Descargar el fichero
Transcription
Descargar el fichero
Departamento de Física de la Tierra, Astronomía y Astrofísica I (Geofísica y Meteorología). Facultad de Ciencias Físicas Universidad Complutense de Madrid Desarrollo de modelos numéricos para investigar la isla de calor en ciudades y estudio de la sensibilidad de distintos parámetros urbanos Development of numerical models to investigate the urban heat island in cities and sensitivity study of different urban parameters Francisco Salamanca Palou Memoria de Tesis presentada para optar al grado de Doctor Madrid 2010 Departamento de Física de la Tierra, Astronomía y Astrofísica I (Geofísica y Meteorología). Facultad de Ciencias Físicas Universidad Complutense de Madrid Desarrollo de modelos numéricos para investigar la isla de calor en ciudades y estudio de la sensibilidad de distintos parámetros urbanos Development of numerical models to investigate the urban heat island in cities and sensitivity study of different urban parameters Francisco Salamanca Palou Memoria de Tesis presentada para optar al grado de Doctor Dirigida por Dr. Alberto Martilli Dr. Carlos Yagüe Anguís Madrid 2010 A mis padres Antonio y Juana A mis hermanos Bernardino y Candy A Blanca AGRADECIMIENTOS Una tesis doctoral es difícil de llevar a cabo sin el apoyo de un buen equipo humano. Por este motivo quiero aprovechar estas pocas líneas para dar las gracias a todas aquellas personas que me han ayudado durante estos cuatro años en la realización de este trabajo. Quisiera agradecer: • Al Dr. Fernando Martín del Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) por haberme acogido en el grupo de modelización atmosférica que él dirige. • Al Dr. Alain Clappier de la École Polytechnique Fédérale de Lausanne (EPFL), por hacer que mis dos visitas a Suiza fueran más agradables y fructíferas. • Al Dr. Andrea Krpo por ofrecerme su amistad y compartir parte del trabajo realizado en esta tesis. • Al Dr. Fei Chen del National Center for Atmospheric Research (NCAR) por hacer que mis dos estancias en los EEUU hayan sido inolvidables y muy provechosas. • Al Dr. Mukul Tewari del NCAR por el interés mostrado en mi trabajo y por poner a mi disposición su gran experiencia y conocimiento. • Al Dr. José Luís Santiago por brindarme su amistad desinteresada. Los viajes, congresos, y momentos compartidos en el CIEMAT han sido inolvidables. • A los nuevos compañeros del grupo de modelización del CIEMAT, Manuel Santiago, Juan Luís Garrido y María Ángeles González por compartir muchos momentos agradables en esta mi última etapa de la tesis. • A mi querido amigo Héctor Hernández con el que inicié esta aventura hace ya casi cuatro años. Aunque trabajamos en temas totalmente distintos, mucho es lo que nos une. • A la Dra. Begoña Aceña del CIEMAT por su sentido del humor y ofrecerme su amistad. Quisiera profundamente agradecer al Dr. Carlos Yagüe de la Universidad Complutense de Madrid (UCM) sus valiosos consejos y experiencia, que siempre han contribuido a mejorar el trabajo realizado. Finalmente una mención especial merece el Dr. Alberto Martilli del CIEMAT. Alberto me dio la oportunidad de hacer esta tesis hace ya cuatro años. Confió en mí desde el primer momento y es la persona con la que he ido creciendo en el mundo de la modelización atmosférica desde entonces. La comunicación con los ordenadores no siempre me resultó sencilla y Alberto me enseñó a hacerlo. Este trabajo sin él no hubiera sido posible. A él le debo muchísimo de lo aprendido y vivido durante esta etapa. Gracias por tu amistad y por compartir conmigo estos maravillosos años. Por último, gracias a mis padres y hermanos, que son mi apoyo, y en especial a Blanca por compartir estos inolvidables años conmigo y mostrar siempre un gran respeto hacia mi trabajo. Este trabajo ha sido financiado a través de una beca para formación de personal investigador (BOE nº 191 de 11 de Agosto de 2005) y a través del proyecto “Simulación a mesoescala del clima urbano y desarrollo de una técnica de evaluación de estrategias de reducción de la isla de calor urbana” del Ministerio de Medio Ambiente de España (expediente 200800050084408). This work has been funded through a research fellowship (BOE nº 191 published 11th August 2005) and thanks to the project “Mesoscale simulations of urban climate and development of an evaluation technique of urban heat island mitigation strategies” funded by the Ministry of Environment of Spain (file 200800050084408). ÍNDICE RESUMEN……………………………………………………………………………………1 ORGANIZACIÓN DE LA MEMORÍA…………………………………………………….7 SUMMARY………………………………………………………………………………...…9 ORGANIZATION OF THE THESIS……………………………………………………...15 1. ESTADO DEL ARTE Y DESCRIPCIÓN DEL TRABAJO...………………...……….17 1.1 Introducción………………………………………………………………………………18 1.2 La capa límite atmosférica………………………………………………………………..19 1.2.1 La capa límite urbana……………………………………………………………….23 1.3 Flujos turbulentos y balance energético superficial………………………………………24 1.4 Modelización a mesoescala. Ecuaciones que gobiernan los flujos turbulentos……..........27 1.4.1 Modelización de la capa límite atmosférica sobre zonas urbanas. Parametrizaciones urbanas……………………………………………………………………………………32 1.4.2 El modelo energético (BEM) para simulaciones del clima urbano……………………………………………………………………………………..36 1.4.3 Problemas abiertos en las simulaciones del clima urbano a mesoescala………………………………………………………………………………..39 1.5 El modelo atmosférico WRF. Parametrizaciones urbanas en WRF…………………………………………………………………………...………..…….40 1.5.1 La base de datos NUDAPT. La versión de WRF adaptada a NUDAPT………..………………………………………………………………………..43 APÉNDICE…………………………………………………………………………………...47 2. OBJETIVOS………………………………………………………………………………50 2.1 Introducción………………………………………………………………………………51 i 2. OBJECTIVES……..……………………………………………………………………...57 2.1 Introduction……………………………………………………………………………….58 3. RESULTADOS……………………………………………………………………………63 (Publications by the author) 3.1 Un nuevo modelo energético de edificios acoplado a una parametrización urbana para simulaciones del clima urbano-Parte-I. Formulación, verificación y análisis sensitivo del modelo…………………………………………………………………………………...……64 3.2 Un nuevo modelo energético de edificios acoplado a una parametrización urbana para simulaciones del clima urbano-Parte-II. Validación con simulaciones (off-line) en una dimensión vertical…………………………………………………………………………….80 3.3 Derivación de las propiedades térmicas de un material representativo de un área heterogénea de la ciudad……………………………………………………………………...94 3.4 Un estudio de la capa límite urbana usando diferentes parametrizaciones urbanas y resoluciones de parámetros morfológicos que describen una ciudad con el modelo atmosférico WRF…………………………………………………………………………………………104 3.5 Estudio numérico de la capa límite urbana sobre la ciudad de Madrid durante la campaña DESIREX (2008) con WRF y evaluación de diferentes estrategias de mitigación de la isla de calor urbana………………………………………………………………………………….132 4. DISCUSIÓN INTEGRADORA………………………………………………………...154 4. DISCUSSION…………………………..………………………………………………..167 5. CONCLUSIONES Y FUTURAS LÍNEAS DE INVESTIGACIÓN……………….....179 5.1 Conclusiones…………………………………………………………………….180 5.2 Futuras líneas de investigación……………………………………………….…183 5. CONCLUSIONS AND FUTURE RESEARCH LINES………………………………186 ii 5.1 Conclusions……………………………………………………………………...187 5.2 Future research lines……………………………………………………………..189 REFERENCIAS……………………………………………………………………………192 APPENDIX A……………………………………………………………………………....198 Abstracts of publications co-authored by the author APPENDIX B………………………………………………………………………………203 Numerical treatment to solve the heat diffusion equation using an energetic balance as boundary conditions. CV………………………………………………………………………………….………..207 iii iv RESUMEN Siempre motivado por lograr una mejor calidad de vida, el ser humano a lo largo de la historia se ha caracterizado por sus continuos desplazamientos migratorios. Gracias al desarrollo económico, social e industrial ligado a la vida moderna, asistimos a un imparable crecimiento de la población en las zonas urbanas. Mientras las zonas rurales van perdiendo habitantes, las ciudades van incrementando su número de forma progresiva. Actualmente la mitad de la población mundial vive en ciudades y se estima que en las próximas décadas este porcentaje aumente hasta las tres cuartas partes. Este fenómeno social ha derivado en la aparición de grandes núcleos urbanos con poblaciones que exceden de los diez millones de habitantes (megacities). El número de megacities en el mundo crece de forma rápida y consecuentemente se acentúan los problemas asociados a la vida en las grandes ciudades. La sustitución del suelo rural por los materiales de construcción, la emisión de contaminantes debida al tráfico y a la actividad industrial, el calor antropogénico generado por las diferentes actividades humanas, el gran consumo energético asociado a las necesidades de regulación térmica interna en los edificios, etc., son factores que modifican el clima, no solo a escala local sino que también a escala global (Oleson et al., 2010). No es de extrañar que el interés por los problemas derivados de la vida moderna en las ciudades vaya creciendo y despierte cada vez más la curiosidad en la comunidad científica. Dos problemas fundamentales que en los últimos años han centrado de forma notable el interés de los estudiosos de la atmósfera son la conocida isla de calor urbana y la polución atmosférica. El sistema de ecuaciones diferenciales que describen los flujos y movimientos atmosféricos son altamente no lineales y requieren de técnicas numéricas para su estudio. Gracias al aumento creciente de la capacidad de cálculo de los ordenadores y al desarrollo de los modelos numéricos, hoy podemos estudiar y comprender mejor el impacto de las ciudades 1 en la atmósfera y en el sistema climático en general. Esta memoria está enfocada fundamentalmente al estudio de la isla de calor que tiene lugar en las ciudades con el fin de lograr una mayor comprensión de este fenómeno, así como la evaluación de diferentes estrategias para su mitigación. No dejaremos de lado el estudio del consumo energético asociado al uso de los aires acondicionados, así como su impacto en la temperatura del aire. La evaluación de estrategias de mitigación tanto de la isla de calor urbana como del consumo energético serán los ejes principales de este trabajo. La idea es contribuir al desarrollo de una herramienta numérica capaz de calcular de forma cuantitativa los efectos de las ciudades en la atmósfera, para poder así diseñar y evaluar estrategias de mitigación de la isla de calor y del consumo energético asociados al crecimiento y desarrollo de las ciudades. En primer lugar se ha procedido al desarrollo de un modelo energético de edificios (Building Energy Model, BEM) para poder estudiar los flujos de calor intercambiados (sensible/latente) entre los edificios y la atmósfera. Estudios recientes indican (Kondo & Kikegawa, 2003; Ohashi et al., 2007) que los flujos de calor procedentes de los edificios (concretamente los originados por los sistemas de aire acondicionado) podrían tener un efecto importante en la temperatura del aire y deberían ser considerados en los estudios del clima urbano. En este nuevo modelo energético un edificio es considerado como una “caja” compuesta por un apilamiento de plantas (pisos) y para cada planta se resuelven de forma explícita: • la difusión del calor a través de las paredes, suelos y tejados, • la ventilación natural, así como la reflexión y emisión radiativa que tiene lugar entre las superficies interiores del edificio, • el calor generado por los equipos domésticos y las personas, 2 • el flujo de calor intercambiado por los sistemas de aire acondicionado y el exterior. Edificios con distinto número de niveles (plantas) pueden considerarse en el modelo y la evolución temporal de la temperatura y humedad interiores son calculadas separadamente para cada nivel. Después de la validación del BEM donde se ha demostrado la capacidad del modelo para simular los fenómenos esenciales de transferencia de calor, éste se ha acoplado a una parametrización urbana multicapa llamada BEP (Building Effect Parameterization, Martilli et al., 2002). Este esquema es uno de los más completos y detallados para simulaciones a mesoescala del clima urbano y permite una interacción directa con la capa límite atmosférica. En BEP se reconoce la naturaleza tridimensional de las superficies de los edificios y que éstas actúan como fuentes/sumideros de calor y momento. En BEP se tiene en cuenta el impacto de las superficies horizontales y verticales sobre la velocidad del viento, la temperatura y la energía cinética turbulenta. Además, para el cálculo de la radiación que alcanza las calles y muros de los edificios se consideran múltiples reflexiones y los efectos de las sombras. En segundo lugar, simulaciones en una dimensión vertical (1D off-line) han sido llevadas a cabo calculando la radiación neta y diferentes flujos turbulentos con el nuevo esquema BEP+BEM. Estos flujos han sido comparados con valores observados recogidos durante la campaña meteorológica BUBBLE (Rotach et al., 2005) que tuvo lugar en la ciudad suiza de Basel. Los resultados muestran que el nuevo esquema urbano BEP+BEM es capaz de reproducir de forma satisfactoria los flujos medidos y que los resultados han mejorado cuando han sido comparados con los obtenidos con el viejo esquema urbano BEP. Finalmente se ha participado en un proyecto internacional donde los flujos derivados de diferentes parametrizaciones urbanas han sido comparados con valores observados. Los resultados 3 obtenidos con los modelos urbanos BEP y BEP+BEM han sido totalmente satisfactorios. En los modelos numéricos, las escalas espaciales y temporales usadas fijan el límite de los posibles fenómenos físicos que pueden ser capturados por un determinado modelo. En el marco teórico de las distintas parametrizaciones físicas de los modelos atmosféricos se hacen simplificaciones que podrían perder su validez si el tamaño de las celdas o rejillas numéricas usadas en la simulación no es el adecuado. Para el caso de la determinación de los intercambios de calor que tienen lugar en terrenos heterogéneos como las ciudades, además nos podemos encontrar con la presencia de diferentes materiales con diferentes propiedades térmicas dentro de una misma celda numérica (~1 km 2 ). La cuestión que aparece ahora es, cuáles son los valores de las propiedades térmicas que determinan los flujos reales a esta escala de 1 km 2 si la celda numérica está compuesta por parches de diferentes materiales con diferentes propiedades físicas. En esta memoria abordamos esta pregunta y proponemos una respuesta que ha mejorado lo hecho hasta la fecha. En tercer lugar, el nuevo esquema urbano (BEP+BEM) ha sido incorporado de forma oficial en el modelo atmosférico WRF v3.2 (Weather Research and Forecasting) desarrollado en el NCAR (National Center for Atmospheric Research) en Boulder, CO, EEUU. Con el nuevo esquema urbano se han simulado dos ciudades: Houston en el estado norteamericano de TEXAS, y la ciudad de Madrid en España. Cuando se simula una ciudad es importante disponer de datos morfológicos de la misma con una resolución similar a la resolución usada en la rejilla numérica más fina. Los esquemas urbanos necesitan de diferentes parámetros para la estimación de los flujos de calor intercambiados con la atmósfera. Algunos ejemplos de parámetros urbanos son: la fracción urbana, la altura media de los edificios, la anchura media de las calles, el porcentaje de área cubierta por los edificios, etc. Esta información no está disponible para la mayoría de las 4 ciudades y una primera aproximación cuando se pretende simular una ciudad es la de definir varias clases urbanas (a cada punto de la rejilla numérica donde existe suelo urbano se le asocia una clase) y asignar a cada clase los valores más realistas de los correspondientes parámetros urbanos. Así es como trabaja la versión estándar del modelo atmosférico WRF cuando se usa una parametrización urbana y así se hizo para el caso de Madrid. A partir de la base de datos de usos de suelo CORINE (http://www.eea.europa.eu) se definieron tres clases urbanas. Los datos meteorológicos necesarios para la validación fueron recogidos durante la campaña DESIREX que tuvo lugar en el verano del 2008 (Sobrino et al., 2009). Buenas estimaciones de la temperatura del aire así como de la isla de calor urbana han sido obtenidas en esta tesis con las simulaciones del nuevo esquema urbano BEP+BEM. La isla de calor urbana sobre Madrid llega a alcanzar una intensidad entre 5 y 6 ºC durante la noche y el calor antropogénico fue el responsable de un aumento de la temperatura de hasta 1.5-2 ºC en algunos lugares de la ciudad. Diferentes estrategias para mitigar la isla de calor y reducir el consumo energético debido al uso de los aires acondicionados fueron también evaluadas. Reducciones de hasta el 10% en el consumo energético se obtuvieron modificando el albedo, algunas propiedades de los materiales y eliminando el calor antropogénico proveniente de los sistemas de aire acondicionado. Para el caso de Houston existía información morfológica detallada de la ciudad con una resolución de 1 km 2 . De hecho existe una base de datos NUDAPT (Ching et al., 2009) con información morfológica detallada de unas 50 ciudades de los EEUU. Para poder utilizar esta información punto a punto en el dominio numérico se tuvo que preparar una versión diferente a la estándar de WRF (WRF_Nudapt) la cual utilizaba la información de la morfología urbana como nuevas variables en los ficheros de entrada del modelo. Los esquemas urbanos BEP y BEP+BEM inevitablemente tuvieron que ser modificados ya que en 5 un principio estaban diseñados para trabajar con clases urbanas. Finalmente se simuló la ciudad usando las dos versiones, la versión estándar de WRF definiendo tres clases urbanas derivadas de la base de datos NLCD (National Land Cover Data para los EEUU) y la versión modificada WRF_Nudapt. Esta última versión está siendo utilizada por personal del NCAR (Dr. Mukul Tewari) y de la EPA (Environmental Protection Agency, Dr. Jason Ching). El consumo energético sobre la ciudad de Houston fue calculado con el nuevo esquema urbano y comparado con el consumo energético obtenido en otros estudios con diferentes metodologías (bottom-up y top-down). Cuando se utilizó información detallada de la morfología de la ciudad (WRF_Nudapt) se obtuvieron buenas estimaciones. El trabajo realizado en esta memoria contribuye a la mejora en la capacidad de estudio del impacto de las ciudades en la atmósfera. Gracias a la mayor complejidad de la nueva parametrización (BEP+BEM) el impacto de las zonas urbanas está mejor representado y estrategias de mitigación tanto de la isla de calor como del consumo energético pueden evaluarse. Los modelos atmosféricos junto con parametrizaciones urbanas detalladas son importantes herramientas numéricas que nos ayudan a planificar el desarrollo y a evaluar el impacto de futuros escenarios de nuestras ciudades. 6 ORGANIZACIÓN DE LA MEMORIA En el primer capítulo se presenta un estado del arte de las características principales de la capa límite atmosférica sobre zonas rurales y urbanas. Las ecuaciones utilizadas en la modelización atmosférica a mesosescala junto con algunas propiedades generales de las parametrizaciones urbanas estarán incluidas también en este capítulo, además de una detallada descripción del trabajo llevado a cabo en esta memoria. En el segundo capítulo se presentan los objetivos específicos de este trabajo. El capítulo tercero contiene los resultados en forma de artículos científicos ordenados en función de los objetivos marcados en el capítulo anterior. En el capítulo cuarto de presenta una discusión integradora de los resultados obtenidos y finalmente en el capítulo quinto se presentan las conclusiones y futuras líneas de investigación. El apéndice A contiene varias publicaciones en las cuales el autor de esta memoria ha colaborado a lo largo de la elaboración de la tesis doctoral. 7 8 SUMMARY Always motivated for achieving a better quality of life, the human being along the history has been characterized by his continuous migratory displacements. Thanks to the economic, social and industrial development tied to the modern life, we attend at an unstoppable growth of the population in the urban zones. While the inhabitants in the rural zones are decreasing, the cities are increasing their number of inhabitants in progressive form. Nowadays half of the world population lives in cities and it is estimated that in the next decades this percentage will increase up to three quarters. This social phenomenon has derived in the appearance of big urban cores with populations who exceed ten million inhabitants (megacities). The number of megacities in the world grows rapidly and consequently the problems associated with the life in the big cities become more pronounced. The substitution of the rural soil for building materials, the emission of pollutants owed to the traffic and to the industrial activities, the anthropogenic heat generated by the different human activities, the great energetic consumption associated with the needs of indoor thermal control in the buildings, etc., are factors that modify the climate, not only at local scale but also at global scale (Oleson et al., 2010). It is not surprising that the interest for the problems derived from the modern life in the cities is increasing and increasingly awakens the curiosity in the scientific community. Two fundamental problems that in the last years have attracted notably the interest of the experts of the atmosphere are the urban heat island and air pollution. The system of differential equations that describes the atmospheric flows are highly not linear and need to be studied with numerical techniques. Thanks to the increasing capacity of calculation of the computers and the development of the numerical models, today we can study and understand better the impact of the cities on the atmosphere. 9 This thesis is focused fundamentally on the study of the heat island that takes place in the cities in order to achieve a major comprehension of this phenomenon, as well as the evaluation of different strategies for its mitigation. We will not forget the study of energetic consumption associated with the use of the air conditioning systems as well as their impact on the air temperature. The evaluation of strategies of mitigation both of the urban heat island and of the energetic consumption will be the principal axes of this work. The idea is to contribute to the development of a numerical tool capable to compute the effects of the cities on the atmosphere, with the idea to design and to evaluate strategies of mitigation of the heat island and of the energetic consumption associated with the growth and development of the cities. In the first part of the work a building energy model (BEM) has been developed to study the heat fluxes (sensible/latent) exchanged between the buildings and the atmosphere. Recent studies indicated (Kondo & Kikegawa, 2003; Ohashi et al., 2007) that the heat fluxes coming from the buildings (concretely those originated by the air conditioning systems) might have an important effect on the air temperature and should be considered in the studies of the urban climate. In this new building energy model a building is treated as a pile of boxes each box representing a particular floor, and for every floor the following is solved: • the diffusion of heat through the walls, floors and roofs, • the natural ventilation, as well as the radiative reflection and emission that take place between the indoor surfaces of the building, • the heat generated by the domestic equipments and persons, • the heat flux exchanged by the air conditioning systems and the exterior. Buildings with different number of levels (floors) can be considered in the model and the temporal evolution of the indoor air temperature and humidity are calculated separately for 10 every floor. After the validation of BEM where there has been demonstrated the capacity of the model to simulate the essential phenomena of heat transfer, BEM has been coupled to a multilayer urban canopy parameterization called BEP (Building Effect Parameterization, Martilli et al., 2002). This scheme is one of the most complete and detailed for mesoscale simulations of the urban climate and allows a direct interaction with the planetary boundary layer. In BEP are recognized the three-dimensional nature of the surfaces of the buildings and that these act as source/sink of heat and momentum. BEP accounts for the impact of the horizontal and vertical surfaces on the wind speed, air temperature and turbulent kinetic energy. In addition, for the calculation of the radiation that reaches the streets and walls of the buildings shadowing effects and multiples reflections are considered. Secondly, simulations in a vertical column (1D off-line) have been carried out calculating the net radiation and different turbulent flows with the new urban scheme BEP+BEM. These fluxes have been compared with observed values gathered during the meteorological campaign BUBBLE (Rotach et al., 2005) that took place in the Switzerland city of Basel. The results show that the new urban scheme BEP+BEM is able to reproduce satisfactorily the measured fluxes and that the results have improved when they are compared with the ones obtained with the old urban scheme BEP. Finally one has taken part in an international project where the flows derived from different urban parameterizations have been compared with observed values. The results obtained with the urban schemes BEP and BEP+BEM have been totally satisfactory. In the numerical models, the spatial and temporal scales used fix the limit of the possible physical phenomena that can be captured by a certain model. In the theoretical framework of the different physical parameterizations used in the atmospheric models, 11 simplifications are supposed that might lose their validity if the size of the numerical cells used in the simulations is not suitable. For the case of the determination of the heat exchanges that take place in heterogeneous areas as cities, in addition we can encounter the presence of different materials with different thermal properties inside the same numerical cell (~1 km 2 ). The question that appears now is which are the values of the thermal properties that determine the real fluxes at this scale of 1 km 2 if the numerical cell is composed by patches of different materials with different physical properties. In this memory we approach this question and propose a response that improves what is done up to date. Thirdly, the new urban scheme (BEP+BEM) has been incorporated officially in the atmospheric model WRFv3.2 (Weather Research and Forecasting) developed at NCAR (National Centre for Atmospheric Research) in Boulder, CO, EEUU. With the new urban scheme two cities have been simulated: Houston in Texas (EEUU), and the city of Madrid in Spain. When a city is simulated it is important to have morphological information with a resolution similar to the resolution used in the finest numerical domain. The urban schemes need different parameters for the estimation of the heat fluxes exchanged with the atmosphere. Some examples of urban required parameters are: the urban fraction, the average height of the buildings, the average width of the roads, the percentage of area covered by the buildings, etc. This information is not available for most of the cities and the first approximation done is to define several urban classes (at every point of the numerical domain where exists urban soil an urban class is associated) and to assign to every class the most realistic values of the corresponding urban parameters. In this way works the standard version of the atmospheric WRF model when an urban parameterization is used and it was done for the case of Madrid. From the land use/cover database CORINE (http://www.eea.europa.eu) 12 three urban classes were defined. The meteorological information necessary for the validation was gathered during the DESIREX campaign that took place in the summer of 2008 (Sobrino et al., 2009). Good estimations of the air temperature as well as of the urban heat island were obtained in the simulations with the new urban scheme BEP+BEM. Different strategies to mitigate the heat island and to reduce the energetic consumption due to the use of the air conditioning systems were also evaluated. Reductions of up to 10 % in the energetic consumption were obtained modifying the albedo, some properties of the materials and eliminating the anthropogenic heat coming from the air conditioning systems. The urban heat island over Madrid reached between 5 and 6 ºC during the night and the anthropogenic heat was responsible of an increase in the air temperature up to 1.5-2 ºC in some places of the city. For the case of Houston morphological detailed information existed with a resolution of 1 km 2 . In fact there exists a database called (NUDAPT, Ching et al., 2009) with morphological detailed information of approximately 50 cities of the USA. To be able to use this information point to point in the inner numerical domain, it is necessary to modify the WRF´s standard version to use the information of the urban morphology as new variables in the input files of the model. The urban schemes BEP and BEP+BEM inevitably had to be modified as at the beginning they were designed to work with urban classes. Finally the city was simulated using both versions, WRF´s standard version defining three urban classes derived from the database NLCD (National Land Cover Data) for the US and the modified version WRF_Nudapt. The latter version is being used by personal of the NCAR (Dr. Mukul Tewari) and of the EPA (Environmental Protection Agency, Dr. Jason Ching). The energetic consumption over the city of Houston was calculated with the new urban scheme and compared with the energetic consumption obtained in other studies by different methodologies (bottom-up and top-down). When there the detailed information of the 13 morphology was used (WRF_Nudapt) good estimations were obtained. The work done in this memory contributes to the improvement in the capacity of studying the impact of the cities in the atmosphere. Thanks to the major complexity of the new urban scheme (BEP+BEM) the impact of the urban zones is better represented and strategies of mitigation both of the urban heat island and of the energetic consumption can be evaluated. The atmospheric models together with urban detailed parameterizations are important numerical tools that help us to plan the development and to evaluate the impact of future scenarios of our cities. 14 ORGANIZATION OF THE THESIS In the first chapter a state of the art of the principal characteristics of the planetary boundary layer over rural and urban zones is presented. The equations used in the mesoscale atmospheric modelling together with some general properties of the urban parameterizations are included also in this chapter, together with a detailed description of the work carried out in this thesis. In the second chapter the specific aims of this work are presented. The third chapter contains the results in form of scientific papers arranged depending on the aims marked in the previous chapter. In the fourth chapter a discussion of the results obtained is presented and finally in the fifth chapter the conclusions and future lines of investigation are presented. The appendix A contains several publications co-authored by the author of this thesis. 15 16 Capítulo 1 CAPÍTULO 1 ESTADO DEL ARTE Y DESCRIPCIÓN DEL TRABAJO 17 Capítulo 1 1.1 Introducción Hoy en día la mitad de la población mundial vive en las ciudades y se espera que en las próximas décadas esta proporción aumente hasta las tres cuartas partes. Consecuentemente el bienestar de la mayoría de la población mundial está ligado al entorno urbano. El calor antropogénico debido al tráfico y a las actividades industriales, las propiedades físicas y geométricas particulares de las ciudades que acentúan una mayor absorción de la radiación de onda corta y una menor emisión de la radiación de onda larga por encima de los edificios, el mayor almacenamiento de la energía solar debido a las propiedades térmicas de los materiales utilizados en la construcción junto con la polución del aire hacen que la temperatura de la atmósfera sobre la ciudad pueda diferir sustancialmente cuando se la compara con la temperatura de su entorno rural más próximo (esta diferencia es conocida como isla de calor urbana). Debido a la alta rugosidad de las superficies urbanas los efectos mecánicos también juegan un papel importante afectando notablemente a la velocidad del viento. Las dimensiones de los edificios y su irregular distribución espacial hacen que el viento en las capas inferiores de la atmósfera pueda diferir notablemente del viento vecino próximo a las ciudades. Además, los gradientes térmicos existentes entre la ciudad y sus alrededores pueden originar flujos medios desde las zonas rurales hacia la ciudad desviando la dirección de los vientos regionales. Estos últimos flujos tienen su origen en la diferente velocidad de enfriamiento del suelo urbano y del suelo rural que ocurre después de la puesta del sol (Haeger-Eugensson et al., 1999). Claramente la estructura de la ciudad modifica el balance energético de la superficie y la composición de la atmósfera (Oke, 1988; Landsberg, 1981). Las interacciones físicoquímicas que tienen lugar entre la ciudad y la atmósfera modifican el clima urbano y pueden acentuar los efectos negativos que en determinados episodios (olas de calor, episodios con 18 Capítulo 1 alta concentración de contaminantes, etc.) pudieran hacer que la vida en la ciudad fuera más desagradable y peligrosa para la salud de sus ciudadanos. Las interacciones entre la ciudad y la atmósfera involucran fenómenos de diferente naturaleza y diferentes escalas espacio temporales (locales y mesoescalares). Todo ello junto con la no linealidad de las ecuaciones atmosféricas hace que los modelos numéricos sean la mejor herramienta que permita su estudio de una forma más detallada. Afortunadamente, a pesar de todas estas complejidades el interés por el estudio del clima urbano se ha visto incrementado notablemente en la última década. 1.2 La capa límite atmosférica La atmósfera es una fina capa (comparándola con el radio de la Tierra) que cubre la totalidad de ésta y gracias a su composición la vida es posible en ella. Cerca del 100 % de su masa está compuesta de cuatro especies químicas: nitrógeno (78 %), oxígeno (21 %), argón (0.93 %) y dióxido de carbono (0.03 %). En la parte baja de la atmósfera (primeros centenares de metros) encontramos una gran variabilidad en la concentración de agua en forma de gas o bien condensada o sublimada en forma de nubes. Considerando la dirección vertical, la atmósfera puede dividirse en cuatro capas principales generalmente asociadas con su distribución vertical de la temperatura. La capa más externa es la termosfera. Ésta se extiende desde unos 80 km desde la superficie terrestre hasta unos 500-600 km. La temperatura del aire en esta capa sufre un fuerte gradiente que va desde los 1000-2000 K en su borde más externo hasta unos 190 K en su límite inferior. Aquí es donde se registra la menor temperatura de toda la capa atmosférica. Posteriormente tendríamos la mesosfera. La mesosfera es la capa comprendida entre los 50 y los 80 km sobre la superficie terrestre. En esta capa la temperatura experimenta un gradiente más o menos constante que va de los 190 K en su parte más externa hasta los 273 K en su límite inferior. 19 Capítulo 1 Aquí la alta temperatura alcanzada es debida a la absorción de los rayos UV y a la formación y descomposición del ozono estratosférico. La tercera capa sería la estratosfera. Esta capa tendría un espesor de unos 30 km. En el límite inferior la temperatura es de unos 213-223 K. Al límite inferior de la estratosfera se la conoce con el nombre de tropopausa, debajo de la cual aparece una zona caracterizada por fuertes vientos (Jet Stream) bien conocidos por los pilotos de aviación. La última capa es la troposfera. Su grosor varía desde los 8 km en las latitudes más altas hasta los cerca de 20 km en las zonas ecuatoriales. Está caracterizada por fuertes gradientes positivos de temperatura (~ 6 K por km) hacia la superficie terrestre y por una alta variabilidad en la concentración de vapor de agua y agua condensada y cristales de hielo en forma de nubes. La capa límite atmosférica es aquella zona (perteneciente a la troposfera) influenciada directamente por la rugosidad y el balance energético que tiene lugar en la superficie. La capa límite atmosférica puede extenderse desde unos pocos metros (~ 100 m o menos bajo condiciones estables) hasta un par de kilómetros bajo condiciones convectivas. En esta capa la velocidad del viento, la temperatura y la humedad del aire presentan grandes fluctuaciones y existe una importante mezcla vertical (Stull, 1988). Debido al calentamiento de la superficie terrestre originado por el sol, el aire en contacto con ésta experimenta movimientos verticales turbulentos produciéndose una rápida mezcla desde las primeras horas de la mañana. Esto hace que la capa límite atmosférica vaya creciendo y alcance su máxima altura unas horas después del medio día. La temperatura potencial y humedad del aire son prácticamente constantes cuando la capa límite está totalmente desarrollada (en las primeras horas de la tarde) y es una capa bien mezclada debido a los movimientos turbulentos verticales que tienen lugar en ella y que pueden alcanzar incluso dimensiones cercanas al tamaño de la propia capa límite. La capa límite está acotada 20 Capítulo 1 por una capa con fuerte inversión térmica donde la temperatura crece con la altura y por encima de la cual se encuentra la atmósfera libre. Cerca del suelo coexiste una fina capa superficial donde la temperatura y humedad del aire decrecen y la velocidad del viento crece rápidamente con la altura. Desde la puesta de sol hasta el amanecer la capa límite atmosférica evoluciona dando lugar a una capa estable sobre la superficie de unos pocos metros de altura (originada por el enfriamiento radiativo del suelo) y una capa residual por encima de ésta donde la temperatura potencial y humedad del aire son prácticamente constantes. Esta capa residual tiene su origen en la capa mezclada originada durante las horas diurnas del día previo. Debido al menor enfriamiento radiativo que tiene lugar en las ciudades (esto se explicará con más detalle más adelante en la sección 1.4.1 de esta memoria) y a la liberación del calor almacenado durante el día en los edificios y superficies pavimentadas, la capa estable y la capa residual pueden llegar a fusionarse sobre la ciudad, dando lugar a una capa neutra mezclada con un espesor que puede alcanzar varios centenares de metros. Por encima de la capa límite atmosférica el viento dominante es el viento casi geostrófico y la turbulencia es escasa. Esta evolución idealizada (ver la Fig. 1.1) de la capa límite atmosférica donde hemos supuesto que los efectos térmicos dominan sobre los mecánicos puede sufrir notables modificaciones debido a las diferentes condiciones sinópticas y a la topografía del suelo (montañas, valles, costa marina, etc.). 21 Capítulo 1 Figura 1.1. Sección vertical mostrando la evolución idealizada de la capa límite atmosférica. Los fenómenos atmosféricos dentro de la capa límite atmosférica están gobernados por diferentes escalas espacio-temporales. Por ejemplo, los fenómenos microescalares (escalas espaciales de unos pocos de metros y temporales de unos segundos) determinan como son transmitidos los contaminantes desde sus fuentes (los vehículos por ejemplo) hacia la capa límite atmosférica. El transporte de estos contaminantes por la capa límite atmosférica vendría gobernado por los fenómenos mesoescalares (escalas espaciales de varias decenas de kilómetros y temporales de varias horas) como pudieran ser una brisa marina en una zona costera o los vientos catabáticos producidos en un valle. Cuando se quieren determinar las diferentes variables meteorológicas en la capa límite atmosférica, ambas escalas deben ser consideradas y el uso de los modelos atmosféricos mesoescalares junto con diferentes parametrizaciones son las herramientas más adecuadas. Por ejemplo, con las parametrizaciones urbanas se intentan representar los fenómenos microescalares que tienen lugar en las ciudades y acoplarlos a los fenómenos mesosescalares que gobiernan las condiciones meteorológicas del clima regional. 22 Capítulo 1 1.2.1 La capa límite urbana La capa límite urbana es la capa límite atmosférica que existe por encima de los edificios de nuestras ciudades. La altura de la capa límite urbana puede diferir de la altura de la capa límite atmosférica en zonas rurales debido al mayor calentamiento que se produce en las superficies pavimentadas y a la mayor rugosidad propia de los edificios. Una de las características principales que diferencia a la capa límite urbana de la capa límite atmosférica sobre zonas naturales es el exceso de temperatura observada en un área metropolitana cuando se la compara con sus áreas rurales vecinas (isla de calor urbana). Comentamos (en la sección anterior) que durante la noche una capa estable se forma junto al suelo rural debido al enfriamiento radiativo de éste y que puede alcanzar varios centenares de metros. El aire en contacto con el suelo se enfría mas rápidamente que el que está por encima originando un gradiente térmico inverso que inhibe los movimientos verticales. Sin embargo sobre la ciudad ocurre algo bastante diferente. El enfriamiento radiativo es mucho menor debido al atrapamiento de la radiación que tiene lugar entre las calles (canyon urbano) y los edificios (Oke, 1981). Además el flujo de calor que durante el día se ha ido almacenando en las superficies pavimentadas ahora es liberado en forma de calor sensible y el aire en contacto con las superficies urbanas puede seguir calentándose. A pesar de que lógicamente la temperatura del aire sigue bajando en la capa límite urbana durante la noche, se puede llegar a formar una capa neutra e incluso ligeramente inestable de unos cientos de metros por encima de la ciudad (Bornstein, 1968; Godowitch et al., 1985; Uno et al., 1988; Oke, 1995). La intensidad de la isla de calor urbana y la estabilidad de la capa límite sobre la misma dependerá de las características morfológicas de la ciudad y de las condiciones meteorológicas que han estado presentes a lo largo del día. Durante las horas diurnas debido al calentamiento del suelo rural, la capa estable va 23 Capítulo 1 desapareciendo dando lugar a una capa inestable bien mezclada donde los flujos turbulentos predominan en toda la capa límite atmosférica. Las diferencias entre la capa límite sobre la ciudad y las zonas rurales son pequeñas durante las horas diurnas y dependen mucho de las condiciones meteorológicas presentes en la región. Un componente importante que afecta a la temperatura sobre la ciudad y que no existe en las zonas rurales es el calor antropogénico. Sin embargo éste durante el día se distribuye a lo largo de toda la capa límite (que puede alcanzar varios kilómetros) y aunque pueda tener valores significativamente importantes su efecto se ve reducido. Por consiguiente, la diferencia de temperatura entre las dos capas límites (la urbana y la rural) puede ser nula o pequeña durante el día, aunque esta diferencia depende mucho del tipo de suelo y de su contenido en agua. En varias ciudades se han medido durante el día temperaturas del aire menores sobre la ciudad cuando se han comparado con las temperaturas del aire de las áreas rurales cercanas. Si la zona urbana está caracterizada por edificios altos y calles estrechas la radiación solar tiene más dificultades para calentar determinadas superficies verticales y las calles pavimentadas, permitiendo que el aire dentro de la canopy urbana pueda estar más frío que el aire en las zonas rurales colindantes (Georgakis & Santamouris, 2009). Lógicamente, la isla de calor puede desaparecer e incluso no formarse si las condiciones meteorológicas sobre la región son desfavorables. Fuertes vientos y cielos cubiertos dificultan la formación de la isla de calor debido a la mezcla de los aires urbano y rural y a la reducción de la radiación solar que alcanza finalmente el suelo. 