03 Cosmology
Transcription
03 Cosmology
Computational Cosmology Alexander Knebe, Universidad Autonoma de Madrid The Universe in a Computer Computational Cosmology Cosmology Cosmology is the study of the origin, evolution, and future of our Universe Computational Cosmology Cosmology Computational Cosmology The Computational Aspect Cosmology The Computational Aspect 1 2 3 Computational Cosmology Cosmology The Vastness of the Universe orders of ten http://hometown.aol.com/nlpjp/cosmo.htm! Computational Cosmology Cosmology The Vastness of the Universe orders of ten http://hometown.aol.com/nlpjp/cosmo.htm! Computational Cosmology Cosmology The Vastness of the Universe orders of ten http://hometown.aol.com/nlpjp/cosmo.htm! Computational Cosmology Cosmology The Vastness of the Universe orders of ten http://hometown.aol.com/nlpjp/cosmo.htm! Computational Cosmology Cosmology The Vastness of the Universe orders of ten how did these structure come about? http://hometown.aol.com/nlpjp/cosmo.htm! Computational Cosmology Cosmology The Vastness of the Universe galaxy catalogues (2D) • Shapley & Ames (1932) • Palomar Sky Survey (1950) • Lick Survey (1967) • APM catalogue (1990) Lick map Computational Cosmology 1,250 galaxies ~5,000 galaxies ~1,000,000 galaxies ~2,000,000 galaxies APM catalogue Cosmology The Vastness of the Universe galaxy catalogues (3D) • CfA (1986) Computational Cosmology ~1,000 galaxies Cosmology The Vastness of the Universe galaxy catalogues (3D) • CfA (1986) „Great Wall“ Computational Cosmology ~1,000 galaxies „CfA Stickman“ Cosmology The Vastness of the Universe galaxy catalogues (3D) • Las Campanas Redshift Survey (1998) Computational Cosmology ~20,000 galaxies Cosmology The Vastness of the Universe galaxy catalogues (3D) • 2dF Survey (2003) Computational Cosmology ~200,000 galaxies Cosmology The Vastness of the Universe galaxy catalogues (3D) • Sloan Digital Sky Survey (2003) Computational Cosmology ~1,000,000 galaxies Cosmology The Vastness of the Universe galaxy catalogues (3D) • Sloan Digital Sky Survey (2003) CfA (1986) Computational Cosmology ~1,000,000 galaxies SDSS (2003) Cosmology GRT Albert Einstein Computational Cosmology The Equations isotropy homogeneity Friedmann Equations Alexander Friedmann Cosmology The Equations GRT isotropy homogeneity Friedmann Equations 2 ⎛ ⎞ ˙ a −3 k −2 Λ H 2 = ⎜ ⎟ =.H 02 (Ω r0 a −4 +Ω m a +Ω a +Ω 0 0 0 ) ⎝ a ⎠ 1 q=. Ω m −Ω Λ −Ω r 2 Computational Cosmology Cosmology The Equations GRT isotropy homogeneity Friedmann Equations 2 ⎛ ⎞ ˙ a −3 k −2 Λ H 2 = ⎜ ⎟ =.H 02 (Ω r0 a −4 +Ω m a +Ω a +Ω 0 0 0 ) ⎝ a ⎠ 1 q=. Ω m −Ω Λ −Ω r 2 Computational Cosmology Cosmology The Equations comoving coordinates r = a(t) x a(t 0 ) = a0 = 1 € € 2 ⎛ ⎞ ˙ a −3 k −2 Λ H 2 = ⎜ ⎟ =.H 02 (Ω r0 a −4 +Ω m a +Ω a +Ω 0 0 0 ) ⎝ a ⎠ 1 q=. Ω m −Ω Λ −Ω r 2 Computational Cosmology Cosmology The Equations comoving coordinates € r = a(t) x ˙ ˙ r = ax + a˙ x ˙ = ax + Hr ˙ r = v pec + Hr 2 ⎛ ⎞ ˙ a −3 k −2 Λ H€2 = ⎜ ⎟ =.H 02 (Ω r0 a −4 +Ω m a +Ω a +Ω 0 0 0 ) ⎝ a ⎠ 1 q=. Ω m −Ω Λ −Ω r 2 Computational Cosmology Cosmology The Equations comoving coordinates € r = a(t) x ˙ ˙ r = ax + a˙ x ˙ = ax + Hr ˙ r = v pec + Hr Hubble law 2 ⎛ ⎞ ˙ a −3 k −2 Λ H€2 = ⎜ ⎟ =.H 02 (Ω r0 a −4 +Ω m a +Ω a +Ω 0 0 0 ) ⎝ a ⎠ 1 q=. Ω m −Ω Λ −Ω r 2 Computational Cosmology Cosmology The Equations redshift: definition z= λ0 − λ λ0 € 2 ⎛ ⎞ ˙ a −3 k −2 Λ H 2 = ⎜ ⎟ =.H 02 (Ω r0 a −4 +Ω m a +Ω a +Ω 0 0 0 ) ⎝ a ⎠ 1 q=. Ω m −Ω Λ −Ω r 2 Computational Cosmology Cosmology The Equations redshift: relation to expansion a 1 = a0 1+ z € 2 ⎛ ⎞ ˙ a −3 k −2 Λ H 2 = ⎜ ⎟ =.H 02 (Ω r0 a −4 +Ω m a +Ω a +Ω 0 0 0 ) ⎝ a ⎠ 1 q=. Ω m −Ω Λ −Ω r 2 Computational Cosmology Cosmology The Equations redshift: interpretion as Doppler effect z= λ0 − λ v Hr ≈ = λ0 c c € 2 ⎛ ⎞ ˙ a −3 k −2 Λ H 2 = ⎜ ⎟ =.H 02 (Ω r0 a −4 +Ω m a +Ω a +Ω 0 0 0 ) ⎝ a ⎠ 1 q=. Ω m −Ω Λ −Ω r 2 Computational Cosmology Cosmology The Equations a(t) a˙ H(t) = a a˙˙a q(t) = − 2 a˙ expansion factor of the Universe Hubble parameter deceleration parameter € 2 ⎛ ⎞ ˙ a −3 k −2 Λ H 2 = ⎜ ⎟ =.H 02 (Ω r0 a −4 +Ω m a +Ω a +Ω 0 0 0 ) ⎝ a ⎠ 1 q=. Ω m −Ω Λ −Ω r 2 Computational Cosmology Cosmology The Equations 2 ⎛ ⎞ ˙ a −3 k −2 Λ H 2 = ⎜ ⎟ =.H 02 (Ω r0 a −4 +Ω m a +Ω a +Ω 0 0 0 ) ⎝ a ⎠ 1 q=. Ω m −Ω Λ −Ω r 2 Computational Cosmology Cosmology The Equations Ωm = 8πG ρm 3H 2 matter energy density Ωr = 8πG ρr 3H 2 radiation energy density Λc 2 ΩΛ = 3H 2 cosmological constant kc 2 Ωk = − 2 H curvature of the Universe 2 ⎛ ⎞ ˙ a −3 k −2 Λ H€ 2 = ⎜ ⎟ =.H 02 (Ω r0 a −4 +Ω m a +Ω a +Ω 0 0 0 ) ⎝ a ⎠ 1 q=. Ω m −Ω Λ −Ω r 2 Computational Cosmology Cosmology The Equations Ωm = Ωr = 8πG ρm 3H 2 8πG ρr 3H 2 matter energy density 3H2/8πG = critical density to “close” the Universe (ca. 1 H-atom per m3) radiation energy density Λc 2 ΩΛ = 3H 2 cosmological constant kc 2 Ωk = − 2 H curvature of the Universe 2 ⎛ ⎞ ˙ a −3 k −2 Λ H€ 2 = ⎜ ⎟ =.H 02 (Ω r0 a −4 +Ω m a +Ω a +Ω 0 0 0 ) ⎝ a ⎠ 1 q=. Ω m −Ω Λ −Ω r 2 Computational Cosmology Cosmology ΛCDM - The Standard Model ΛCDM - Λ Cold Dark Matter Ω0m ≈ 0.3 Ω0Λ ≈ 0.7 Ω0r ≈ 2.3 ×10−5 h −2 Ω0k ≈ 0 € Computational Cosmology Cosmology ΛCDM - The Standard Model ΛCDM - Λ Cold Dark Matter Ω0m ≈ 0.3 Ω0Λ ≈ 0.7 • the Universe is spatially flat € • ca. 30% of the total energy density comes from matter • ca. 70% of the total energy density is vacuum energy Computational Cosmology Cosmology ΛCDM - The Standard