optiques •Propriétés réfractives •Diagramme de dispersion et nappes equi-fréquence •Réfraction •Analyse de Fourier des ondes de Bloch •Superprisme, ultraréflectivité, réfraction négative •Auto-collimation 4 Composants, fabrication et applications •Techniques de fabrication -écriture, gravure -2D, III-V, Si, SOI -3D, Opales •Techniques de mesures -Source interne -Injection face clivée •Guides d’onde à cristaux photoniques •Composants -Virages, diviseurs, coupleurs -Filtres multiplexeurs / démultiplexeurs -Spectromètres et interféromètres -Coupleurs -Polariseur et rotateur -Lasers à cristaux photoniques -Lasers 1D -Amplificateurs -Lasers cavités 0D 5 L'actualité •Imagerie, Fourier, champ proche, résolu en temps •Cavités à très grand facteur de qualité •Modes lents 6 Sujets connexes •Les matériaux 3D •Les fibres à cristaux photoniques •Les métamatériaux Goal Once our photonic crystal structure has been (painfully) fabricated and characterised (SEM etc...) How can we measure its optical properties, it was designed for ? Which optical properties ? Optical response D() • Transmission, T • Reflection, R I() T() • Diffraction, D • Absorption, A • Losses, L=1-T-R-D-A R() I() T() R() disp_tri_hole_TE.dat 0.8 0.35 0.7 0.3 0.6 even odd 0.25 0.5 u=a /λ Band structure • Dispersion curve • Group index L() 0.4 0.2 0.15 even 0.3 0.1 0.2 0.05 0.1 M 0 -0.6 G -0.4 -0.2 0 K 0.2 k 0.4 0.6 M 0.8 1 0 0 0.1 0.2 0.3 k || 0.4 0.5 Which optical properties ? Localised state • Optical cavity • Resonance frequencies • Quality factor Light propagation inside the photonic crystal QD in bulk PL intensity ( a. u.) Dynamic properties (time resolved) Emission properties (spontaneous, amplified, laser) Wavelength • Visible / near infra-red QD1 QD2 0 2 4 6 time (ns) 8 10 Which photonic crystal structure ? 3D photonic crystal 2D photonic crystal Which photonic crystal structure ? Material • Dielectric / Semiconductor • Use • Physics • Device B12 1st PhC B23 2nd PhC 3rd PhC Input port Through port 1 2 3 4 L~18 μm 5 Techniques outline Lithographic tuning External light source Reflectivity End fire Internal light source Internal light source Luminescence spectroscopy Advanced techniques Local probe, SNOM Time resolved Fourier imaging Lithographic tuning Scaling laws r r'= r.s (r) (r') k k'= k /s '= /s H(r) H(r') E(r) E(r') Reduced units Energy : a a u= = 2c ka ˜ Wave vector : k = 2 a : lattice parameter Lithographic tuning Wavelength, energy scan a a Reduced energy : u = = 2c either scan u in changing the lattice constant. Often more convenient. either scan u in changing the wavelength a : lattice parameter sample External source Reflectivity & transmission measurements Simple R&T measurements to probe the photonic bandgap I T.I R.I Similar to the measurement of a dielectric multi-layer sample Planar GaAs/AlAs Fabry-Perot cavity R.P. Stanley et al., Appl. Phys. Lett., 65, 1883, (1994) External source Reflectivity & transmission measurements Spectral resolution In a linear regime, light source can be a wavelength tuneable source or a white light source and spectral resolution is performed afterwards I( T( ).I( ) tuneable) R( ).I( ) I( T( ).I( ) white light) R( ).I( ) External source Reflectivity & transmission measurements Quantitative measurements require a good measurement of the reference (incoming intensity) chopper f1 Reference Incident chopper f2 Many set-up designs, one example : identical optics beam splitter Reflected same detector Similar set-up in transmission with a Mach-Zehnders like geometry lock-in detection at f1 and f2 R=S(f2)/S(f1) External source Reflectivity & transmission measurements Quantitative measurement Note: it is not easy to measure directly reflectivity coefficients close to unity This would imply being able to discriminate between e.g. R=0.999 and R=0.997 Usually much more convenient to use the mirror to make a high Q optical cavity and deduce R from Q External source Reflectivity & transmission measurements Simple R&T measurements to probe the photonic bandgap Note that: • T=0 does not prove R=1 • No angular investigation (full bandgap ?) • Polarisation ? First measurements performed on opals of 0.11μm polystyrene microspheres I. Inanç Tarhan et al., Opt. Lett., 20, 1571, (1995) External source Reflectivity & transmission measurements Simple R&T measurements to probe the photonic bandgap inverted opal Y.A.Vlasov et al., Nature, 414, 289, (2001) External source Angular reflectivity Principle Measurement : • Intensity vs. angle(s) at constant wavelength • Intensity vs. wavelength at constant angle(s) Light is reflected according to the grating diffraction law Conservation of the in-plane component of the wavevector k//ref = k //inc + G = k//inc + miGi i G : vector of the reciprocal lattice mi = 0 : specular reflection mi 0 : diffraction As such, it will provide information on the reciprocal lattice but not the band structure (?) • For some specific set of incident k and wavelength, light can couple to a mode into the photonic crystal • Giving rise to a dip in the reflected intensity spectrum (Wood anomaly) • Will provide information on the band structure k() • Simple picture : θ2 n2 n 1 > n2 k1 β1 θ1 k2 β2 sin θ1 n2 = sin θ2 n1 in-plane k conservation k0 n1 sin θ1 = k0 n2 sin θ2 β1 = β2 k// medium 2 kx k= medium 1 n c medium 2 Total internal reflexion : k<n2/c : coupling 1 to 2 possible k>n2/c : coupling 1 to 2 impossible medium 1 • In the case of a bi-dimensional medium 2, the equi-frequency surface is reduced to a curve in the plane kx, ky, i.e. points in the kx, kz plane PhC EFS air light cone such an incidence wave can only be reflected or diffracted such a specific incident wave can couple to a PhC mode plane of incidence ky kx k// PhC such resonant incidence wave can couple to a PhC mode such an incidence wave can only be reflected or diffracted air k= n c ky kx In real life experiment are not so straightforward to interpret due to the complex shape of the reflectivity spectrum Macroporous silicon TE, M orientation M. Galli et al., Phys. Rev. B, 65, 113111, (2002) Measurement limited to the radiative cone For 3D structures, the measurement probes mainly the density of states and its associated singularities Artificial opals E. Pavarini. et al., Phys. Rev. B, 72, 045102, (2005) Measurement above the light line limit Extension to larger k-values air light cone, n=1 ky n k= c nZnSe = 2.4 kx dielectric light cone, n>1 M. Galli et al., Phys. Rev. B, 70, 081307, (2004), M. Galli et al., Phys. Rev. B, 72, 125322, (2005) Measurement above the light line limit Extension to larger k-values nZnSe = 2.4 Si SiO 2 air Measurement above the light line limit Extension to larger k-values W1 waveguide W1 waveguide • Experiment is difficult • Resolution is limited by the sphere astigmatism and field of view • Analysis is delicate • Experiment does not discriminate between true propagating slow modes and localised defect modes