1.3 Flujos turbulentos y balance energético superficial El balance energético en la superficie terrestre es el que determinará la energía disponible para la generación de los diferentes flujos turbulentos que existen en la parte baja de la atmósfera. La cantidad de energía disponible está gobernada por el ciclo solar diario que 24 Capítulo 1 actúa como fuente externa y depende de la naturaleza propia del suelo (urbano o rural) así como de las diferentes propiedades térmicas de éste. Asumiendo la no existencia de advección horizontal, el balance energético en un volumen de aire próximo al suelo y que contiene a éste puede ser descrito como (la explicación detallada de los símbolos pueden verse en el apéndice de este capítulo): Q * + Q AH = Q H + Q LE + QG , (1) donde el término Q * es la radiación neta, Q AH es el flujo de calor antropogénico, QH es el flujo de calor sensible, QLE es el flujo de calor latente y QG es el flujo de calor que fluye hacia o desde el suelo (Oke, 1988). Este balance energético nos dice que las fuentes de energía radiativa y el calor generado por las actividades humanas se transforman en calor sensible, latente y en un flujo de calor que penetra en la superficie o fluye desde ella. Sobre una superficie natural ( Q AH = 0 ) el balance energético puede escribirse como: Q * = (1 − alb) S ↓ +ε ( L ↓ −σTs4 ) ______ Q H = ρ C P w′θ ′ (2) ______ QLE = ρ LV w′q ′ donde el término QG = Q * − QH − QLE sería el término residual e igual al flujo que penetra en o fluye desde la superficie (QG = − k ∂T ∂Z ). Z =0 En las zonas urbanas además del calor antropogénico, el cómputo de la radiación neta es bastante diferente cuando se la compara con las zonas rurales. Al no disponer de una única superficie (superficies verticales y horizontales) el reparto energético es diferente y la geometría de los edificios condiciona fuertemente la radiación que alcanza los muros y las calles. Todo ello junto con las diferentes propiedades térmicas hacen que el reparto energético difiera entre las zonas rurales y las zonas urbanas. Además en las zonas rurales el calor latente 25 Capítulo 1 es en general mayor que en las zonas urbanas disminuyendo así la cantidad de energía disponible en forma de calor sensible. Por consiguiente, la atmósfera sobre las ciudades puede presentar diferencias de temperatura y humedad cuando se la compara con la atmósfera sobre las zonas rurales vecinas. Las características propias de las zonas urbanizadas favorecen la formación de la isla de calor urbana. Los flujos turbulentos suelen calcularse de forma estándar usando la conocida teoría K ( K − theory ). Esta teoría local también conocida como la teoría del gradiente-transporte establece que los flujos turbulentos asociados a una variable ξ pueden escribirse como: ______ u i′ξ ′ = − K ∂ξ , ∂xi (3) ______ donde K es el coeficiente de intercambio turbulento, u i′ξ ′ es el flujo turbulento de la variable ξ en la dirección i y ξ es el valor medio (ensemble average) de la variable en cuestión (temperatura, humedad o una componente del viento). Para valores positivos de K los flujos tienen lugar en sentido contrario a la dirección local del gradiente de los valores medios de la variable; cuando K es negativo se habla entonces de flujo contra-gradiente, y la ec. (3) se suele ver modificada para tener en cuenta este efecto. Aplicando la ec. (3) a las anteriores ecs. (2), podemos escribir los flujos turbulentos de calor sensible y latente como (para más detalles de los símbolos consultar el apéndice del capítulo): ∂θ ∂z ∂q = − ρ LV K q ∂z QH = − ρ C P K θ QLE (4) donde K θ y K q son los coeficientes verticales de intercambio turbulento para la temperatura y humedad respectivamente. Estos coeficientes turbulentos distan mucho de ser constantes, 26 Capítulo 1 estando bastante influenciados por la estabilidad, y deben ser parametrizados a través de algún esquema turbulento (presentaremos un esquema turbulento en la sección 1.4 de esta memoria) para poder ser calculados. 1.4 Modelización a mesoescala. Ecuaciones que gobiernan los flujos turbulentos. En las últimas décadas, el rápido aumento en la capacidad de memoria y de cálculo de los ordenadores ha contribuido notablemente en la mejora y desarrollo de diferentes tipos de modelos atmosféricos mesoescalares que simulan las variables atmosféricas en prácticamente la totalidad de la troposfera. Para los estudios de calidad del aire, los resultados obtenidos con los modelos atmosféricos son introducidos en los modelos fotoquímicos que resuelven las ecuaciones del transporte y las diferentes transformaciones químicas (Jacobson, 1999). En algunos casos ambos modelos corren separadamente pero hoy en día es fácil encontrarlos acoplados (el modelo WRF-Chem es un ejemplo de ello, Grell et al., 2005) con la ventaja de que los campos meteorológicos pueden ser utilizados instantáneamente por el modelo fotoquímico en cada paso de tiempo. Aunque dependiendo del modelo utilizado las ecuaciones a resolver puedan diferir ligeramente debido a algunas simplificaciones, expondremos en esta sección las ecuaciones fundamentales básicas de los flujos turbulentos. Separando las diferentes variables meteorológicas en su valor medio (ensemble average) y en su parte turbulenta, podemos obtener las ecuaciones generales que rigen los movimientos atmosféricos turbulentos (para una derivación completa de las ecuaciones puede consultarse por ejemplo el libro de Stull, 1988). La ecuación que describe la conservación de la masa en un volumen dado de aire es ∂U i = 0, ∂xi (5) 27 Capítulo 1 donde hemos supuesto la condición de incompresibilidad ∂U i d ln ρ << , válida en los dt ∂xi movimientos turbulentos propios de estas escalas (todos los símbolos están explicados en el apéndice del capítulo). La ecuación de conservación del momento para la componente i de la velocidad del viento en un sistema de coordenadas situado sobre la superficie terrestre puede escribirse como: _______ ∂U i ∂U i ∂ 2U i ∂ u i′u ′j 1 ∂P +U j = −δ i 3 g + fε ij 3U j − +ν − + Dui , ∂t ∂x j ρ ∂xi ∂x j ∂x 2j (I) (II) (III) (IV) (V) (VI) (VII) (6) (VIII) donde el primer término (I) de la izquierda representa la variación local de la velocidad media y el segundo término (II) la advección debida al viento medio. El primer término del lado derecho (III) es no nulo sólo en la dirección vertical y representa la aceleración debida a la gravedad. El siguiente término (IV) es el término de Coriolis y describe la influencia de la rotación terrestre. El siguiente término (V) es la fuerza debida al gradiente de presión presente en el fluido y el término (VI) representaría la influencia de su viscosidad. El término (VII) es la divergencia del transporte de flujo turbulento de momento (Reynolds stress), que aparece como consecuencia de la descomposición de las variables instantáneas en media y turbulenta, y finalmente el último término (VIII) representa las fuerzas inducidas por la interacción entre las distintas superficies (suelo rural o edificios) y el flujo atmosférico. Aplicando la primera ley de la termodinámica a un volumen de aire dado, la conservación del calor puede escribirse matemáticamente como: 28 Capítulo 1 _______ * 1 ∂Q j ∂ u ′jϑ ′ ∂ϑ ∂ϑ ∂ϑ +U j =νϑ − − + Dϑ , ∂t ∂x j ρ C p ∂x j ∂x j ∂x 2j 2 (I) (II) (III) (IV) (V) (7) (VI) donde no se ha especificado el término que representa el calor proveniente de los posibles cambios de fase gas-líquido, líquido-sólido o gas-sólido que pudieran tener lugar en la atmósfera. El primer término (I) del lado izquierdo es la variación local de la temperatura potencial media y el segundo término (II) describe la advección de temperatura debida al viento medio. El primer término (III) del lado derecho corresponde a la difusión térmica molecular y el segundo término (IV) representa las pérdidas de calor asociadas a la emisividad radiativa de la atmósfera. El término (V) es la divergencia del transporte de flujo turbulento de calor y finalmente el término (VI) incluiría todas las fuentes de calor sensible provenientes de la interacción de la atmósfera con las distintas superficies (rurales o edificios en zonas urbanas). La conservación de la cantidad de agua presente en la atmósfera, nos permite escribir para la humedad específica la siguiente ecuación: _______ ∂q ∂q ∂ 2 q ∂ u ′j q ′ +U j =ν q 2 − + Dq ∂t ∂x j ∂x j ∂x j (I) (II) (III) (IV) (8) (V) donde el primer término (I) representa la variación local de la humedad específica media del aire y el segundo término (II) de la izquierda la advección de la humedad debida al viento medio. El primer término del lado derecho (III) representa la difusión molecular de la humedad específica media del vapor de agua y el término (IV) es la divergencia del transporte del flujo turbulento de humedad específica. Finalmente, el término (V) incluiría todas las fuentes de humedad específica del aire. Lógicamente todos los términos que involucran 29 Capítulo 1 variables turbulentas en las anteriores ecs. (6-VIII), (7-V) y (8-IV) deben ser parametrizados por algún esquema turbulento para poder ser calculados. Finalmente para que el número de incógnitas ( ρ , P , ϑ , U i , q ) sea igual al número de ecuaciones se hace uso de la conocida ecuación de estado P = ρ RT de los gases ideales. Muchos son los esquemas turbulentos propuestos y utilizados en los diferentes modelos atmosféricos. Debido a que los flujos turbulentos no pueden ser calculados directamente éstos deben ser parametrizados por medio de algún esquema que describa de forma aproximada el comportamiento turbulento de la atmósfera. El esquema turbulento más utilizado en esta memoria ha sido un esquema turbulento k − l 1 desarrollado por Bougeault & Lacarrère, (1989). En este esquema el flujo de transporte turbulento vertical se calcula de acuerdo a la ec. (3) anterior y el coeficiente turbulento K z se obtiene como: K z = C k l k TKE , (9) donde C k es una constante de valor 0.4, TKE es la energía cinética turbulenta por unidad de masa TKE = __________ _________ 1 __________ ( (u ′) 2 + (v ′) 2 + ( w′) 2 ) y l k es una longitud de escala. 2 La longitud de escala l k se obtiene de acuerdo a las siguientes relaciones: z + lup β (ϑ ( z ) − θ ( z ′))dz ′ = TKE ( z ) z z β (ϑ ( z ′) − ϑ ( z ))dz ′ = TKE ( z ) , (10) z −ldown l k = mínimo(lup, ldown) donde β = g / T es el coeficiente de flotabilidad térmico. Obsérvese que para el cómputo del coeficiente turbulento K z se requiere de la resolución de una ecuación de pronóstico para el cálculo de la energía cinética turbulenta TKE (más detalles de la ecuación a resolver pueden 1 Un modelo k-l significa que resuelve una ecuación para la energía cinética turbulenta (k) y que estima la disipación por medio de una longitud de escala (l). 30 Capítulo 1 encontrarse en Bougeault & Lacarrère, 1989). En este esquema turbulento los coeficientes verticales para el momento y el calor se consideran iguales (el número de Prandtl turbulento es 1, en realidad en condiciones de estabilidad de moderada a fuerte esto no es del todo realista). En la ec. (10), las longitudes de escala lup y ldown representan las distancias que una parcela de aire originalmente situada en el nivel z y con energía cinética turbulenta TKE ( z ) puede desplazarse hacia arriba o hacia abajo antes de detenerse debido a los efectos de estabilidad térmica (flotabilidad). En la formulación de este esquema se asume la presencia de una capa estable a una cierta altura (la altura de la capa límite atmosférica) sobre el suelo. Es interesante apuntar que la longitud de escala ldown no puede ser mayor que la altura por encima del suelo a la que se encuentra la parcela de aire ( ldown = z ). Originalmente en los primeros modelos mesoescalares el transporte de flujo turbulento horizontal no era considerado y sólo se tenía en cuenta el transporte de flujo turbulento en la dirección vertical. Esto era debido principalmente a que la resolución numérica en la dirección vertical en la capa límite era mucho mayor que la resolución en la dirección horizontal. Sin embargo hoy en día gracias al aumento en la capacidad de cálculo de los ordenadores la resolución horizontal se ha visto incrementada notablemente y simulaciones con resolución horizontal por debajo de 1 km son bastante frecuentes. Por consiguiente, la necesidad de uso de esquemas turbulentos tridimensionales es hoy una realidad. Sin embargo, se debe prestar atención a la resolución horizontal utilizada con un modelo mesoescalar pues estructuras celulares no reales podrían aparecer como parte de la solución numérica debido al uso de una alta resolución en la dirección horizontal (Lemone et al., 2010). Este es un tema abierto y probablemente la solución pueda estar condicionada al tipo de esquema turbulento usado cuando simulamos con alta resolución ( ∆x, ∆y < 1 km). 31 Capítulo 1 1.4.1 Modelización de la capa límite atmosférica sobre zonas urbanas. Parametrizaciones urbanas. Las ciudades debido a la alta rugosidad de su superficie y a sus propiedades térmicas pueden tener un impacto importante en la estructura de la capa límite atmosférica. El impacto de la ciudad involucra tanto a los efectos mecánicos (turbulencia creada por la presencia de los edificios) como a los efectos térmicos (atrapamiento radiativo y efectos de sombreado en el canyon urbano). La teoría tradicional usada para representar a una superficie urbana en los modelos de mesoescala era la Monin-Obukhov Similarity Theory (MOST). Esta teoría supone que cerca de la superficie los flujos turbulentos son prácticamente constantes con la altura. La diferencia en el tratamiento con respecto a las superficies rurales es el uso de un mayor valor para la rugosidad del suelo y el uso de diferentes propiedades térmicas. Sin embargo, diferentes medidas realizadas en diferentes ciudades (Rotach, 1993; Roth & Oke, 1993) pusieron de manifiesto que los flujos turbulentos no son constantes con la altura en la sub-capa de rugosidad urbana (urban roughness sub-layer), la parte de la capa superficial entre el nivel de calle y 2-3 veces la altura media de los edificios. En la teoría MOST no se tiene en cuenta el atrapamiento radiativo ni los efectos de sombreado que tienen lugar en el canyon urbano, por consiguiente esta teoría no puede describir de forma satisfactoria la isla de calor urbana ni el reparto energético. En la última década se han desarrollado multitud de esquemas urbanos (Masson 2000; Kusaka et al., 2001; Martilli et al., 2002) con la intención de obtener una mejor representación de los efectos de las ciudades en la atmósfera. La parametrización urbana más utilizada en esta memoria ha sido la parametrización BEP (Building Effect Parameterization) de Martilli et al., (2002). Esta parametrización es una de las más detalladas y al ser multicapa (es decir, posee niveles verticales propios definidos dentro del canyon urbano) permite una interacción directa con la 32 Capítulo 1 capa límite urbana. En esta parametrización una zona urbana está representada por una clase urbana que a su vez está caracterizada por los siguientes parámetros urbanos. • La distancia media entre los edificios de una calle (W). • La anchura media de los edificios (B) y la altura media de los mismos (H). • La distribución vertical (en altura) de los edificios, expresada en términos de la probabilidad γ ( z ) de que un edificio tenga una altura dada z . Además se utiliza una densidad de probabilidad Γ( z ) que expresa la probabilidad de que un edificio tenga una altura mayor o igual que z (ver la Fig. 1.2). Ambas funciones están relacionadas por la expresión: Γ( z iu ) = nu γ ( z ju ) , (11) ju = iu donde nu es el mayor nivel vertical en la rejilla urbana. • La orientación de las calles. • Las propiedades térmicas de los materiales (conductividad térmica, capacidad calorífica, albedo y emisividad) de las distintas superficies urbanas (calles, muros y tejados). Figura 1.2. Ilustración de los parámetros geométricos urbanos: anchura media de las calles (W), anchura media de los edificios (B) y distribución vertical de los edificios en términos de γ y Γ. 33 Capítulo 1 Este esquema urbano calcula los flujos turbulentos y las diferentes variables meteorológicas para una orientación particular de las calles. BEP utiliza una malla vertical propia (diferente de la malla vertical del modelo atmosférico) con una resolución mayor definida por el usuario. La extensión de esta fina malla alcanza el edificio más alto de cada clase urbana. Después del cálculo de los flujos y las diferentes variables meteorológicas, éstas son verticalmente interpoladas en la rejilla mesoescalar. Los impactos de los edificios considerados en el esquema urbano BEP (Martilli et al., 2002) son: • las fuerzas de arrastre debido a la presencia de las superficies verticales (muros), • las fuerzas de fricción que generan las superficies horizontales (calles y tejados), • la modificación de los flujos de calor debido al atrapamiento radiativo y a los efectos de las sombras en el canyon urbano, y finalmente • la generación de energía cinética turbulenta a partir de la energía cinética media del aire. Los impactos de las diferentes superficies se calculan teniendo en cuenta la proporción de cada una de ellas en los diferentes niveles verticales de la rejilla urbana. La pérdida de momento debido a la fricción de las superficies horizontales utiliza la teoría estándar MOST con la diferencia de que ahora la fuerza de fricción se distribuye verticalmente desde el suelo (calles) hasta el edificio más alto de la clase urbana y es proporcional a la superficie horizontal presente en cada nivel. Por otro lado, las superficies verticales (muros) inducen fuerzas de arrastre, las cuales son nuevamente calculadas considerando la proporción de superficie vertical presente en cada nivel vertical urbano. De este modo, la parametrización 34 Capítulo 1 urbana BEP tiene en cuenta los sumideros de momento debido a las distintas superficies de los edificios en la totalidad de la canopy urbana. Las superficies horizontales y verticales (muros, calles y tejados) son tratadas también separadamente para el cálculo de los flujos de calor. Debido a que estos flujos dependen de la diferencia de temperatura entre el aire y la capa exterior de la superficie en contacto con éste, resolvemos la ecuación de difusión para cada una de las superficies urbanas y consideramos como condición de contorno un balance energético en la capa externa. La otra condición de contorno en la capa interna de una superficie se obtiene fijando la temperatura durante toda la simulación. El valor fijado es libremente definido por el usuario y la solución final depende de éste. Para considerar los efectos de las sombras y el atrapamiento radiativo se calculan los factores de vista (view factors) para cada nivel vertical dentro de la rejilla urbana. De esta forma múltiples reflexiones de la radiación proveniente del sol y de la radiación de onda larga pueden considerarse entre los muros y las calles. Conocida la radiación total que llega a una superficie, se puede calcular el balance energético sobre la misma y los flujos de calor intercambiados con el aire. El impacto de las superficies urbanas en la producción de energía cinética turbulenta utiliza dos aproximaciones diferentes para cada una de las superficies horizontales y verticales presentes en la clase urbana. Aquí nuevamente los efectos son proporcionales a la distribución vertical del área de las superficies presentes (ver más detalles en Martilli et al., 2002). El término Dui de la ec. (6) representa la pérdida de momento debida a la presencia de las superficies urbanas. De forma análoga, los términos Dϑ y Dq de las ecs. (7) y (8) serán iguales a los flujos derivados del esquema urbano una vez que éstos estén interpolados en la malla del modelo atmosférico. A la hora de calcular el volumen disponible para el aire dentro 35 Capítulo 1 de la celda numérica urbana se tiene en cuenta el volumen ocupado por los edificios dentro de la misma. Además, para el transporte turbulento vertical se tiene en cuenta el área horizontal ocupada por los edificios entre dos celdas numéricas adyacentes. Por último es importante comentar que la vegetación en las zonas urbanas (por ejemplo la vegetación presente en los parques y jardines) puede jugar un papel importante y debe considerarse a la hora de calcular los diferentes flujos (Grimmond et al., 2010a). Debido a que la interacción de los edificios con la atmósfera es muy diferente que la interacción de la atmósfera con la vegetación, en el modelo atmosférico se define para cada clase urbana un porcentaje de área urbana ( α ) donde se calculan los flujos de calor y momento con BEP, y el resto ( 1 − α ) corresponde a un porcentaje de área rural, donde los flujos se calculan con un modelo de suelo y vegetación. De esta forma, los flujos ( φ ) totales de calor y momento en el modelo atmosférico se obtienen promediando ambas partes, es decir : φ = αφ urbano + (1 − α )φ rural , (12) donde φ urbano representa el flujo derivado del esquema urbano y φ rural el flujo derivado del esquema rural. 1.4.2 El modelo energético de edificios (BEM) para simulaciones del clima urbano. A pesar de que con el desarrollo y el uso de las nuevas parametrizaciones urbanas se ha comprendido mejor el fenómeno de la isla de calor, aún queda mucho trabajo por desarrollar. En la mayoría de los esquemas urbanos no se calcula el calor antropogénico derivado directamente de las actividades humanas (consumo energético) y por consiguiente no se puede evaluar su efecto. Estudios recientes han demostrado que el calor antropogénico liberado en las grandes ciudades puede contribuir al aumento de la isla de calor de forma notable aumentando la temperatura. Por ejemplo, Kikegawa et al., (2003), demostró que los 36 Capítulo 1 efectos de los aires acondicionados sobre la ciudad de Tokio (Japón) aumentaban la temperatura del aire en un valor promedio de 1 ºC. Si a esto le sumamos el calor producido por el tráfico y las zonas industriales nos podemos hacer una idea de la importancia que puede llegar a tener el calor derivado de las distintas actividades humanas. Para que a partir de un esquema urbano acoplado a un modelo atmosférico se pueda calcular de una forma más o menos realista el calor antropogénico generado en una ciudad, es preciso el uso de un modelo energético de edificios. Al estar interesados en el calor antropogénico liberado en la atmósfera y en la evaluación de estrategias de ahorro energético a escalas de varios kilómetros, no podemos hacer uso de software especializado resolviendo individualmente cada uno de los edificios que componen una ciudad. El volumen de datos necesarios para describir detalladamente los edificios hace inviable tal cálculo. Sin embargo, desarrollando un modelo energético lo suficientemente simple como para poder ser utilizado sobre todos los edificios de una determinada clase urbana (donde suponemos que la diferencia entre ellos radique únicamente en las dimensiones) y lo suficientemente detallado como para que los resultados obtenidos sean razonables, podemos calcular cuantitativamente el calor antropogénico sobre una ciudad una vez que este modelo energético esté acoplado a un modelo atmosférico. El primer modelo energético diseñado con este propósito y acoplado a una parametrización urbana fue el modelo energético desarrollado por Kikegawa et al., (2003). En este primer modelo un edificio era tratado como una “caja” y la evolución de la temperatura y humedad interiores eran calculadas separadamente. El calor liberado en la atmósfera era “proporcional” al flujo responsable de la variación de la temperatura y humedad interiores. En esta memoria se ha desarrollado un nuevo modelo energético BEM (Building Energy Model) donde un edificio es considerado como un apilamiento de “cajas” y cada caja representa una planta o un piso en particular. El modelo así definido presenta una ventaja 37 Capítulo 1 respecto al modelo anterior, ya que plantas situadas a diferentes alturas pueden recibir diferente radiación exterior y por consiguiente liberar diferente cantidad de calor antropogénico proveniente del uso de los aires acondicionados. Además se puede hacer coincidir cada nivel de la rejilla urbana con cada una de las plantas propias de cada edificio tipo y así los diferentes flujos pueden ser calculados en cada nivel vertical. En BEM la evolución de la temperatura y humedad interiores se calculan separadamente para cada planta y se resuelve: • La ecuación de difusión para las distintas superficies (muros, suelos y tejados) imponiendo un balance energético tanto en la capa exterior como en la interior de cada superficie. • La ventilación natural. • La radiación (de onda larga y corta) que alcanza las superficies interiores de las paredes de cada planta considerando múltiples reflexiones en el interior de la misma. • El calor generado por los ocupantes y equipos domésticos. • El calor sensible y latente intercambiado con el exterior gracias al desarrollo de un modelo para los sistemas de aire acondicionado. Con este modelo que describe el funcionamiento de los sistemas de aire acondicionado, el usuario puede definir libremente un umbral de confort para la temperatura y humedad interiores. De este modo la temperatura y humedad siempre estarán dentro de esa banda de confort (cuando los sistemas de aire acondicionado estén funcionando lógicamente) y tanto el consumo como el calor antropogénico intercambiados con la atmósfera (ver todos los detalles del modelo en Salamanca et al., 2010a) podrán ser calculados. El modelo energético BEM ha sido acoplado al esquema urbano BEP (Martilli et al., 2002) para poder 38 Capítulo 1 estudiar su impacto en las diferentes variables meteorológicas. Esta nueva parametrización BEP+BEM acoplada a un modelo atmosférico nos permite evaluar el consumo sobre una ciudad así como diferentes estrategias para la reducción tanto de la isla de calor como del consumo energético. Varias simulaciones (off-line) en una columna vertical han sido llevadas a cabo en esta tesis con los esquemas urbanos BEP y BEP+BEM. Por encima del canyon urbano se forzaron los distintos esquemas a los valores medidos del viento, la temperatura y la radiación dirigida hacia el suelo (downward radiation). Los resultados obtenidos para la radiación neta y para diferentes flujos turbulentos derivados con las parametrizaciones a diferentes alturas, fueron comparados con valores medidos recogidos durante la campaña meteorológica BUBBLE (Basel Urban Boundary Layer Experiment) llevada a cabo sobre la ciudad suiza de Basel (Rotach et al., 2005). Los resultados mejoraron cuando el nuevo esquema urbano BEP+BEM fue utilizado frente al viejo esquema BEP (Salamanca & Martilli, 2010). 1.4.3 Problemas abiertos en las simulaciones del clima urbano a mesoescala. En una sección anterior (ver la sección 1.4) comentamos que una resolución horizontal excesiva podría llevar a la formación de estructuras celulares artificiales que enmascaran la verdadera solución de nuestro problema. Si bien estas soluciones no deseadas pudieran ser dependientes del esquema turbulento utilizado, cuando modelizamos zonas urbanas se nos puede presentar un nuevo problema añadido. En las distintas parametrizaciones urbanas, las propiedades térmicas de los materiales son de vital importancia para la estimación de los diferentes flujos intercambiados entre los edificios y la atmósfera. Esto es así ya que la temperatura que alcanza una determinada superficie depende fuertemente de sus propiedades térmicas. Si en las simulaciones utilizamos resoluciones horizontales del orden de uno o unos pocos kilómetros y una determinada zona urbana presenta una gran heterogeneidad de 39 Capítulo 1 materiales, ¿cuáles deben ser los valores para la capacidad calorífica y conductividad térmica que debemos utilizar para representar a esa zona en el modelo si ésta contiene diferentes materiales con diferentes propiedades térmicas? Si conocemos el porcentaje de los materiales presentes en la zona podemos derivar los valores térmicos (capacidad calorífica y conductividad térmica) que representan a la clase urbana de diferentes formas. En Salamanca et al., (2009), analizamos dos formas estándar de calcular esos valores y proponemos una nueva que mejora los resultados obtenidos notablemente. La idea consiste en suponer que con los valores térmicos representativos de la clase urbana debemos obtener el mismo flujo de calor (sensible en este caso) que si sumáramos el flujo de calor proveniente de los diferentes materiales teniendo en cuenta el porcentaje presente de cada uno de ellos en la zona bajo estudio. Resolviendo la ecuación de difusión del calor hemos podido analizar la ventaja de la nueva forma de “promediar” las propiedades de los materiales frente a las estándar. Los métodos estándar consisten en “promediar” los valores térmicos de las propiedades físicas de cada material y no los flujos intercambiados con la atmósfera. 1.5 El modelo atmosférico WRF. Parametrizaciones urbanas en WRF. El modelo WRF (Weather Research and Forecasting) es el modelo atmosférico elegido para integrar la nueva parametrización (BEP+BEM) y con el que se han realizado distintas simulaciones sobre varias ciudades. En esta sección no vamos a explicar detalles de este modelo pues existe infinidad de documentación (http://www.mmm.ucar.edu/wrf/users/) especializada dedicada íntegramente a ello. La ventaja del modelo WRF frente a otros modelos es que es un modelo libre (totalmente gratuito), que está en continua evolución y existe un apoyo para que los usuarios puedan consultar sus dudas o resolver sus problemas gracias al NCAR que es la institución de los EEUU que lo mantiene y desarrolla. 40 Capítulo 1 Mucho es el trabajo que se ha hecho en el modelo WRF por parte de la comunidad de modelizadores urbanos desde su aparición. Actualmente este modelo (v3.2) posee cuatro parametrizaciones urbanas. La primera parametrización (bulk scheme) aparece en la versión del año 2003. Este primer esquema representa los efectos de las superficies urbanas por medio de una rugosidad de 0.8 m, un albedo de 0.15, una capacidad calorífica de 3.0 J/m 3 K y una conductividad térmica de 3.24 W/mK . Debido a su sencillez el esquema es ideal para la predicción meteorológica rutinaria y así lo prueban numerosos estudios (Liu et al., 2006). Sin embargo, posee una desventaja frente a otras parametrizaciones más detalladas, ya que no puede distinguir la heterogeneidad presente en una ciudad al no utilizar datos morfológicos de ningún tipo. La segunda parametrización incluida en WRF fue la parametrización desarrollada por Kusaka et al., (2001) y Kusaka & Kimura, (2004). Este esquema urbano está disponible desde la versión oficial v2.2 del año 2006. Es un modelo con una sola capa (single-layer urban canopy model) en el canyon urbano donde un perfil diario de calor antropogénico puede ser añadido al flujo total de calor sensible. La geometría urbana está representada a través de canyons urbanos infinitamente largos y tres diferentes superficies (muros, calles y tejados) son reconocidas. En el canyon urbano múltiples reflexiones y los efectos de las sombras son considerados. La tercera opción urbana es el esquema desarrollado por Martilli et al., (2002). Esta parametrización es un esquema multicapa que permite una interacción directa con la capa límite urbana. El esquema multicapa también distingue tres tipos de superficies urbanas y tiene en cuenta su efecto en el momento, la energía cinética turbulenta y la temperatura del aire. Múltiples reflexiones y efectos de sombreado son considerados también en el canyon urbano. El modelo BEP de Martilli et al., (2002) existe de forma oficial en WRF desde la versión v3.1 del año 2009. Por último, de forma oficial ha sido integrada en el modelo WRFv3.2 la parametrización BEP+BEM desarrollada en esta memoria. Este nuevo 41 Capítulo 1 esquema BEP+BEM es el resultado del acoplamiento de la parametrización BEP (Martilli et al., 2002) con un modelo energético de edificios BEM (Salamanca & Martilli, 2010). Esta última incorporación permite calcular el consumo energético de los aires acondicionados así como su efecto sobre la temperatura del aire en la ciudad. Con esta parametrización se calcula el calor antropogénico, a diferencia de otras parametrizaciones donde se fija arbitrariamente un perfil diario definido por el propio usuario. La necesidad de un mayor volumen de datos para llevar a cabo las simulaciones se ha visto incrementada notablemente, a medida que la complejidad de las parametrizaciones urbanas ha ido aumentando. Aunque en un principio esto pudiera parecer una desventaja, el uso de las parametrizaciones más complejas permite llevar a cabo estudios que de otra forma no serían posibles (comprensión del fenómeno de la isla de calor, estrategias de mitigación, reducción del consumo energético, etc.). Con el modelo WRFv3.2 se ha simulado la ciudad de Madrid. Usando los datos de la campaña meteorológica DESIREX (Sobrino et al., 2009) que tuvo lugar en el verano del 2008, se ha validado la parametrización BEP+BEM sobre esta ciudad simulando dos días consecutivos con buenas condiciones sinópticas. Se utilizó un fichero actualizado de usos de suelo para la Comunidad de Madrid así como tres clases urbanas derivadas de la base de datos de la Agencia Europea de Medio Ambiente CORINE (http://www.eea.europa.eu). El efecto de los aires acondicionados, la magnitud de la isla de calor y la evaluación de diferentes estrategias en la reducción del consumo energético arrojaron interesantes resultados (más detalles en Salamanca et al., 2010c). La isla de calor urbana alcanzó entre 5-6 ºC durante la noche y el calor antropogénico fue el responsable de un aumento de la temperatura de hasta 1.5-2 ºC en algunos puntos interiores de la ciudad. Las diferentes estrategias encaminadas al ahorro del consumo energético (aumento del albedo de los tejados, el uso de materiales aislantes y la eliminación del calor proveniente de los aires acondicionados) una vez que 42 Capítulo 1 fueron agrupadas disminuyeron notablemente la magnitud de la isla de calor y el ahorro energético fue reducido en torno a un 10-10.5 %. Aunque una cuantificación precisa del consumo energético sobre una ciudad requiere del uso de una detallada base de datos morfológicos de la misma (ver la sección siguiente 1.5.1), estimaciones del ahorro energético y evaluación de diferentes estrategias de mitigación tanto de la isla de calor como del consumo energético pueden llevarse a cabo sin el conocimiento exacto de la geometría de la ciudad. 1.5.1 La base de datos NUDAPT. La versión de WRF adaptada a NUDAPT. Cuando se simula una ciudad con una parametrización urbana, ésta es llamada por el modelo atmosférico cuando el punto de la rejilla posee una fracción urbana no nula. En el modelo WRF a cada punto de rejilla urbana se le asocia una sola clase urbana donde los parámetros urbanos deben ser definidos por el propio usuario (con la excepción del esquema bulk que no utiliza los valores definidos en la clase urbana sino que tiene asignados unos valores por defecto). Por defecto, en el modelo WRF se pueden definir hasta tres tipos diferentes de clases urbanas (comerciales o industriales, zonas residenciales con densidad alta y zonas residenciales con densidad baja de edificios) siempre que se lo indiquemos en el fichero de usos de suelo que alimentará la simulación. Por consiguiente, podemos distinguir hasta tres tipos diferentes de zonas urbanas en nuestra malla numérica. Así es como se procedió para el caso de las simulaciones que se llevaron a cabo sobre la ciudad de Madrid. Probablemente para una gran cantidad de estudios sobre clima urbano sea suficiente proceder de esta forma. Sin embargo, recientemente en Norteamérica se ha creado una base de datos NUDAPT (National Urban Database and Access Portal Tool, Ching et al., 2009) con información detallada de la morfología urbana de las principales ciudades de este país. La fracción urbana ocupada por los edificios, la altura media de los mismos, la anchura media de 43 Capítulo 1 las calles, el número de edificios de una determinada altura, etc. son parámetros morfológicos que se encuentran en esta base de datos con una resolución mínima de 1 km 2 . Un ejemplo concreto de la información que existe en NUDAPT puede verse en la Fig. 1.3. En esta gráfica se representa la altura media y la fracción de área cubierta por los edificios para una región que cubre la totalidad de la ciudad de Houston y tiene una extensión aproximada de unos 5250 km 2 . La ventaja de utilizar esta información es que no necesitamos definir clases urbanas cuando se quiere simular una ciudad. En cada punto de la rejilla urbana disponemos de la información necesaria para que la parametrización urbana proporcione las condiciones de borde al modelo atmosférico. De esta forma cada punto numérico urbano viene representado por los parámetros reales que lo describen a una determinada resolución. Esta es la manera más realista de proceder a la hora de simular una ciudad. En Salamanca et al., (2010b), se simuló la ciudad de Houston (TEXAS) haciendo uso de dos metodologías totalmente diferentes. En la primera, se utilizaron tres clases urbanas derivadas de la base de datos NLCD (National Land Cover Data) comparándose las cuatro parametrizaciones urbanas existentes en WRF con medidas observadas. Los valores morfológicos definidos para cada clase urbana fueron derivados de Burian & Han, (2003). En la segunda parte del trabajo (segunda metodología) se utilizó la información que existe en NUDAPT para un área que cubrió la ciudad de Houston. 44 Capítulo 1 2 Figura 1.3. a) Altura media y b) fracción del área ocupada por los edificios con una resolución de 1 km en la región de Houston, TEXAS (EEUU). En los ficheros de entrada del modelo atmosférico se integró la información de la base de datos en forma de nuevas variables. De modo que ahora el modelo atmosférico WRF (WRF_Nudapt) utilizaba para cada punto de la rejilla numérica urbana la información 45 Capítulo 1 existente en la base de datos NUDAPT y no la información definida para cada clase urbana. Los resultados obtenidos muestran una mejoría en la predicción de la temperatura del aire cuando se comparan con los obtenidos en la primera parte del trabajo. Sin embargo, el mayor impacto se obtuvo en el cómputo del consumo energético total de la ciudad. Utilizando la información de NUDAPT se obtuvieron interesantes estimaciones del consumo energético cuando se compararon con los valores obtenidos (Heiple and Sailor, 2008) por otros métodos totalmente diferentes (bottom-up y top-down). La versión del modelo atmosférico que es capaz de utilizar la información de NUDAPT punto a punto en el dominio numérico (WRF_Nudapt) está siendo utilizada por personal del NCAR (Dr. Mukul Tewari) y de la EPA (Dr. Jason Ching) ya que esta versión representa el mayor desarrollo del modelo atmosférico WRF para la modelización urbana a mesoescala. 46 Capítulo 1 APÉNDICE Símbolos de las ecuaciones alb albedo ε emisividad σ (W / K 4 m 2 ) constante de Stefan-Boltzmann S ↓ (W / m 2 ) flujo de radiación de onda corta dirigida hacia el suelo L ↓ (W / m 2 ) flujo de radiación de onda larga dirigida hacia el suelo TS ( K ) temperatura superficial T (K ) temperatura del aire ϑ(K ) temperatura potencial del aire q ( kg / kg ) humedad específica del aire ρ (kg / m 3 ) densidad del aire C P ( J / kgK ) calor específico del aire a presión constante LV ( J / kg ) calor latente de vaporización k (W / mK ) conductividad térmica g (m / s 2 ) aceleración debida a la gravedad f ( s −1 ) parámetro de Coriolis P (kg / ms 2 ) presión atmosférica U i (m / s) componente en la dirección i de la velocidad del viento u ′j (m / s ) componente turbulenta en la dirección j de la velocidad del viento u ′(m / s ) componente turbulenta en la dirección x de la velocidad del viento v ′(m / s ) componente turbulenta en la dirección y de la velocidad del viento w′(m / s ) componente turbulenta en la dirección z de la velocidad del viento q ′(kg / kg ) componente turbulenta de la humedad específica del aire ϑ ′( K ) componente turbulenta de la temperatura potencial del aire ν (m 2 / s) viscosidad molecular cinemática ν ϑ (m 2 / s ) difusividad térmica molecular 47 Capítulo 1 ν q (m 2 / s) difusividad molecular para el vapor de agua en el aire Q *j (W / m 2 ) radiación neta en la dirección j 48 Capítulo 2 49 Capítulo 2 CAPÍTULO 2 OBJETIVOS 50 Capítulo 2 2.1 Introducción El principal objetivo de este trabajo es el estudio y modelización de la isla de calor urbana. Se prestará una atención especial a la evaluación de diferentes estrategias de mitigación de la isla de calor y del consumo energético debido al uso de los sistemas de aire acondicionado en períodos estivales. Para llevar a cabo estos objetivos presentamos a continuación los pasos y la metodología utilizados. Objetivo 1 Desarrollo de un modelo energético de edificios (BEM) acoplado a una parametrización urbana para simulaciones del clima urbano. Este es el primer objetivo que debemos lograr para poseer una parametrización urbana capaz de calcular el calor antropogénico originado por los sistemas de aire acondicionado o calefacción en las ciudades y estudiar su impacto en las diferentes variables meteorológicas. Para esta parte del trabajo se ha preferido desarrollar un nuevo modelo energético y no hacer uso de software avanzado, propio de los estudios de ingeniería ya que el acoplamiento de estos programas con los modelos atmosféricos es impracticable debido a que son muy detallados y no han sido pensados para tal fin. Una vez que el modelo energético BEM ha sido acoplado a la parametrización urbana BEP, se han realizado diferentes simulaciones con el fin de dar respuesta a las siguientes preguntas: • ¿Cuál es el impacto del calor emitido por los sistemas de aire acondicionado en la temperatura del aire externa? ¿El modelo energético BEM nos puede ayudar a obtener una respuesta? • ¿Los diferentes flujos de calor mejoran cuando se compara el nuevo esquema urbano BEP+BEM frente al viejo esquema BEP? • ¿Cuánto se ahorra en consumo energético debido al uso de los aires 51 Capítulo 2 acondicionados cambiando el albedo e introduciendo materiales aislantes en los muros de los edificios? • ¿Cómo depende este consumo de las condiciones meteorológicas exteriores? La respuesta a estas preguntas se desarrolla en los dos primeros artículos presentados en el capítulo 3. Objetivo 2 Estudio de la representatividad de diferentes parámetros térmicos utilizados en las parametrizaciones urbanas. Este objetivo surge a raíz del planteamiento de que en las simulaciones a mesoescala (con resoluciones numéricas del orden de ~ 1 km) del clima urbano nos podemos encontrar con una gran heterogeneidad de materiales presentes en un área particular que está representada por un solo punto en la rejilla numérica. A la hora de calcular los flujos de calor se resuelve un balance de energía considerando, por simplificar el cálculo, un solo valor de capacidad calorífica y conductividad térmica para el suelo (en las parametrizaciones más simples o en zonas rurales), o tres (para calle, techos y paredes) en las urbanas más complejas. El enfoque más usado consiste en utilizar los valores térmicos del material con una mayor representatividad en la zona. Sin embargo, otra forma de proceder para determinar los valores más representativos es la de promediar los distintos valores de las propiedades térmicas de cada material teniendo en cuenta el porcentaje de área superficial que ocupa cada uno de ellos. El objetivo es buscar una respuesta a las siguientes preguntas: • ¿Existe alguna otra forma de calcular las propiedades térmicas representativas de una zona urbana que mejore el cálculo de los flujos de calor sensible? • ¿En cuánto se mejoran los resultados? La respuesta a estas preguntas se encuentra en el tercer artículo del capítulo 3. 52 Capítulo 2 Objetivo 3 Integrar la nueva parametrización urbana BEP+BEM de forma oficial en el modelo atmosférico WRF. En la versión v3.2 del modelo atmosférico WRF (liberada por NCAR en Abril del 2010 y disponible online) se encuentra la nueva parametrización urbana BEP+BEM desarrollada en esta tesis. En WRF, los esquemas urbanos BEP y BEP+BEM pueden utilizar dos esquemas turbulentos diferentes para la parametrización de la capa límite atmosférica, el esquema de Bougeault & Lacarrère, (1989) y el esquema de Mellor & Yamada (Janjic, 1994). Objetivo 3.1. Inter-comparación de diferentes esquemas urbanos en WRF. Simulaciones sobre Houston, Texas. Una vez que la parametrización BEP+BEM fue integrada en el modelo atmosférico WRF, se procedió a la simulación de la ciudad de Houston, Texas. En este estudio se hizo una inter-comparación de los cuatro esquemas urbanos presentes en el modelo utilizando diferentes estaciones de medida distribuidas por la ciudad. Tres clases urbanas derivadas de la base de datos NLCD (National Land Cover Database) fueron definidas (comerciales o industriales, zonas residenciales con alta y baja densidad de edificios) y los parámetros urbanos utilizados para cada una de ellas fueron extraídos de Burian & Han, (2003). Se pretende dar respuesta a las siguientes preguntas: • ¿Existen diferencias importantes en los resultados al utilizar las cuatro parametrizaciones urbanas? • ¿Cuál es el impacto de los sistemas de aire acondicionado en la temperatura del aire sobre la ciudad? • ¿Es realista el cálculo del consumo energético obtenido utilizando el modelo atmosférico y la nueva parametrización BEP+BEM? 53 Capítulo 2 La respuesta a estas preguntas se desarrolla en el cuarto artículo del Capítulo 3. Objetivo 3.2. Evaluación de estrategias para la reducción del consumo energético y mitigación de la isla de calor. Simulaciones sobre Madrid. Para el cumplimiento de este objetivo se hicieron simulaciones con WRF usando el nuevo esquema urbano BEP+BEM sobre la ciudad de Madrid. El período simulado coincidió con la campaña DESIREX que tuvo lugar en el verano del 2008. Tres clases urbanas derivadas de la base de datos de usos de suelo CORINE (http://www.eea.europa.eu) fueron definidas sobre la ciudad. Una vez que la validación de las simulaciones estuvo garantizada por comparación con las medidas, se procedió a la evaluación de diferentes estrategias de reducción tanto de la isla de calor como del consumo energético. El objetivo es contestar a las siguientes preguntas: • ¿Cuál fue la magnitud máxima de la isla de calor sobre la ciudad? • ¿En cuántos grados aumentó la temperatura del aire debido al calor antropogénico procedente de los sistemas de aire acondicionado? • ¿Cuál es la estrategia más efectiva para ahorrar en consumo energético y reducir la isla de calor? La respuesta a estas preguntas se encuentra en el quinto artículo del Capítulo 3. Objetivo 4 Adaptar el modelo atmosférico WRF a la base de datos NUDAPT. Cuando simulamos una ciudad, las parametrizaciones urbanas en WRF utilizan la información definida en las distintas clases urbanas con la excepción del esquema bulk que solo reconoce una clase urbana. De este modo, la morfología urbana representada en el modelo está limitada al número de clases urbanas que utilicemos y por defecto a lo sumo son tres. Sin embargo, si introducimos la información de la morfología que describe una ciudad 54 Capítulo 2 (esta información existe en la base de datos NUDAPT) como nuevas variables en los ficheros de entrada del modelo atmosférico, las parametrizaciones urbanas utilizarán en cada punto de la rejilla numérica la información real que describe esa zona de la ciudad. La ventaja de proceder de esta forma es que aprovechamos toda la información morfológica que describe la ciudad y no estamos limitados al número existente de clases urbanas. Así se procedió de nuevo con la ciudad de Houston (Texas) repitiéndose las simulaciones con los esquemas BEP y BEP+BEM. El objetivo es dar respuesta a las siguientes preguntas: • ¿Se mejora la predicción de la temperatura del aire con esta nueva forma de proceder? • ¿Se mejora el cálculo del consumo energético? La respuesta a estas preguntas se encuentra en el cuarto artículo del Capítulo 3. 