Model ΛCDM - Λ Cold Dark Matter Ω0m ≈ 0.3 = 0.26 + 0.04 Ω0Λ ≈ 0.7 „dark matter“ luminous matter • the Universe is spatially flat € • ca. 30% of the total energy density comes from matter • about 85% of that matter is “dark” • only 15% of all matter in the Universe is luminous • ca. 70% of the total energy density is vacuum energy Computational Cosmology Cosmology ΛCDM - The Standard Model ΛCDM - Λ Cold Dark Matter Ω0m ≈ 0.3 = 0.26 + 0.04 Ω0Λ ≈ 0.7 € Computational Cosmology „dark matter“ luminous matter Cosmology ΛCDM - The Standard Model ΛCDM - Λ Cold Dark Matter Ω0m ≈ 0.3 = 0.26 + 0.04 0 Λ Ω ≈ 0.7 € Computational Cosmology ? „dark matter“ luminous matter Cosmology ΛCDM - The Standard Model ΛCDM - Λ Cold Dark Matter (non-baryonic) Dark Matter Candidates axion: 10-5 eV neutrino: 10eV WIMP: 1-103 GeV monopoles: 1016 GeV Planck relics: α β γ 1019 GeV (h c G ) primordial BHs: >1015g € Computational Cosmology ??? Cosmology ΛCDM - The Standard Model ΛCDM - Λ Cold Dark Matter (non-baryonic) Dark Matter Candidates hot dark matter warm dark matter cold dark matter axion: 10-5 eV neutrino: 10eV WIMP: 1-103 GeV monopoles: 1016 GeV Planck relics: α β γ 1019 GeV (h c G ) primordial BHs: >1015g € Computational Cosmology ??? Cosmology ΛCDM - The Standard Model ΛCDM - Λ Cold Dark Matter Bahcall et al. (1999) Computational Cosmology Cosmology ΛCDM - The Standard Model ΛCDM - Λ Cold Dark Matter T=2.726K ΔT≈mK ΔT≈µK Bahcall et al. (1999) Computational Cosmology Cosmology ΛCDM - The Standard Model ΛCDM - Λ Cold Dark Matter T=2.726K ΔT≈mK ΔT≈µK decomposition into spherical harmonics Bahcall et al. (1999) Computational Cosmology Cosmology ΛCDM - The Standard Model ΛCDM - Λ Cold Dark Matter T=2.726K COBE (1992) WMAP (2003) ΔT≈mK ΔT≈µK decomposition into spherical harmonics Bahcall et al. (1999) Computational Cosmology Cosmology ΛCDM - The Standard Model ΛCDM - Λ Cold Dark Matter Bahcall et al. (1999) Computational Cosmology Cosmology ΛCDM - The Standard Model ΛCDM - Λ Cold Dark Matter Bahcall et al. (1999) Computational Cosmology Cosmology Summary background cosmology H 2 = H 02 (Ω 0m a −3 +Ω 0Λ ) 1 q= Ω m −Ω Λ 2 • the Universe is spatially flat Ω0m ≈ 0.3 = 0.26 + 0.04 Ω0Λ ≈ 0.7 € • ca. 30% of the total energy density comes from matter • about 85% of that matter is “dark” • only 15% of all matter in the Universe is luminous • ca. 70% of the total energy density is vacuum energy € Computational Cosmology Computational Cosmology ? generating the initial conditions Computational Cosmology coming soon… ? running the simulation ? analysing the data
Similar documents
Atomic Clocks and Frequency Standards
Matthias Reggentin Humboldt-Universität zu Berlin, Institut für Physik
More information