55 Capítulo 2 56 Capítulo 2 CHAPTER 2 OBJECTIVES 57 Capítulo 2 2.1 Introduction The principal aim of this work is the study and modelling of the urban heat island. We will pay a special attention to the evaluation of different strategies to mitigate the urban heat island and reduce the energy consumption due to the use of the air conditioning systems reduction programs in summer periods. To reach the methodology used is presented. Objective 1 Development of a building energy model coupled to an urban canopy parameterization for simulations of the urban climate. This is the first aim that we must achieve to have an urban scheme able to compute the anthropogenic heat originated in the cities from air conditioning or heating, and study its impact on the different meteorological variables. For this part of the work we preferred to develop a new model and not using existing software typical of engineering studies since they are in general to detailed since they have not been built for this aim. As soon as the building energy model (BEM) has been coupled to the urban scheme (BEP), different simulations have been carried out in order to answer the following questions: • What is the impact of heat emitted from air conditioning systems on the air temperature? Can we get this answer from BEM? • Does the calculation of the different heat fluxes improve when the new urban scheme BEP+BEM is compared with the previous BEP scheme? • How much is the energy saving due to the use of the air conditioning systems when the albedo is modified and insulating material is intoduced inside the walls of the buildings? • How much can the meteorological conditions affect the energy consumption? The answer to these questions is in the first and second papers of Chapter 3. 58 Capítulo 2 Objective 2 On the derivation of material thermal properties representative of heterogeneous urban neighbourhoods for mesoscale simulations. This aim arises because in urban climate mesoscale simulations (with a typical resolution of ~ 1 km) we can find a great heterogeneity of materials in a particular area that is represented by only one point in the numerical grid. To estimate the heat fluxes a surface energy budget is solved, with only one value of heat capacity and thermal conductivity for the surfaces (for the simplest urban schemes or for rural areas), or three values (for road, walls, and roofs) for the most complex urban schemes. In general the values chosen correspond to the material with a major percentage in the area. Another way to determine the most representative thermal values is to average the different values of the thermal properties of every material taking into account the percentage of surface area that each of them occupies. The main questions that we try to answer in this section are: • Is there another way to calculate the thermal representative properties of an urban zone that improves the calculations of the sensible heat fluxes? • How much are the results improved? The answer to these questions is in the third paper of Chapter 3. Objective 3 Integrate the new urban scheme BEP+BEM officially in the atmospheric WRF model. In the version 3.2 of WRF model (released on April, 2010) the new urban scheme BEP+BEM is present. In WRF, the urban parameterizations BEP and BEP+BEM can be used with two different turbulent schemes for the parameterization of the planetary boundary layer, the Bougeault & Lacarrère, (1989) and the Mellor & Yamada (Janjic, 1994) schemes. Objective 3.1. Inter-comparison of different urban schemes in WRF. Simulations over 59 Capítulo 2 Houston, Texas. As soon as the urban parameterization BEP+BEM was integrated in the atmospheric model WRF, the model was used to simulate the atmospheric circulations over the city of Houston, Texas. In this study an inter-comparison of the four urban schemes present in the model was done using different measurement stations distributed over the city and belonging to the Texas Commission on Environmental Quality. Three urban classes derived from the NLCD (National Land Cover Database) were defined (commercial or industrial, and residential zones with high and low density of buildings) and the urban parameters used for each of them were extracted from Burian & Han, (2003). This objective deals with the following questions: • Are there important differences in the results among the four urban schemes? • Which is the impact of the air conditioning systems on the air temperature? • Is the calculation of the energy consumption obtained using the atmospheric model and the new urban BEP+BEM scheme realistic? The answer to these questions is in the fourth paper of the Chapter 3. Objective 3.2. Evaluation of strategies for energy consumption reduction and mitigation of the urban heat island. Simulations over Madrid. To achieve this aim, simulations with WRF using the new urban BEP+BEM scheme were done over the city of Madrid. The simulated period coincided with the DESIREX campaign that took place in summer of 2008. Three urban classes derived from the land use database CORINE (http://www.eea.europa.eu) were defined. As soon as the validation of the simulations was guaranteed by comparing the results against measurements, we proceeded to the evaluation of different mitigation strategies of the urban heat island and reduction programs of the energy consumption. The objective is to answer the following questions: 60 Capítulo 2 • Which was the maximum magnitude of the urban heat island over the city? • How many degrees increased the air temperature due to the heat fluxes coming from the air conditioning system? • Which is the most effective strategy to save in energy and how much the urban heat island is reduced? The answer to these questions is in the fifth paper of Chapter 3. Objective 4 Update the atmospheric WRF model to the NUDAPT database. When we simulate a city, the urban parameterizations in WRF use the information defined in the different urban classes with the exception of the bulk scheme that has only one urban class. In this way, the urban morphologies represented in the model are limited to the number of urban classes used, which are three by default. If instead of using the urban classes, we introduce the information of the morphology that describes the city (information that exists in the NUDAPT database) as new variables in the input files of the atmospheric model, the urban parameterizations will use at every point of the numerical grid the real information that describes this area of the city. The advantage of this approach is that we take advantage of all the morphological information that describes the city and are not limited to the existing number of urban classes. In this way we proceeded again with the city of Houston, Texas. The simulations with the urban schemes BEP and BEP+BEM were repeated and compared with the old ones. Here the objective is to answer the following questions: • Is the prediction of the air temperature improved by this approach? • Is the calculation of the energy consumption improved? The answer to these questions is in the fourth paper of the Chapter 3. 61 Capítulo 2 62 Capítulo 3 CAPÍTULO 3 RESULTADOS 63 Capítulo 3 3.1 Un nuevo modelo energético de edificios acoplado a una parametrización urbana para simulaciones del clima urbano-Parte-I. Formulación, verificación y análisis sensitivo del modelo. Salamanca, F., A. Krpo, A. Martilli, and A. Clappier, 2010a: A New Building Energy Model coupled with an urban canopy parameterization for urban climate simulations-part I. formulation, verification, and sensitivity analysis of the model. Theor. Appl. Climatol., 99, 331-344. En esta sección el nuevo modelo energético de edificios BEM (Building Energy Model) se desarrolla e implementa en la parametrización urbana BEP (Building Effect Parameterization). El modelo energético se compara con otros modelos usados en el análisis térmico de edificios: CBS-MASS, BLAST (1981) y TARP (Walton, 1983). Posteriormente se hace un análisis de la sensibilidad del modelo a diferentes parámetros, así como un primer estudio del impacto del modelo energético en la parametrización urbana. Las validaciones indican que el modelo energético proporciona buenas estimaciones del comportamiento físico de los edificios y es un primer paso hacia el desarrollo de una herramienta numérica para estudios de planificación urbana. 64 Theor Appl Climatol (2010) 99:331–344 DOI 10.1007/s00704-009-0142-9 ORIGINAL PAPER A new building energy model coupled with an urban canopy parameterization for urban climate simulations—part I. formulation, verification, and sensitivity analysis of the model Francisco Salamanca & Andrea Krpo & Alberto Martilli & Alain Clappier Received: 21 October 2008 / Accepted: 21 April 2009 / Published online: 13 May 2009 # Springer-Verlag 2009 Abstract The generation of heat in buildings, and the way this heat is exchanged with the exterior, plays an important role in urban climate. To analyze the impact on urban climate of a change in the urban structure, it is necessary to build and use a model capable of accounting for all the urban heat fluxes. In this contribution, a new building energy model (BEM) is developed and implemented in an urban canopy parameterization (UCP) for mesoscale models. The new model accounts for: the diffusion of heat through walls, roofs, and floors; natural ventilation; the radiation exchanged between indoor surfaces; the generation of heat due to occupants and equipments; and the consumption of energy due to air conditioning systems. The behavior of BEM is compared to other models used in the thermal analysis of buildings (CBS-MASS, BLAST, and TARP) and with another box-building model. Eventually, a sensitivity analysis of different parameters, as well as a study of the impact of BEM on the UCP is carried out. The validations indicate that BEM provides good estimates of the physical behavior of buildings and it is a step towards a modeling tool that can be an important support to urban planners. F. Salamanca (*) : A. Martilli Department of Environment, CIEMAT (Center for Research on Energy, Environment and Technology), Edificio 3, P1.9, Avenida Complutense 22, 28040 Madrid, Spain e-mail: [email protected] A. Krpo : A. Clappier LPAS, Swiss Federal Institute of Technology, Lausanne, Switzerland 1 Introduction In the last decades, atmospheric scientists have been able to understand the origin of the temperature differences between an urban area and its surroundings, the so-called urban heat island (UHI) (Oke 1987). This understanding has been possible thanks to a series of experimental campaigns, to the evolution of the mesoscale meteorological models, and the increase of computer power. In the 1970s and 1980s, scientists began to introduce urban parameterizations in numerical mesoscale models to determine how cities affect the meteorological fields and the boundary layer structure. However, these first parameterizations were still very simple and could not reproduce in detail the dynamics of the interactions between a city and the atmosphere. It is only during the second part of the 1990s and the beginning of the twenty-first century that more realistic urban parameterizations appeared (Masson 2000; Kusaka et al. 2001; Martilli et al. 2002). The models developed in this period allowed to better understand the phenomena linked to the atmosphere over cities and their surroundings. However, the generation of heat within buildings and the exchanges with the exterior were not explicitly resolved. One of the first models that took these features into account was the one developed by Kikegawa et al. (2003). It was successfully implemented in an urban canopy parameterization (UCP) for mesoscale models and clearly showed that the heat fluxes generated by building can have an important impact on the urban microclimate. In this contribution, a new building energy model (BEM) has been worked up and implemented in an UCP for mesoscale models. It is important to remark that, due to computational requirements, we cannot take into account 65 332 F. Salamanca et al. all the details in the interactions between buildings and the atmosphere. In fact, reducing complexity is particularly important as the final goal is to link BEM with a mesoscale meteorological model. Moreover, the current computing capacity does not allow resolving each specific building included in a grid cell of the meteorological model, usually of the order of a few squared kilometers. Even though all buildings are different, it is necessary to develop a model that describes the general physical properties of an ideal building, representative of the buildings included within the grid cell, as the purpose is to investigate the interactions between urban climate, air pollution, and energy consumption at the scale of the city and its surroundings. On the other hand, a very simple BEM would not be capable of describing accurately the most important interactions between buildings and the atmosphere, and would not be sufficient to study the interactions mentioned above, when implemented in a mesoscale model. For these reasons, in this work we propose a new model that resolves explicitly: & & & & the heat diffusion through walls, roofs and floors the natural ventilation as well as the radiation exchanged between the indoor surfaces the heat generation due to occupants and equipments the energy consumption due to air conditioning systems Buildings of several floors can be considered and the time evolution of indoor air temperature and moisture are estimated for each floor. Different floors can receive different amounts of radiation and can have different temperatures, both outdoor (e. g. for skyscrapers) and indoor. It is logical to think that the cooling/heating loads (energy consumption) will also be different at each level. The links between BEM and UCP are as follows: UCP gives to BEM the outdoor air temperature, humidity, and radiation reaching the walls and roof for the computation of the amount of radiation entering in the building through the windows and the boundary condition for the calculation of wall and roof temperatures; on the other hand, BEM gives to the UCP the wall and roof temperature, the heat flux due to ventilation, and the heat flux due to processes linked with the generation of energy within the building (e. g. air conditioning). The expected results of this study are: & & To improve the capability of mesoscale models to simulate urban canopy climate (UHI processes, etc.) and air pollutant dispersion in the city and the surroundings To allow the estimation of meteorologically related building energy consumptions (e. g. due to air conditioning in summer, or heating in winter) In Section 2 the model formulation is described. In Section 3, we validate BEM comparing it to well-known models like CBS-MASS, BLAST, and TARP for three different situations (Zmeureanu et al. 1987). The total processed loads obtained with BEM and Kikegawa´s model in a 25-story office building are also compared. In Section 4, after this necessary validation, we analyze numerical results by modifying some physical parameters to evaluate their impact on the processed load. In Section 5, first results about the impact of BEM in the UCP of Martilli et al. (2002) are shown and conclusions are finally given in Section 6. In part II of this work, BEM coupled with the UCP is validated against meteorological measurements from the BUBBLE campaign (Salamanca and Martilli 2009). 2 Description of BEM The model used here is similar to that of Kikegawa et al. (2003). In Kikegawa´s model, a building is treated as a box and the generated cooling/heating loads are separately calculated for sensible and latent heat components. The heat pumped out from the building is “proportional” to this load (more details in Section 2.5). The main differences between the two models are the computation of the solar radiation reaching the indoor walls, the treatment of the windows, the computation of the heat pumped out from the building for cooling or added for heating, and the possibility to consider several floors in a building. The BEM developed in this paper is a box-type heat budget model in which a building in an urban block is treated as a pile of boxes, each box representing a particular floor. 2.1 Dynamics and thermodynamics In BEM, the time evolutions of the room air temperature Tr and room air humidity qVr are estimated solving the following equations: QB dTr ¼ Hin Hout dt lrVB dqVr ¼ Ein Eout dt ð1Þ ð2Þ in which QB ¼ rCp VB ðJK 1 Þ and VB(m3) denote the overall heat capacity and the total volume of the indoor air in a floor (the reader can see more details about the symbols used in the previous and following equations in the Appendix). The following equations (Eqs. 3 and 4) were used for the computation of the total sensible heat load 66 A new building energy model coupled with an urban canopy parameterization Hin(W) and the total latent heat load Ein(W) in a floor, respectively: Hin ¼ X j X wall Awind hwind; j Twind; j Tr þ Ai hwall;i Twall;i Tr þ j i þð1 bÞCp rVa ðTa Tr Þ þ Af qE þ Af Pfp qhs ð3Þ Ein ¼ ð1 bÞlrVa ðqVa qVr Þ þ Af Pfp qhl ð4Þ The first and second term (on the right-hand side) in Eq. 3 represent the heat exchange between the windows and the indoor air and between the walls, ceiling, and pavement and the indoor air. The third term corresponds to the sensible heat exchange through ventilation. The fourth and the last terms indicate the internal sensible heat generation from equipments and occupants, respectively. The quantification of these last terms is difficult and it is necessary to have some information about the energy consumption provided by the electric companies. The heat from these different processes is added and distributed isotropically in the interior. A real diffusion through the indoor air is not considered in the model. The first right-hand term of Eq. 4 represents the water vapor mixing through ventilation and the second term the evaporation from occupants. The terms Hout(W) and Eout(W) indicate the sensible and latent heat needed for cooling/ heating the indoor air in a floor. Remark that if there is no human regulation of the internal temperature and humidity these two terms are zero. 2.2 Computation of the wall temperature In order to compute the wall temperature, the heat diffusion equation is solved in several layers at the interior of the materials. The transport of moisture through the walls is not considered, @Twall @ @Twall Ks ¼ ð5Þ @x @t @x where Ks (m2 s−1) is the thermal conductivity of the material, Twall is the wall temperature. At the indoor and outdoor surfaces, the boundary condition is defined by solving an energy budget equation (neglecting the latent heat flux), @Twall 1 @Twall 1 Cs HF Ks ¼ ð6Þ Δx @t @x n1 4 þ H 1. The term where HF ¼ ð1 albÞRs þ "Rl "sTwall Cs (J K−1 m−3) is the specific heat of the layer of depth ∆x, 1 To solve numerically the equation, the wall is discretized in several layers of depth ∆x. Here and in Eq. 6 Twall represents the temperature of the layer close to the surface, while @T@xwall n1 represents the gradient between the layer close to the surface and the closest internal layer. 333 and H (W m−2) is the sensible heat flux exchanged between the surface and the air (a positive value means a gain for the surface). It is computed as H=hwall(Tr −Twall) in the indoor side and H=h(Tr −Twall) in the outdoor side. The term Rs is the shortwave radiation flux incoming at the surface, Rl is the long-wave radiation received by the surface, and finally, alb and ε are the surface albedo and emissivity respectively. This budget equation is solved on both sides of the wall. 2.3 Computation of the window temperature We suppose that the differences in temperature between the two sides of a glass are small, and, as a consequence, the temperature of the windows is only time-dependent. In order to compute the temperature of the glass of the window (Twind), we suppose that the absorption is negligible (glasses without coating or films) and the following budget equation is solved: C dTwind ¼f dt ð7Þ where C ¼ rwind Cwind Δwind JK1 m2 , ρwind (kg m−3)is the density of the glass, Cwind (JK−1 kg−1) is the heat capacity of the glass, ∆wind (m) is the thickness of the glass, and f Wm2 is the total flux balance of energy, 4 f ¼ "wind Rloutdoor sTwind þ Houtdoor 4 þ "wind Rlindoor sTwind ð8Þ þ Hindoor The terms Hindoor and Houtdoor are the sensible heat fluxes, while Rlindoor and Rloutdoor are the incoming longwave radiation on each side of the window. The windows are assumed opaque to the long-wave radiation. 2.4 Computation of the radiation The amount of direct radiation that passes through a window is a function of the angle of incidence and will be computed with a polynomial approach based on Roos (1997) and used by Karlsson and Roos (2000) and others. The model employs a polynomial to fit the angle dependence of the total solar energy transmittance g, based upon the knowledge of the respective near-normal value g0. The general form of the polynomial is gðzÞ g0 ð1 aza ¼ 0 l g 0 bz cz Þ, where a þ b þ c ¼ 1, z ¼ q 90 , and θ0 is the angle of incidence. When fitting to different types of windows it was found that the above equation gives a good fit with the following coefficients and exponents: a ¼ 8; b ¼ 0:25=q; c ¼ 1 a b; a ¼ 5:2 þ 0:7q; l ¼ 2; g ¼ 5:26 þ 0:06p þ ð0:73 þ 0:04pÞq ð9Þ In Eq. 9, p is equal to the number of panes in the configuration (1, 2, or 3) and q represents a ‘category’ 67 334 F. Salamanca et al. parameter, which has been given values between 1 and 10 depending on the type of window (q=4, for standard glasses). The computation of the diffused and reflected radiation that passes through a window can be calculated using the albedo of that window (albwind). The albedo of a window can be evaluated (suppose that the absorption is negligible) equalizing the energy that crosses the glass with (1− albwind) times the energy that reaches the window. Writing this in mathematical form, see Fig. 1, we can say Z 2p Z p 2 gðqÞI cos qdw dA ¼ ð1 albwind ÞFdA ð10Þ 0 0 where I is the intensity of the radiation and F is the flux of energy reaching the element of surface dA (it is obtained integrating the intensity over all the possible directions). Considering isotropy (I constant) and simplifying by the differential area dA, the above expression becomes, Z2 p gðqÞ cos q sin qdq ¼ ð1 albwind Þ 2 ð11Þ 0 2.4.1 Shortwave radiation The method used to compute the radiation reaching the indoor surface of the walls is similar to the one adopted in the UCP of Martilli et al. (2002). The solar energy penetrating through the windows is assumed to be uniformly distributed on the interior surfaces. Moreover, this radiation is reflected by the surfaces isotropically in all the directions. The solar radiation captured by an indoor wall is the sum of the radiation coming directly from the windows and the radiation reflected by the other indoor walls. This shortwave radiation reaching a wall is indicated by Eqs. 13–15 (by “wall”, here and in the rest of the article, we intend all the internal surfaces, including ceiling and pavement). For example, for the radiation reaching a wall i (more details on the symbols used in these equations are in the Appendix): X Rsi ¼ Rs þ albj Rsj y ji ð13Þ j6¼i With a simple algebraic manipulation, the albedo of the window can be written as albwind ¼ 1 g0 þ UCP, this formulation is used for the direct and reflected radiation from the other surfaces of the urban canyons. g0 2 Zp a a b c x þ l xl þ g xg sin xdx pa p p ð12Þ 0 We now have a simple expression (Eq. 12) that depends only on two parameters (p, q) to evaluate the quantity of radiation transmitted through the windows when the radiation is not direct. Using a numerical method it is easy to evaluate this expression. In the simulations presented in this work, we have used Eq. 12 to evaluate all the shortwave radiation that penetrates the windows. Once the module is linked to the y ji ¼ Aj fji ¼ fij Ai ð14Þ albj ¼ albwall; j 1 awind; j þ albwind awind; j ð15Þ Equation 13 is a linear system of six equations and six unknowns (the radiation received by each wall) easy to solve by matrix inversion. The functions fji represent the view factors between wall j and wall i, and the term Aj is the area (m2) of wall j. More details about the view factors can be found in Sparrow and Cess (1978). 2.4.2 Long-wave radiation The long-wave radiation reaching an indoor wall i is the sum of the long-wave radiation emitted and reflected by the other walls. In order to compute the radiation, the following equations are used (more details on the symbols used in these equations are included in Appendix): X X 4 4 Rli ¼ sy ji ~"j Twall;j þ "bj Twind;j 1 "j Rlj y ji þ j6¼i j6¼i ð16Þ ~" ¼ " j wall;j 1 awind;j "bj ¼ "wind awind;j "j ¼ ~"j þ "bj : Fig. 1 Schematic representation of a beam incoming at a window with an angle of incidence θ ð17Þ This is, once again, a linear system of six equations and six unknowns easy to solve (the incoming long-wave and 68 A new building energy model coupled with an urban canopy parameterization short-wave radiation at the outdoor surfaces are coming from the mesoscale model). 335 (c) T* is smaller than the target temperature minus the comfort range, i.e. T* <Ttarget −∆T. With a similar procedure to that of the previous paragraph, 2.5 Mathematical model of the air conditioning system In BEM the indoor air temperature and humidity can be controlled with the help of the air conditioning system. We can decide when the air conditioning is working and when it is not. Kikegawa´s model (Kikegawa et al. 2003) is quite different because it supposes that the processed load Hout and Eout in Eqs. 3 and 4 are proportional to Hin and Ein, respectively (Hout =φpHin and Eout =φpEin). In our model the same method is used for the computation of Hout and Eout, and, hence, in the following only the computation of Hout will be explained. In the model the air conditioning system (here and in the following we use the term “air conditioning”, even though heating can also be obtained with other systems) has a target temperature Ttarget and a gap of comfort ∆T fixed that the user can define. If the air conditioning is not in use, then Hout =0. If it is, a first guess of the temperature at time n+1, called T*, is computed as follows (it is the discretization of Eq. 1 by setting Hout =0), T ¼ Δt n H þ Tn QB in ð18Þ At this point there are three possibilities: (a) T* lies within the comfort range, i.e.T Ttarget ΔT , then Houtn =0, and T n+1=T*. (b) T*is bigger than the target temperature plus the comfort range, i.e. T > Ttarget þ ΔT . In this case Houtn is calculated as: n Hout ¼ Hinn QB Ttarget þ ΔT T n Δt ð19Þ ð20Þ Once Houtn is known, the temperature at time step n+1 is estimated as T nþ1 ¼ Δt n n þ T n Hin Hout QB n n Hout ¼ Hinn dQB ) Hinn Hout ¼ dQB > 0 Δt ð22Þ and the temperature at time n+1 is T nþ1 ¼ QB Hinn n Þ þ T n. Hout With this method, the indoor temperature always lies within a range of comfort (defined by the user), and the cooling/heating power will never be higher than a fixed value δ that depends on the properties of the air conditioning system. The same treatment is done with respect to the latent heat load Eout. Finally, we can calculate the total processed load Hout +Eout. 3 Verification of BEM (without the coupling with the UCP) A combination of analytical, inter-program, and empirical testing procedure has been used for the verification and validation of the building energy model. The verification and the inter-program validation were made comparing the results of BEM against those obtained by Zmeureanu et al. (1987) with the models CBS-MASS, BLAST (BLAST-3.0, 1981), and TARP (Walton 1983). The simulations with BEM were done for a building with five floors. The results refer to the third floor (intermediate floor). 3.1 Verification n n H H However, if outQB in > d(δ being the maximum power of cooling/heating (Ks−1) of the air conditioning system, which is a fixed value dependent on the air conditioning n system) Eq. 19 is not used and Hout is calculated as: n n Hout ¼ Hinn þ dQB ) Hinn Hout ¼ dQB < 0: QB Ttarget ΔT T n ð21Þ Δt n n H H If outQB in > d, Eq. 21 is not used, and Houtn is computed as: n Hout ¼ Hinn The verification is applied to a room 6.0×6.0×3.6 m3 on the intermediate floor with four exterior walls and no windows. The indoor air is considered dry and the main assumptions are: no solar radiation, no sensible/latent heat generated by equipments and occupants, and constant long-wave radiation incoming at the exterior walls. More details about the inputs are presented in Table 1. 3.1.1 Variation of inside surface temperature of a wall due to a step change in outdoor air temperature Initially, the temperature of the walls and room air are assumed to be 20°C. Then, while the room air temperature is kept constant at 20°C (Hin =Hout), the outdoor air temperature drops suddenly to 0°C (∆T0 =20°C). No air 69 336 Table 1 Physical parameters used for the simulation in the analytical validation F. Salamanca et al. Parameters Settings Exterior walls Intermediate walls (ceilings and floors) Ground wall (Dirichlet b. c. ) Constant surface wall coefficient (indoor and outdoor) Volumetric ventilation rate Physical properties used for brick Conductivity Density Specific heat Emissivity 0.28 m brick 0.28 m brick 0.28 m brick 8 WK–1 m–2 3.6 m3 m–2 h–1 infiltration (β=1, in Eq. 3) is considered in this case. The temperature of the inside surface of the wall is analyzed and the comparison shows that results from BEM are in good agreement with analytical solutions and CBS-MASS (Fig. 2). 0.73 WK–1 m–1 1.84×103 kg m–3 900 J kg–1 K–1 0.9 3.1.2 Variation of room air temperature for a step change in outdoor air temperature Initially, the temperature of the walls and room air are both equal to 20°C. The variation of the room air temperature, subject to a sudden drop of outdoor air temperature to 0°C (∆T0 =20°C) is analyzed. The effect of air infiltration (β=0) and internal mass is studied. We impose that the temperature of internal mass (ceilings and floors on the intermediate floors) is constant and equal to their respective room air temperature (Tim =TR) in the building. The results (Fig. 3) indicate good agreements between BEM, analytical solutions, and CBS-MASS. It is interesting to note that the evolution of the indoor air temperature is different on each floor (Fig. 4). On the top floor, the cooling of indoor air is faster than on the other floors because the roof is exposed to the cold outdoor air. In contrast, on the first floor the cooling is slower than on the other floors because we have imposed a net flux equal to zero at the lowest layer in the ground wall (Dirichlet boundary condition). 3.2 Inter-program validation Fig. 2 Variation of the inside surface temperature for a 0.28 m deep brick wall due to a step change in outdoor air temperature: a analytical solution against CBS-MASS (From Zmeureanu et al. 1987); b variation obtained with BEM The inter-program validation deals with the comparison between the estimation of the space thermal loads provided by BEM against the predictions of three well-known programs in the thermal analysis of buildings: BLAST, TARP, and CBS-MASS. The comparison is performed in a winter design day (Table 2) for an intermediate floor office space 30 × 30 × 3.6 m3, with four exterior walls and windows. The main characteristics used in this space are presented in Table 3. It is important to point out that in our simulation the solar radiation incoming at each intermediate floor is the same. In this test BEM was not linked to the UCP (Martilli et al. 2002) because, if it was, distinct floors would receive different radiation fluxes due to shadowing effects induced by neighboring buildings. For this reason the results of an intermediate floor in the test are almost 70 A new building energy model coupled with an urban canopy parameterization 337 Table 2 Weather data for the inter-program validation in a winter design day Hour (h) Fig. 3 Variation of the room air temperature due to step change in outdoor air temperature (internal mass and air infiltration are considered): a analytical solution against CBS-MASS (From Zmeureanu et al. 1987); b variation obtained with BEM independent of the height of the building. Thus, the largest differences only occur between the top or the ground floor and the intermediate floors. The top floor exchanges more energy (solar radiation and heat conduction through its Fig. 4 Variation of the room air temperature in different floors obtained with BEM (as in Fig. 3) Outdoor temperature (ºC) Direct normal radiation (Wm–2) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 −18.05 −18.80 −19.40 −19.85 −20.00 −19.70 −18.95 −17.60 −15.65 −13.40 −10.85 −8.45 −6.65 −5.45 −5.00 −5.45 −6.50 −8.15 – – – – – – – – 398.1 685.9 794.5 833.7 830.0 781.2 652.7 301.9 – – 19 20 21 22 23 24 −10.10 −12.05 −13.70 −15.20 −16.40 −17.30 – – – – – – roof) than the other floors. On the other hand, on the first floor the flux exchanged through the ground (generally in contact with the soil) is different when compared against the intermediate floors. Figure 5 shows the results of the space thermal load (–Hout) necessary to maintain the indoor air temperature constant (20ºC in this case) as estimated by the BLAST, TARP, and CBS-MASS programs against BEM. Dry air was considered (E in = Eout = 0) in the simulation. The comparisons show that BEM provides estimations of the heating load close to those of the other models. The small differences observed may also be a consequence of the uncertainties on the values of some parameters (incoming long-wave radiation at the outdoor surfaces and convective heat transfer coefficient at the exterior wall) that were not explicitly mentioned in Zmeureanu et al. (1987). Moreover, the radiation reflected by the ground and other buildings, and incoming at the exterior walls, is not considered in BEM and it is not clear if it was taken into account by Zmeureanu et al. (1987). 71 338 F. Salamanca et al. Table 3 Physical parameters used for the simulation in the interprogram validation Parameters Settings Exterior walls 0.10 m concrete 0.10 m insulator 0.02 m gypsum board 0.10 m concrete 0.10 m insulator 0.02 m gypsum board 0.22 m concrete 8 WK–1 m–2 Intermediate walls (ceilings and floors) Ground wall (Dirichlet b. c.) Constant surface wall coefficient (indoor and outdoor) Constant surface window coefficient (indoor and outdoor) Air infiltration Volumetric ventilation rate Glazing-to-wall ratio (double standard glazing) Internal heat gains Room air temperature Physical properties used for the materials Emissivity Concrete Conductivity Density Specific heat Albedo Insulator Conductivity Density Specific heat Gypsum board Conductivity Density Specific heat Albedo 2.8 WK–1 m–2 β=0 3.6 m3 m–2 h 0.5 started on a Sunday, during the Pacific Ocean anticyclone and under typical summer-day conditions. In our validation of the air conditioning system we have compared the total processed loads (Hout +Eout) for the building-O (the dimensions considered in each floor were47.0×47.0×3.78 m3) obtained by BEM with the one generated by Kikegawa´s model. Even though the calculation of the processed load is rather different in the two models, the results are quite similar (Fig. 8). Hence, it is possible to say that BEM is capable of capturing the most important mechanisms governing heat generation within buildings and exchanges with the exterior. While comparing the two models, we forced the exterior meteorological variables (temperature and humidity) to the measured values. The aim of this test was the validation of the air conditioning model, and not 30 Wm–2 between the 9:00 to 17:00 20°C 0.9 1.73 WK–1 m–1 2.35×103 kg m–3 880 J kg–1 K–1 0.2 0.057 WK–1 m–1 13 kg m–3 840 J kg–1 K–1 0.14 WK–1 m–1 760 kg m–3 800 J kg–1 K–1 0.7 3.3 Comparison of BEM against other box model to validate the air conditioning system This last validation deals with the comparison between BEM and the model of Kikegawa et al. (2003) using data collected in a campaign over Tokyo (Japan). The measurement data were acquired in August, 1998 for a 25-story office building (building-O) located at the center of a business area (Ootemachi). The measurement includes the continuous acquisition of meteorological data, Fig. 6, from the rooftop of the building of approximately 100 m height. The simulation was initialized at 0000 LST, 2 August and terminated at 2400 LST, 5 August 1998. The simulations Fig. 5 Comparison of the thermal load for an office space on a winter design day in an intermediate floor: a estimations of CBS-MASS, BLAST, and TARP (From Zmeureanu et al. 1987); b estimations obtained with BEM 72 A new building energy model coupled with an urban canopy parameterization 339 Fig. 6 Temporal series of the outdoor temperature (left) and specific humidity (right) used in the period of simulation and measured at the top of the building-O the study of the interactions between BEM and the atmosphere. Temporal variations of φp and qE in Eq. 3 used in the simulation are shown in Fig. 7. The parameters of typical office buildings were adopted (Table 4) for the structures and the air conditioning systems. In Fig. 8 one can see the total (sensible and latent) cooling energy for the building-O (obtained adding up over every level, 25 floors) computed with BEM and Kikegawa´s model. Observe that the BEM’s air conditioning model is able to reproduce results similar to those obtained by Kikegawa. 4 Sensitivity of the processed load to different physical processes As explained, the air temperature and humidity inside a building, and the energy needed to control them (through air conditioning or heating), are influenced by several physical processes (the different terms on the right-hand sides in Eqs. 3 and 4). In this section, we present a series of simulations with the goal of analyzing the sensitivity of the processed load (e. g. the energy needed to control air temperature and humidity) to these different processes. The simulations were performed fixing Hout =Hin for each floor. The following results (Fig. 9) are obtained by adding the total load of the different floors. The same building parameters and conditions used in Section 3.2 were considered. In the following, by “base case” simulation we will refer to the one described in Section 3.2. The first test deals with the impact of the radiation through the windows. Two simulations were performed, by modifying the base case: one simulation without windows (“no window” case), where no radiation is entering the building (αwind,j =0, in Eq. 15), and the other one with the internal albedo of the windows equal to 1, once the Fig. 7 Time-dependent parameters φp (right) and qE (left) used in weekdays 73 340 Table 4 Parameters used in the validation of BEM against Kikegawa´s model F. Salamanca et al. Parameters Settings Exterior vertical walls 0.11 m concrete 0.05 m insulator 0.11 m concrete 0.22 m concrete 0.33 m concrete 1.07 m soil 8 WK–1 m–2 2.8 WK–1 m–2 0900-1900 LSTa 26.0ºC 50.0% 5.0 m3 m–2 h–1 60% 5 m2/person 54.7 W/person 64.0 W/person 30% 30% Intermediate walls (ceilings and floors) Ground wall (Dirichlet b. c.) a Pre-cooling starts from 0800 LST Constant surface wall coefficient (indoor and outdoor) Constant surface window coefficient (indoor and outdoor) Duration of air conditioning on weekdays Target temperature of room cooling Target relative humidity of room cooling Volumetric ventilation rate per unit floor area Thermal efficiency of the total heat exchanger (β) Floor area per occupant Sensible heat generation from an occupant (qhs) Latent heat generation from an occupant (qhl) Insolation transmittance through the windows (windows with blinds) Glazing-to-wall ratio Parameters own of BEM Comfort range of temperature Power of cooling/heating Comfort range of humidity Power of drying/moistening Physical properties used for the materials Emissivity Concrete Conductivity Volumetric heat capacity Albedo Insulator Conductivity Volumetric heat capacity Soil Conductivity Volumetric heat capacity Fig. 8 Comparison of the total processed load in building-O obtained with BEM and with the Kikegawa´s model 0.1 K 10–3 K s–1 10–3 kg kg–1 10–6 (kg kg–1)s–1 0.9 1.39 WK–1 m–1 1.93 106 J m–3 K–1 0.2 0.04 WK–1 m–1 0.06×106 J m–3 K–1 1.00 WK–1 m–1 1.74×106 J m–3 K–1 radiation is inside the floor (“total trapping” case). The aim of this second case is to simulate the impact of the internal walls in the building (rooms) that may prevent the radiation from exiting windows, and trap the totality of the solar radiation entering the building. The results (Fig. 9a) show that in this winter case, the absence of windows reduces the energy consumption during the night. The reason is that the glasses have a higher heat capacity than the walls and the heat flux exchanged with the air is smaller than the flux exchanged through the walls. In contrast, during the day, the absence of windows increases the energy consumption because there is no radiation penetrating the floor and it is more difficult to maintain a warm indoor temperature. The effect due to considering indoor walls in a floor (total trapping) is small and the decision not to account for them is justified. 74 A new building energy model coupled with an urban canopy parameterization 341 Fig. 10 Comparison of the thermal load over various floors in an office building when the incoming radiation is different for each floor The second test (Fig. 9b) was performed to investigate the impact of natural ventilation and the heat released by people and equipments. One simulation was done without people or equipments (“no people” case, φp =0 and qE =0 in Eq. 3), and another with no ventilation (“no ventilation” case, β=1 in Eq. 3). For this winter simulation, the impact of people and equipments is of about 150 kW during daytime (during night time people were absent also in the base case). It is also interesting to notice the importance of ventilation: for this winter case, during the night, the lack of ventilation results in a decrease in energy consumption, while during daytime, energy is required to cool down the air in the building2 heated up by the radiation, and internal sources (people and equipments). The third test (Fig. 9c) was carried out to study the effect of the convective heat coefficients at the external surfaces.3 Usually, these coefficients are estimated as a function of wind speed. However, there is still a significant uncertainty in the determination of such a relationship (see Martilli et al. 2002, Masson 2000). One simulation was carried out with a value smaller (3 WK−1 m−2) than in the base case (8 WK−1 m−2) and another with a higher value (15 WK−1 m−2). As one can observe in the graph, the processed loads are sensitive to these coefficients, with a maximum variability of about 50 kW. Fig. 9 Estimations of the total thermal load for the office building in different situations: a comparison to study the impact of the radiation through the windows; b comparison to study the impact of the natural ventilation and the heat released by people and equipments; c comparison to study the impact of the convective heat transfer coefficients 2 It must be remembered here that the ventilation has an impact not only on air temperature, but also on indoor air quality (for example, it helps to disperse pollutants emitted indoor). The optimal ventilation must then, takes into account both effects. 3 The convective heat coefficient h is used to estimate the sensible heat H exchanged between the external wall surface and the atmosphere, using the formula H=h (Ta–Twall), where Twall is the temperature of the external surface of the wall, and Ta is the outdoor air temperature. H enters in the surface energy budget at the external surface and gives the b.c. for the heat diffusion equation in the wall. 75 342 Fig. 11 Comparison of the heat exchanged through natural ventilation for the office building over different floors (no regulation of the indoor air temperature) Finally, a simulation with a different outdoor input radiation for every floor was conducted. A five floor building (15 m high, with floors 3 m high), in a street 15 m wide, (H/W=1) was considered to compute the outdoor radiation. Using the parameterization of Martilli et al. (2002), the solar radiation reaching the walls (accounting for shadowing and reflections) was computed for every floor and for a N–S and W–E street orientation. Four radiations (for North, South, West, and East walls) were obtained for each floor. Such values were then used as an input to BEM to compute the processed load in the same conditions than in the base case. As one can see in Fig. 10, when the incoming radiation fluxes are different in every level, the load is different for every floor. In particular, the fifth floor loses more energy during night time and needs more energy to keep the temperature constant. On the other F. Salamanca et al. hand, during daytime, the upper floors receive more solar radiation (less shadowing) than the lower floors and need less energy to keep the temperature constant (for this winter case). The last test was performed with the same configuration, but without any control over the indoor temperature Hout = 0. The temperature of the different floors could fluctuate freely in response to the different forcings. This affects the exchanges of heat between the indoor and outdoor air through ventilation. In fact, as shown in Fig. 11, having different temperatures on each floor, the heat fluxes due to ventilation are also different. These last two examples show that it is important to consider the presence of floors in the building in the estimation of energy consumption, as well as in the calculation of the heat exchanged between the indoor and the outdoor air. 5 First results about the impact of BEM in the UCP In this last section, we present preliminary results about the impact of BEM in the UCP of Martilli. The UCP-BEM scheme has been coupled to the mesoscale model FVM (Clappier et al. 1996) and simulations in a vertical column (neglecting horizontal derivatives) have been carried out in an ideal middle latitude city in a summer day. The ideal city is composed of cubical buildings 15 m high (H/W=1). To study the feedback between the air conditioning systems and the atmosphere, two different simulations were carried out using the same building parameters. In the first simulation, the heat extracted by the air conditioning systems is directly released into the atmosphere, while in the second it is not (i.e., the feedback between the building Fig. 12 Comparison of the difference in the energy consumption and the outdoor temperature for 4 days of simulations. In the first case the heat is released directly into the atmosphere and in the second one the heat is released into a sewage or in the soil 76 A new building energy model coupled with an urban canopy parameterization with the air conditioning and the atmosphere is not taken into account). Both simulations were carried out without considering people or equipments ( 8 p =0 and qE =0 in Eq. 3), with 30% of windows and without any natural ventilation (β=1 in Eq. 3). Standard values of the air conditioning system (the air conditioning was working from 8:00 to 19:00 every day, and the target temperature was 25ºC) and building materials were used. In Fig. 12, one can observe the temporal evolution of the difference in the air temperature on top of the buildings (where heat is released) between the two simulations ∆T (°C) during a 4day period. Moreover, the temporal evolution of the difference in energy consumption (W), as well as the total daily variation in energy consumption ∆EC (kWh) (here 1 kWh=3.6×106 J) per building, have been computed. The results show that when the air conditioning is working, the heat released into the atmosphere can increase the outdoor air temperature by 2 to 3°C. It is important to mention that when the outdoor air temperature increases, the energy necessary to maintain the indoor temperature within the comfort range also increases. Even though the results are not conclusive in these simulations (the atmospheric heating may be overestimated because the horizontal advection is not accounted for), one can clearly see that the impact of the air conditioning systems on the urban atmosphere is not negligible. Finally, the relative difference (∆Ec/Ec) has been computed to evaluate the feedback effects. In our 4-day simulation, the corresponding values were 6.33%, 7.88%, 8.42%, and 9.53%, respectively. The results indicate that an increase in air temperature of about 2°C corresponds to an increment in energy consumption of approximately 7–8%. In conclusion, this work is a first step towards a modeling tool that can account for the complex interactions between urban climate, air pollutant dispersion, and the energy demand of buildings. Such a tool can be an important support to urban planners. Acknowledgements The authors wish to thank CIEMAT and LPASEPFL for the doctoral fellowships held by Francisco Salamanca and Andrea Krpo, respectively. We also thank Y. Kikegawa for providing important data for the validation. This work has been funded by the Ministry of Environment of Spain. Appendix List of symbols albwall,j Af Awall i Awind j Cp hwall,i hwind,j l Ta Tr Twall,i Twind,j P qE 6 Conclusions qhl The verification indicates that BEM has accurately simulated the basic heat transfer phenomenon. The inter-program validation provides important information about the accuracy of BEM compared with other well-known computer programs used in the thermal analysis of buildings. These results show that BEM is able to capture the most important mechanisms governing heat generation within buildings and exchanges with the exterior. It is simpler and less CPU expensive than other building energy models and can be easily coupled with an UCP for mesoscale models. Moreover, BEM is able to reproduce the effects of the air conditioning systems. Finally, the sensitivity test (Section 4) shows the importance of considering different floors. A more detailed validation of BEM in the UCP of Martilli is carried out in Part II of this work (Salamanca and Martilli 2009), using meteorological data recorded during the BUBBLE campaign over Basel (Switzerland). 343 qhs qVa qVr Rlj Rs Rsj Va αwind,j β εwall,j εwind albedo of the indoor surface of the wall j floor area (m2) surface area of the wall i (m2) surface area of window in the wall j (m2) specific heat of air (J K−1 kg−1) convective heat transfer coefficient between the indoor air and the wall i (WK−1 m−2) convective heat transfer coefficient between the indoor air and the window in the wall j (WK−1 m−2) latent heat of evaporation (J kg−1) outdoor air temperature (K) indoor air temperature (K) indoor surface temperature of the wall i (K) temperature of the window in the wall j (K) peak number of occupants per floor area (person m−2) sensible heat gain from equipments per floor area (W m−2) latent heat generation from the occupants (W person−1) sensible heat generation from the occupants (W person−1) specific humidity of the outdoor air (kg kg−1) specific humidity of the indoor air (kg kg−1) total long-wave radiation flux received by the wall j (W m−2) solar radiation energy crossing the windows received directly by the indoor walls (W m−2) total shortwave radiation flux received by the wall j (W m−2) total ventilation rate (m3 s−1) % of window in the wall j thermal efficiency of the total heat exchanger, 0b1 emissivity of the indoor surface of the wall j emissivity of the windows 77 344 φP ρ σ F. Salamanca et al. ratio of hourly occupants to P, 0 8 p 1 air density (kg m−3) Stefan-Boltzmann constant (W m−2 K−4) References BLAST-3.0-1981. The Building Loads Analysis and System Thermodynamics Program, Users Manual, U. S. Army Construction Engineering Research Laboratory, Champaign, Illinois, March. Clappier, A., Perrochet, P., Martilli, A., Muller, F. and Krueger, B. C. 1996. A new nonhydrostatic mesoscale model using a CVFE (control volume finite element) discretisation technique, in P. M. Borell et al (eds.), Proceedings, EUROTRAC Symposium ’96, Computational Mechanics Publications, Southampton, pp. 527–531 Karlsson J, Roos A (2000) Modelling the angular behaviour of the total solar energy transmittance of windows. Sol Energy 69:321–329 Kikegawa Y, Genchi Y, Yoshikado H, Kondo H (2003) Development of a numerical simulation system toward comprehensive assessments of urban warming countermeasures including their impacts upon the urban buildings energy-demands. Appl Energy 76:449– 466 Kusaka H, Kondo H, Kikegawa Y, Kimura F (2001) A simple singlelayer urban canopy model for atmospheric models: comparison with multi-layer and slab models. Bound-Lay Meteorol 101:329– 358 Martilli A, Clappier A, Rotach MW (2002) An urban surface exchange parameterization for mesoscale models. Bound-Lay Meteorol 104:261–304 Masson V (2000) A physically based scheme for the urban energy budget in atmospheric models. Bound-Lay Meteorol 94:357–397 Oke, T. R. 1987, The surface energy budget of urban areas, in Modeling the Urban Boundary Layer, edited by the American Meteorological Society, 1–52. Roos A (1997) Optical characterisation of coated glazings at oblique angles of incidence: measurements versus model calculations. J Non-Cryst Solids 218:247–255 Salamanca F, Martilli A (2009) A new building energy model coupled with an urban canopy parameterization for urban climate simulations—Part II. Validation with one dimension off-line simulations. Theor Appl, Climatol. doi:10.1007/s00704-0090143-8 Sparrow EM, Cess RD (1978) Radiation Heat Transfer. Brooks/Cole, Belmont, p 366 Walton, G. N. 1983. Thermal Analysis Research Program (TARP) Reference Manual, U. S. Department of Commerce, National Bureau of Standards, National Engineering Laboratory, Washington, DC, March. Zmeureanu R, Fazio P, Haghighat F (1987) Analytical and interprogam validation of a building thermal model. Energy Build 10:121–133 78 Capítulo 3 79 Capítulo 3 3.2 Un nuevo modelo energético de edificios acoplado a una parametrización urbana para simulaciones del clima urbano-Parte-II. Validación con simulaciones (off-line) en una dimensión vertical. Salamanca, F., and A. Martilli, 2010: A New Building Energy Model coupled with an urban canopy parameterization for urban climate simulations-part II. Validation with one dimension off-line simulations. Theor. Appl. Climatol., 99, 345-356. En esta sección se presentan los resultados de varias simulaciones en una dimensión vertical (off-line) utilizando el modelo energético BEM acoplado a la parametrización urbana BEP. Se calculan diferentes flujos (calor sensible/latente y radiación neta) y se comparan con valores observados recogidos durante la campaña meteorológica BUBBLE (2002) que tuvo lugar en la ciudad suiza de Basel. Gracias a que con el nuevo modelo energético se calcula la evolución de la temperatura y humedad interiores, esta campaña es particularmente interesante porque se tomaron medidas de la temperatura interior en algunos edificios. Los resultados obtenidos muestran la importancia de los flujos resueltos en el modelo energético. Las diferentes simulaciones muestran que el calor proveniente de los sistemas de aire acondicionado tiene un importante impacto en la temperatura exterior y que debería tenerse en cuenta en las simulaciones del clima urbano a mesoescala. 80 Theor Appl Climatol (2010) 99:345–356 DOI 10.1007/s00704-009-0143-8 ORIGINAL PAPER A new Building Energy Model coupled with an Urban Canopy Parameterization for urban climate simulations—part II. Validation with one dimension off-line simulations Francisco Salamanca & Alberto Martilli Received: 21 October 2008 / Accepted: 21 April 2009 / Published online: 13 May 2009 # Springer-Verlag 2009 Abstract Recent studies show that the fluxes exchanged between buildings and the atmosphere play an important role in the urban climate. These fluxes are taken into account in mesoscale models considering new and more complex Urban Canopy Parameterizations (UCP). A standard methodology to test an UCP is to use one-dimensional (1D) off-line simulations. In this contribution, an UCP with and without a Building Energy Model (BEM) is run 1D off-line and the results are compared against the experimental data obtained in the BUBBLE measuring campaign over Basel (Switzerland) in 2002. The advantage of BEM is that it computes the evolution of the indoor building temperature as a function of energy production and consumption in the building, the radiation coming through the windows, and the fluxes of heat exchanged through the walls and roofs as well as the impact of the air conditioning system. This evaluation exercise is particularly significant since, for the period simulated, indoor temperatures were recorded. Different statistical parameters have been calculated over the entire simulated episode in order to compare the two versions of the UCP against measurements. In conclusion, with this work, we want to study the effect of BEM on the different turbulent fluxes and exploit the new possibilities that the UCP–BEM offers us, like F. Salamanca : A. Martilli Research Centre for Energy, Environment and Technology, CIEMAT, Avenida Complutense 22, 28040 Madrid, Spain F. Salamanca (*) CIEMAT, Edificio 03, P1.9, Avenida Complutense 22, 28040 Madrid, Spain e-mail: [email protected] the impact of the air conditioning systems and the evaluation of their energy consumption. 1 Introduction The Urban Canopy Parameterization (UCP) of Martilli et al. (2002) simulates the impact of urban buildings on airflow in mesoscale atmospheric models. This scheme takes into account the impact of the urban surfaces on wind, temperature, and turbulent kinetic energy (TKE), but does not explicitly resolve the generation of energy within the buildings and its transfer to the atmosphere. Since this effect can significantly modify the urban energy budget, Salamanca et al. (2009) developed a Building Energy Model (BEM) that was implemented in the urban parameterization (UCP–BEM) of Martilli. Thanks to this improvement, a detailed study of the impact of cities on the urban climatology can be conducted. However, this parameterization needs to be validated against meteorological observations in order to judge the reliability of the results and its predictions. In the last years, several measurement campaigns have been carried out to evaluate different urban schemes; see Masson et al. (2002) and Best et al. (2006) for example. These necessary campaigns help us to understand the physical processes that take place in the urban atmosphere and to validate the accuracy of our schemes. All the experience and knowledge acquired with these studies could be applied to evaluate new strategies of city development to minimize the intensity of the Urban Heat Island phenomenon (UHI). Following this idea, the goal of the present work is twofold: on the one hand, the recent UCP–BEM scheme is evaluated against the surface energy balance fluxes measured in the BUBBLE (http://www.unibas.ch/geo/mcr/Projects/BUBBLE/) experi- 81 346 F. Salamanca, A. Martilli ment and compared with the results obtained with the previous version of UCP of Martilli; on the other hand, the new possibilities that the UCP–BEM scheme offers are evaluated. In particular, with this new scheme, the impact of the air conditioning systems on the atmosphere can be evaluated, and the energy consumption can be calculated for different situations. The UCP–BEM parameterization has been coupled to the mesoscale model (FVM, Clappier et al. 1996), and for this work, the 1D off-line version (see Section 3.1 for details) is used. In Section 2, a short description of the theoretical context is explained. In Section 3, the 1D off-line configuration and the fundamental characteristics of the simulated urban area are described. In Section 4, results obtained with the two schemes are compared. And finally, in Section 5, the heat emission and the energy consumption of the air conditioning systems in different situations are analyzed. Conclusions and future research are given in Section 6. within the buildings due to human presence). In the model, the anthropogenic latent heat interacts with the outdoor air through the natural ventilation of the buildings, while the sensible heat is exchanged with the atmosphere through natural ventilation and by heat diffusion through the walls. In the model, all these anthropogenic heats (jointly with the heat generated by the air conditioning systems) are added to the terms QLE and QH of the Eq. (1). In the two urban schemes, the different urban fluxes can be addressed independently, and the heat stored in the urban fabric is calculated using the energy balance equation, 2 Approach 3 Applied framework The urban surface energy balance, defined by (Oke 1988), plays a fundamental role in this work. Assuming no horizontal advection, the relevant energetic exchange processes can be written as: 3.1 The 1D off-line configuration Qnet ¼ QH þ QLE þ Qstor Qstor ¼ Qnet QH QLE ð2Þ A standard way to validate an urban parameterization is to compute the different fluxes at different heights and to compare them with the measurements. An example is sketched in Fig. 1. A peculiarity of the UCP used in this study is that it is multilayered. To run it off-line, then the simulation is ð1Þ where the term Qnet is the net all wave radiation, QH the sensible heat flux, QLE the latent heat flux, and finally Qstor the net heat stored in the urban area. It is important to mention that in an urban area the heat fluxes (QH and QLE) are not only the result of the partitioning of the net radiation, as it happens for natural surfaces, but they have a component due to human activities (anthropogenic heat). In the UCP of Martilli et al. (2002), this was not considered1, while in the new UCP–BEM scheme, a fraction of the total anthropogenic heat is taken into account (the heat released by the traffic and industry are not considered in the new UCP–BEM scheme). The latent and sensible anthropogenic heat is considered in this new UCP–BEM separately (more details in Salamanca et al. 2009), and includes all additional energy produced by human activities within the buildings; the latent heat generated by people, the sensible heat generated by machines and people, and the heat generated by the air conditioning systems (this last heat is injected directly into the atmosphere, while the other fluxes are released 1 To be precise, in the UCP of Martilli, it is possible to fix the internal building temperature, which accounts in some indirect and very rough way for the anthropogenic heat. But this technique is not precise, and does not allow any estimation of energy consumption. Fig. 1 Schematic picture of the heat fluxes considered in an urban environment 82 A new Building Energy Model coupled with an Urban Canopy — part II performed on a vertical column (1D), ranging from street level to the height of the forcing (32 m in this case), with a vertical resolution of 2 m. The model calculates the vertical profile of several variables (temperature, wind, humidity, TKE) and turbulent fluxes from the forced altitude down to ground. The model uses a k−l turbulence closure scheme, hence the vertical turbulent fluxes w0 ξ0 (ξ stands for any scalar variable) are computed using the K-theory, as, w0 ξ0 ¼ K @ξ : @z ð3Þ The computation of the turbulent transfer coefficients K leads to the calculation of a prognostic equation for the TKE (Bougeault and Lacarrère 1989), as it is explained in Martilli et al. (2002). The only difference, compared to the formulation presented in Martilli et al. (2002), is in the estimation of the length scales. Since it is impossible to estimate the values of lup because the whole planetary boundary layer (PBL) is not resolved, it is assumed that the relevant length scale is the height above ground. The forcing was applied to air temperature, humidity, pressure, wind components, long-wave downward radiation, and solar radiation. In summary, the sensible and latent heat fluxes are estimated at different heights from (details of the symbols in Appendix) QH ¼ ρCP w0 θ0 ¼ ρCP K QLE ¼ ρLv w0 q0 ¼ ρLv K @θ @z ð4Þ @q ; @z ð5Þ while the net radiation Qnet is a weighted average of the net radiation at each surface (walls, roof, street, and vegetated part). It should not be forgotten that the energy balance (Eq. 1), which represents a budget of the different fluxes representative of an urban zone, never describes local values. 3.2 Urban area characteristics and measurements The data used in this work were collected at the main urban surface site of the BUBBLE experiment (Sperrstrasse). It is located in a heavily built-up part of the city of Basel, Switzerland (European urban, mainly residential three- to four-story buildings in blocks, flat commercial and light industrial buildings in the backyards). The parameters of the city surface are summarized in Table 1 (more details in Christen 2005) and the thermal properties of the materials in Table 2. The measurement setup consists of a tower (see Fig. 2) inside a street canyon reaching up to 32 m (approximately 2.2 times the mean roof height of the urban 347 Table 1 Morphometric parameters and surface characteristics of the city surface of the city of Basel for a circle of 250 m around the tower at Basel-Sperrstrasse Mean building height ZH 14.6m Population density ρinhab Frontal aspect ratio Plan aspect ratio of buildings Plan aspect ratio of vegetation Complete aspect ratioa 1F 1p 1V 1C Between 200 and 300 inhabitants/ha 0.37 0.54 0.16 1.92 Plan area ratio of impervious non-building surfaces Roof materials 1I 0.30 – Building materials – 45% tiles, 50% gravel, 5% corrugated iron Plaster, concrete, brick a This term is the total surface of a building in contact with the outdoor air divided by the area of a unit urban cell surface). The intensive operation period (IOP) analyzed was between June 10th and July 10th 2002. The overall framework and the experimental activities during BUBBLE are documented in Rotach et al. (2005). Measurements were taken at different heights in and above the street canyon with a 10-min average time resolution. 4 Results During the IOP, the mean air temperature was 20°C and the mean precipitation was 65 mm (more details in Christen 2005). The simulations were carried out during the overall Table 2 Thermal properties of the building materials for roofs, walls, and roads used in the simulations corresponding to the BaselSperrstrasse site Roof layer d C 1 Road layer d C 1 Wall layer d C 1 1 2 3 4 0.02 1.128 0.614 0.02 0.276 0.129 0.02 0.382 0.090 0.04 1.745 0.984 0.010 1.940 0.750 0.040 1.940 0.750 0.025 1.550 0.934 0.975 1.350 0.275 0.01 1.778 1.070 0.03 1.780 1.076 0.08 1.764 1.071 0.02 1.779 0.651 Layer sequence: 1 is nearest to the surface. Here, d is the thickness of layer (m), C is the heat capacity of the layer (MJ m−3 K−1 ), and 1 is the thermal conductivity (W m−1 K−1 ) 83 348 F. Salamanca, A. Martilli Fig. 2 The street canyon from above (Sperrstrasse). The tower reaches approximately 2.2 times the mean roof height of the urban surface (photography obtained from the internet page of the BUBBLE experiment) IOP with four different setups. In the first one, only the UCP of Martilli (ucp case) was considered. The second simulation was carried out considering the UCP–BEM scheme (ucp–bem case), but without considering the effects of the air conditioning systems (they were turned off in the model). Finally, the last two simulations were carried out using the same UCP–BEM parameterization but with the air conditioning systems running in two different ways; for the first one, the air conditioning was working 24 h a day (ucp–bemac case), while for the second one, air conditioning was working from 8:30 to 18:30 h every day (ucp– Table 3 Input parameters and variables considered in the four different simulations that were carried out a In the Urban Canopy Model, the roughness of the roofs and the streets is taken into account to compute the exchange of the heat fluxes between the surfaces and the atmosphere b Typical air conditioning systems for office buildings have values of COP between 2 and 5; see Ashie et al. (1999) bemac* case). A mathematical description of the modeling of the air conditioning systems is explained in Salamanca et al. (2009). During the IOP, sensors of temperature were installed in the stairwells of some buildings. These measurements suggest that the target temperature of the air conditioning systems was close to 24°C (Voogt, personal communication). A detailed summary of the setting used in the four simulations is described in Table 3. The heat production by an adult when he is resting is about 70 W, when working (office work) is about 110 W, and when occupied (walking, driving, domestic work, etc.) is about 300 W (Oke 1987). Averaging these quantities and assuming 8 h daily for each activity gives a heat production per person of 160 W. Furthermore, the water lost by evaporation during a day by an adult is about 0.8 kg. This quantity corresponds to approximately 22.7 W of latent heat per person. Using these values and the fact that in Basel-Sperrstrasse the population density is about 250 inhabitants/ha (Christen 2005), it is possible to estimate the total sensible and latent human heat generated in this zone. In the simulations, a constant ratio of occupants of 0.0116 persons/m2 of floor and a sensible heat flux from equipment of 7.4 W/m2 of floor were considered. The values of sensible heat flux from equipment were chosen to be coherent with the estimation of an anthropogenic heat emission of 20 W/m2 of land for the Basel-Sperrstrasse site (Christen 2005). 4.1 Sensible heat Two periods are analyzed in this section. The first period goes from 14th of June 2002 (165 Julian day) to 23 rd of June 2002 (174 Julian day), both inclusive, and the second one from 30th of June (181 Julian day) to 14th of July 2002 (195 Julian day). Most of the days in the first period were sunny, and in some days the temperature reached up to 35°C. In the second period, cloudy skies and lower temperatures were more frequent. In Fig. 3, one can see the results obtained for the sensible heat flux (w0 θ0 Case ucp ucp–bem ucp–bemac ucp–bemac* Z0 (m)a Indoor surface wall temperature fixed Natural ventilation Number of floors considered in a building Coefficient of performance (COP)b Target temperature of room cooling Comfort range of temperature Sensible heat generated by a person Latent heat generated by a person 0.0005 20°C No – 0.0005 Not fixed Yes 4 0.0005 Not fixed No 4 0.0005 Not fixed No 4 – – – – – – – – 160 W 22.7 W 3.5 23.5°C ±0.5°C 160 W 22.7 W 3.5 23.5°C ±0.5°C 160 W 22.7 W 84 A new Building Energy Model coupled with an Urban Canopy — part II kinematic heat flux) calculated in the four different cases against the measurements at different heights (to facilitate the clarity in the plots and to avoid noise induced by the intermittent presence of clouds, only three selected days for the first period and two selected days for the second are shown, and hourly mean values are used). Above the roofs, the ucp–bem’s cases show better fits than the ucp case (Fig. 3c–d). In the IOP, the air conditioning systems were 349 working (this can be deduced from the indoor air temperature measurements showing a little variation of temperature during the day) and these systems produce an increase of sensible heat fluxes into the atmosphere. To quantify the differences between the simulation and the measurements, we computed the root mean square error (RMSE) for the sensible heat flux QH for the four cases during the two periods of simulation (hourly mean values Fig. 3 Sensible heat fluxes obtained with the two parameterizations (UCP and UCP–BEM) in four different situations against the measurements for the two periods analyzed: a–b at 32 m, c–d at 18 m, and e–f at 4 m from the ground 85 350 Table 4 Performance statistics (RMSE) for sensible heat fluxes (W/m2) at different heights for the four cases simulated at the Basel-Sperrstrasse site (first period) F. Salamanca, A. Martilli Case QH QH QH QH QH QH QH QH QH (32 m) (night-time) (32 m) (daytime) (32 m) (18 m) (night-time) (18 m) (daytime) (18 m) (4 m) (night-time) (4 m) (daytime) (4 m) were considered). Moreover, night-time and daytime values were also calculated. A value was considered a night-time value when the observed net radiation was negative. Otherwise, the value was considered a daytime value. Here, the RMSE is defined as: " #1 N 2 2 1 X RMSE ¼ Vj V0 ð6Þ N j¼1 where Vj and V0 are simulated and observed values, respectively. 4.1.1 First period RMSE results (see Table 4 and Fig. 3a) at 32 m show that the inclusion of BEM improves the results compared to the standard ucp. For the first period, the best result is obtained in the ucp–bem (no air conditioning) case when entire days (day and night-time) are considered. During the night, the best fit (RMSE night-time) is obtained when the air conditioning is used only during daytime (ucp–bemac* case), while for the ucp–bem simulation (no air condition- Table 5 Performance statistics (RMSE) for sensible heat fluxes (W/m2) at different heights for the four cases simulated at the Basel-Sperrstrasse site (second period) Case QH QH QH QH QH QH QH QH QH (32 m) (night-time) (32 m) (daytime) (32 m) (18 m) (night-time) (18 m) (daytime) (18 m) (4 m) (night-time) (4 m) (daytime) (4 m) Days 165–174 ucp–bemac ucp–bemac* ucp–bem ucp 59.71 46.69 68.61 53.30 35.75 64.28 30.94 16.85 38.90 55.66 16.42 73.71 53.62 37.38 64.00 30.80 16.21 38.92 39.20 23.24 48.58 56.62 29.19 71.76 30.78 15.55 39.12 46.35 20.77 59.71 77.94 51.85 94.19 31.53 17.32 39.58 ing), we observed the best RMSE during daytime. In fact, during the day, when the air conditioning is in use, the sensible heat is slightly overestimated at this height. As indicated in Fig. 3c, larger differences are observed 18 m above the ground (the mean building height was 14.6 m). Here, the best RMSE result (considering all the days) is obtained in the ucp–bemac case, the second better in the ucp–bemac*, the third in the ucp–bem, and the worst fit is generated by the ucp simulation. During daytime, the best fit is obtained with the ucp– bemac* scheme and during night-time with the ucp–bem. Figure 3e indicates that near the ground the effect of the air conditioning systems is negligible. The RMSE parameters confirm this hypothesis (there are no important differences between the four cases simulated). In fact, in the model, the heat is released into the atmosphere by an air conditioning system located on the roof of the buildings, which might explain the small difference obtained near the ground within the urban canopy. It could be interesting to study the effect of air conditioning systems located at different heights on the facade of buildings. In fact, in that case, heat would be directly released within the urban canyons. Days 181–195 ucp–bemac ucp–bemac* ucp–bem ucp 44.63 37.43 49.92 37.65 25.88 45.28 27.41 15.62 34.36 39.64 21.84 49.97 34.99 23.96 42.12 27.33 15.32 34.36 35.35 25.80 41.75 41.15 19.56 52.94 27.15 14.91 34.24 36.09 14.73 47.12 54.17 30.77 67.94 27.87 16.34 34.75 86 A new Building Energy Model coupled with an Urban Canopy — part II 351 4.1.2 Second period For this period (see Table 5 and Fig. 3b), the best fit at 32 m is obtained again in the ucp–bem case when complete days are considered. Values close to ucp–bem are generated by the ucp and ucp–bemac* cases. Unexpectedly, the best night-time value is obtained with the ucp scheme, and finally, during daytime the lower RMSE is computed with the ucp–bem (no air conditioning) case. At 18 m (Fig. 3d), the best results are obtained when the air conditioning systems are in use (ucp–bemac and ucp–bemac* cases), with a large difference between the new schemes and the traditional ucp. During night-time, the best fit is obtained in the ucp–bem case, followed closely by the ucp–bemac* one. During daytime, the best adjustment is generated with the ucp–bemac* scheme. Finally, at 4 m above the ground (Fig. 4f), there are no important differences between the four cases simulated. In the above comparison between modeled and measured sensible heat fluxes, the following points must be taken into account: & There is a general tendency for the ucp–bemac and ucp–bemac* simulations to have worse RMSE than ucp at 32 m, but better at 18 m. Since there are no sources or sinks of energy between 18 and 32 m in the model, the computed values are similar at the two heights. The difference should therefore derive from the measurements. To confirm this hypothesis, the difference between the sensible heat fluxes measured at 32 and 18 m have been plotted (Fig. 4). As one can see, differences in the measured values between the two heights are around 50–100 W/m2, and may be due to some horizontal advection effect. Since in the model horizontal advection is not taken into account, we think & & & that the 18 m measurements are more significant for the validation of the model. The ucp (old version) maintains the internal temperature inside the building constant, but does not take into account the energy consumption needed to keep it constant. Therefore, this model cannot reproduce the complete impact generated by anthropogenic heating. The fluxes computed by ucp, then, do not result from a complete representation of the physics of the system. The ucp–bem without air conditioning does not control the temperature inside the building. The variation of the internal temperature modeled by ucp–bem is much higher than the measured variation (close to 1°C around 24°C). So, even if the RMSE of the sensible heat flux at 18 m is comparable to those computed by ucp–bemac and ucp–bemac*, the sensible heat fluxes computed by ucp–bem are not a complete representation of the physics of the system. It is interesting to observe (Fig. 3) that, at 18 m during night-time, ucp has the lowest sensible heat flux, close to zero, while ucp–bem, ucp–bemac, and ucp–bemac* all have a clear positive sensible heat flux, in agreement with the measurements. The nocturnal positive sensible heat flux is a crucial feature to model the nocturnal Urban Heat Island. In conclusion, it is possible to say that the fact of considering the generation of heat within the buildings, and in particular the effect of the air conditioning, improves the estimation of the sensible heat fluxes in the city, not only because the statistical parameters are better than those of the old ucp but also because the physics of the system is better represented. This is a very important point since it increases the confidence in the predictive capability of the model. 4.2 Net radiation Fig. 4 Sensible heat flux at 32 m minus sensible heat flux at 18 m of height. The lower axis corresponds to the first period and the upper axis to the second period The differences between the four simulations for the net radiation (Fig. 5 and Table 6) are small when the complete days are considered. However, for the first period, it is interesting to observe that during night-time the best results are obtained with the ucp–bem schemes, and the simulation that matches the measurements most closely is the ucp– bemac*. During daytime, the best fit is obtained in the ucp case in the two periods followed closely by the ucp–bemac schemes. The underestimation of the net radiation during daytime for the two periods (Fig. 5) could be a consequence of overestimating the upward long-wave radiation in the four schemes which, in turn, might be caused by an overestimation of the roof surface temperature. The roof surface 87 352 F. Salamanca, A. Martilli Fig. 5 Net radiation for the four different schemes against measurements: a 3 days are shown for the first period, and b two selected days are shown for the second period temperature is very sensitive to the roof’s roughness length, a parameter for which there is little information. 4.3 Latent heat The RMSE (Table 6) for the latent heat shows that in the two periods there are no significant differences between the four schemes when complete days are considered. It was not necessary to evaluate the daytime and night-time RMSE parameters because the plots (not shown) do not reveal significant differences. ejected into the atmosphere by an air conditioning system is calculated as (more details about the symbols in Appendix): COP þ 1 ðHsout þ Hlout Þ: ð7Þ $Hs ¼ COP If we sum the heat fluxes of all the buildings in the grid cell and divide by the corresponding area, we obtain the heat flux ejected into the atmosphere per unit of land area. Ten simulations are presented in this section, which were carried out considering only the cases with air conditioning systems: & 5 Waste heat emission and energy consumption In this last section, the waste heat emission of the air conditioning systems and the energy consumption are evaluated. The sensible heat ∆Hs (W) (in the QH term) Table 6 Performance statistics (RMSE) for different heat fluxes (W/m2) at 32 m of height for the four cases simulated at the BaselSperrstrasse site Case ucp–bemac Days 165–174 (first period) 36.95 Qnet Qnet 7.02 (night-time) 49.51 Qnet (daytime) QLE 25.29 Days 181–195 (second period) Qnet 36.00 Qnet 12.22 (night-time) 47.61 Qnet (daytime) QLE 23.67 ucp–bemac* ucp–bem ucp 37.79 5.09 39.94 6.62 34.42 15.89 50.85 25.26 53.63 25.46 44.21 25.35 36.26 12.73 37.47 14.92 33.32 10.71 47.85 23.61 49.03 23.82 44.19 23.82 & & To evaluate the sensitivity of the model to the target temperature imposed inside the buildings, we carried out two simulations with the target temperature decreased by 1°C (bemac −1in and bemac* −1in cases), and two with the target temperature increased by 1°C (bemac +1in and bemac* +1in). To study the impact of the air conditioning system on the outdoor temperature, and consequently the corresponding increase in energy consumption, two simulations were carried out increasing the outdoor temperature by 1°C (bemac +1out and bemac* +1out cases) at the forcing height. Finally, two more simulations (bemac-insulating and bemac*-insulating) were considered by increasing the thickness of the insulating material (thermal conductivity 1= 0.09 W/m K) at the roof of the buildings from 2 to 6 cm. All these simulations were performed for the two entire periods (from 165 to 174 Julian days for the first period and from 181 to 195 Julian days for the second period). In Figs. 6 and 7, one can see the heat ejected into the atmosphere (only the results for the three above selected days are plotted for the first period and the two selected days for the second). The time average hΔHs i during 10 days (first period) and during 15 days (second period) (10-min time resolution) gives, in the bemac cases (see Tables 7 and 8), heat fluxes near to 100 (W/m2) and to 50 88 A new Building Energy Model coupled with an Urban Canopy — part II 353 Fig. 6 Sensible heat ejected into the atmosphere by the air conditioning systems corresponding to the first period (only 3 days are shown): a bemac cases and b bemac* cases (W/m2) of land, respectively. On the other hand, we obtained close to 160 (W/m2) for the first period and to 90 (W/m2) of land for the second in the bemac* schemes (for the bemac* cases, the average was computed considering only the working time by day). Observe that the waste heat released into the atmosphere when the target temperature is lowered by 1°C is higher compared to when the outdoor temperature is increased by 1°C (similar differences are observed in the two periods). On the other hand, the heat ejected into the air is decreased considerably when the thickness of the insulating material is increased, and an energy saving of 7–11% was observed. The cooling energy consumption EC (W) for an air conditioning system and the total consumption ΔEC (J) for a period of time can be calculated as: EC ¼ 1 ðHsout þ Hlout Þ; COP ð8Þ and Z $EC ¼ EC dt: ð9Þ Period of simulation It is also interesting to estimate the total consumption between the different simulations. One can see in Tables 7 and 8 the results for the total consumption by square kilometer of city and by day (here 1 kWh=3.6×106 J). The saving in energy consumption due to an increased thickness of the insulation material approaches 7–11% for both periods. In contrast, when the target temperature was decreased by 1°C, we observed an increase (negative values in Tables 7 and 8 indicate an increase in energy consumption) in the consumption of nearly 9% for the first period and 14% for the second. Eventually, the consumption increased by 3% in Fig. 7 Sensible heat ejected into the atmosphere by the air conditioning systems corresponding to the second period (only 2 days are shown): a bemac cases and b bemac* cases 89 92.63 4.95 – bemac 84.20 4.51 8.87 bemac +1in 86.40 4.61 6.91 bemacinsulating 95.76 5.11 −3.34 bemac +1out 101.17 5.40 −9.12 bemac −1in 161.00 3.69 – bemac* 147.00 3.38 8.45 bemac* +1in 144.19 3.31 10.19 bemac*insulating 165.00 3.80 −3.08 bemac* +1out Days 181–195 h$Hs i (W/m2) of – land ΔEC (105 kWh/km2day) of – land Saving energetic (%) h$Hs i (W/m2) of – land ΔEC (105 kWh/km2 day) of – land Saving energetic (%) Case 50.18 2.81 – bemac 42.92 2.47 11.88 bemac +1in 46.16 2.51 10.64 bemacinsulating 53.08 2.95 −4.95 bemac +1out 57.79 3.17 −13.03 bemac −1in 89.60 2.06 – bemac* 76.20 1.76 14.76 bemac* +1in 79.97 1.84 10.76 bemac*insulating 94.80 2.18 −5.70 bemac* +1out Table 8 Results of the energy consumption and the heat ejected into the atmosphere corresponding to the ten cases simulated at the Basel-Sperrstrasse site (second period) Days 165–174 h$Hs i (W/m2) of – land ΔEC (105 kWh/km2 day) of – land Saving energetic (%) h$Hs i (W/m2) of – land ΔEC (105 kWh/km2 day) of – land Saving energetic (%) Case Table 7 Results of the energy consumption and the heat ejected into the atmosphere corresponding to the ten cases simulated at the Basel-Sperrstrasse site (first period) 103.15 2.37 −15.00 bemac* −1in 173.94 3.99 −8.34 bemac* −1in 354 F. Salamanca, A. Martilli 90 A new Building Energy Model coupled with an Urban Canopy — part II the first period, and by almost 5% in the second, when the outdoor temperature was increased by 1°C. 6 Conclusions In this work, an urban canopy parameterization (ucp–bem (ac)) coupled with a building energy model has been compared with its counterpart without the building energy model (ucp) and evaluated against measurements obtained in the BUBBLE campaign. This work shows that the new scheme ucp–bem(ac) is able to reproduce satisfactorily the urban fluxes, and that it reproduces the physics of the system better than ucp. Since phenomena like the Urban Heat Island, and in general the structure of the Urban Boundary Layer, are dependent on the urban fluxes, it is expected that the inclusion of this scheme in a mesoscale model will improve the capability of that model to reproduce these phenomena. Moreover, and most important, the scheme is able to compute the heat ejected into the atmosphere by the air conditioning systems and in general the energy consumption linked to meteorological variables. Although further tests in 2D and 3D are needed, it is possible to say that the impact of the air conditioning systems is not negligible and should be taken into account in the mesoscale models to determine the outdoor temperature in big cities in summer conditions. The heat flux due to air conditioning, in fact, can be between 50 and 160 W/m2 in average (with peaks of up to 250 W/m2 in the hottest hours of the day) depending on meteorological conditions and time of use of the system. Furthermore, the scheme has been used to test the sensitivity of the energy consumption to different parameters. An increase in the thickness of the insulation materials could reduce the consumption by about 10%. On the other hand, the reduction in the target temperature by 1°C increases the consumption by nearly 10–15%. Finally, an increase in outdoor temperature by 1°C increases the consumption by 3% to 5%. This relationship between air temperature and energy consumption (similar to what was found by Kikegawa et al. 2003, by analyzing the correlation between data on energy consumption and measured air temperature for Tokyo) highlights the importance of using a coupled system. In fact, the feedbacks between the following three points must be considered: & & & the air temperature in a city depends on the sensible heat fluxes released into the atmosphere, part of the sensible heat fluxes depend on the energy consumption, energy consumption depends on the air temperature. Due to these feedbacks, the estimation of the impact of a change on the target temperature, or the insulation, 355 mentioned above, may also be underestimated. The inclusion of ucp–bem(ac) in a mesoscale model will allow to account for all these feedbacks. It is also interesting to mention that a variation in sensible heat fluxes of the order of those estimated in this work due to the air conditioning (50–160 W/m2) may have a significant impact on the pollutant dispersion and also on cloud formation. Potentially a further feedback can exist, since short- and long-wave radiations are affected by aerosols and clouds. Again, having the scheme implemented in a mesoscale model will allow us to account for this impact. Although these last considerations are not conclusive (more realistic simulations are needed), we can say that the new scheme is able to estimate the urban fluxes, it is a good tool to test new energy consumption reduction strategies, and it can help to better understand the Urban Heat Island phenomenon in big cities. Acknowledgements We are particularly grateful to Andrea Krpo of the EPFL for the implementation of BEM in the UCP. The authors wish to thank CIEMAT for the doctoral fellowships held by Francisco Salamanca. We also thank Andreas Christen of the University of British Columbia for the important explanations about the input data used in the simulations. Moreover, we want to thank James Voogt of the University of Western Ontario who provided us the data about the indoor air temperature in some buildings obtained during the BUBBLE campaign, and finally Scott Krayenhoff of the University of British Columbia who sent us the thermal parameters corresponding to Basel-Sperrstrasse. This work has been funded by the Ministry of Environment of Spain. Appendix List of symbols CP (Jkg−1 K−1) COP Hsout (W) Hlout (W) Lv (Jkg−1) q (kgkg−1) w (ms−1) θ (K) ρ (kgm−3) specific heat of the air at constant pressure energy efficiency (coefficient of performance) sensible heat pumped out for cooling per building latent heat pumped out per building latent heat of vaporization specific humidity vertical component of the wind speed potential temperature density of the air References Ashie Y, Thanh Ca V, Takashi A (1999) Building canopy model for the analysis of urban climate. J. Wind Eng. Ind. Aerodyn. 81:237–248 91 356 Best MJ, Grimmond CSB, Villani MG (2006) Evaluation of the urban tile in MOSES using surface energy balance observations. Boundary-Layer Meteorology 118:503–525 Bougeault P, Lacarrère P (1989) Parameterization of orographyinduced turbulence in a mesobeta-scale model. Mon. Wea. Rev. 117:1872–1890 Christen, A. 2005. Atmospheric turbulence and surface energy exchange in urban environments. Results from the Basel Urban Boundary Layer Experiment (BUBBLE)—(gleichzeitig Diss. Phil.-Nat.-Fak. Univ. Basel 2005)—ISBN 3-85977-266-X Clappier A, Perrochet P, Martilli A, Muller F, Krueger BC (1996) A new nonhydrostatic mesoscale model using a CVFE (Control Volume Finite Element) discretisation technique. In: Borell PM et al. (eds) Proceedings, EUROTRAC Symposium ’96, Computational Mechanics Publications, Southampton, pp. 527–531 Kikegawa Y, Genchi Y, Yoshikado H, Kondo H (2003) Development of a numerical simulation system toward comprehensive assessments of urban warming countermeasures including their impacts upon the urban buildings energy-demands. Appl Energy 76:449– 466 F. Salamanca, A. Martilli Martilli A, Clappier A, Rotach MW (2002) An urban surface exchange parameterization for mesoscale models. BoundaryLayer Meteorology 104:261–304 Masson V, Grimmond CSB, Oke TR (2002) Evaluation of the Town Energy Balance (TEB) scheme with direct measurements from dry districts in two cities. J. Appl. Meteorol. 41:1011–1026 Oke TR (1987) Boundary layer climates, 2nd edn. Methuen, London, p 435 Oke TR (1988) The urban energy balance. Prog. Phys. Geogr. 12:471– 508 Rotach MW, Vogt R, Bernhofer C, Batchvarova E, Christen A, Clappier A, Feddersen B, Gryning SE, Martucci G, Mayer H, Mitev V, Oke TR, Parlow E, Richner H, Roth M, Roulet YA, Ruffieux D, Salmond J, Schatzmann M, Voggt J (2005) BUBBLE—an urban boundary layer meteorology project. Theor Appl Climatol 81:231–261 Salamanca F, Krpo A, Martilli A, Clappier A (2009) A new Building Energy Model coupled with an Urban Canopy Parameterization for urban climate simulations—Part I. Formulation, verification and a sensitive analysis of the model. Theor Appl Climatol doi:10.1007/s00704-009-0142-9 92 Capítulo 3 93 Capítulo 3 3.3 Derivación de las propiedades térmicas de un material representativo de un área heterogénea de la ciudad. Salamanca, F., E. S. Krayenhoff, and A. Martilli, 2009: On the Derivation of Material Thermal Properties Representative of Heterogeneous Urban Neighbourhoods. Journal of Applied Meteorology and Climatology, 48, 1725-1732. En esta sección se analiza el cálculo de calor sensible intercambiado por las superficies de una zona urbana con la atmósfera. A la hora de calcular el flujo de calor sensible para un determinado tipo de superficies (horizontales o verticales) sólo podemos utilizar las propiedades térmicas de un determinado material que represente un punto de la rejilla numérica. En el trabajo presentado en esta sección analizamos dos formas estándar de calcular las propiedades térmicas del material representativo de una zona urbana y proponemos una nueva que mejora notablemente el cálculo del flujo de calor sensible intercambiado con la atmósfera. La idea es derivar las propiedades térmicas del material representativo de la zona suponiendo que el flujo de calor sensible calculado con el nuevo “material” sea igual a la suma de los calores sensibles intercambiados con la atmósfera por cada uno de los distintos materiales presentes. 94 AUGUST 2009 NOTES AND CORRESPONDENCE 1725 On the Derivation of Material Thermal Properties Representative of Heterogeneous Urban Neighborhoods F. SALAMANCA Research Centre for Energy, Environment and Technology (CIEMAT), Madrid, Spain E. S. KRAYENHOFF Department of Geography, University of British Columbia, Vancouver, British Columbia, Canada A. MARTILLI Research Centre for Energy, Environment and Technology (CIEMAT), Madrid, Spain (Manuscript received 18 December 2008, in final form 11 March 2009) ABSTRACT An important question arises when modeling a heterogeneous landscape (e.g., an urbanized area) with a mesoscale atmospheric model. The surface within a grid cell of the model (which has a typical dimension of one or more kilometers) can be composed of patches of surfaces of different character. The total sensible heat flux in the grid cell, then, is the aggregate of the heat fluxes from each individual surface, each one with a unique thermal response arising from its thermal properties, among other factors. Current methods to estimate the sensible heat flux consider only one (in the case of flat terrain) or three (roof, walls, and ground, for urban areas) active surfaces with thermal properties that are ideally representative of the materials present in the grid cell. The question is then how to choose the representative thermal properties such that the heat flux computed by the model most closely approximates the aggregate of the fluxes from the different patches. In this work a new way to average building material thermal properties for urban canopy parameterizations is presented, and a suite of idealized numerical simulations demonstrates its superiority to two more standard averages. Moreover, this novel approach points to a new way of determining physical properties that are representative of heterogeneous zones. 1. Introduction In recent decades, the number of urban meteorological and dispersion modeling publications has grown rapidly as a result of increased computational speed. These studies help us to understand better the atmospheric and environmental effects of urbanization (urban heat islands, pollution, etc.), and they aid in the search for mitigation strategies. However, contemporary increases in computational speed are no panacea [see a recent review of urban modeling by Martilli (2007)]. A mesoscale model needs a horizontal domain of tens/ hundreds of kilometers to simulate mesoscale circula- Corresponding author address: F. Salamanca, Research Centre for Energy, Environment and Technology (CIEMAT), Avenida Complutense 22, 28040 Madrid, Spain. E-mail: [email protected] DOI: 10.1175/2009JAMC2176.1 Ó 2009 American Meteorological Society tions. Yet, for computational reasons the resolution cannot be better than a few kilometers, and much of the heterogeneity in the urban landscape cannot be explicitly represented in the model. Several urban parameterizations (e.g., Masson 2000; Kusaka et al. 2001; Martilli et al. 2002; Kanda et al. 2005) have been developed to communicate the mean thermal and dynamic effects of the city to the mesoscale model. Urban parameterizations have notably improved numerical results as they have developed, though their complexity and their computational demands have also increased. A key problem is the assignment or derivation of averaged physical properties that optimally represent or define each local-scale urban neighborhood, ‘‘urban climate zone’’ (Oke 2006), or urban model grid cell. These averaged physical properties are very important because they feed the urban parameterization; as a consequence, they are directly responsible for 95 1726 JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY the quality of the numerical results. An important issue, then, is how we can obtain averaged material properties that represent the same physical interaction with the atmosphere as a given heterogeneous ensemble of materials in a city (note that we use the word ‘‘average’’ throughout this paper to mean ‘‘weighted’’ or ‘‘geometrically combined’’). In this work, we will focus on the modeled accuracy of the sensible heat flux, because it is the most relevant interaction between (dry) urban surfaces and the atmosphere. This work is a first exploration of this question. In section 2, three different formulations for averaging thermal properties of materials are presented. The numerical framework is explained in section 3. The comparison between the different proposals is carried out in section 4. Conclusions and future directions are discussed in section 5. VOLUME 48 perature of the averaged material. So, clearly the thermal properties of the averaged material should be such that the previous relation [Eq. (2)] is satisfied. Therefore, the surface temperature of the averaged material is equal to the weighted sum of the individual surface temperatures. Within a layer of homogeneous material, the temperature T satisfies the heat diffusion equation: ›T › l ›T 5 , ›t ›z c ›z (3) where l (W m21 K21) is the thermal conductivity and c (J m23 K21) is the volumetric heat capacity of the material. So, the question is how to determine the physical properties l, c, and the thickness d of the new (averaged) material such that N 2. Theoretical framework T(z 5 d, t) 5 In an urban neighborhood of interest, the walls and roofs of the buildings are generally built with a selection of different materials. Because we are interested in interactions with the atmosphere, the averaged material properties for walls and roofs used in urban parameterizations should give the same total sensible heat flux as the weighted sum of the sensible heat fluxes from the individual materials considered.1 So, in a general sense, indicating with aj the area fraction of the material j in the zone and indicating with Hj the sensible heat flux from the material j to the atmosphere, we are seeking a set of averaged material thermal properties that would yield a sensible heat flux H such that N approach a: d 5 c5 å aj h(T j j51 l5 (1) T A ), (2) approach b: d 5 and å aj cj ; j51 (5a) å aj dj , j51 l5 å aj dj lj j51 N , and å aj dj j51 N c5 å aj dj cj j51 N ; and (5b) å aj dj j51 where TA is the air temperature, Tj is the surface temperature of the jth material, and T is the surface tem- N approach c: d 5 1 We want to stress here that we are not proposing to average together materials from roofs with those from walls. Rather, the averages are among roof materials and wall materials, to arrive at average values for each of these two surfaces. Urban canopy parameterizations, in fact, resolve different budgets for walls and roofs, because the radiation and dynamics behave differently for vertical and horizontal surfaces. å aj lj , j51 N N T A) 5 å aj dj , j51 N Assuming that the convective heat exchange coefficients h are equal for each different material, this translates into h(T N N å aj H j . j51 (4) where dj represents the thickness of the jth material present in the urban zone. The physical properties (d, c, and l) of the averaged material could be determined in many ways, but three approaches will be analyzed here— N H5 å aj T j (z 5 dj , t), j51 l5 å aj dj , j51 cpZD2 P N c5 å a j cj , j51 and (5c) —where lj is the thermal conductivity of the jth material and cj is its volumetric heat capacity. In the third approach [Eq. (5c)], P is a time period of 1 day (because in 96 AUGUST 2009 1727 NOTES AND CORRESPONDENCE this context the diurnal cycle typically dominates) and ZD is a characteristic depth of the averaged material. The first average [Eq. (5a)] is the standard approach. It weights the parameters with the area fractions aj of the different materials present in the urban zone. The second average [Eq. (5b)] is similar to the first one but weights layer-integrated thermal conductivity (dj lj; W K21) and heat capacity (dj cj; J K21 m22) as opposed to weighting lj and cj alone without accounting for the variation in dj. By including the dj in the numerator, this last approach assumes that material thicknesses are small relative to the damping depth associated with the period of the dominant forcing (i.e., it assumes that the time scale for thermal adjustment across the layer, which depends on lj, cj, and dj, is small relative to the period of the forcing). The third average [Eq. (5c)] is significantly different. A justification for the last average proposed is as follows. Assuming that at the internal side of a material the temperature exhibits a periodic signal with period P and that the amplitude increases as the outdoor side (where heat exchanges with the atmosphere occur) is approached, a particular solution of the diffusion equation [Eq. (3)] can be written as ! ! z 2pt z 1 sin , T j (z, t) 5 T 0 1 DT j exp ZDj P ZDj (6) where T0 is a reference temperature, DTj is the amplitude of the sinusoidal (within the material), z is the distance from the interior boundary of the material, and ZDj 5 [(ljP)/(cjp)]1/2 is a characteristic depth of the material (when the amplitude of a signal is damped, ZDj is known as the ‘‘damping depth’’). Using the same reasoning for the averaged material, Eq. (4) can be written as TABLE 1. Thermal properties of the different materials (Clarke et al. 1991). Materials l (W m21 K21) c (MJ m23 K21) 1: Metal 2: Softwood 3: Concrete 4: Brick 72.0 0.14 0.87 0.71 8.73 1.11 1.52 1.26 which is independent of the amplitude DT. With this approach, the physical parameters d and c of the averaged material can be chosen freely but the thermal 2 conductivity [l 5 (cpZD )/P] is fixed through Eq. (8) and the consideration that the averaged temperature is described by the left-hand side of Eq. (7). The assumptions and simplifications used in the above derivation are never completely fulfilled in any real situation. However, the goal is to find an averaged set of material properties (d, c, and l) that is able to satisfy Eq. (2), and we conduct numerical simulations solving Eq. (3) (because no analytical solutions of the diffusion equation exist for most real situations) to evaluate the physical appropriateness of our approach. If the numerical results indicate that the third average [Eq. (5c)] better describes the interaction between urban surfaces and the atmosphere, the above hypotheses are supported. In essence, the new approach consists of calculating an average from an analytical solution of the heat conduction equation and then comparing the results with those obtained numerically, with less stringent and more realistic assumptions. Thus, a large number of simulations are carried out, and for each proposed average in Eq. (5) the surface temperature T is compared with the ‘‘correct’’ average temperature N d 2pt d 1 sin T 0 1 DT exp ZD P ZD " ! !# N dj dj 2pt sin . (7) aj T 0 1 DT j exp 5 1 P ZDj ZDj j51 å Considering the case in which each of the different materials has the same amplitude DTj, Eq. (7) can be reduced to ZD 5 2 d N å dj ! dj !3 , 6 aj exp 7 sin 6 j51 ZDj ZDj 7 6 7 arctan6 N ! !7 6 dj dj 7 4 5 aj exp cos Z Z j51 Dj Dj å (8) å aj T j j51 (i.e., that temperature that will result in the correct sensible heat flux to the atmosphere). 3. Simulation development First, nine base-case simulations are carried out using three typical materials (metal, softwood, and concrete; see Table 1), with three different thicknesses (d1 5 0.025 m, d2 5 0.05 m, and d3 5 0.10 m) for each material. In the simulations, Eqs. (3) and (9) are solved numerically. The nomenclature used to describe a base case is ki_dl, meaning that the simulation was carried out for the material i (ki 5 li/ci, i 5 1, 2, 3) with thickness l (dl, l 5 1, 2, 3). These nine simulations, when appropriately 97 1728 JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY weighted by their area fraction, provide the correct results with which the averaged material simulation results are evaluated. Second, 162 different simulations were carried out for each proposed average; each one of these simulations is represented by kijk_dlmn. Each of the six subscripts can take any of the values 1, 2, and 3, but the first three cannot be repeated, for a total of 6 3 27 5 162 different scenarios. In other words, a given simulated average material kijk_dlmn may be ‘‘composed’’ of materials of identical depth (the idea is to consider all of the possible combinations of thickness) but not identical material type. The case kijk_dlmn represents the averaged material that attempts to describe an urban zone formed by 20% of the ki material with dl thickness, 30% of the kj material with dm thickness, and 50% of the kk material with dn thickness (these percentages have been chosen arbitrarily and are fixed in all of the comparisons so as to keep the number of scenarios reasonable). To assess the impact of including one ‘‘outlier’’ material in terms of its thermal properties (metal), the above simulations are repeated with brick (Table 1) instead of metal. In numerically solving Eq. (3), two different boundary conditions are considered here. With the first, the internal boundary condition has been fixed (i.e., the temperature at the deepest level inside the material is constant for the whole simulation period); with the second, the internal surface temperature can change freely such that ›T/›z 5 0 at the lower boundary throughout the simulation. One might expect the former boundary condition to more closely approximate homogeneous walls and roofs close to the relatively constant internal building temperature, whereas the latter is expected to better represent external layers closer to ambient forcing and interior layers in contact with insulation materials. At the surface, the boundary condition is defined by solving an energy budget equation in both cases (an explanation of the symbols used can be found in the appendix): QG 5 Q* Qh , (9) where Q* 5 (1 2 a)KY 1 «(LY 2 sT 4sfc) and Qh 5 h(Tsfc 2 Ta). The term QG (storage heat flux density) is the net heat flowing into the material. The sensible heat flux from the surface is a function of the difference between the air temperature and the surface temperature, and of the wind speed through the convective heat transfer coefficient h. A constant value for h is considered in the simulations, representing a day with little wind variability, for simplicity. The air temperature Ta and the downward shortwave radiation KY are taken as follows (values of the parameters can be found in Table 2): VOLUME 48 TABLE 2. Inputs and parameters used in the numerical simulations. Tmax (K) Tmin (K) h (W m22 K21) « a LY (W m22) K0 (W m22) Time of simulation (h) Time step (s) Initial temperature (K) Ta 5 T max T min 2 2pt sin P 2pt KY 5 max K0 sin P 303 283 6 0.95 0.2 300 800 48 30 293 T 1 T min 3p 1 max 4 2 p ,0 . 2 and (10) Note that the radiation reaches a maximum p/4 or oneeighth of a cycle before the air temperature (i.e., 3 h for diurnal cycles). The heat diffusion equation is solved by an implicit finite difference approach at each time step by inverting the corresponding tridiagonal matrix. 4. Simulation results To compare the averaging methods, the sensible heat obtained in each case (i.e., for each kijk_dlmn) is compared with the sensible heat representative of the urban zone: aQhi_l 1 bQhj_m 1 gQhk_n (where Qhi_l is the sensible heat obtained with the ki material of depth dl, and so forth, and a 5 0.2, b 5 0.3, and g 5 1 2 a 2 b are the area fractions fixed previously). Sensible heat flux is used for the comparison, because equivalent results are obtained for the surface temperature since the outdoor temperature Ta and convective heat transfer coefficient h do not vary between simulations. The root-meansquare error (RMSE) is computed using results at all 5760 time steps (2 days with 30-s time steps). The results for the different averages can be seen in Fig. 1 for the first boundary condition (internal temperature fixed), and in Fig. 2 for the second (internal temperature free) for different area fractions and thicknesses of metal, softwood, and concrete. It is difficult to distinguish which of the first two (approach a or approach b) averages is superior; however the approach-c average notably improves the results—in particular, for the case of the fixed internal temperature. This is not unexpected given that the assumption in Eq. (8) that the DTj are equal for all materials is better satisfied with this boundary condition. RMSE for each combination of the three different materials does not exhibit coherent 98 AUGUST 2009 NOTES AND CORRESPONDENCE 1729 FIG. 1. RMSE of the sensible heat Qh for fixed internal temperature obtained with the three different averages (approaches a, b, and c) and for the combination formed by (a) 20% of the k1 material, 30% of the k2 material, and 50% of the k3 material with 27 combinations of thicknesses dlmn (represented by the notation k123_dlmn); (b) 20% k1, 30% k3, and 50% k2 (k132_dlmn); (c) 20% k2, 30% k1, and 50% k3 (k213_dlmn); (d) 20% k2, 30% k3, and 50% k1 (k231_dlmn); (e) 20% k3, 30% k1, and 50% k2 (k312_dlmn); and (f) 20% k3, 30% k2, and 50% k1 (k321_dlmn). In (a)–(f), at the extreme left there is d111 and at the extreme right there is d333. From left to right, the n index permutes the fastest and the l index permutes the slowest (i.e., the sequence is d111, d112, d113, etc.). 99 1730 JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY VOLUME 48 FIG. 2. As in Fig. 1, but for free internal temperature. 100 AUGUST 2009 NOTES AND CORRESPONDENCE TABLE 3. Mean and standard deviation of the RMSE values for each of the three thermal property averaging approaches. Avg proposed Mean RMSE (W m22) Std dev (W m22) Internal temperature fixed (metal, softwood, concrete) Approach a 51.42 612.18 Approach b 50.42 611.34 Approach c 19.86 610.47 Internal temperature free (metal, softwood, concrete) Approach a 38.42 68.99 Approach b 36.57 613.94 Approach c 22.57 69.73 Internal temperature free (brick, softwood, concrete) Approach a 8.64 65.33 Approach b 8.42 64.41 Approach c 5.92 63.89 behavior dependent on the thickness of the materials [the thinnest is represented on the left (d111) and the thickest is represented on the right (d333) in all of the figure panels]. Only with the free internal boundary condition, large kj (5lj/cj) (relative to the mean kj), and small dj does approach b clearly outperform approach a and demonstrate RMSE equal to that of approach c (not shown). Thus, average b only yields good results for a relatively small subset of the total number of simulations (about 20) when certain conditions are met. It seems clear that the assumption of small damping depth relative to layer thickness (which underpins approach b) does not hold for most of the combinations of depths and materials modeled here. To obtain a better overall picture of the differences, the mean and standard deviation of the RMSE values are calculated for each averaging approach. The results show that overall the approach-b average is similar to the approach-a average (Table 3). On the other hand, the best results are obtained on average for the weighting approach c. However, when brick replaces metal (simulations with the internal boundary condition ›T/›z 5 0), RMSE magnitude decreases substantially and the three averaging methods converge to a significant extent (Table 3), but the relative decrease in RMSE with averaging method c still remains significant (’30% decrease vs ’40% with metal). Thus, the chosen averaging method is less important in an absolute sense when materials with similar thermal behavior are averaged, as evidenced by the overall RMSE decrease. In essence, the greater the variability in a material thermal property is, the more poorly any average value may be expected to represent the distribution of material thermal properties. Nevertheless, method c appears, on average, to yield a significantly smaller RMSE in a relative sense. Last, the downward radiation used so far in the simulations is more representative of horizontal than ver- 1731 TABLE 4. As in Table 3, but for the case in which the downward shortwave radiation is zero before midday. Avg proposed Mean RMSE (W m22) Std dev (W m22) Internal temperature fixed (metal, softwood, concrete) Approach a 39.87 69.27 Approach b 39.09 68.68 Approach c 15.48 67.21 Internal temperature free (metal, softwood, concrete) Approach a 33.83 66.97 Approach b 32.59 610.48 Approach c 19.13 68.40 tical surfaces (which may be shaded for portions of the day). To take into account the effects of vertical surface (wall) orientation, the metal, softwood, and concrete simulations are repeated with a different variation of incident shortwave radiation. The KY is set to zero before midday (P/2), at which point it jumps to the value prescribed in Eq. (10) where it remains for the duration of the day. This rapid variation in solar forcing is typical of a west-facing wall in the Northern Hemisphere, for example. The results are similar to those obtained previously (see Table 4), and again the approach-c average is superior. 5. Conclusions This work is a first step toward the determination of physical properties that represent the behavior (in terms of its interaction with the atmosphere) of an ensemble of different materials in an urban zone or neighborhood. A new averaging method for thermal parameters has been proposed [Eqs. (5c) and (8)], and better results have been obtained—in particular, for an ensemble of materials with large variability in thermal behavior. To use the new averaging scheme, information on the area occupied by each material and the thickness of each material is needed. This information can be obtained from building-construction databases. Similar formulations can be used for other surface descriptors necessary in (urban) mesoscale atmospheric modeling. That is, the equation that describes the physics of the problem for an ideal situation is solved, and subsequently new values of physical parameters that better represent the net effect of the subgrid-scale heterogeneity are obtained. Acknowledgments. The authors thank CIEMAT for the doctoral fellowships held by Francisco Salamanca and NSERC and UBC for the doctoral scholarships held by Scott Krayenhoff. We also thank the reviewers for important comments on the manuscript. This work was funded by the Ministry of Environment of Spain. 101 1732 JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY APPENDIX List of Symbols Used in Solving Energy Budget Equations Q* Net radiative flux density (W m22) Qh Sensible heat flux density (W m22) KY Downward shortwave radiative flux density (W m22) K0 Maximum value of the shortwave radiation (W m22) LY Downward longwave radiative flux density (W m22) Tsfc Surface temperature (K) Ta Air temperature (K) Tmax Maximum value of the air temperature (K) Tmin Minimum value of the air temperature (K) a Shortwave albedo « Longwave emissivity s Stefan–Boltzmann constant (W m22 K24) h Convective heat transfer coefficient (W m22 K21) VOLUME 48 REFERENCES Clarke, J. A., P. P. Yaneske, and A. A. Pinney, 1991: The harmonisation of thermal properties of building materials. Tech. Note 91/6, BEPAC, 87 pp. Kanda, M., T. Kawai, M. Kanega, R. Moriwaki, K. Narita, and A. Hagishima, 2005: A simple energy balance model for regular building arrays. Bound.-Layer Meteor., 116, 423–443. Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329–358. Martilli, A., 2007: Current research and future challenges in urban mesoscale modelling. Int. J. Climatol., 27, 1909–1918. ——, A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterization for mesoscale models. Bound.-Layer Meteor., 104, 261–304. Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer Meteor., 94, 357–397. Oke, T. R., 2006: Towards better scientific communication in urban climate. Theor. Appl. Climatol., 84, 179–190. 102 Capítulo 3 103 Capítulo 3 3.4 Un estudio de la capa límite urbana usando diferentes parametrizaciones urbanas y resoluciones de parámetros morfológicos que describen una ciudad con el modelo atmosférico WRF. Salamanca, F., A. Martilli, M. Tewari, and F. Chen, 2010b: A study of the urban boundary layer using different urban parameterizations and high-resolution urban canopy parameters with WRF. Journal of Applied Meteorology and Climatology (accepted). En esta sección se presentan los resultados de un estudio numérico de la capa límite urbana sobre la ciudad de Houston, Texas. En la primera parte del trabajo se ha hecho una intercomparación entre cuatro parametrizaciones urbanas disponibles en el modelo atmosférico WRFv3.2. Aunque los resultados podrían ser dependientes del esquema turbulento usado para la parametrización de la capa límite, la isla de calor sobre la ciudad presentó notables diferencias dependiendo del esquema urbano utilizado. Con el esquema urbano BEP+BEM desarrollado en esta tesis se obtuvieron buenos resultados y el calor proveniente de los sistemas de aire acondicionado aumentó notablemente la intensidad de la isla de calor. En la segunda parte del trabajo se repitieron las simulaciones con los esquemas urbanos BEP y BEP+BEM pero esta vez en lugar de usar la información definida en las diferentes clases urbanas (como se hizo en la primera parte) se utilizó información detallada de la morfología de la ciudad con una resolución de ~ 1km 2 extraída de la base de datos NUDAPT. Los resultados indican que el nuevo esquema BEP+BEM es más sensible a los parámetros morfológicos que el anterior esquema BEP. Esto es debido a que el calor antropogénico derivado de los sistemas de aire acondicionado es “proporcional” al volumen de aire que existe en el interior de los edificios y éste depende de las dimensiones de los mismos. Cuando se calculó el consumo energético se obtuvieron buenas estimaciones, al considerar la información detallada existente en la base de datos NUDAPT, comparadas con valores obtenidos con otras técnicas completamente diferentes. 104 Chapter 3. A study of the UBL using different urban parameterizations. A study of the urban boundary layer using different urban parameterizations and high-resolution urban canopy parameters with WRF Francisco Salamanca 1 · Alberto Martilli 1 · Mukul Tewari 2 · Fei Chen 2 1 CIEMAT (Research Center for Energy, Environment and Technology), Madrid, Spain 2 NCAR (National Center for Atmospheric Research), Boulder, CO, USA ABSTRACT In the last two decades, mesoscale models (MMs) with urban canopy parameterizations have been important tools in the study of the Urban Boundary Layer (UBL). The correct performance of these models requires a detailed and up-to-date land use/cover dataset of the area under study. The difficulty of obtaining this information has been an important limitation for UBL modelling studies in the recent years. Nowadays, high resolution urban canopy parameters (UCPs) have become available for an increasing number of cities. One of the most important questions for the urban modelling community is to define the needed degree of complexity of the urban canopy parameterizations and the resolution and details necessary in the UCP datasets to obtain accurate results. In this work, and in an attempt to answer the previous questions, four urban canopy schemes, with different degrees of complexity, have been run with the Weather Research and Forecasting (WRF) model using a highly-detailed UCP database for the city of Houston for two days of August 2000. Results have been intercompared and compared with measurements. The statistical analysis shows a tendency to overestimate the air temperatures by the simple bulk scheme and underestimate the air temperatures by the more detailed urban canopy parameterizations. The three-dimensional analysis of the meteorological fields revealed a possible impact of both the urban schemes and the UCP on cloud formation. Moreover, the impact of the air conditioning (AC) systems on the air temperature and their energy consumption has been evaluated with the most detailed urban scheme for the two simulated days. During the night, this anthropogenic heat (AH) was responsible for an increase in the air temperature of up to 2 ºC in the most dense urban areas, and the estimated energy consumption was of the same magnitude than energy consumption obtained with different methodologies. Due to different meteorological conditions existing between the two selected days, differences up to 20% in the energy consumption were obtained. Based on the results for the present case study, we can conclude that the urban fraction, the urban material’s properties, and the AH are the most important factors that contribute to the Urban Heat Island (UHI) phenomenon. The urban geometry (height and dimensions of the buildings) plays a secondary role in the formation of the UHI and becomes relevant because it affects the AH ejected by the AC systems. ______________________________________________________________________ Journal of Applied Meteorology and Climatology, (accepted) Corresponding author address: F. Salamanca, Research Centre for Energy, Environment and Technology (CIEMAT), Avenida Complutense 22, 28040 Madrid, Spain. E-mail: [email protected] 105 Chapter 3. A study of the UBL using different urban parameterizations. 1. Introduction At the end of the last century, the understanding of the Urban Boundary Layer (UBL) was greatly increased thanks to the use of modern mesoscale models (MMs) in combination with the development of the urban canopy parameterizations. The urban parameterizations communicate the mean thermal and dynamic effects of the city to the MMs. The first urban schemes represented the thermal effects of the city using large values for the heat capacity and thermal conductivity to reproduce the large heat storage that takes place in the urban surfaces. These simple approaches have a disadvantage in that they cannot represent the heterogeneities present in the urban areas. In the same way, large values for roughness parameters were used to represent the turbulence generated by roughness elements. Subsequently, the first single-layer urban-canopy models appeared (e.g., Masson 2000, Kusaka et al. 2001, Kanda et al. 2005). They represented the urban geometry by infinitely long street canyons, and three different urban surfaces (walls, roofs, and roads). With these new approaches, different urban classes can be considered with different thermal properties, and the heterogeneities of the city are better represented. Finally, the appearance of multilayer urbancanopy models (Martilli et al. 2002, Kondo et al. 2005) permitted a direct interaction with the Planetary Boundary Layer (PBL). To date, the coupling between simple building energy models and multilayer urban canopy parameterizations (Kikegawa et al. 2003, Salamanca and Martilli, 2010) represents the most sophisticated approach and permits the study of the effect of anthropogenic heat fluxes in urban environments. This increasing number of urban parameterizations and the important differences existing between them demand a study where the positive and negative points must be displayed to facilitate their use. In this direction, an important effort, led by Grimmond et al. (2009), has been carried out by comparing energy fluxes obtained with a wide range of urban models run offline against site observations. Bulk UCM BEP BEP+ BEM How the canopy is resolved No canopy – roughne ss length modifie d. Single Layer Multil ayer Multil ayer Anthropo genic heat NO From fixed temporal profiles NO From a buildi ng energy model Accounti ng for fraction of vegetatio n NO YES YES YES PBL scheme used in this study Mellor Yamada Janjic Mellor Yamada Janjic Bouge ault and Lacarr ère Bouge ault and Lacarr ère Table 1. Overview of the different urban schemes in the intercomparison. Similarly, an intensive effort has been carried out for the community mesoscale WRF (Weather Research and Forecasting) model (Chen et al. 2010) to assess urban environmental problems such as the urban heat island (UHI) and urban air pollution. Following this line, in the first part of this article, WRF has been run with four different urban canopy parameterizations over the city of Houston (see Table 1), and the results are inter-compared and compared against measurements. The first urban 106 Chapter 3. A study of the UBL using different urban parameterizations. parameterization (included in WRF since 2003) is a simple bulk scheme that represents the effects of urban surfaces by means of a roughness length of 0.8 m to represent the turbulence generated by roughness elements and drag due to buildings, a surface albedo of 0.15 to represent the radiation trapping in the urban canyons, a volumetric heat capacity of 3.0 Jm −3K −1 , and a thermal conductivity of 3.24 Wm−1K −1 to represent the large heat storage in the urban buildings and roads. This approach has been successfully employed in real time forecasts (Liu et al. 2006). The second urban parameterization was developed by Kusaka et al. (2001), and Kusaka and Kimura (2004). It is a single-layer urban-canopy model (UCM) where the anthropogenic heat (AH) can be added to the sensible heat flux in the urban canopy layer. The urban geometry is represented through infinitely long street canyons, and three different urban surfaces (roof, wall, and roads) are recognized. In a street canyon, shadowing, reflections, and trapping of radiation are considered, and an exponential wind profile is prescribed to deduce the wind speed in the canyon from the wind speed above the canyon, where the lowest grid point of the mesoscale model is located. The total sensible heat flux from roof, wall, and roads is passed to the lowest atmospheric layer. This option has been included in WRF (V2.2) since 2006. The third urban parameterization was developed by Martilli et al. (2002), and it is a multilayer urban canopy scheme called BEP (Building Effect Parameterization) that represents the most sophisticated urban modelling in WRF (included in WRF V3.1 release since 2009) that allows a direct interaction with the PBL. BEP recognizes the three-dimensional nature of urban surfaces and the fact that buildings vertically distribute sources and sinks of heat and momentum through the whole urban canopy layer. It takes into account the effects of the vertical (walls) and horizontal (streets and roofs) surfaces on momentum, turbulent kinetic energy, and potential temperature. The wall and road radiation considers shadowing, reflection, and trapping of shortwave and longwave radiation in street canyons. The last urban parameterization is an extension of the BEP scheme and was developed by Salamanca et al. (2010). It is the result of the coupling between the BEP and a simple building energy model (BEM) that improves the results obtained with the old version of BEP (Salamanca and Martilli, 2010). BEM accounts for the 1) diffusion of heat through the walls, roofs, and floors; 2) radiation exchanged through windows; 3) longwave radiation exchanged between indoor surfaces; 4) generation of heat due to occupants and equipment; and 5) air conditioning, ventilation, and heating. The BEP+BEM parameterization takes into account the exchanges of energy between the interior of the buildings and the outdoor atmosphere. Consequently, the impact of the air conditioning systems (AC) and their energy consumption can be estimated. The new BEP+BEM scheme has been included in WRF V3.2 release on April 2010. Originally, in the WRF model, the urban schemes looked up the input parameters for the urban morphology from a table with only three different urban classes (commercial, industrial, and high or low residential areas) that can be derived from land use databases (e. g., the National Land Cover Data for the US, NLCD, developed by the U.S. Geological Survey, USGS). In the intercomparison, three urban classes derived from NLCD have been considered, and the input parameters for every urban 107 Chapter 3. A study of the UBL using different urban parameterizations. class have been extracted from the reports of Burian et al. (2003). To evaluate the impact of highresolution urban land cover databases in the mesoscale weather prediction models, a project called the National Urban Database and Access Portal Tool (NUDAPT) was created to provide urban data and improve the parameterization of UBL processes (Ching et al. 2009). In this database, information exists relative to urban morphology for an important number of cities in the USA. An important advantage of using NUDAPT is that the inputs of the urban parameterizations (urban fraction, building height histograms, building plan area fraction, mean building height weighted by footprint plan area, etc.) are provided with a resolution of 1 km 2 , and not need to be defined for every urban class. In the second part of the work, to evaluate the impact of high-resolution urban land cover databases, the urban canopy parameters (UCP) existing in NUDAPT for the city of Houston were introduced into the input files of the WRF model as new variables, and the results were obtained with the two approaches: a) using urban parameters from NUDAPT and b) using urban parameters from urban look-up a table. These results were compared. Due to the fact that the bulk scheme does not use urban morphological parameters, and that the UCM is not yet ready to directly use the urban information from NUDAPT, only the BEP and BEP+BEM schemes were considered for this second comparison. For every urban grid point, BEP and BEP+BEM use directly the information from NUDAPT not averaged values defined for every urban class. In Section 2, a description of the simulations and the results for the four urban models are presented. Differences obtained using the more detailed urban database (NUDAPT) are shown in Section 3 for the BEP and BEP+BEM schemes. Exploring the possibilities of the new BEP+BEM parameterization and the impact of the AC systems and their energy consumption are discussed in Section 4. Finally, conclusions and future directions are mentioned in Section 5. 2. WRF simulations with different urban models 2.1 Numerical domain and set up of the simulations Figure 1. Configuration of the 4 two-way-nested domains for the WRF simulations. The grid sizes for the four domains are 27, 9, 3, and 1km, respectively. Terrain height interval is 200 m. Two summer days have been analyzed: 25th and 31st of August 2000. The 24-h simulations began at 12 UTC (0600 LST) and a set of eight simulations (four urban schemes for every selected day) were performed using the non-hydrostatic version of the WRF V3.1 model (Skamarock et al. 2008), coupled to the Noah land surface model (Chen and Dudhia, 2001, and Ek et al. 2003) for the non-urban part. This surface-hydrology model has one canopy layer and the following prognostic variables: soil moisture and temperature in the soil layers, water stored in the vegetation canopy, and snow stored on the ground. The horizontal domain (see Fig. 1) was composed of four two-way nested domains with 100 × 100 , 174 × 156 , 219 × 186 , and 216 × 198 grid points, and a grid spacing of 27 , 9 , 3 , and 108 Chapter 3. A study of the UBL using different urban parameterizations. 1 km , respectively. The 24-h simulations were conducted with the initial and boundary conditions from the operational National Centre for Environmental Prediction (NCEP) with a grid resolution of 40km and a time resolution of 3 h. To take full advantage of the urban parameterizations, a vertical resolution of 40 eta levels1 was used (14 levels in the lowest 1.5 km ) with the lowest level 22 m above the ground. The selected radiation parameterizations were the Dudhia (1989) shortwave radiation scheme, and the Rapid Radiative Transfer Model (RRTM) longwave parameterization (Mlawer et al. 1997). The microphysics package is WSM3 (Hong et al. 2004); no cumulus cloud scheme was used in the inner domain. Two different PBL schemes were chosen, the Mellor and Yamada (Janjic, 1994) for the bulk and UCM parameterizations and the Bougeault and Lacarrère (1989) for the BEP and BEP+BEM schemes. This selection is motivated by the fact that the first two parameterizations (bulk and UCM) have been extensively tested coupled to the MYJ scheme, while the other two (BEP, and BEP+BEM), even if they can also be run with the MYJ scheme, have been mainly tested together with the Bougeault and Lacarrère (1989) PBL scheme. We are aware that this choice may introduce 1 Full eta levels =1., 0.9974, 0.9940, 0.9905, 0.9850, 0.9800, 0.9700, 0.9600, 0.9450, 0.9300, 0.9100, 0.8900, 0.8650, another source of differences, but we considered that these are the configurations where each scheme can perform best. Future work will be needed to investigate the sensitivity of the UCP schemes to the coupling with different PBL schemes. In the determination of the fluxes provided by the urban canopy parameterization as lower boundary conditions for coupled atmospheric models, the fractional area occupied by impervious surfaces (urban fraction) plays a fundamental role. The urban fraction (λU ) in a particular patch is defined as the fractional area covered by the buildings λ P (building plan area fraction) plus the fractional area covered by the roads. These parameters are especially important because they are used to obtain the dimensions of the buildings and roads in the urban schemes. For example, for a 2-D urban canopy parameterization, λP b = , (1) λU b + w where (b) and ( w) are the widths of the buildings and roads, respectively. Other morphological urban parameters used to derive the inputs of the urban models are the mean building height weighted __ by building plan area ( h ) and the __ building height-to-width ratio ( λ S ) . These parameters are calculated using the following equations: N 0.8400, 0.8100, 0.7800, 0.7500, 0.7100, 0.6800, 0.6450, 0.6100, 0.5700, 0.5300, 0.4900, 0.4500, 0.4100, 0.3700, 0.3300, 0.2900, 0.2500, 0.2100, 0.1750, 0.1450, 0.1150, 0.0900, 0.0650, 0.0450, 0.0250, 0.0100, and 0.0000. The vertical σ coordinate is surf as i =1 N i =1 Ai __ and λ S = __ h __ , w (2) where ( Ai ) is the plan area at ground is surface dry hydrostatic level of building i , (hi ) is its height, where p is pressure, and ptop is a constant dry hydrostatic pressure at model top. h= Ai hi the dry ( p − ptop ) /( p surf − ptop ) , hydrostatic pressure, p defined __ __ (N ) the number of buildings, and w the mean road width. In the simulations, the values of the above parameters used 109 Chapter 3. A study of the UBL using different urban parameterizations. for every urban class for the city of Houston were extracted from the reports of Burian et al. (2003) and can be seen in Table 2. Moreover, for the correct performance of the BEP and BEP+BEM schemes, a building height distribution is necessary for every urban class, and the considered values are in Table 2. The thermal properties of the buildings used in the simulations are in Table 3. For the UCM a diurnal profile of AH was added to the sensible heat flux (hereafter this simulation is referred as UCM+AH) with peak values of 90, 50, and 20 Wm −2 for the COI (commercial or industrial), HIR (high intensity residential), and LIR (low intensity residential) urban classes, respectively. Unlike the UCM parameterization, the BEP+BEM scheme computes the AH released into the atmosphere to maintain the indoor temperature of the buildings in a range of comfort defined by the user (see Salamanca et al. 2010) by means of an AC model that computes the total cooling loads for every floor in a particular building. For these simulations the amplitude of the range of comfort was fixed to 1 ºC with the target internal temperature being 25 ºC. Other parameters of the BEP+BEM scheme were fixed (for the three urban classes) to COP (Coefficient of Performance of the AC systems) = 3.5, number of occupants = 0.02 2 person/m of floor, sensible heat generated by equipment = 30 Wm−2 of floor from 0800 LST to 2000 LST and 10 Wm−2 the rest of the day. The considered values for the sensible heat generated by equipment are similar to others estimations based on temporal variations of electric power consumption for lighting (Kikegawa et al. 2003) in business districts. 2.2 Analysis of the results. Houston is an area subject to complex mesoscale dynamics leading to complex land and sea breezes. The main forcings determining the circulation are the contrast between the land and the sea and the general circulations patterns. The urban area modulates these forcings. However, given the purpose of this article, in the following analysis, stress is put mainly on the impact of the urban forcing. LIR HIR COI (Low (High (Commer Intensity cial Intensity Residential Industrial) Residenti ) or al) Urban fraction (λU 0.429 0.429 0.865 0.06 0.17 0.21 5.4 5.1 8.9 0.05 0.13 0.09 55 59 37 30 34 34 15 7 9 0 0 20 ) Building plan area (λ P ) fraction Building height weighted by building plan area __ ( h (m)) Building height- to- width __ ratio ( λ S ) % of buildings of 5 m of height % of buildings of 10 m of height % of buildings of 15 m of height % of buildings of 20 m of height Table 2. Urban morphological parameters considered for the three urban classes. 110 Chapter 3. A study of the UBL using different urban parameterizations. Figure 3. Time series of 2-m air temperature for different stations for 25 August 2000 obtained with the four urban schemes against measurements. 111 Chapter 3. A study of the UBL using different urban parameterizations. Figure 4. As in Figure 3 but for 31 August 2000. 112 Chapter 3. A study of the UBL using different urban parameterizations. 2.2.1 Air temperature Table 4 lists the nine monitoring stations used in the evaluation of the four urban models for the two selected days. The stations were displayed over the city of Houston, and their location can be seen in Fig. 2b. The stations selected are representative of the three urban classes considered in this study, so that the behaviour in simulating urban areas with different morphology can be analysed. It is important to remember that we assume that point measurements can be compared to model’s outputs, which represent spatially averaged values over a grid cell of 1 km2. An analysis of this assumption requires detailed information on the position of the station and the morphology of the surrounding area and goes beyond the scope of this work. Surface λ (Wm −1 K −1 ) T (int) m −3 K −1 ) ( º C) C (⋅10 6 J ε α z0 (m ) Roof 0.695 1.32 20 0.9 0.2 0.01 Wall 0.695 1.32 20 0.9 0.2 ____ Road 0.4004 1.40 20 0.95 0.15 0.01 λ is the thermal conductivity of the material, C is the specific heat of the material, T (int) is the initial temperature of the material and also temperature of the deepest layer, ε is the emissivity of the surface, α is the albedo of the surface, and z 0 is the roughness length for momentum over the surface. Table 3. Thermal parameters used in the urban modules (UCM, BEP and BEP+BEM) and for every urban class. The inner simulation domain is plotted in Fig. 2a. The observed and computed statistics for the 2-m air temperature are shown in Tables 5 and 6. Mean bias (MB), hit rate (HR), and root mean square error (RMSE) were calculated with the criteria for the HR calculation for model-observation agreement within 2 ºC following the same criteria of similar studies (Miao et al. 2009). For the statistical computations, the first initializing value was removed to avoid the existing gap between the observed and computed data. It is important to mention in terms of the comparison, that the observed values are hourly averaged available data whereas the WRF computed values are instantaneous. The four urban schemes accurately reproduce enough the surface air temperature for the 25th of August (see Fig. 3 and Table 5). The best results were obtained with the BEP+BEM and BULK schemes. The BULK parameterization tends to slightly overestimate the air temperature (the MB is almost always positive) while the other schemes tend to underestimate it. Observing the differences in the air temperature between the two multilayer schemes (BEP and BEP+BEM), it is possible to say that the effect of the sensible heat ejected into the atmosphere to maintain the indoor temperature in a range of comfort (situation simulated with the BEP+BEM scheme) has a significant effect from 1800-1900 LST to the dawn. In general, the worst estimations were obtained with the single-layer UCM+AH scheme, but they notably improved in the COI areas where the urban fraction (see Table 2) has the biggest value. The 31st of August was the warmest day, with temperatures up to 41 ºC. The results (see Fig. 4 and Table 6) indicate a good performance of the urban models except for the UCM+AH scheme, which was not able to correctly simulate the surface air temperature from the 1800-1900 LST except in the COI areas. We are aware that the UCM parameterization has been widely tested and validated (e.g., Kusaka and Kimura, 2004, Lin et al. 2008; Miao et al. 2009) in different 113 Chapter 3. A study of the UBL using different urban parameterizations. situations, so the results obtained the 31st of August were probably due to the low urban fraction used for the HIR and LIR urban classes, which were derived from the available information on urban morphology. It seems that this is not a setback for the BEP and BEP+BEM parameterizations. At this point, it is important to remember that the goal of this work is twofold: on one hand, we want to compare the BULK, UCM, BEP, and BEP+BEM schemes coupled to the WRF model; on the other hand, we want to study whether or not there is a the necessity for using highly-accurate urban morphology information for the correct performance of the urban canopy parameterizations. This is the reason why we use the realistic urban fraction (see Table 2) derived from the Burian et al. (2003) reports for the different urban classes and not unrealistic values that could improve the results in some cases, increasing the sensible heat flux coming from the urban canopy layer. ID Latitude Longitude Sampling Urban height class above ground (m) C01 29.767778 -95.220556 11 COI C55 29.733611 -95.257500 5 HIR C81 29.735000 -95.315556 11 HIR C146 29.695556 -95.499167 4 LIR C167 29.734167 -95.238056 11 HIR C169 29.706111 -95.261111 11 LIR C404 29.806944 -95.291389 11 HIR C409 29.623889 -95.474167 11 HIR C603 29.765278 -95.181111 4 COI The urban morphology characteristics for every urban class can be seen in Table 2. Table 4. List of monitor locations based on information from Texas Commission on Environmental Quality (TCEQ). Figure 2. a) D4 inner domain and urban fraction (from Table 2) for the city of Houston. b) Monitoring stations used in the evaluation of the four urban parameterizations. 25- BULK Aug-00 UCM+ BEP AH BEP+BE ID M MB 0.9441 -0.1846 -0.4477 -0.1146 RMSE 1.0591 1.2252 1.3012 0.9174 HR 0.9583 0.9167 0.8750 0.9583 MB 1.0156 -0.7632 -0.6829 -0.1733 RMSE 1.4369 2.3053 1.9029 1.4190 HR 0.7917 0.6667 0.5833 0.8750 MB 0.4996 -1.0780 -1.1773 -0.7023 RMSE 0.8864 2.3070 1.7794 1.2975 HR 1.0000 0.6667 0.7083 0.8750 MB 0.9174 -0.7859 -0.7757 -0.2760 RMSE 1.1352 1.6233 1.2510 0.8454 HR 0.9583 0.8333 0.8750 1.0000 MB 0.3214 -1.3697 -1.4086 -0.8324 RMSE 1.3148 2.8136 2.4667 1.8656 HR 0.8333 0.6250 0.5833 0.6250 MB 1.4077 -0.3472 -0.2420 0.2936 RMSE 1.6013 1.7647 1.2407 1.1344 C01 C55 C81 C146 C167 C169 114 Chapter 3. A study of the UBL using different urban parameterizations. HR 0.7917 0.7500 0.8750 0.9167 MB 0.9149 -1.9793 -0.6860 -0.1065 MB -0.7305 -2.3791 -2.5281 -1.8296 RMSE 1.3409 3.2054 1.3515 1.1006 RMSE 1.1633 3.1474 2.9407 2.2238 HR 0.9167 0.4583 0.8750 0.9167 HR 0.9583 0.5417 0.4583 0.5000 MB -1.4044 -4.0587 -3.0171 -2.0374 MB -0.2036 -1.5205 -1.4305 -1.0776 RMSE 1.7845 4.8135 3.3670 2.2620 RMSE 1.1597 2.0500 1.6861 1.3535 HR 0.7500 0.2917 0.2500 0.4583 HR 0.9583 0.5417 0.6250 0.9167 MB 0.5148 -1.6033 -0.7080 -0.1324 MB 0.3717 -0.4699 -1.0604 -0.4341 RMSE 1.4530 3.1778 1.8077 1.6253 RMSE 0.7086 0.9659 1.5736 0.8885 HR 0.8750 0.6667 0.7083 0.7083 HR 1.0000 0.9583 0.7500 1.0000 MB 0.1513 -0.3021 -1.2128 -0.0001 RMSE 1.0279 1.1052 1.6225 0.9693 HR 1.0000 0.9167 0.7917 1.0000 C404 C409 C603 Table 5. Statistical comparison of the simulated and observed 2-m air temperature ( º C ; the criterion for hit rate calculation is 2 º C ) for the 25th Aug 2000. 31- BULK Aug-00 UCM+ BEP AH BEP+BE ID M MB 0.7332 -0.6974 -0.8760 0.0400 RMSE 1.2844 1.5344 1.7177 1.2112 HR 0.8750 0.8333 0.6667 0.9583 MB 0.4255 -2.1762 -0.9776 -0.2609 RMSE 1.2351 3.6834 2.0046 1.5049 HR 0.9167 0.4167 0.6250 0.7500 MB 0.2226 -2.6085 -1.2804 -0.5661 RMSE 1.0908 3.9160 2.0344 1.3927 HR 0.9583 0.4167 0.5833 0.8750 MB 0.9850 -1.8046 -0.7235 -0.0946 RMSE 1.2923 3.3064 1.6357 1.2688 HR 1.0000 0.6667 0.7500 0.9167 MB 0.4296 -2.1180 -1.0245 -0.2328 RMSE 1.1569 3.1247 1.6067 1.1472 HR 0.9167 0.5417 0.8333 0.8750 C01 C55 C81 C146 C167 C169 C404 C409 C603 Table 6. Statistical comparison of the simulated and observed 2-m air temperature ( º C ; the criterion for hit rate calculation is 2 º C ) for the 31st Aug 2000. 2.2.2 Wind field In Fig. 5, the time evolution of the wind speed at 10 m above the ground level (AGL) is compared with the observations for the 25th of August. Three monitoring stations are shown because the rest did not present remarkable differences. The four urban models were able to capture satisfactorily the rotation and magnitude of the breeze (from the sea to the land and vice versa) from around 1400-1500 LST to the dawn. It seems that the BULK and UCM+AH schemes sometimes slightly overestimate the wind speed compared to the BEP and BEP+BEM parameterizations that underestimate the observed wind. The same pattern was forecast for all the parameterizations. During the first hours of the day, from the sunrise to 1100 LST approximately, the schemes were not able to capture the wind direction well. Later, and for a period of some hours, the direction of the wind 115 Chapter 3. A study of the UBL using different urban parameterizations. was changing randomly. This behaviour was due to a cloud modelled over the city. The absorbed radiation does not heat the urban surface below the cloud, and consequently the fresh air blows away to surrounding warmer areas. This phenomenon (not shown) was observed with the four urban schemes in different places and times. Figure 5. Time series of observed (OBS.) and simulated (with the four urban schemes) horizontal winds at 10 m AGL at three sites for the 25th of August: a) C55 station, b) C409 station, and c) C603 station. It is interesting to analyse how the different surface schemes affect the cloud formation. In Fig. 6 the shortwave radiation that reaches the ground (in the case of built-up areas, this is the shortwave radiation that reaches the upper limit of the urban canopy layer) is shown at 1200 LST. This field reflects the presence of clouds. It can be seen that, at that time, the simulations with the BEP and BEP+BEM schemes produce clouds above the city, while UCM and BULK do not. The latter is related to strong vertical velocities (Fig. 7) at eta level Z = 9 ( ≈ 485 m AGL), simulated by BEP and BEP+BEM. A few hours later, similar patterns (clouds and strong updrafts and downdrafts) develop also for the UCM and BULK simulations over the city. A possible explanation of these differences is that BEP and BEP+BEM are more sensitive to the spatial variability of surface fluxes due to the heterogeneity of the urban structure. For this reason they trigger earlier the updrafts and downdrafts that are responsible for cloud formation. It is difficult (and goes beyond the scope of this article) to decide which is the most realistic behaviour not only because there are no cloud position and formation measurements available during these days over Houston, but also because this problem involves an analysis of the behaviour of the PBL and cloud schemes (one of the weakest areas of meteorological models). At this stage, the influence of the urban parameterization on cloud formation is only a speculation. Further studies should be dedicated to analyse if model’s predictions are accurate, if they are influenced by incorrect parameterization of the physics of the phenomena, or by numerical noise. On the 31st of August, the wind blew from the northwest during the morning until the 1300 LST approximately over Houston. 116 Chapter 3. A study of the UBL using different urban parameterizations. Simulations with different parameterizations were able to capture this flow well, but the presence of clouds some hours later made impossible the correct prediction of the wind field in the monitoring locations after midday. In the evening and during all the night, the schemes captured the clockwise turn of the breeze well (not shown). Figure 6. Shortwave downward radiation reaching the ground obtained with the four urban models at 1200 LST 25 August 2000: a) BULK scheme, b) UCM+AH scheme, c) BEP scheme, and d) BEP+BEM scheme. 117 Chapter 3. A study of the UBL using different urban parameterizations. Figure 7. Vertical velocity patterns obtained with the four urban models at 1200 LST 25th August 2000 at eta level Z =9 ( 485m): a) BULK scheme, b) UCM+AH scheme, c) BEP scheme, and d) BEP+BEM scheme. In Fig. 8, vertical wind speed profiles (together with the PBL height predictions) are compared against observations at Ellington Place for the 25th of August. The four schemes present similar patterns for the wind field with a shift in direction in the lower levels compared to the observed values. In Fig. 9, thanks to available data for the two selected days, the PBL heights forecast by the four schemes against observations have been plotted for the Ellington and Southwest Airport places. The BULK scheme predicts the highest values and the BEP+BEM scheme the lowest. It must be noted, however, that all models computed strong spatial heterogeneities for this field (not shown). 118 Chapter 3. A study of the UBL using different urban parameterizations. Figure 8. Vertical wind speed profiles (together with the Planetary Boundary Layer height predictions) for the 25th August 2000 (UTC = LST+6h) at Ellington Pl for: a) BULK scheme, b) UCM+AH scheme, c) BEP scheme, d) BEP+BEM scheme, and e) Observations. 3. WRF simulations with the NUDAPT data 3.1 Set up of the simulations Lo et al. (2006) verified that for obtaining good results in the meteorological variables in the urban environment of Pearl River Delta (PRD) region (China), it was not only necessary to have an up-to-date urban land use/cover dataset, but also it was necessary urban schemes that were able to distinguish the heterogeneities present in the cities. Continuing in this way, we have analyzed the impact of a high-resolution urban canopy parameters database on the UBL over Houston. For this purpose, the information existing in NUDAPT for the city of Houston and surrounding areas was analyzed. The following gridded urban morphological parameters of a region that covers 5242 km 2 were considered as inputs for the urban parameterizations: urban fraction, building height histograms, building plan area fraction, building height weighted by footprint plan area, and building surface area to plan area ratio (λ B ) . The λ B is defined as the sum of building surface divided by the total plan area of the study location. All these parameters with a resolution of 1 km 2 were introduced as new variables in the input files of the WRF model. In an urban grid point inside the covering area, then, the urban schemes use directly the information from the NUDAPT database and not the averaged properties defined in Table 2. Some modifications were necessary in the BEP and BEP+BEM parameterizations because initially these schemes were built to work in terms of urban classes and not reading urban information point to point. The numerical domains and physical characteristics were the same as explained in the above section 2.1. The same two days were considered. Figure 9. PBL height computed against observed in Ellington and Southwest Airport for the 25th and 31st August respectively. 3.2 Analysis of the results 3.2.1 Air temperature To evaluate the impact of gridded NUDAPT data on the 2-m air temperature, the RMSEs (NUDAPT) were computed and compared with the previous RMSEs (urb_class). The term urb_class hereafter refers to the simulations that use the inputs parameters of Table 2 for every urban class. To quantify the comparison, the following relative difference (∆T 2) was calculated, ∆T 2 = 100 × RMSE (urb _ class ) − RMSE ( NUDAPT ) , RMSE (urb _ class ) (3) for every monitoring station, and day simulated. A positive value means an improvement in the results and a negative value the opposite. 119 Chapter 3. A study of the UBL using different urban parameterizations. Figure 10. Differences between the observed and computed 2-m air temperature for 25th August 2000. 120 Chapter 3. A study of the UBL using different urban parameterizations. Figure 11. As in Figure 10 but for 31st August 2000. 121 Chapter 3. A study of the UBL using different urban parameterizations. The (∆T 2) values obtained are presented in Table 7, and the differences between the observation and model predictions are plotted in Figs. 10 and 11. In this comparison, 13 negative against 23 positive values for the relative difference (∆T 2) were obtained. It is not easy to observe a clear tendency looking at Table 7, except that the BEP+BEM scheme seems to present a greater sensibility to the urban morphology parameters than the BEP parameterization. This fact can be understood because the BEP+BEM scheme computes the AH released into the atmosphere to maintain the indoor temperature in a range of comfort, and this heat flux is strongly dependent on the urban fraction and the dimensions of the buildings. On the other hand, in the BEP scheme the indoor surface-wall temperature is fixed constant during all the simulation and no anthropogenic heat flux is directly ejected into the atmosphere. It is important to mention that after 1900 LST and during all the night, the sign of the air temperature difference between the BEP+BEM (NUDAPT) and BEP+BEM (urb_class) simulations is kept constant (positive or negative) in most of the stations, which would mean that the AH released during all the day (that in this case has a strong dependence on the urban geometry) is an important component of the UHI phenomenon. This behaviour is less significant when the BEP (NUDAPT) and BEP (urb_class) simulations are compared, given that the AH is not taken into account. Based on these results, it can be stated that for the case studied, the urban fraction, the urban materials properties, and the AH are the most important factors that contribute to the UHI. The urban geometry is secondary in the formation of the UHI and becomes relevant only because it affects the AH. In Fig. 12 the 2-m air temperature differences (T2(NUDAPT)T2(urb_class)) for the BEP+BEM parameterization are plotted for the two days simulated at 0300 LST, when the air temperature differences are the most important. These differences are smaller with the BEP scheme (not shown), especially for the 25th of August (the coldest day), which confirm that the urban geometry plays a secondary role in the formation of the UHI. On the 31st of August, the surface air temperature is slightly overestimated during the night when the NUDAPT information is used point-to-point with the BEP+BEM scheme (see Fig. 11). More simulations could help to study the impact of using a different target temperature, 26 ºC for example, or a wider range of comfort. Without a larger number of monitoring stations well-distributed over the city and without more days simulated, it is difficult to extract definitive conclusions from this comparison. However, it is possible to say that the BEP scheme is less sensitive to the urban geometry for the surface air temperature predictions than the BEP+BEM parameterization because the AH is strongly dependent of the urban morphology of the city. This is because, in a certain sense, the AH resulting from air conditioning is proportional to the number of floors. 31-Aug-00 Monitoring 25-Aug-00 stations ∆T 2(%) ∆T 2(%) C01 C55 C81 C146 Urban Parameteriza tion 0.0836 2.2184 BEP 13.8690 8.5102 BEP+BEM 12.0632 9.6690 BEP 23.8582 10.5053 BEP+BEM 11.1394 13.0313 BEP 30.2381 -0.9771 BEP+BEM -4.3597 21.8200 BEP 122 Chapter 3. A study of the UBL using different urban parameterizations. -4.0040 C167 C169 C404 C409 C603 21.1580 BEP+BEM 6.9939 9.8589 BEP 14.8666 -8.9933 BEP+BEM 5.3486 12.9915 BEP -6.2806 -54.9167 BEP+BEM 6.1292 1.4235 BEP 12.0630 9.5851 BEP+BEM -3.7719 -1.3133 BEP -4.4652 4.7144 BEP+BEM -21.9458 -42.2202 BEP -43.8009 -52.9864 BEP+BEM simulated colder temperature towards those where it simulated hotter temperatures means that the use of realistic NUDAPT data for the morphology of the city of Houston, increased the convergence of the flow above the hotter downtown area, at least for the days simulated. Table 7. Relative difference errors (∆T 2) obtained for every monitoring station and day analyzed. The relative difference errors are derived using the following equation: ∆T 2 = 100 × RMSE (urb _ class) − RMSE ( NUDAPT ) RMSE (urb _ class) 3.2.2 Wind field In Fig. 13, the wind speed at 10 m AGL is compared with the observations for the first day simulated in three monitoring stations (the rest of the stations did not show remarkable differences). It is difficult to highlight some conclusion from this comparison because the wind field is very influenced by the presence of clouds, and when the NUDAPT information is used the position of the clouds is modified with respect to the urb_class simulation. Nevertheless, it shows the importance of using detailed urban morphology data for the cloud prediction. When there were no clouds the wind field was captured reasonably well both days. In Fig. 12, together with the air temperature differences, the wind speed differences have been plotted (NUDAPT minus urban_class simulation). The fact that the vectors (differences between the winds of NUDAPT minus the one of urb_class) point from the region where NUDAPT Figure 12. a) 2-m air temperature (T2(NUDAPT)-T2(urb_class)) and wind speed (at 10 m AGL) differences at 0300 LST (26 August) obtained with the BEP+BEM scheme. b) as in a) at 0300 LST (01 September). 123 Chapter 3. A study of the UBL using different urban parameterizations. Figure 13. Time series of observed (OBS.) and simulated (with BEP and BEP+BEM schemes) horizontal winds at 10 m AGL for the 25th August at three sites: a) C55 station, b) C409 station, and c) C603 station. 4. Waste heat emission and energy consumption In the last part of this research, the total energy consumption (EC) has been analyzed with the BEP+BEM scheme. The value of instantaneous energy consumption ec( x, y, t ) (in Wm−2 ) due to the space cooling/heating is computed in this parameterization at every urban grid point, and the total consumption can be computed as following: EC = T 0 ecdxdy dt , urban domain (4) where (T ) is the period of simulation. In BEP+BEM, all the buildings are considered of the same type (only the dimensions can be different), and all the buildings in the domain are assumed to run the AC. Taking this into account, the EC was calculated considering the high resolution urban canopy parameters data set (NUDAPT) and the urban class classification for the two days simulated. The EC (NUDAPT) for the 25th of August over the whole domain was of 197347 MWh, while for EC (urb_class) it was 13.6% higher. For the 31st of August, the EC (NUDAPT) over the whole domain was 251419 MWh while for EC (urb_class) it was 8.9% higher. The differences in the EC due to the different meteorological conditions between the two selected days were 21.5% and 17.2% for the NUDAPT and urb_class cases, respectively. Heiple and Sailor (2008) estimated the daily averaged energy consumption from all sources (space cooling, lighting and appliances, and water heating) for the city of Houston for the month of August with a topdown and bottom-up approaches as 108588 and 105869 MWh, respectively. It is difficult to compare these results since the urban area considered by Heiple and Sailor (2008) is only a fraction of the urban area considered in our simulation domain. To get a more meaningful comparison, the energy consumption in the grid points classified as commercial (based on the NLCD database) was computed and compared to those obtained by Heiple and Sailor (2008) for the commercial areas (see Table 8). The following sources of uncertainty must be kept in mind when comparing these results: • The values computed by Heiple and Sailor (2008) account for the total energy consumption (not only AC, but also lighting and water heating), while those computed in our simulation are only due to AC. Nationally, 45% 124 Chapter 3. A study of the UBL using different urban parameterizations. • • of the annual energy consumed in commercial buildings is for space cooling (or heating). If this proportion is valid also for the days simulated, it can be concluded that the model overestimates the energy consumption by a factor 1.7-2.2 for NUDAPT, and a factor 3 to 4 for urb_class. It is likely, however, that for the summer days considered the fraction of energy used for AC was larger than 45% and the overestimation lower. It is assumed that the points classified as commercial in the NLCD data belong all to the city of Houston and that they overlap with the points considered as commercial in the work of Heiple and Sailor (2008). With the information in our possession it is not possible to verify this assumption. By a simple visual analysis of a map of the city it can be seen that, although the majority of commercial areas are located within the city limits, there are commercial points outside, in particular in the southern part of the domain (e. g., Galveston area). This may partially explain the larger energy consumption obtained by the model. The values computed by Heiple and Sailor (2008) are daily averages based on climatic data for the month of August, while our simulations were done for two specific days (25th and 31st of August 2000). The st second of them (31 ), in particular, was significantly hotter (maximum temperature 41 ºC) than the monthly average values (average maximum temperature for the month of August in Houston was of 33 ºC for this year). It is likely then that the energy consumption for AC was higher than the monthly average values. Daily energy consumption in MWh 25th August 31st August NUDAPT Urb_class 34946 66790 45058 80660 Top down 45853 Table 8. Daily energy consumption computed by the model and estimated by Heiple and Sailor (2008) with the top down and bottom up techniques. Indeed, some refinements must be done in the BEP+BEM parameterization to correct this overestimation in the energy consumption; for example, by considering different typologies of buildings that may use different types of AC (or no AC at all). For this work, state-of-the-art building-energy models will be an important tool to improve the performances of BEP+BEM by mean of off-line simulations. However, taking into account also the limitations of an urban canopy parameterization (some of them mentioned previously in this section) with respect to the top down and bottom up methodologies, we think that the results are a good starting point to create a tool that can give reasonable 125 Bottom up 45483 Chapter 3. A study of the UBL using different urban parameterizations. estimates of energy consumption without the need of very detailed information, which is often difficult to obtain. Another interesting conclusion that can be derived from these results is that the total energy consumption is very sensitive to the urban database used. Detailed information on the urban morphology is necessary (like those in NUDAPT) to get a realistic estimate of the energy consumption. Figure 14. a) 2-m air temperature differences (T2(AH)-T2(no AH)) at 0300 LST (26 August) obtained with the BEP+BEM (urb_class) simulation. The wind speed (AH) at 10 m AGL is showed. b) As in a) with the BEP+BEM (NUDAPT) simulation. Finally, the impact of the AH in the air temperature has been addressed. For this purpose, four new simulations with the BEP+BEM scheme were performed, where the AH coming from the AC systems was not ejected into the air. In the Figs. 14-15, the 2-m air temperature differences have been plotted for the two different urban configurations, NUDAPT and urb_class. The patterns of the simulated temperature fields present significant differences, showing the importance of the meteorological conditions and the urban morphology in the quantification of the AH in a city. It is interesting to observe (see Figs. 14b and 15b) that the UHI strength reflects closely the urban fraction. Similarly as in other studies (Ohashi et al. 2006), the waste heat increased the air temperature by 0.5-2 ºC depending on the location inside the city and the day considered (meteorological conditions). Figure 15. a) 2-m air temperature differences (T2(AH)-T2(no AH)) at 0300 LST (01 September) obtained with the BEP+BEM (urb_class) simulation. The wind speed (AH) at 10 m AGL is showed. b) As in a) with the BEP+BEM (NUDAPT) simulation. 5. Conclusions In this work, four urban canopy schemes coupled to the WRF model have been compared over the city of Houston. The first scheme is a simple BULK scheme tested successfully on several occasions. The second scheme is 126 Chapter 3. A study of the UBL using different urban parameterizations. a single-layer urban model (UCM) coupled to the WRF model and validated in different episodes. The third parameterization is a multilayer urban model (BEP) recently coupled to the WRF model, and finally, the last scheme is a multilayer urban parameterization (BEP+BEM) with a building energy model integrated from WRF V3.2 model. In the first part of the research, an up-to-date urban land cover dataset was used defining three different urban classes for the built-up areas in the numerical domain. Good results for the surface air temperature were obtained with the four schemes for the 25th of August. However, for the 31st of August, the UCM+AH parameterization was not able to capture satisfactorily the temporal evolution of the surface air temperature during the afternoon and the night. In a second part of the work, a high-resolution gridded UCP database was utilized (instead of urban classes derived from NLCD), and the simulations with the BEP and BEP+BEM schemes were repeated again. Results show that the BEP scheme is less sensitive to the urban morphology parameters for the air temperature forecast than the BEP+BEM scheme. It is important to emphasize that the AH (computed in BEP+BEM) is strongly dependent on the urban geometry of the city. So if the goal of the research is to quantify and study the impact of the AH, and evaluate strategies for the reduction of the EC, the use of a high-resolution urban land cover database for the investigated city becomes necessary and the BEP+BEM scheme recommended. On the other hand, if the purpose of the research is real time weather prediction, the simple bulk scheme would be sufficient, and consequently a highresolution urban land cover database would not be necessary in mesoscale simulations. Indeed, these are the conclusions that can be derived for this specific case being aware that a detailed study on cloud prediction must be carried out. To generalize them, it would be necessary to also investigate long periods, different cities and/or have a larger number of monitoring stations well-distributed over the domain. Finally, in the last part of the work, the EC over the city of Houston is quantified with the BEP+BEM scheme, and a reasonable value is obtained taking into account the limitations of an urban canopy parameterization for these kinds of studies. Differences up to 20% in the EC were obtained due to the different meteorological conditions existing between the two selected days. The impact of the AH on the air temperature is calculated and its distribution examined. The urban geometry played an important role in the EC and in the AH spatial distribution, and consequently the importance of using a high-resolution urban land cover database becomes evident. The AH increased the air temperature up to 2 ºC in some places during the night. Different episodes and cities should be simulated with the different urban canopy models to understand better their impact on the complex UBL process over the cities (e. g., cloud formation, air pollution dispersion, etc.). Moreover, the new BEP+BEM parameterization coupled to the WRF mesoscale model can help to evaluate mitigation strategies of the UHI phenomenon and to test new energy consumption reduction programmes in the cities. Acknowledgements We thank CIEMAT for the doctoral fellowships held by Francisco Salamanca. We also thank Jason Ching for providing the Urban Canopy Parameters for the city of Houston, Michael Duda for his help in the implementation of the high-resolution urban data set in the preprocessor of 127 Chapter 3. A study of the UBL using different urban parameterizations. WRF, and Angelines Alberto Morillas for her help in the set up of the computer cluster of CIEMAT where some simulations were performed. Finally, we thank Cody Phillips for editing the manuscript. This work was funded by the Ministry of Environment of Spain. References Bougeault, P., and P. Lacarrère, 1989: Parameterization of orographyinduced turbulence in a mesobetascale model. Mon. Wea. Rev., 117, 1872-1890. Burian, Steven J., W. S. Han, S. P. Velugubantla, and S. R. K. Maddula, 2003: Development of Gridded Fields of Urban Canopy Parameters for Models3/CMAQ/MM5, November 25. Burian, Steven J., and W. S. Han, 2003: Morphological Analyses using 3D Building Databases: Houston, Texas. LA-UR-03-8633, Los Alamos National Laboratory. Chen, F., and Coauthors, 2010: The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems. International Journal of Climatology, Doi: 10.1002/joc.2158. Chen, F., and J. Dudhia, 2001: Coupling an advanced landsurface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569-585. Ching, J., and Coauthors, 2009: National Urban Database and Access Portal Tool. BAMS, 90, 1157-1168. Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107. Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model, J. Geophys. Res., 108(D22), 8851, doi:10.1029/2002JD003296. Grimmond, C.S.B., and Coauthors, 2009: The International Urban Energy Balance Models Comparison Project: First results from Phase 1. J. Appl. Meteorol. Climatol. Doi: 10.1175/2010.JAMC2354.1. Heiple, S., and David J. Sailor, 2008: Using building energy simulation and geospatial modelling techniques to determine high resolution building sector energy consumption profiles. Energy and Buildings, 40, 1426-1436. Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation. Monthly Weather Review, 132, 103-120. Janjic, Z. I., 1994: The step-mountain eta coordinate: Further development of the convection, viscous sublayer, and turbulent closure schemes. Mon. Wea. Rev., 122, 927–945. Kanda, M., T. Kawai, M. Kanega, R. Moriwaki, K. Narita, A. Hagishima, 2005: A simple energy balance model for regular building arrays. Boundary-Layer Meteorol., 116, 423-443. Kikegawa Y., Y. Genchi, H. Yoshikado, and H. Kondo, 2003: Development of a numerical simulation system toward comprehensive assessments of 128 Chapter 3. A study of the UBL using different urban parameterizations. urban warming countermeasures including their impacts upon the urban buildings energy demands. Applied Energy, 76, 449-466. Kondo, H., Y. Genchi, Y. Kikegawa, Y. Ohashi, H. Yoshikado, and H. Komiyama, 2005: Development of a multilayer urban canopy model for the analysis of energy consumption in a big city: structure of the urban canopy model and its basic performance. Boundary-Layer Meteorol., 116, 395-421. Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models. Boundary-layer Meteorol., 101, 329-358. Kusaka, H., and F. Kimura, 2004: Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case. J. Meteor. Soc. Japan, 82, 67-80. Lin, C-Y, F. Chen, J.C. Huang, W-C. Chen, Y.-A. Liou, W.-N. Chen, and Shaw-C. Liu, 2008: Urban Heat Island effect and its impact on boundary layer development and land-sea circulation over northern Taiwan. Atmospheric Environment, 42, 5635-5649. Liu, Y., F. Chen, T. Warner, and J. Basara, 2006: Verification of a Mesoscale Data-Assimilation and Forecasting System for the Oklahoma City Area During the Joint Urban 2003 Field Project. J. Appli. Meteorol., 45, 912–929. Lo, Jeff C. F., Alexis K. H. Lau, F. Chen, Jimmy C. H. Fung, Kenneth K. M. Leung, 2006: Urban Modification in a Mesoscale Model and the Effects on the Local Circulation in the Pearl River Delta Region. J. Appl. Meteorol. Climatol., 46, 457-476. Martilli A., A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterization for mesoscale models. BoundaryLayer Meteorol., 104, 261-304. Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Boundary-Layer Meteorol., 94, 357-397. Miao, S., F. Chen, Margaret A. LeMone, M. Tewari, Q. Li, and Y. Wang, 2009: An Observational and Modelling Study of Characteristics of Urban Heat Island and Boundary Layer Structures in Beijing. J. Appl. Meteorol. Climatol., 48, 484-501. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 1666316682. Ohashi, Y., Y. Genchi, H. Kondo, Y. Kikegawa, H. Yoshikado, and Y. Hirano, 2006: Influence of AirConditioning Waste Heat on Air Temperature in Tokyo during Summer: Numerical Experiments Using and Urban Canopy Model Coupled with a Building Energy Model. J. Appl. Meteorol. Climatol, 46, 66-81. Salamanca F., A. Krpo, A. Martilli, and A. Clappier, 2010: A new Building Energy Model coupled with an Urban Canopy Parameterization for urban climate simulations—Part I. Formulation, verification and a sensitive analysis of the model. Theoretical and Applied Climatology, 99: 331344. Salamanca, F., and A. Martilli, 2010: A new Building Energy Model 129 Chapter 3. A study of the UBL using different urban parameterizations. coupled with an Urban Canopy Parameterization for urban climate simulations—Part II. Validation with one dimension off-line simulations. Theoretical and Applied Climatology, 99: 345-356. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. Duda, X.-Y. Huang, W. Wang and J. G. Powers, NCAR Technical Note, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note TN-475+STR, 125 pp. 130 Capítulo 3 131 Capítulo 3 3.5 Estudio numérico de la capa límite urbana sobre la ciudad de Madrid durante la campaña DESIREX (2008) con WRF y evaluación de diferentes estrategias de mitigación de la isla de calor urbana. Salamanca, F., A. Martilli, and C. Yagüe, 2010c: A numerical study of the urban boundary layer over Madrid during the DESIREX (2008) campaign with WRF and an evaluation of simple mitigation strategies of the UHI. Atmospheric Environment (submitted). En esta última sección se ha simulado con la nueva parametrización BEP+BEM la ciudad de Madrid. El período simulado escogido tuvo buenas condiciones sinópticas que favorecen la formación de la isla de calor urbana y coincidió con la campaña meteorológica DESIREX que tuvo lugar en el verano del 2008. La campaña tuvo como principal objetivo el estudio de la isla de calor, haciendo uso de estaciones meteorológicas e imágenes termográficas. En una primera parte del trabajo se validó la simulación y se estudió el impacto del calor antropogénico proveniente de los sistemas de aire acondicionado. En una segunda parte del trabajo se analizaron estrategias de mitigación tanto de la isla de calor como del consumo energético. Las estrategias analizadas fueron tres: aumento del albedo, uso de materiales aislantes en los techos y eliminación del calor antropogénico proveniente de los sistemas de aire acondicionado. Los resultados de las tres estrategias fueron analizadas separadamente y en conjunto. 132 Chapter 3. A numerical study of the UBL over Madrid during the DESIREX (2008) campaign. A numerical study of the urban boundary layer over Madrid during the DESIREX (2008) campaign with WRF and an evaluation of simple mitigation strategies of the UHI. Francisco Salamanca 1 · Alberto Martilli 1 · Carlos Yagüe 2 1 CIEMAT (Research Centre for Energy, Environment and Technology), Madrid, Spain 2 Dept. de Geofísica y Meteorología, Universidad Complutense de Madrid, Spain ABSTRACT Nowadays, mesoscale meteorological models coupled to Urban Canopy Parameterizations (UCP) can be used to complement and interpret the information gathered from intensive meteorological campaigns on the behaviour of the Urban Boundary Layer (UBL). Moreover, the impact of the air conditioning (AC) systems on the air temperature, the relationships existing between the energy consumption (EC) and the meteorological conditions, and the evaluation of strategies to mitigate the Urban Heat Island (UHI) phenomenon can be evaluated using complex UCP. In this work, a new UCP implemented in the Weather and Research Forecasting model (WRF, version 3.2) has been tested over the city of Madrid for the DESIREX campaign that took place in summer of 2008 and focused on Urban Heat Island (UHI) and Urban Thermography (UT) monitoring and assessment. Two selected days, with a high UHI intensity, th st were simulated (June 30 and July 1 ), and numerical results of various physical variables were compared against measurements showing a satisfactory performance of the model. The impact of the AC systems on the air temperature reached up to 1.5-2 ºC in some dense urban places, and the EC was evaluated for the simulated period. Effects of modifications in the roof albedo and building material properties would reduce the total EC by 5 % and 3 % respectively, affecting the intensity of the UHI. ______________________________________________________________________ Atmospheric Environment, (Submitted) Corresponding author address: F. Salamanca, Research Centre for Energy, Environment and Technology (CIEMAT), Avenida Complutense 22, 28040 Madrid, Spain. E-mail: [email protected] 133 Chapter 3. A numerical study of the UBL over Madrid during the DESIREX (2008) campaign. 1. Introduction In the last decades, the development of mesoscale models (MMs) accompanied by an increasing number of meteorological campaigns have contributed notably to a better understanding of the complex processes (Oke, 2002; Arnfield, 2003) that occur in the urban boundary layer (UBL). At the end of the XX century (and beginning of the XXI) the first urban canopy parameterizations (UCPs) to account for the mechanical and thermal impact of cities in MMs (e.g., Masson 2000, Kusaka et al. 2001, Martilli et al. 2002, Kanda et al. 2005) appeared. These important efforts provided a more realistic physical description of the urban areas, and contributed to better understand their impact on the lower atmosphere. Ever since, a big number of urban areas have been investigated (e.g., Martilli et al. 2003, Lo et al. 2006, Lemonsu et al. 2009, etc.) showing the need of considering the UCPs to study UBL processes. A fundamental fact contributing to increase the intensity of the urban heat island (UHI) phenomenon in big cities is the anthropogenic heat (AH) generated by human activities, besides the altered radiation and energy budget in urban areas, mainly as a result of replacing natural surfaces by buildings and pavements with different thermal inertia (Landsberg, 1981) . UHI indicates the higher temperature existing within cities compared to the surrounding rural areas and its intensity is usually defined as the difference in temperature between two observatories, one urban and other rural. The sources of AH (sensible/latent) released into the atmosphere are associated with the energy consumption and can be classified in three principal sectors: industry, buildings and transportation (see Sailor, 2010). It is known that fundamental contributions of AH in the commercial/residential areas are due to energy use in buildings for heating, ventilation, and air conditioning (AC) systems. In the first urban parameterizations (e.g. Masson 2000, and Martilli et al. 2002) the AH was not computed explicitly and coarse simplifications (for example keeping the indoor surface temperature of the buildings constant in time) were considered in the simulations. Alternatively, a source term of heat estimated from energy consumption databases was added in the atmospheric equations (Kusaka et al. 2001). One of the first studies where the AH (ejected by the AC systems into the atmosphere) was evaluated through an urban parameterization, is the work of Kikegawa et al. (2003), who integrated a simple building energy model (BEM) in an UCP. In this work, the relationship between the outdoor temperature and energy consumption was studied and the AC systems were responsible of an increase up to 1 º C (in average) of the outdoor temperature. The coupling between a BEM and an UCP offers a spread of new possibilities when they are integrated in an atmospheric model. The effect of the AC systems in the air temperature, the quantification of the AH and its impact on the UHI phenomenon, and the evaluation of energy consumption mitigation strategies are some examples of the features that can be investigated thanks to this linkage. However, a handicap appears when an UCP+BEM scheme is used, given that high resolution urban canopy parameters data sets are needed to obtain good estimations of the AH fluxes. In the last years, an important effort is being carried out in the USA (see Ching et al. 2009) to provide detailed urban canopy parameters to improve the parameterization of UBL processes. Continuing in this line, Salamanca et al. (2010a) developed a new BEM accounts for: the diffusion of 134 Chapter 3. A numerical study of the UBL over Madrid during the DESIREX (2008) campaign. heat through walls, roofs, and floors; natural ventilation; the radiation exchanged between indoor surfaces; the generation of heat due to occupants and equipments; and the consumption of energy due to air conditioning systems. BEM was coupled to a building canopy parameterization (BEP, building effect parameterization of Martilli et al. 2002), and tested off-line over the city of Basel (Salamanca and Martilli, 2010). It has been integrated in the public WRF (Weather Research and Forecasting) model (Skamarock et al. 2005) V3.2 release. The new BEP+BEM scheme was tested against measurements over the city of Houston (TEXAS, USA), and was able to produce reasonably estimations of energy consumption (EC) when high resolution urban canopy parameters were used (see Salamanca et al. 2010b). In the summer of 2008, the DESIREX (Dual-use European Security IR Experiment) campaign (see DESIREX final report, Sobrino et al. 2009), run by ESA (European Space Agency) and coordinated by Dr. J. A. Sobrino of Valencia University, was carried out in the city of Madrid (Spain). An important aim of the campaign was to study the UHI in support to mitigation strategies and urban energy efficiency policies. In this paper, thanks to the availability of the measured data, the BEP+BEM scheme, implemented in the WRF V3.2, has been tested for Madrid. The UHI in Madrid is known since decades (for example, see Yagüe et al. 1991). However, it has never been investigated numerically with a detailed urban canopy parameterization so far. Meteorological modelling studies over the region have been carried out in the last years, but always focussing on air pollution episodes (e.g., Palacios et al. 2002). The aim of this work is twofold: on one hand, to evaluate the ability of the new BEP+BEM scheme to describe the UBL processes over the city of Madrid in summer conditions, and on the other hand, to evaluate some simple energy consumption mitigation strategies and its relationship with the atmospheric variables. In section 2, a description of the studied area and experimental framework are displayed. In the first part of section 3, the set up of the simulations is presented, and in the second part numerical results against measurements are analysed. In section 4, the UHI and numerical sensitive experiments relative to energy consumption mitigation strategies are presented, and finally in section 5, conclusions and future work are pointed out. 2. DESIREX campaign 2.1 Madrid area Madrid (see fig. 1) is the capital and largest city of Spain. It is located in the central part of the Iberian Peninsula (40º 25’N, 3º 41’W) in a relatively flat area about 50 km south-east of the Spanish Central Ridge. A small valley crosses the city from north to south acting frequently as channel for air masses from the cooler northern rural areas. The maximum city height is located in the northern limit of the city reaching roughly 700 m above sea level (a.s.l.), while the lower occurs at the Manzanares River, around 550 m. The population of the city is roughly 3.2 million and has not had important changes from 1970, while the estimated population of the metropolitan area is 5.1 million, with outstanding increases in the last decades. The urban areas span a total of 607 km 2 . The coordinates of the centre of the tested area are 40º 23’ N and 3º 43’ W. Madrid has a climate with cool winters and temperatures that sometimes drop below 0 º C , and dry hot summers (mean maximum temperature 31.2 º C in July) with temperatures that can reach up to 40 º C in July and August 135 Chapter 3. A numerical study of the UBL over Madrid during the DESIREX (2008) campaign. (more details can be found in Sobrino et al. 2009). Measu remen ts ID Radio soundi ng RS1 Captiv e balloo n CB1 CUF Nuevos Minister ios 40º 26' 3 º 41' 686 45.6" 27.6" Meteo rologi cal netwo rk MN 1 MN 2 MN 3 CUF 40º 27' MN 4 DUF MN 5 ___ MN 6 DUF MN 7 DUF SN1 CUF SN2 DUF SN3 ___ AS1 CUF AS2 OU A DUF CIEMA T Fuencarr al Junta Mpal. Moratal az Junta Mpal. Villaver de E.D.A.R .La China Centro Mpal. De Acústica Junta Mpal. Hortalez a Pza. de España Pza. de Castilla Casa de Campo MadridParque Retiro Madrid Barajas MadridCuatro vientos Madrid Getafe MadridCiudad Universi taria Madrid Torrejón de Ardoz Colmen ar Viejo Rugby field UAM Firemen Park tower Survei llance netwo rk AEM ET station s AS3 AS4 AS5 Fixed masts Urba n Clas s OU A OU A ___ OU A DUF AS6 OU A AS7 FM1 OU A DUF FM2 DUF Site AEMET -Barajas Latitud e (N) Longit ude (W) Altitu de (m) asl 40º 27' 3º 32' 582 15" 39" 3º 43' 680 40º 30' 3º 40' 729 06" 57" 40º 21' 3º 34' 687 34" 10" 40º 20' 3º 42' 594 58" 39" 40º 19' 3º 40' 566 26" 42" 40º 26' 3º 44' 587 43" 24" 40º 27' 3º 39' 704 49" 24" 40º 25' 26.94" 40º 28' 05.77" 40º 25' 12.35" 40º 24' 40" 3º 42' 43.52" 3º 41' 19.14" 3º 44' 57.22" 3º 40' 41" 637 729 645 667 40º 27' 3º 32' 582 15" 39" 40º 22' 3º 47' 687 40" 21" 40º 18' 3º 43' 617 00" 21" 40º 27' 3º 43' 664 10" 27" 40º 29' 3º 27' 611 00" 01" 40º 41' 55" 40° 32' 50.58" 3º 45' 1004 52" 3° 41' __ 53.57" 40° 23' 3° 39' __ 39.98" 13.11" FM3 CUF New city Hall 40° 25' 3° 41' __ 8.35" 31.88" FM4 CUF Printing FM5 DUF Urbanis m building 40° 24' 49.96" 40° 27' 36.31" 3° 42' __ 19.87" 3° 40' __ 19.86" Table 1. Measurements sites and coordinates of the DESIREX campaign activities (source DESIREX final report). 2.2 Experimental framework The DESIREX campaign took place in Summer 2008 from June 23rd to July 6th on the city of Madrid and surroundings areas. Significant measurements activities were carried out involving an important number of researchers and institutions. In this section, only the part used in this work relative to atmospheric measurements are described (for more details see the final report of the campaign, Sobrino et al. 2009). Figure 2 shows the location of the measurements deployed during the campaign. In Table 1, the corresponding measurement sites and coordinates are indicated. The AS6, AS7 and FM1 sites are out of the Figure 2 map. Two balloons were released every day, at noon ( ≈ 1400LST ) and at midnight ( ≈ 0200LST ) by the Meteorological State Agency (AEMET), using the Vaisala RS92-SGP system at the AEMET-Barajas site (12km NE from city centre). The Vaisala RS92-SGP system was used to retrieve pressure, air temperature, relative humidity and wind magnitudes in each sounding. Various soundings with tethered balloon (up to 1000m) were taken at the city centre (Nuevos Ministerios site) providing the main meteorological characteristics and temporal development of the planetary boundary layer structure. These soundings (Atmospheric Instrumentation Research - AIR, 1986) measured the atmospheric pressure, dry and wet temperature, wind velocity, and wind direction. Due to windy conditions some of the launches were aborted. 136 Chapter 3. A numerical study of the UBL over Madrid during the DESIREX (2008) campaign. The city council of Madrid has developed its own meteorological network. The stations were located covering an extend area. Wind directions, wind speed, solar radiation, relative humidity, atmospheric pressure, air temperature and precipitations were measured during the campaign. The city council of Madrid and the Region of Madrid operate also another network of air quality stations in the area of study. These stations (Surveillance network in Table 1) measured wind speed, wind direction, air temperature, pressure, solar radiation and precipitation. Other meteorological stations belonging to AEMET were also included in the campaign. 3. WRF simulations 3.1 Numerical domain and set up of the simulations Two summer days (high pressure period) have been analyzed, June 30 th and July 1st 2008 (days 182 and 183 respectively). It is a typical summer synoptic situation, showing stability at high levels and very weak horizontal pressure gradient, so clear skies with slow winds are present along the two days studied (not shown). This kind of synoptic situation favours, during the night, the developing of surface-based thermal inversions, with strong stability; in these situations, the topographic features cause the development of circulations that are far from being nondivergent over Madrid and convergence katabatic flows can be developed over the city (Terradellas and Cano, 2007). The 60-h simulations begin at 1800 UTC (LST = UTC+2h) 29 th June and finish 0600 UTC 2nd July. Two different simulations with the BEP+BEM scheme (one considering the effect of the air conditioning systems, and the other not) were performed using the non-hydrostatic version of WRF (Skamarock et al. 2005) version V3.2, coupled to the Noah land surface model (Chen and Dudhia, 2001) for the vegetated part. The horizontal domain was composed of five two way nested domains with 100 × 100 , 174 × 156 , 219 × 186 , 216 × 198 , and 240 × 270 grid points, and a grid spacing of 27 , 9 , 3 , 1, and 0.333 km , respectively. The 60-h simulations were conducted with the Figure 1. Map of the SW of Europe with Madrid in the middle of the Iberian Peninsula (picture obtained from Google Earth). initial and boundary conditions obtained from the operational National Centre for Environmental Prediction (NCEP) with a grid resolution of 40km and a time resolution of 3 h. To take full advantage of the urban parameterizations, a vertical resolution of 51 sigma levels 1 was used (33 levels in the lowest 1.5 km with the domain top over ≈ 20km ). The Bougeault and Lacarrère (1989) planetary boundary 1 Full sigma levels = 1., 0.998743415, 0.99748677, 0.996230185, 0.9949736, 0.993716955, 0.992334723, 0.990814209, 0.989141703, 0.987301886, 0.98527813, 0.983051956, 0.980603218, 0.977909565, 0.974946558, 0.971687257, 0.968101978, 0.964158237, 0.959820092, 0.955048144, 0.949799001, 0.94402492, 0.937673509, 0.930686891, 0.923001587, 0.914547801, 0.905248582, 0.895019472, 0.883767486, 0.871390283, 0.857775331, 0.842798889, 0.826324821, 0.80820334, 0.788269699, 0.7663427, 0.742223024, 0.715691328, 0.68650645, 0.65440315, 0.619089544, 0.580244482, 0.537514985, 0.49051252, 0.438809812, 0.381936818, 0.319376528, 0.250560224, 0.17486228, 0.0915945247, and 0.0000. The vertical coordinate σ is defined as ( p − ptop ) /( p surf − ptop ) , where p is the pressure at each corresponding level, p surf is surface pressure, and ptop is a constant pressure at model top. 137 Chapter 3. A numerical study of the UBL over Madrid during the DESIREX (2008) campaign. layer (PBL) scheme (one-and-a-halforder closure) was used. BEP+BEM scheme is a building energy model linked to a multilayer urban canopy parameterization (BEP, Martilli et al. 2002) that takes into account the exchange of energy between the buildings and the outdoor atmosphere. BEP takes into account the effects of the building vertical and horizontal surfaces on momentum (drag force approach), turbulent kinetic energy, and potential temperature. The radiation at walls and roads considers shadowing, reflections, and trapping of shortwave and longwave radiation in street canyons. In BEM, the evolution of the indoor air temperature is computed as a function of the energy production and consumption in the buildings (separately for every floor) as well as the impact of the air conditioning system. The AH released into the urban atmosphere, to maintain the indoor temperature in a comfort range, is computed through an AC model (more details in Salamanca et al. 2010a). To study the effect of this AH, two simulations were carried out: in the first (hereafter this case is referred as BEP+BEM(AH)) the AH was ejected directly into the atmosphere, and in the second one it was not (case BEP+BEM(no AH)), for example it was placed elsewhere such as into sewage or soil. Comparing the two simulations the effects of the AH due to the AC systems can be evaluated. Figure 2. Location of the atmospheric measurements obtained in DESIREX campaign (picture obtained from Google Earth). See Table 1 for icons identification. The Earth Coordinates for the MN2 and AS4 sites are indicated. Three different urban classes were defined in the inner domain (see Figure 3) based on the CORINE land cover (the inventory was of the year 2000) database from the European Environment Agency (http://www.eea.europa.eu): “continuous urban fabric” (CUF), “discontinuous urban fabric” (DUF), and “other urban areas” (OUA) that represent a collection of points that in the CORINE database were classified as “Industrial or commercial units”, “Road and rail networks and associated land”, and “Airports”. The CUF class covered a surface of 102.42km 2 , the DUF class of 423.67km 2 , and finally the OUA class of 177.89km 2 . For the non urban part (see Figure 3), an up to date MODIS-based land use classification was used. The urban parameters and thermal properties defined for every urban class can be seen in Table 2 and 3 respectively. For the correct performance of the BEP+BEM scheme (see Salamanca et al. 2010a) extra inputs are required. In the three urban classes, the coverage area fraction of windows in the walls was fixed to 0.2, the number of occupants to 0.02 138 Chapter 3. A numerical study of the UBL over Madrid during the DESIREX (2008) campaign. person/m 2 of floor, and a thermal efficiency of the total heat exchanger to 0.75 (this value means that the indoor air of buildings is replaced by fresh air six times a day that corresponds to standard situations). For the AC model, additional parameters are needed and were fixed to the following values: target internal temperature 25 º C , amplitude of range of comfort 1 º C , and COP (Coefficient of Performance of the AC systems) 3.5. The peak heat flux generated by equipments was 36 Wm −2 of floor for OUA areas, and 20 Wm −2 for the rest of urban classes. The considered values for the sensible heat generated by equipments are similar to others estimations based on temporal variations of electric power consumption (Kikegawa et al. 2003). Parameter CUF DUF OUA Intensity (High (Low (Commercial Residential) Intensity or Industrial) Residential) Building plan 0.60 0.50 0.375 5 15 10 15 55 20 area fraction % of buildings of 5m of height % of buildings of 10m of height % of 15 25 40 65 5 30 buildings of 15m of height % of buildings of 20m of height Table 2. Urban morphological parameters considered for the three urban classes. 3.2 Analysis of the results 3.2.1 Air temperature The meteorological air temperature sensors were displayed at different heights, often above roof, depending of location and type of station. For this reason, the measurements instead of being compared with the standard modelled 2m air temperature were compared with the first sigma level above ground ( ≈ 10 m) that was more representative. The Root Mean Square Error (RMSE) and Mean Bias (MB) results can be seen in Table 4 for the two different simulations. Figure 3. Up to date MODIS-based land use classification (20 + 3 urban categories) used in the inner domain. In the figure, the 31, 32 and 33 (DUF, CUF, and OUA) values correspond to points which the urban fraction is bigger than 0. Continuous black lines correspond to height a.s.l. (it can be seen the Central System Mountains at the NW of the domain). The location of the AS2, AS1, FM1, FM4, MN2, MN4, MN7, and SN1 measurements sites is indicated with green square marks. It is known that the AH is bigger in downtown cores (and consequently its impact) than in residential areas where the urban fraction is lower. This fact can be seen observing the RMSE for the air temperature obtained with the two simulations BEP+BEM(AH) and BEP+BEM(no AH). The stations MN2, MN3, MN7, AS2, and AS7 are away of the urban core and the two simulations gave similar results. On the other hand, in downtown sites as SN1, FM3, FM4, etc., the RMSE is improved (for example it was decreased up to 5 tenths of degree in the FM3 site) when the AH is ejected into the atmosphere. Other stations, although further from the city 139 Chapter 3. A numerical study of the UBL over Madrid during the DESIREX (2008) campaign. centre but with high population rates, are also benefit from the AH inclusion (MN4, MN5, SN2, SN3, AS4, FM2). Figure 4. Temporal series of observed against modelled air temperature at two different stations: a) FM4, and c) FM1 sites. In b) temporal evolution differences of the air temperature between BEP+BEM(AH) against BEP+BEM(no AH). Figure 4 (a-c) shows temporal (UTC) evolution of the air temperature in an urban (FM4) and a rural (FM1) site. FM4 is situated in the centre of the city, in a very high density urban area where the urban fraction is 100%. The air temperature of BEP+BEM (AH) is higher than for BEP+BEM (no AH)) (see Figures 4a-b) during all the period simulated. The AH would be the responsible of this increase in the air temperature even if it does not increase the maximum value reached during the daytime ( ≈ 1500 UTC). A similar behaviour was observed also for the city of Houston, Texas (see Salamanca et al. 2010b). Once the air temperature has reached its maximum value, the effect of the AH is more important and can remain until dawn. On the other hand, this behaviour is not observed in the FM1 station situated north of the city, in a rural area. In fact, in the FM1 site the vegetated part (the urban fraction covers only a 16 %) is predominant, and consequently the air-vegetation interactions dominates and the differences between the two simulations are small. Figure 5. T2(AH)-T2(no AH) differences at 1800 UTC for the 30th June together with contour lines of the urban fraction. Barajas Airport location is indicated with a blue square mark. Surface ε λ C −1 −1 6 −3 α −1 z0 (m) (Wm K ) (⋅10 Jm K ) Roof 0.695 1.32 0.9 0.2 0.01 Wall 0.695 1.32 0.9 0.2 ___ Road 0.4004 1.40 0.95 0.15 0.01 Table 3. Thermal parameters used in the urban module BEP+BEM for the three urban classes. λ is the thermal conductivity of the material, C is the specific heat of the material, ε is the emissivity of the surface, α is the albedo of the surface, and z 0 is the roughness length for momentum over the surface. The effect of the AH in the air temperature is not constant during all 140 Chapter 3. A numerical study of the UBL over Madrid during the DESIREX (2008) campaign. the day, but it is strongly linked to the urban fraction of the corresponding area. Figure 5 shows the 2m air temperature differences (T2(AH)-T2(no AH)) at 1800 UTC (when this difference is maximum) for the 30 th of June together with contour lines of urban fraction in the inner domain. Clearly both patterns are overlapped, and differences up to 1.5-2 º C are reached in the urban core, showing the importance of considering AH in the simulation for those zones where the urban factor is predominant. The inclusion of the AH in the BEP+BEM scheme, improved the results in most of the stations (see Table 4) spread out over the city and surroundings, although we are aware that an exact quantification of the AH and its effect would require more information that was not available for Madrid (high resolution urban morphology, correct target temperature, percentage of buildings with air conditioning systems, etc.) 3.2.2 Vertical profiles open circle BEP+BEM (AH) closed circle BEP+BEM (no AH) cross OBS. Figure 6. Vertical profiles of the potential temperature at Barajas Airport: a) at 0000 UTC (30th June), b) at 1200 UTC ( 30th June), c) at 1200 UTC ( 1st July), d) at 0000 UTC ( 2nd July), and e) 0600 UTC ( 2nd July). Figure 6 (a-e) shows vertical profiles of the potential temperature (θ ) at Barajas Airport (RS1), situated ( ≈ 600 m asl) at north-east of Madrid and surrounded by urban nucleus by the south and west. Due to its proximity to Madrid, it is expected that air temperature profiles can feel the advection of the AH effects. Measurements show a slightly stable 141 Chapter 3. A numerical study of the UBL over Madrid during the DESIREX (2008) campaign. atmosphere, explained by the moderate winds at surface, in the lowest 600 m at 0000 UTC ( 30 th June, Figure 6a) while both simulations reproduce similar behaviour but in a shallower layer (400500m above ground level). During daytime (1200 UTC 30 th June, Figure 6b) the unstable mixed boundary layer developed and its measured depth is about 1 km. Model results show a Planetary Boundary Layer (PBL) slightly deeper (100-200m more than measured). Interestingly, in the lowest part of the PBL, the vertical profile produced by BEP+BEM(AH) is closer to measurements than the one obtained with BEP+BEM(no AH), meaning that the AH has a significant effect in the vertical structure of the atmosphere that could impact the dispersion of pollutants, and/or cloud formation, as it is warmer and more unstable. At the same hour of the following day (1200 UTC, 1st July, Figure 6c), simulation results underestimate the measurements by 1-2 oC in the whole profile. As for the previous day, BEP+BEM(AH) simulates higher temperature (closer to measurements) than BEP+BEM(no AH). Also the PBL height is better reproduced when AH is considered. Finally, during the third night of the simulation, the sounding shows a stable atmosphere (0000 UTC 2nd July, Figure 6d) in contrast with the situation of the first night (Figure 6a); this is due to the much lower wind present this night which allows the developing of surface-based inversions. This stability is increased before dawn at 0600 UTC ( 2nd July, Figure 6e). At these times the two simulations give similar results due to the weak advection, and in general underestimate the temperatures. 142 Chapter 3. A numerical study of the UBL over Madrid during the DESIREX (2008) campaign. open circle BEP+BEM (AH) closed circle BEP+BEM (no AH) cross OBS. Figure 7. Vertical profiles of the horizontal wind speed at Barajas Airport: a) at 0000 UTC (30th June), b) at 1200 UTC ( 30th June), c) at 1200 UTC ( 1st July), d) at 0000 UTC ( 2nd July), ande) 0600 UTC ( 2nd July). Stations ID Meteorol MN ogical 1 network MN RMSE MB RMSE MB (AH) (AH) (noAH) (noAH) (ºC) (ºC) (ºC) (ºC) 1.2143 0.5549 1.4217 1.0060 1.0897 -0.2992 1.0400 -0.0337 1.7540 -0.2354 1.7189 -0.0626 1.1519 0.2669 1.4731 0.7122 1.6381 1.2229 1.9070 1.5207 3.3073 -1.0998 3.1349 -0.7470 1.1663 -0.1058 1.1922 0.2188 2 MN 3 MN 4 MN 5 MN 6 MN 7 Surveilla SN1 1.6905 1.3853 2.0701 1.8048 nce SN2 2.0920 1.8420 2.4221 2.2263 network SN3 2.5123 1.8254 2.8024 2.1442 AEMET AS1 1.4715 0.2495 1.5695 0.7490 stations AS2 2.2554 0.4038 2.2889 1.0291 AS3 1.8615 1.0725 2.0555 1.3692 AS4 1.4939 0.7420 1.7529 1.1321 AS5 2.0401 0.2347 2.1397 0.6571 AS6 2.1216 -0.9030 1.6560 -0.3549 AS7 1.3615 0.8291 1.3067 0.8354 Fixed FM1 2.1332 -0.1208 2.0464 0.0335 masts FM2 2.0561 1.6459 2.4783 2.1508 FM3 2.1716 1.9964 2.6668 2.4688 FM4 1.4634 0.9028 1.9034 1.4928 FM5 1.4838 1.0734 1.6885 1.3708 Table 4. Statistical parameters (RMSE and MB) for the air temperature when the AH is ejected directly into the atmosphere and when is not. In Figure 7 (a-e) the vertical profiles of the horizontal wind speed are displayed. During the first night there are no differences between the wind speeds produced by the two simulations that are on the same order of the measured values. It is interesting to observe (see Figures 7b and 7c) that during daytime (1200 UTC), when the differences in the air temperature profiles produced by the two simulations are larger, also the differences in the wind speed are larger, especially for July 1st at 1200 UTC. Compared to measurements, the 30th of June, models give acceptable results, while the 1st of July, both simulations overestimate the wind speed. This wind speed overestimation is carried on to the night of the 2nd of July. The analysis of this overestimation would require a detailed study of the impact of different PBL schemes that could clarify the reason of this setback, but it was not the aim of this work. Finally, in Figure 8 (ae) the wind directions are showed. There are not appreciable differences at 0000 UTC ( 30 th June, Figure 8a) between the two simulations, and they were able to capture the slight change in the wind direction that took places at 1.4 km agl, but 500 m below. At noon 1200 UTC (Figures 8b and 8c) the model captured the wind direction in the whole UBL. The first day ( 30 th June, 143 Chapter 3. A numerical study of the UBL over Madrid during the DESIREX (2008) campaign. Figure 8b) some differences were observed between the two simulations at the first 400 m agl, showing a better fit against measurements when the AH was considered. The second day ( 1st July) the two simulations departure slightly the wind direction in the first 200 m agl. Finally, at night (Figures 8d and 8e) the two simulations gave similar results reproducing well the wind direction except in the first 400 m. The tendency of the model to overestimate the wind speed the 1st of July is confirmed by the comparison against three vertical tethered balloon soundings carried on at Nuevos Ministerios (CB1 site) (not shown). open circle BEP+BEM (AH) closed circle BEP+BEM (no AH) cross OBS. Figure 8. Vertical profiles of the wind direction at Barajas Airport: a) at 0000 UTC (30th June), b) at 1200 UTC ( 30th June), c) at 1200 UTC ( 1st July), d) at 0000 UTC ( 2nd July), and e) 0600 UTC ( 2nd July). 3.2.3 Wind field One of the most important problems in the comparison between wind field measurements against mesoscale model results, in urban areas, is the possible impact in the measurement of microscale effects, not captured by the model’s resolution. The impact of these microscale local effects on the air temperature is less important 144 Chapter 3. A numerical study of the UBL over Madrid during the DESIREX (2008) campaign. than on the wind field. For this reason, in urban areas, the position of a meteorological station plays a fundamental role. The position of the station must be sufficiently away from walls and roofs to avoid these local effects. Detailed information on the exact position of the stations in the microscale structure of the city is not available, but it is likely that the position can explain part of the differences between model results and measurements. centre. The model captured reasonably well the wind speed and wind direction the first day of simulations (Figures 9a, 10a, and 11a), but not the second day ( 1st of July, Figures 9b, 10b, and 11b) where the model has some problems to capture correctly the wind field. There are not important differences between the two BEP+BEM(AH) and BEP+BEM(no AH) runs, except for the period where the AH is maximum (from 1200 to 1800 UTC). Similar behaviour has been observed for other stations (not shown). Recent studies (Hu et al. 2010) have demonstrated that the choice of the PBL scheme in WRF can significantly affect the wind speed. A detailed study of the sensitivity of the results to the PBL scheme and soil boundary conditions could help to understand the origin of the disagreement between model results and measurements for the second day of simulation. Figure 9. Temporal evolutions of the horizontal wind speed at 10 m agl at MN4 site: a) 30th of Jun, and b) 1st of July. In Figures 9-11 temporal evolutions of the measured horizontal wind speed against modelled (at 10m agl) are displayed in three different sites, MN4, AS1 and MN7 stations. The MN4 site is an urban area situated at the south of the city, while the MN7 is an urban site rounded by green areas situated at north-east. The AS1 site represents an urban park (Retiro) close to the city Figure 10. As in Fig. 9, but at AS1 site. 145 Chapter 3. A numerical study of the UBL over Madrid during the DESIREX (2008) campaign. Figure 11. As in Fig. 9, but at MN7 site. 4. UHI and evaluation of energy consumption mitigation strategies 4.1 Urban Heat Island The UHI is a known problem very common in urban environments. The trapping of radiation that takes place in the urban canopy, the thermal properties of the building materials, and the AH due to human activities are the principal factors that take part in the formation of the UHI phenomenon. The UHI during heat waves episodes can represent a significant risk for the population. A recent review on urban climate, including turbulence, exchanges of energy and water, and the urban heat island can be found in Arnfield (2003). In this section, the urban heat island of Madrid has been analysed. In Figure 12a, the 2m air temperature (BEP+BEM(AH) case) at 2200 UTC ( 30 th of June) has been plotted together with the wind field at 10 m agl (katabatic flows coming from SE regions were present during the night). Clearly, the UHI is completely developed during the nocturnal time, and cover the totality of the urban areas with different degrees of intensity. Areas with greater building plan area fraction present a higher UHI intensity (compare Figure 12a to Figure 3) and areas with low urban fraction a lower intensity. The city of Madrid is surrounded by dry lands that not favour the UHI during daytime. In the Figure 12b, the air temperature at 10 m agl has been plotted at 1300 UTC ( 30 th of June) in the inner domain, and small differences are observed between the city and surrounded areas. It is interesting to observe that the increase of temperature at night reaches even areas not built up close to the city due to the advection of the accumulated heat. The UHI intensity is spatially dependent within the urban area, and it can be observed in the figure that the magnitude could reach up to 6 º C , which is in agreement with the values found by Yagüe et al. (1991). One of the important consequences of the larger nocturnal heating in the city compared to the urban surroundings is the weaker surface-based thermal inversions formed (clearly seen in Figure 13) due to the convective motions generated by the warmer core of the city. It is important to mention that the inner domain presents strong variations in height and consequently the UHI intensity could be misinterpreted. For this reason, a vertical ZY section of potential temperature ( longitude = 3.70W ) is plotted in Figure 13. The air temperature difference between central areas of the city ( ≈ latitude = 40.4 N ) and southern ( ≈ latitude = 40.15 N ) areas (points with the same height asl) reached up to five or six oC. 146 Chapter 3. A numerical study of the UBL over Madrid during the DESIREX (2008) campaign. Due to the small differences in height (see Table 1), the magnitude of the plots represents the real intensity of the UHI. Although the model is not able to reproduce the maximum magnitude of the UHI, it is able to capture reasonably well the tendency of the curve. Differences between the couple FM4 and MN2 are plotted in Figure 14b. Due to differences in height, this picture does not represent the real magnitude of the UHI, but the influence of the urban core is clear. In this case the model was able to capture the maximum magnitude of the air temperature differences, even if with a time delay. Figure 12. a) 2m air temperature (BEP+BEM(AH) case) and wind speed at 10 m agl at 2200 UTC (30th of June), and b) air temperature and wind speed at 10 m agl at 1300 UTC ( 30th of June) in the inner domain. Figure 13. Vertical section ( longitude = 3.70W ) of the air potential temperature θ (ºC) at 2200 UTC ( 30th of June) over the city of Madrid. Finally, the temporal evolution of 2m air temperature differences between couples of stations has been analysed. In Figure 14a, results for the SN1 (into the city centre) and AS2 (outside the city) stations are showed. Figure 14. Temporal evolution differences of the 2m air temperature between two sites showing the evolution of the UHI (measured against modelled): a) SN1 and AS2 sites, and b) FM4 and MN2 sites. Summarizing, the Madrid metropolitan area experiments strong nocturnal UHI in summer periods with intensities that can reach up to 5 6 º C in some regions of the urban area. 4.2 Energy consumption mitigation strategies 147 Chapter 3. A numerical study of the UBL over Madrid during the DESIREX (2008) campaign. In the last years important efforts have been carried out to mitigate the UHI. High albedo surfaces, urban forestry (planting trees in open spaces), green roofs, and new building materials with different thermal properties are the principal strategies to reduce UHI impact and energy consumption in urban areas (see Rosenzweig, C., and Co-authors, 2009), although some of them could have negative effect on the air quality. In BEP+BEM the energy consumption due to AC systems can be computed and different strategies can be evaluated. In this section, three strategies are analysed (by means of three new simulations) without considering the possible impacts on air quality: the first consists in a change of the albedo of the roofs from 0.2 to 0.4 (hereafter referred as BEP+BEM(AH)_ALB case), the second, consists in a modification of the thermal properties of the roofs (see Table 3) by introducing an internal layer of 6cm of insulating material (specific heat C = 0.382MJm −3K −1 , and thermal conductivity = 0.09Wm −1K −1 ) (BEP+BEM(AH)_INSULATION case), and finally the third (BEP+BEM(no AH)_ALB_INSULATION case) groups the mentioned modifications (change in the albedo, introduction of the insulating material, and no ejection of the AH into the atmosphere) in a single strategy. To evaluate the impact on the UHI, in Figures 15 (a-c) the 2m air temperature and wind speed at 10 m agl are plotted at 2200 UTC ( 30 th of June) for the three cases. Comparing the BEP+BEM(AH)_ALB case against the previous BEP+BEM(AH) simulation (see Figs. 15a and 12a), it can be seen that areas with greater temperatures (2930 º C ) have been reduced, and the total energy consumption (EC) was decreased by 4.95 %. The total EC when the AH is not ejected into the atmosphere (BEP+BEM(no AH) simulation) was reduced by 2.79 %, showing the existing feed backs between the AC systems and the outdoor temperature. From the point of view of energy saving, the albedo strategy was better than the no AH strategy. Although the increase of the albedo is a known step to reduce the UHI and EC in summer conditions, it could be counterproductive for winter periods (an increase in winter heating energy consumption was found by Saiz et al. 2006). Observing the Figures 15b and 12a, not appreciable differences appear when the two cases BEP+BEM(AH) and BEP+BEM(AH)_INSULATION are compared. It seems to be that the insertion of insulating material would affect the total EC (the total consumption was reduced in a 3.08 %) but not the nocturnal UHI because the heat released through the exterior walls during the night it would be similar in both simulations. An important energy saving was obtained with the BEP+BEM(no AH)_ALB_INSULATION strategy reaching up to 10.47 %. It is interesting to mention that the sum of the energy saving obtained with every strategy separately (change in the albedo of the roofs, introduction of the insulating material, and the not ejection of the AH into the atmosphere) is bigger than the energy saving obtained with the BEP+BEM(no AH)_ALB_INSULATION simulation. This fact is explained because the air temperature, the EC, and the ejected AH are physical magnitudes interconnected and strongly dependent. A considerable reduction of the UHI (1-2 ºC) was observed in some urban areas when the two cases BEP+BEM(AH) against BEP+BEM(no AH)_ALB_INSULATION (see figures 15c and 12a) are compared. Finally, in Table 5, results of the energy saving obtained with every strategy and for 148 Chapter 3. A numerical study of the UBL over Madrid during the DESIREX (2008) campaign. every urban classes (classification derived of the CORINE database) are showed. The greatest saving for the BEP+BEM(no AH) strategy took place in the CUF areas that curiously represent the smallest coverage extension. In these areas, the urban fraction is practically 100 %, and the building plan area fraction represents 60 % (see Table 2). All these factors increase the AH emissions, and consequently the energy saving was greater in these areas. On the other hand, observing the other studied strategies, the greatest saving coincided with the more extensive areas (DUF). It is not possible to generalize the conclusions because the results can be strongly linked to urban morphological parameters (see Table 2) that could be different for other cities. STRATEGIES % % % OUA CUF DUF BEP+BEM(AH)_ALB 3.64 4.57 5.73 BEP+BEM(AH)_INSULATION 2.15 2.58 3.72 BEP+BEM(no AH) 2.32 4.29 2.43 BEP+BEM(no 7.66 10.42 11.83 AH)_ALB_INSULATION Table 5. Saving energetic produced in every urban class over the Madrid metropolitan area. Figure 15. 2m air temperature and wind speed at 10 m agl at 2200 UTC (30th of June) in the inner domain: a) BEP+BEM(AH)_ALB case, b) BEP+BEM(AH)_INSULATION case, and c) BEP+BEM(no AH)_ALB_INSULATION. 5. Conclusions and future work In this paper a new UCP (BEP+BEM) have been tested over the Madrid metropolitan area with the WRF model in summer conditions. The urban scheme is integrated in the public release WRF V3.2 from April 2010. This UCP represents the most sophisticated urban parameterization coupled to the WRF model up to now, and the heat (sensible/latent) fluxes exchanged between the buildings and the atmosphere are considered. Two consecutive days have been analysed ( 30 th of June and 1st of July) and model results have been compared against measurements recorded in the DESIREX 2008 campaign. The urban model was able to reproduce satisfactorily the air temperature over the period analysed. On the other hand, 149 Chapter 3. A numerical study of the UBL over Madrid during the DESIREX (2008) campaign. the wind field over the city is more difficult to validate and is strongly dependent of the mesoscale circulations in the surroundings areas. In any case, the wind field was captured reasonably well the first day of simulation, and some difficulties appeared the second day: WRF overestimated the wind speed. The impact of the AH due to space cooling loads (peaks up to 110Wm−2 were reached in the middle of the afternoon) and their EC was evaluated and different mitigation strategies were addressed. At some hours, the AH was responsible of an increase in the air temperature up to 1.52ºC . The UHI over Madrid reached up to 5-6 º C in some urban regions. The total EC was reduced close to 5 % when the albedo was increased and 3 % when the insulating material was introduced. A high albedo at the roofs, insulating materials inside the walls, and AC systems not ejecting directly into the atmosphere are strategies that would reduce notably the UHI (1-2ºC) and EC (an energy saving up to 10.5 % was obtained). It is important to mention here that to quantify correctly the AH released in an urban area through an UCP, detailed information of the urban morphology is necessary, and high resolution urban canopy parameters data sets recommended. The spatial and temporal variations of the AH, UHI and EC over a city are physical magnitudes difficult to quantify without a detailed up to date urban morphology data. Thanks to the increasing power of the computers and detailed urban databases, the simulation of the above three magnitudes with a meteorological model can be obtained. The impact of the AH on the pollutant concentrations and/or cloud formation can be also investigated with these numerical tools. Acknowledgements We thank CIEMAT for the doctoral fellowships held by Francisco Salamanca. We thank Dra. Rocío Macarena Alonso and Dra. Marta García of CIEMAT for providing an up to date land use file of the Madrid Community. We also thank Eugenio Sánchez García of CIEMAT who transformed to ASCII format the urban information existing in CORINE database. Finally, we also thank Dr. Mukul Tewari of NCAR for providing the NCEP operational data. This work was funded by the Ministry of Environment of Spain and partially by the project CGL2009-12797-C03-03 (Spanish Ministry of Science and Innovation). References Arnfield, A. J., 2003: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol., 23: 126. Bougeault, P., and Lacarrère, P., 1989: Parameterization of orographyinduced turbulence in a mesobetascale model. Mon. Wea. Rev., 117, 1872-1890. Chen, F., and Dudhia, J., 2001: Coupling an advanced landsurface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569-585. Ching, J., and Coauthors, 2009: National Urban Database and Access Portal Tool. BAMS. Doi:10.1175/2009BAMS2675.1. Hu, X.-M., Nielsen-Gammon, J. W., and Zhang, F., 2010: Evaluation of Three Planetary Boundary Layer Schemes in the WRF model. J. Appl. Meteorol. Climatol. Doi: 10.1175/2010JAMC2432.1. Kanda, M., Kawai, T., Kanega, M., Moriwaki, R., Narita K., 150 Chapter 3. A numerical study of the UBL over Madrid during the DESIREX (2008) campaign. Hagishima, A., 2005: A simple energy balance model for regular building arrays. Boundary-Layer Meteorol., 116, 423-443. Kikegawa, Y., Genchi, Y., Yoshikado, H., and Kondo, H., 2003: Development of a numerical simulation system toward comprehensive assessments of urban warming countermeasures including their impacts upon the urban buildings energy demands. Applied Energy, 76, 449-466. Kusaka, H., Kondo, H., Kikegawa, Y., and Kimura, F., 2001: A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models. Boundary-layer Meteorol., 101, 329-358. Landsberg, H. E., 1981. The Urban Climate. Academic Press, New York, 277 pp. Lemonsu, A., Belair, S., and Mailhot, J., 2009: The New Canadian Urban Modelling System: Evaluation for Two Cases from the joint Urban 2003 Oklahoma City Experiment. Boundary-Layer Meteorol., 133, 47:70. Lo Jeff, C. F., Lau Alexis, K. H., Chen, F., Fung Jimmy, C. H., Leung Kenneth, K. M., 2006: Urban Modification in a Mesoscale Model and the Effects on the Local Circulation in the Pearl River Delta Region. J. Appl. Meteorol. Climatol., 46, 457-476. Martilli, A., Clappier, A., and Rotach, M. W., 2002: An urban surface exchange parameterization for mesoscale models. BoundaryLayer Meteorol., 104, 261-304. Martilli, A., Roulet, Y.-A., Junier, M., Kirchner, F., Rotach, M. W., and Clappier, A., 2003: On the impact of urban surface exchange parameterizations on air quality simulations: the Athens case. Atmospheric Environment, 37, 4217-4231. Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Boundary-Layer Meteorol., 94, 357-397. Oke, T. R., 1987. Boundary Layer Climate, 2nd ed. Methuen, London, UK, 435 pp. Palacios, M., Kirchner, F., Martilli, A., Clappier, A., Martín, F., Rodríguez, M. E., 2002: Summer ozone episodes in the Greater Madrid area. Analyzing the ozone response to abatement strategies by modelling. Atmospheric Environment, 36, 5323-5333. Rosenzweig, C., and Co-authors, 2009: Mitigating New York City´s Heat Island. BAMS. Doi: 10.1175/2009BAMS2308.1 Sailor, D., 2010: A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment. International Journal of Climatology. Doi: 10.1002/joc.2106. Saiz, S., Kennedy, C., Bass, B., and Pressnail, K., 2006: Comparative Life Cycle Assessment of Standard and Green Roofs. Environ. Sci. Technol., 40, 43124316. Salamanca, F., and Martilli, A., 2010: A new Building Energy Model coupled with an Urban Canopy Parameterization for urban climate simulations—Part II. Validation with one dimension off-line simulations. Theoretical and Applied Climatology, 99, 345-356. Salamanca, F., Krpo, A., Martilli, A., Clappier, A., 2010a: A new Building Energy Model coupled with an Urban Canopy Parameterization for urban climate simulations—Part I. Formulation, verification and a sensitive analysis of the model. Theoretical 151 Chapter 3. A numerical study of the UBL over Madrid during the DESIREX (2008) campaign. and Applied Climatology, 99, 331344. Salamanca, F., Martilli, A., Tewari, M., and Chen, F., 2010b: A study of the urban boundary layer using different urban parameterizations and high-resolution urban canopy parameters with WRF (The case of Houston). J. Appl. Meteorol. Climatol.(accepted). Skamarock, W. C., and Coauthors, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note TN468+STR, 88 pp. [Available from NCAR, P. O. Box 3000, Boulder, CO 80307.] Sobrino, J. A., and Coauthors, 2009: DESIREX 2008 Final Report Contract nº: 21717/08/I-LG (http://www.uv.es/desirex). Terradellas, E., and Cano, D., 2007: Implementation of a singlecolumn model for fog and low cloud forecasting at CentralSpanish airports. Pure and Applied Geophysics, 164, 13271345. Yagüe, C., Zurita, E., and Martínez, A., 1991: Statistical analysis of the Madrid urban heat island. Atmospheric Environment, 25B, 327-332. 152 Capítulo 4 153 Capítulo 4 CAPÍTULO 4 DISCUSIÓN INTEGRADORA 154 Capítulo 4 4.1 Discusión integradora Los trabajos que se han presentado a lo largo de esta tesis doctoral han pretendido avanzar en el conocimiento de la formación de la isla de calor urbana. La isla de calor es un viejo conocido problema de los estudiosos del clima urbano que puede afectar negativamente a los habitantes de las grandes ciudades. Aunque gran parte del conocimiento del fenómeno de la isla de calor se adquirió hace algunas décadas, su modelización sólo ha sido posible en los últimos años. Hoy en día su estudio está muy extendido gracias en buena parte al aumento en la capacidad de cálculo de los ordenadores y al desarrollo teórico de las parametrizaciones urbanas. Éstos proporcionan las condiciones de contorno a los modelos atmosféricos resolviendo los efectos térmicos y dinámicos producidos por los edificios en la atmósfera. Las ciudades con extensiones de varios kilómetros pueden modificar de un modo importante el clima local. Un componente fundamental originado por las distintas actividades humanas y que afecta directamente a la isla de calor urbana es el calor antropogénico. Las principales fuentes de este calor son debidas al consumo energético y están originadas por el tráfico, las actividades industriales y la regulación térmica interna que tiene lugar en los edificios. Estas fuentes de calor no se resuelven explícitamente en la mayoría de los esquemas urbanos. Sin embargo, en algunos esquemas se tienen en cuenta añadiendo al flujo de calor total valores horarios que se basan en datos de consumo energético mensuales y perfiles temporales. Desafortunadamente, la obtención de estos datos es, para la mayoría de las ciudades, muy difícil. Además estos perfiles diarios dependen fuertemente de las condiciones meteorológicas y la extrapolación a partir de datos medios mensuales es una importante fuente de error. Los aires acondicionados son una fuente de calor para la atmósfera y contribuyen a aumentar el efecto de la isla de calor generando un fenómeno de retroalimentación positiva que no es 155 Capítulo 4 considerado con esta técnica. Por estas razones, en esta tesis se ha optado por resolver de forma explícita los intercambios de calor (sensible/latente) que tienen lugar entre los edificios y la atmósfera. Nuestro modelo considera los intercambios de calor a través de la ventilación natural y a través del uso de los sistemas que regulan la temperatura interna. Si bien el consumo energético medio anual puede ser muy diferente dependiendo del país o de la ciudad considerada, se estima que en torno al 50 % del consumo energético anual de los hogares de las ciudades de los EEUU tiene su origen en la regulación térmica interna de los edificios (EIA, 2005). Este gran porcentaje muestra la importancia de esta componente en el cómputo total del calor antropogénico producido en las ciudades y consecuentemente de su efecto en la isla de calor. Por consiguiente, es de esperar que el resolver térmicamente los edificios, tenga un efecto notable en la modelización atmosférica sobre las ciudades. La regulación de la temperatura interna de los edificios se lleva a cabo en verano por los sistemas de aire acondicionado y en invierno por los sistemas de calefacción. Si bien en esta tesis hacemos referencia constantemente a los sistemas de aire acondicionado, el modelo desarrollado regula la temperatura interna tanto en períodos estivales (enfriando) como en invernales (calentando). Una vez que se desarrolló el modelo energético BEM (Salamanca et al., 2010a), se realizó una inter-comparación frente a otros programas utilizados en el análisis térmico de edificios utilizados en estudios de ingeniería (Salamanca & Martilli, 2010). Los resultados muestran que BEM es capaz de describir los mecanismos más importantes que gobiernan la generación de calor dentro de los edificios y los intercambios con el exterior. La ventaja de BEM frente a los otros programas es que es fácilmente integrable en una parametrización urbana y se pueden llevar a cabo simulaciones a mesoescala del clima urbano (objetivo principal de esta tesis) teniendo en cuenta los efectos de retroalimentación, mencionados más 156 Capítulo 4 arriba, entre el uso de los aires acondicionados y la isla de calor. En BEM se calculan los flujos de calor (sensible/latente) intercambiados con el exterior debido al uso de los sistemas de aire acondicionado cuando regulamos la temperatura interna de los edificios. La posibilidad de estimar con un modelo atmosférico el consumo energético debido a factores climáticos (aire acondicionado y calefacción) a nivel de una ciudad entera, abre la posibilidad de utilizar esta herramienta para evaluar estrategias tanto de mitigación de la isla de calor urbano, como de reducción del consumo energético. Es importante recordar que las ciudades son los lugares donde más se consume energía a nivel mundial, y poder reducir este consumo es una clave para poder controlar el cambio climático. Varias simulaciones en una dimensión vertical (off-line) se llevaron a cabo con el nuevo modelo energético una vez que estuvo unido a la parametrización urbana BEP para una pequeña zona de la ciudad suiza de Basel (Salamanca & Martilli, 2010), donde se había realizado una campaña de medidas. Estas simulaciones muestran que la inclusión de los flujos de calor provenientes de los aires acondicionados acercan los resultados a las medidas de flujo de calor sensible tomadas por encima de los edificios de la calle. Estos primeros resultados indican, además, que los sistemas de aire acondicionado pueden aumentar, para la ciudad considerada, la temperatura exterior hasta 2-3 ºC en períodos estivales, aunque el impacto real podría ser algo menor ya que la advección no estuvo considerada en estas primeras simulaciones. Flujos diarios medios de calor de 50 a 160 W/m 2 fueron emitidos por los sistemas de aire acondicionado con picos que alcanzaron hasta 200 W/m 2 durante algunas horas del día (valores típicos de flujos de calor sensibles totales en ciudades en latitudes similares a la de Basel alcanzan entre 300-400 W/m 2 en verano). Estos resultados ponen de manifiesto la necesidad de tener en cuenta estos flujos en las simulaciones con modelos mesosescalares y de su posible impacto no solo sobre el clima urbano, sino que también en la 157 Capítulo 4 dispersión de contaminantes y en la predicción de la formación de nubes porque pueden afectar de manera significativa la estructura entera de la capa limite atmosférica. Se han realizado diferentes estudios de sensibilidad del consumo energético y los resultados indican que un aumento de la temperatura exterior de 1 ºC incrementa entre 3-5 % el consumo energético. Por otro lado se ha visto que el uso de materiales aislantes reduce el consumo en torno a un 10 % (Salamanca & Martilli, 2010). Para evaluar la importancia de estos flujos en una simulación real en 3D, en la figura 4.1 se muestran los flujos totales de calor sensible (HFX) intercambiados con la atmósfera cuando se consideran los flujos provenientes de los sistemas de aire acondicionado y cuando no se tienen en cuenta. La figura corresponde a una zona céntrica (latitud= 40.41387778º, longitud= -3.705519444º) de la ciudad de Madrid y las simulaciones fueron realizadas con el modelo atmosférico WRF utilizando el esquema urbano BEP+BEM, los resultados mostrados corresponden al día 30 de Junio del año 2008 (Salamanca et al., 2010c). 158 Capítulo 4 Figura 4.1. Flujos totales de calor sensible: la línea negra representa el caso en el que el calor proveniente de los sistemas de aire acondicionado es considerado y la línea roja cuando no se tienen en cuenta. En la figura 4.1 se observa que el flujo total de calor sensible no solo se ve afectado notablemente durante las horas diurnas, sino que el efecto de los sistemas de aire acondicionado se prolonga durante toda la noche. Los valores positivos del flujo de calor durante la noche indican que las superficies urbanas siguen calentando el aire y por lo tanto acentúan la formación de la isla de calor. La primera ciudad que se ha simulado en esta tesis con el modelo atmosférico WRF ha sido la ciudad de Houston (Texas, EEUU) (Salamanca et al., 2010b). En la primera parte de este estudio se han comparado las cuatro parametrizaciones urbanas disponibles en el modelo con el fin de mostrar las posibles diferencias existentes entre ellas. Con el nuevo esquema BEP+BEM se obtuvieron buenas estimaciones de la temperatura del aire y los sistemas de 159 Capítulo 4 aire acondicionado fueron los responsables de un aumento de la temperatura de hasta 2 ºC en algunos lugares de la ciudad. En la segunda parte del estudio se hizo uso de información morfológica detallada de la ciudad (existente en la base de datos NUDAPT) con una resolución de 1 km 2 y se repitieron las simulaciones con los esquemas BEP y BEP+BEM. Los resultados ponen de manifiesto que el nuevo esquema BEP+BEM es más sensible que el anterior esquema BEP a los parámetros geométricos que describen la ciudad, ya que con el nuevo modelo se calcula el calor antropogénico proveniente de los sistemas de aire acondicionado. El flujo de calor proveniente de estos sistemas depende de las dimensiones de los edificios y éstas de los parámetros morfológicos. Se ha calculado el consumo energético de la ciudad con la nueva parametrización BEP+BEM y se obtuvieron buenos resultados al compararlos con valores obtenidos por otras metodologías totalmente diferentes (top-down y botton-up) cuando se usó la información morfológica detallada. Es importante comentar aquí que diferentes simulaciones de períodos más largos (se han simulado sólo dos días) junto con una mayor red de observaciones (tanto en superficie como en altura) deberían llevarse a cabo para extraer conclusiones más definitivas. En la figura 4.2 mostramos algunos perfiles verticales de la temperatura potencial obtenidos con los cuatro esquemas urbanos en dos zonas diferentes de la ciudad de Houston durante la noche. Comparando BEP con BEP+BEM vemos claramente el efecto de los sistemas de aire acondicionado en los primeros 100-150 m de la capa límite atmosférica. Cuando se tuvieron en cuenta estos flujos, se logró reproducir mejor la temperatura del aire sobre la ciudad. Claramente comparando las figuras 4a y 4b vemos que el efecto del calor antropogénico no es homogéneo y depende fuertemente de la morfológia urbana de la zona considerada. 160 Capítulo 4 161 Capítulo 4 Figura 4.2. Perfiles verticales de la temperatura potencial obtenidos con los cuatro esquemas urbanos (BULK, UCM, BEP y BEP+BEM) a las 0300 LST (1 Septiembre 2000) en dos zonas diferentes de la ciudad de Houston, Texas: a) zona comercial y b) zona residencial. Finalmente también se ha simulado la ciudad de Madrid (España) con el modelo atmosférico WRF (Salamanca et al., 2010c). El período analizado tuvo buenas condiciones sinópticas favoreciéndose la formación de la isla de calor y coincidió con la campaña meteorológica DESIREX que tuvo lugar en el verano del 2008. El único esquema urbano utilizado para este estudio ha sido la nueva parametrización BEP+BEM. En la primera parte del trabajo hemos estudiado el impacto de los sistemas de aire acondicionado y en la segunda se ha hecho una evaluación de diferentes estrategias de reducción del consumo energético y 162 Capítulo 4 mitigación de la isla de calor. Los resultados mostraron picos de calor provenientes de los sistemas de aire acondicionado de 110 W/m 2 y fueron los responsables de un aumento de la temperatura del aire de hasta 1.5-2 ºC en algunos lugares de la ciudad durante la noche. La isla de calor sobre Madrid alcanzó 5-6 ºC cuando estuvo totalmente desarrollada de noche. En la figura 4.3 mostramos la diferencia de temperatura obtenida cuando el calor antropogénico procedente de los sistemas de aire acondicionado es liberado a la atmósfera y cuando no es liberado para los dos días simulados. Comparando ambas figuras se observa claramente que el impacto del calor emitido es mayor el primer día simulado. El segundo día fue menos caluroso y por consiguiente el calor antropogénico liberado menor. Estos resultados muestran la relación directa que existe entre el calor antropogénico y las condiciones meteorológicas. 163 Capítulo 4 Figura 4.3. Diferencias de la 2-m temperatura (ºC) del aire T2(AH)-T2(noAH) a las 2000 LST sobre la ciudad de Madrid para los dos días simulados: a) 30 de Junio y b) 01 de Julio del 2008. Las siguientes tres estrategias de reducción del consumo energético fueron analizadas: aumento del albedo de los tejados, uso de materiales aislantes en los muros y finalmente la eliminación del calor proveniente de los sistemas de aire acondicionado. El aumento del albedo y el uso de materiales aislantes redujeron el consumo energético en un 5 % y un 3 % respectivamente. Cuando se consideraron las tres estrategias de un modo global se obtuvo un ahorro en el consumo total de hasta un 10 % y la isla de calor disminuyó en 1-2 ºC. En esta tesis también se ha investigado el papel que juegan las propiedades térmicas de los diferentes materiales presentes en una zona urbana a la hora de calcular el flujo total de 164 Capítulo 4 calor sensible intercambiado con la atmósfera (Salamanca et al., 2009). Cuando se calcula este flujo, se necesita conocer las propiedades térmicas del material representativo de la zona bajo estudio y la forma estándar de proceder es “promediando” las distintas propiedades térmicas teniendo en cuenta el porcentaje presente de cada material en la zona. En esta tesis proponemos calcular los valores térmicos del material representativo de una forma totalmente diferente teniendo como objetivo el reducir la diferencia entre la suma de los flujos intercambiados por cada una de las superficies de los materiales presentes con la atmósfera, y el flujo de calor que se obtendría con el nuevo material representativo. Se ha considerado una situación sencilla donde se conocía la solución analítica y se ha igualado la suma de los flujos de calor obtenidos con los diferentes materiales con la que se obtendría con el nuevo material. De esta forma se han derivado las propiedades térmicas del material representativo de la zona y varias simulaciones han demostrado que el error en el cálculo del flujo de calor se ha reducido en torno a un 50 % en situaciones reales. El trabajo presentado en esta tesis contribuye al desarrollo de una herramienta numérica capaz de describir de forma detallada el impacto de las ciudades en la atmósfera. Con este tipo de herramientas se obtienen distribuciones espaciales tanto del calor antropogénico como del consumo energético. Gracias al trabajo realizado en esta tesis podemos contribuir al desarrollo de ciudades más sostenibles desde un punto de vista energético. 165 Capítulo 4 166 Capítulo 4 CHAPTER 4 DISCUSSION 167 Capítulo 4 4.1 Discussion The works that have been presented in this doctoral thesis have the aim to improve the knowledge of the formation of the urban heat island. The urban heat island is a well known feature of the urban climate that affects inhabitants of the big cities. Although a significant part of the knowledge of the urban heat island has several decades, its modelling has been possible only in the recent years. Nowadays, its study is very extended in part thanks to the increase in the computer power and the theoretical development of the urban canopy parameterizations. The urban schemes provide the boundary conditions to the atmospheric models solving the thermal and dynamical effects produced by the buildings in the atmosphere. The cities with extensions of several kilometres can modify significantly the local climate. An important component originated by the different human activities and that it affects directly the urban heat island is the anthropogenic heat. The principal sources of this heat are due to the energy consumption and are originated by the traffic, the industrial activities, and the internal regulation of the air temperature inside the buildings. These heat sources are not solved explicitly in most of the urban schemes. However, in some schemes they are taken into account by adding to the total sensible heat flux daily profiles of heat based monthly data of energy consumption. For many cities, however, it is often impossible to get this information. Moreover, these values depend strongly on the meteorological conditions and the use of monthly values can introduce significant errors. In addition, this technique does not take into account the positive feedback between the use of the air conditioning systems (which contributes to the Urban Heat Island, since they eject heat to the atmosphere) and the UHI itself. For these reasons in this thesis we have chosen to solve explicitly the heat (sensible/latent) exchanges that take place between the buildings and the atmosphere. Our 168 Capítulo 4 model considers the direct exchanges through the natural ventilation and through the use of systems that regulate the indoor temperature. Although the energy annual consumption can be very different depending on the country and the city considered, it is estimated that over 50 % of the annual energy consumption of the houses in cities of the USA has its origin in the indoor temperature regulation of the buildings (EIA, 2005). This percentage shows the importance of this component in the total calculation of the anthropogenic heat produced in the cities and consequently of its effect in the formation of the urban heat island. It is expected, then, that resolving the thermal behaviour of the buildings may have a significant effect in the urban mesoscale modelling. The regulation of the indoor air temperature is carried out in summer periods by the air conditioning systems and in winter periods by heating systems. Although in this thesis we refer constantly to the air conditioning systems, the model developed regulates the indoor temperature in summer (cooling) and in winter (heating) periods. As soon as the new energy model (BEM) was developed (Salamanca et al., 2010a), it was compared against other well-known programs used in thermal analysis of buildings. Results show that BEM is able to describe the most important mechanisms that govern the generation of heat inside the buildings and their exchange with the exterior. The advantage of BEM against other programs is that it can be easily implemented in an urban scheme for simulations of urban climate (principal aim of this thesis) taking into account the feedback effects, mentioned above, between the use of the air conditioning systems and the urban heat island. In BEM the heat fluxes (sensible/latent) exchanged with the exterior due to the use of the air conditioning systems are computed when we regulate the indoor air temperature. The possibility of estimating with an atmospheric model the energy consumption due to climatic factors (air conditioning and heating) to city scale opens the possibility of using this tool to 169 Capítulo 4 evaluate strategies of mitigation both urban heat island and energy consumption. It is important to remember that the cities are the places where more energy is consumed to world scale, and to be able to reduce this consumption is an important steep to be able to control the climate change. Several simulations have been carried out in a vertical column (off-line) with the new energy model integrated in the urban scheme BEP in an urban area of the Swiss city of Basel (Salamanca & Martilli, 2010), where a field campaign took place. These first results indicate that the new scheme improved the estimation of the sensible heat fluxes when the air conditioning are taken into account compared to measurements above the urban canyon. Results show also that air conditioning systems could increase the outdoor air temperature up to 2-3 ºC, for this city in summer, although the real impact might be slightly less since advection is not considered in these first simulations. Daily average heat fluxes from 50 to 160 W/m 2 were computed by the air conditioning systems with peak values that reached up to 200 W/m 2 during some hours of the day (note that maximum total sensible heat fluxes for this city in summer were of the order of 300-400 W/m 2 ). These results show the need to consider these fluxes in mesoscale models and study their possible impact on pollutant dispersion and cloud formation since they may affect the whole structure of the PBL. Different sensitivity studies have been carried out to evaluate the impact in the energy consumption. The results indicate that an increase of 1 ºC in the outdoor temperature increases the energy consumption by 3 % to 5 %. On the other hand, the use of insulating materials reduces the consumption by about 10 % (Salamanca & Martilli, 2010). To evaluate the importance of these fluxes in a real 3D simulation, the Fig. 4.1 shows the total sensible heat (HFX) flux exchanged with the atmosphere when the heat fluxes coming from the air conditioning systems are taken into account and when are not. The figure shows the results for the 30 June 2008 (Salamanca et 170 Capítulo 4 al., 2010c) and represents a central area (latitude = 40.41387778º, longitude = -3.705519444º) of the city of Madrid. The simulations were done with the atmospheric WRF model using the urban scheme BEP+BEM. Figure 4.1. Total sensible heat fluxes: the black line represents the case in which the heat fluxes coming from the air conditioning systems are taken into account and the red line when are not. In the Fig. 4.1 it is observed that the total sensible heat flux is affected not only during the diurnal hours but the effect is extended during the whole night. The positive values obtained during the night means that the urban surfaces continue heating the air and are the responsible of a better representation of the formation of the urban heat island. The first city that has been simulated in this thesis has been the city of Houston (Texas, US) with the atmospheric WRF model (Salamanca et al., 2010b). In the first part of 171 Capítulo 4 this study, the four urban schemes available in the atmospheric model have been compared against observations, and important differences have been observed between them. With the new urban BEP+BEM scheme good estimations of the air temperature were obtained and the air conditioning systems were responsible of an increase in the temperature up to 2ºC in some places of the city. In the second part of the study detailed urban morphological information (existing in the database NUDAPT) with a grid resolution of 1 km 2 was used, and the simulations with the BEP and BEP+BEM schemes were repeated. Results reveal that the BEP+BEM scheme is more sensitive than the previous BEP scheme to the geometric parameters of the city. The reason is that in the new urban scheme the anthropogenic heat coming from the air conditioning systems is computed, and this heat flux depends on the morphological parameters that describe the city (e. g., the dimensions of the buildings). The energy consumption of the city has been calculated and good estimations were obtained against the values obtained with other methodologies totally different (bottom-up and topdown) when morphologic detailed information was used. It is important to comment here that analyse longer periods (more than two days) together with a larger network of observations (both surface stations and vertical profiles) could help to extract more definitive conclusions. The Fig. 4.2 shows some vertical profiles of the potential temperature obtained with the four urban schemes in two different areas of the city of Houston during night. Comparison between BEP and BEP+BEM clearly shows the effect of the air conditioning systems in the first 100-150 m of the urban boundary layer. When these fluxes were taken into account the observed air temperature over the city was better represented by the model. Clearly, comparing both Figs. 4a and 4b we see that the effect of the air conditioning systems is not homogeneous and it depends strongly of the urban morphology of the zone considered. 172 Capítulo 4 173 Capítulo 4 Figure 4.2. Vertical profiles of the potential temperature obtained with the four urban schemes (BULK, UCM, BEP and BEP+BEM) at 0300 LST (1 September 2000) in two different areas of the city of Houston, Texas: a) commercial area and b) high residential area. Finally, the city of Madrid (Spain) has been simulated with the WRF model (Salamanca et al., 2010c). The period analyzed had good synoptic conditions and coincided with the meteorological campaign DESIREX that took place in the summer of 2008. For this study, only the urban scheme BEP+BEM has been used. In the first part of the work we have studied the impact of the air conditioning systems on the atmosphere. In the second, an evaluation of different energy consumption reduction programs and urban heat island mitigation strategies has been done. The results showed peaks of heat coming from the air 174 Capítulo 4 conditioning systems of 110 W/m 2 and they were the responsible of an increase in the air temperature up to 1.5-2 ºC in some places of the city during night. The heat island over Madrid reached 5-6 ºC. In the Fig. 4.3 the 2-m air temperature differences are showed when the air conditioning systems are considered and when are not for the two days simulated. Comparing both figures the relation that exists between the heat ejected and the meteorological conditions is clearly deduced. The second day was less warm and consequently the anthropogenic heat originated lower. 175 Capítulo 4 Figure 4.3. 2-m air temperature (ºC) differences T2(AH)-T2(noAH) at 2000 LST over the city of Madrid for the two days simulated: a) 30 June and b) 01 July 2008. Three strategies of energy saving were analyzed: increase of the albedo, use of insulating materials in the walls, and finally elimination of the heat created by the air conditioning systems. The increase of the albedo and the use of the insulating material reduced the energy consumption by 5 % and 3 % respectively. When the mentioned strategies were considered globally the energy saving reached 10 % and the urban heat island was reduced by 1-2 ºC. In this thesis the role that the thermal properties of different materials play in the calculation of the total sensible heat flux exchanged with the atmosphere in a heterogeneous 176 Capítulo 4 urban area has been investigated (Salamanca et al., 2009). When we compute this heat flux, the thermal properties of the material most representative have to be known. The standard way to derive them is averaging the different thermal properties of the different materials presents taking into account the percentage of area that each of them covers. In this thesis we propose to compute the thermal properties in a different way with the objective to reduce the difference between the sum of fluxes exchanged between the surfaces and the atmosphere and the heat flux obtained with the representative material. A simple situation has been considered where the analytical solution was known and the sum of the heat fluxes obtained with the different materials has been equal to the one that would be obtained with the new material. In this way we have derived the thermal properties of the representative material and several simulations have demonstrated that the error in the calculation of the sensible heat flux is reduced by about 50 % in real situations. The work presented in this thesis contributes to the development of a numerical tool is able to describe in detail the impact of the cities in the atmosphere. With this kind of tools spatial distributions of the anthropogenic heat and energy consumption can be derived. Thanks to the work done in this thesis we can contribute to the development of cities more energetically sustainable. 177 Capítulo 4 178 Capítulo 5 CAPÍTULO 5 CONCLUSIONES Y FUTURAS LINEAS DE INVESTIGACIÓN 179 Capítulo 5 5.1 Conclusiones El estudio del clima urbano es una de las áreas recientes con mayor interés por parte de la comunidad científica ya que la mayoría de la población vive en las ciudades. Hace algunas décadas sólo era posible estudiar el impacto de las ciudades en el clima regional a través de las observaciones. Sin embargo, gracias al aumento de la capacidad de cálculo de los ordenadores y al desarrollo de los modelos numéricos, hoy en día podemos modelizar el impacto de las ciudades en la atmósfera. Las primeras parametrizaciones urbanas aparecieron en la década de los noventa. Estos primeros esquemas eran simples y no ofrecían una descripción detallada de la ciudad. A pesar de esto se obtienen buenos resultados con ellas y se siguen utilizando cuando el objetivo no es el estudio del clima urbano. A medida que las interacciones de los edificios con la atmósfera se fueron incorporando en las parametrizaciones urbanas, éstas aumentaron en complejidad. A principios del siglo XXI prácticamente la totalidad de los esquemas urbanos consideraba el atrapamiento radiativo que tiene lugar en el canyon urbano y resolvían los diferentes tipos de superficies (verticales y horizontales) presentes en cualquier ciudad. Aparecen asimismo las parametrizaciones más avanzadas multicapa que permitían una interacción directa con la capa límite atmosférica. El efecto de las superficies en la temperatura, el viento y la energía cinética turbulenta eran consideradas en este tipo de esquemas. Con estos esquemas modernos se había logrado dar un paso hacia delante ya que eran capaces de distinguir las heterogeneidades presentes en una ciudad y reproducían satisfactoriamente la isla de calor urbana. Sin embargo, el calor (sensible/latente) generado por las distintas actividades humanas (tráfico, industria, sistemas de aire acondicionado, etc.) no estaba considerado. A lo sumo se añadía un perfil diario de calor al flujo sensible total. En esta tesis se resuelve teóricamente una de las fuentes más importantes de calor antropogénico (el calor originado por los sistemas de aire acondicionado 180 Capítulo 5 en las grandes ciudades) y se estudia su papel en el clima urbano. En estudios de ingeniería de la edificación se hace uso de software avanzado (EnergyPlus Energy Simulation Program, UIUC LBNL., 2005) para el estudio y el diseño de los edificios de nuestras ciudades. Estos programas permiten un análisis detallado del consumo energético que tiene lugar en los edificios dependiendo de las condiciones meteorológicas externas, pero sin tener en cuenta la retroalimentación existente entre los flujos de calor (sensible/latente) y la atmósfera. Además al ser programas muy detallados, necesitan de muchos parámetros para poder resolver un edificio particular. Sin embargo, en el estudio del clima urbano nos movemos en escalas espaciales mucho mayores que el tamaño de un edificio (entorno a ~ 1 km ) y estamos interesados en resolver una ciudad completa para poder estudiar su impacto en la atmósfera a escala regional. Por consiguiente, se ha optado en esta tesis por desarrollar un modelo más simple (Building Energy Model, BEM) que resuelva energéticamente los edificios y que sea fácilmente integrable en una parametrización urbana para simulaciones del clima urbano. Los principales fenómenos de transferencia de calor que se resuelven en el modelo BEM y para cada planta de un edificio son: • la difusión del calor a través de las paredes, suelos y tejados, • la ventilación natural, así como la reflexión y emisión radiativa que tiene lugar entre las superficies interiores de los muros, • el calor generado por los equipos domésticos y las personas, • el flujo de calor intercambiado por los sistemas de aire acondicionado y el exterior. De esta forma el calor generado por los sistemas de aire acondicionado (al fijar una temperatura de confort interior) puede ser calculado para cada planta de un mismo edificio tipo. 181 Capítulo 5 La comparación de BEM con otros programas desarrollados expresamente para el análisis térmico de edificios ha dado resultados satisfactorios, demostrando que el modelo energético es capaz de resolver los principales fenómenos de transferencia de calor e intercambio con el exterior. Posteriormente el esquema BEM ha sido integrado en la parametrización urbana BEP (Building Effect Parameterization) y se ha podido estudiar su impacto en la temperatura del aire. Estos primeros resultados muestran que el resolver energéticamente los edificios es importante y debería ser considerado cuando se estudia el clima urbano. Además, diferentes estrategias de ahorro energético como el cambio del albedo de los tejados, el uso de materiales aislantes y la eliminación del calor proveniente de los sistemas de aire acondicionado han sido evaluadas cuantitativamente. Posteriormente se ha procedido al acoplamiento del esquema urbano BEP+BEM en el modelo atmosférico WRF y se han simulado las ciudades de Houston (Texas, US) y Madrid (España). Con la nueva parametrización se ha cuantificado el impacto del calor antropogénico y se han evaluado diferentes estrategias de mitigación del consumo energético y de la isla de calor. Los resultados han sido satisfactorios y se ha observado que el calor proveniente de los sistemas de aire acondicionado (en días especialmente calurosos) puede aumentar la temperatura del aire en un par de grados centígrados y modificar claramente la estructura vertical de la capa límite atmosférica. Las diferentes estrategias de ahorro energético (incremento del albedo de los tejados, uso de materiales aislantes en los muros y eliminación del calor originado por los sistemas de aire acondicionado) cuando fueron consideradas conjuntamente en una sola redujeron la intensidad de la isla de calor en toda la ciudad y en algunas zonas en un par de grados centígrados. Estos resultados ponen de manifiesto que el calor antropogénico debería considerarse a la hora de estimar la concentración de contaminantes, ya que este calor favorece la inestabilidad atmosférica y por consiguiente la 182 Capítulo 5 mezcla turbulenta. En este trabajo vemos que herramientas numéricas como WRF junto con parametrizaciones urbanas detalladas del tipo BEP+BEM permiten evaluar diferentes estrategias de ahorro del consumo energético y cuantificar el calor antropogénico tanto espacial como temporalmente, algo impracticable hace algunos años. Este tipo de herramientas permitirán a los planificadores urbanos evaluar diferentes escenarios futuros a la hora de diseñar el crecimiento de nuestras ciudades. 5.2 Futuras líneas de investigación Las futuras líneas de investigación son numerosas y trataremos de presentar las más relevantes que se pueden llevar a cabo en esta última sección de la tesis. • Explotar en su totalidad la información muy detallada sobre morfología urbana que está disponible para un número creciente de ciudades (tipo la existente en NUDAPT). En las simulaciones sobre Houston hemos visto que para el cálculo del consumo energético la información morfológica detallada de la ciudad mejoró notablemente los resultados, pero un estudio exhaustivo del impacto en las variables meteorológicas en diferentes condiciones y períodos más largos no se ha llevado a cabo y requiere de un mayor análisis. • Investigar el impacto de la calefacción en invierno. BEP+BEM tiene las potencialidades para calcular el consumo energético y los flujos de calor antropogénico en períodos invernales pero este tema todavía no ha sido explorado. En la literatura científica no es frecuente encontrar estudios del clima urbano en períodos no estivales y estimaciones de la isla de calor y del consumo energético podrían llevarse a cabo en estos períodos de más bajas temperaturas. 183 Capítulo 5 • Relaciones con la calidad del aire. Es sabido que la calidad del aire se ve afectada por los cambios de las propiedades del suelo urbano (aumento zonas verdes, cambio del albedo, cambio de las propiedades térmicas de los materiales, etc.) y por el impacto del calor antropogénico porque afectan los flujos de calor en la superficie, y por consiguiente la estructura de la capa de mezcla. Estudiar estos efectos podría ayudar en la predicción de la contaminación atmosférica a escala regional. • Profundizar el estudio del impacto de los edificios y el calor antropogénico sobre la estructura de la capa limite atmosférica. Para ello se hace necesario acoplar nuevos esquemas turbulentos de cierre de la capa límite atmosférica a los esquemas urbanos BEP y BEP+BEM. De este modo estudios de sensibilidad de las diferentes variables meteorológicas a estos esquemas se podrían llevar a cabo. 184 Capítulo 5 185 Capítulo 5 CHAPTER 5 CONCLUSIONS AND FUTURE RESEARCH LINES 186 Capítulo 5 5.1 Conclusions The study of the urban climate has attracted an increasing interest from the scientific community since the majority of the population lives in the cities. Some decades ago, it was possible to study the impact of the cities on the urban climate only through observations. Thanks to the increase in the computing power and the development of numerical models, nowadays we can model the impact of the cities on the atmosphere. The first urban schemes appeared in the 90´s. These first parameterizations were simple and did not present a detailed description of the cities. In spite of this, good results for the different meteorological variables were obtained and they continue to be used when the goal of the study is not the urban climate. When the interactions of the buildings with the atmosphere were taking into account, the urban schemes increased in complexity. At the beginning of the 21´s century, the totality of the urban schemes considered the radiative trapping that takes place in the urban canyon and accounted for the different urban surfaces (vertical and horizontal) present in the city. The most advanced urban parameterizations were multilayer and the direct interaction with the planetary boundary layer was allowed. The effect of the urban surfaces in the potential temperature, wind speed and turbulent kinetic energy were considered in these schemes. With these moderns schemes it was possible to distinguish the heterogeneities in the cities and reproduce satisfactorily the urban heat island phenomenon. Nevertheless, the heat (sensible/latent) generated by the different human activities (traffic, industry, air conditioning facilities, etc.) was not considered in these models. At most a daily profile of heat was added to the total sensible heat flux. In this thesis a methodology to estimate one of the most important sources of anthropogenic heat is proposed and its impact in the urban climate is studied. In building engineering the use of advanced software (EnegyPlus Energy Simulation 187 Capítulo 5 Program, UIUC LBNL., 2005) for building design is common. These programs allow a detailed analysis of the energy consumption that takes places in the buildings depending on the exterior meteorological conditions, but without considering the existing feedbacks between the heat fluxes (sensible/latent) and the atmosphere. Moreover, these programs need a lot of parameters to be able to solve a particular building. In the study of the urban climate we work at scales greater than a building, and we are interested in solving a city to study its impact in the atmosphere at regional scale. Consequently, it has chosen to develop a simpler model (Building Energy Model, BEM) that solves energetically the buildings and that it can be easily implemented in an urban parameterization. The principal heat transfer phenomenon’s that are solved in BEM and for every floor of a building are; • the heat diffusion through the walls, roofs and floors, • the natural ventilation, as well as the reflexion of radiation and radiative emission that takes place between the indoor surfaces, • the heat generated by the equipments and occupants, • the heat fluxes exchanged by the air conditioning systems and the exterior. In this way the heat generated by the air conditioning systems (having fixed an indoor target temperature) can be computed for every floor of the same buildings type. The comparison of BEM with other programs developed for the thermal analysis of buildings it has given satisfactorily results, showing that the energy model is able to solve the principal heat transfer phenomena and exchanges with the exterior. The BEM scheme has been integrated in the urban parameterization BEP (Building Effect Parameterization) and it has been possible to study its impact in the air temperature. These first results show that to solve energetically the buildings is important and it should be considered in studies of the 188 Capítulo 5 urban climate. In addition, different strategies of energy saving as increase of the albedo of the roofs, use of insulating materials, and elimination of the heat coming from the air conditioning systems have been evaluated quantitatively. Later, we proceeded to the coupling of the urban scheme BEP+BEM in the atmospheric WRFv3.2 model and the cities of Houston (Texas, US) and Madrid (Spain) have been simulated. With the new urban scheme the impact of the anthropogenic heat has been quantified, and different strategies to reduce the energy consumption and to mitigate the urban heat island have been evaluated. The results are satisfactory and it has been observed that the heat coming from the air conditioning systems (specially in warm days) can increase the air temperature by a couple of degrees Celsius and clearly modify the vertical structure of the planetary boundary layer. The different strategies of energy saving (increase of the albedo of the roofs, use of insulating materials in the walls, and elimination of the heat coming from the air conditioning systems) when they were considered together in only one strategy, reduced the urban heat island by a couple of degrees Celsius in some areas of the city. These results indicate that the anthropogenic heat should be considered to estimate the concentration of pollutants since this heat favours the turbulence mixing. In this work, it has been shown that numerical tools like WRF together with detailed urban schemes like the one developed in this thesis (BEP+BEM), allow to evaluate different strategies of energy saving and quantify the anthropogenic heat spatially and temporally, something impracticable some years ago. This type of tools will allow the urban planners to evaluate different future scenarios at the moment to design cities development. 5.2 Future research lines The future research lines are numerous and we will try to present the most relevant that can be carried out in this last section of the thesis. 189 Capítulo 5 • Take full advantage of the urban morphological data (like NUDAPT) that are becoming available for an increasing number of cities. In the simulations over Houston, we have seen that for the calculation of the energy consumption the detailed morphological information improved notably the results, but an exhaustive study of the impact on the meteorological variables for different meteorological conditions has not been carried out and it needs a deeper analysis. • Study the impact of heating in winter. BEP+BEM has the potencialities to estimate the impact of heating in winter periods but it has not been explored yet. In the scientific literature is not frequent to find studies of the urban climate in winter periods, and estimations of the energy consumption and urban heat island in these periods of lower temperatures could be carried out. • Interactions with air quality. It is known that the urban air quality is affected by the modifications of the surface properties (increase of green zones, change of the albedo, change in the thermal properties of the materials, etc.) and for the impact of the anthropogenic heat because of the changes in surface heat fluxes, and consequently, on the vertical structure of the PBL. Studying these effects might help in the prediction of pollutant concentrations at regional scale. • Deepen the study of the impact of buildings and anthropogenic heat fluxes on the structure of the PBL. To do this it becomes necessary to link others PBL schemes to the urban parameterizations BEP and BEP+BEM. In this way, studies of sensitivity to the different meteorological variables could be carried out. 190 Referencias 191 Referencias Referencias BLAST-3.0-1981. The Building Loads Analysis and System Thermodynamics Program, Users Manual, U. S. Army Construction Engineering Research Laboratory, Champaign, Illinois, March. Bornstein, R. D., 1968: Observations of the Urban Heat Island Effect in New York City. Journal of Applied Meteorology, 7, 575-582. Bougeault, P., and P. Lacarrère, 1989: Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117, 1872-1890. Burian, Steven J., and W. S. Han, 2003: Morphological Analysis using 3D Building Databases: Houston, Texas. LA-UR-03-8633, Los Alamos National Laboratory. Ching, J., and Co-authors, 2009: National Urban Database and Access Portal Tool. BAMS, 90, 1157-1168. EIA, Annual Energy Review 2005, Energy Information Administration, U. S. Department of Energy, Washington, DC, DOE/EIA-0384. Georgakis, C., and M. Santamouris, 2009: The Vertical Stratification of Air Temperature in the Center of Athens. Journal of Applied Meteorology and Climatology, 49: 12191231. Godowitch, J. M., Ching, J. K. S., Clarke, J. F., 1985: Evolution of the Nocturnal Inversion Layer at an Urban and Nonurban Location. Journal of Applied Meteorology, 24, 791805. Grell, G. A., Steven E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, and B. Eder, 2005: Fully coupled “online” chemistry within the WRF model. Atmospheric Environment, 39, 6957-6975. Grimmond, C. S. B., and Co-authors, 2010a: The international Urban Energy Balance Model 192 Referencias Comparison Project. First results from Phase 1. J. Appl. Meteorol. Climatol., 49, 12681292. Haeger-Eugensson, M., and B. Holmer, 1999: Advection caused by the urban heat island circulation as a regulating factor on the nocturnal urban heat island. Int. J. Climatol., 19: 975-988. Heiple, S., and David J. Sailor, 2008: Using building energy simulation and geospatial modelling techniques to determine high resolution building sector energy consumption profiles. Energy and Buildings, 40, 1426-1436. Jacobson, M. Z., 1999: Fundamentals of Atmospheric Modeling. Published by Cambridge University Press. Janjic, Z. I., 1994: The step-mountain eta coordinate: Further development of the convection, viscous sublayer, and turbulent closure schemes. Mon. Wea. Rev., 122, 927-945. Kikegawa, Y., Y. Genchi, H. Yoshikado, and H. Kondo, 2003: Development of a numerical simulation system toward comprehensive assessments of urban warming countermeasures including their impacts upon the urban buildings energy demands. Applied Energy, 76, 449-466. Kondo, H., and Y. Kikegawa, 2003: Temperature Variation in the Urban Canopy with Anthropogenic Energy Use. Pure Appl. Geophys., 160, 317-324. Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models. Boundary-Layer Meteorol., 101, 329-358. Kusaka, H., and F. Kimura, 2004: Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case. J. Meteor. Soc. Japan, 82, 67-80. 193 Referencias Landsberg, H. E., 1981: The Urban Climate. Academic Press, 275 pp. ISBN-13: 9780124359604. Lemone, M. A., F. Chen, M. Tewari, J. Dudhia, B. Geerts, Q. Miao, R. L. Coulter, and R. L. Grossman, 2010: Simulating the IHOP_2002 Fair-Weather CBL with the WRF-ARWNoah Modeling System. Part-II: Structures from a Few Kilometers to 100 km across. Mon. Wea. Rev., 138, 745-764. Liu, Y., F. Chen, T. Warner, and J. Basara, 2006: Verification of a Mesoscale DataAssimilation and Forecasting System for the Oklahoma city Area During the Joint Urban 2003 Field Project. Journal of Applied Meteorology and Climatology, 45, 912– 929. Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterization for mesoscale models. Boundary-Layer Meteorol., 104, 261-304. Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Boundary-Layer Meteorol., 94, 357-397. Ohashi, Y., Y. Genchi, H. Kondo, Y. Kikegawa, H. Yoshikado, Y. Hirano, 2007: Influence of Air-Conditioning Waste Heat on Air Temperature in Tokyo during Summer: Numerical Experiments Using an Urban Canopy Model Coupled with a Building Energy Model. Journal of Applied Meteorology and Climatology, 46, 66-81. Oke, T. R., 1981: Canyon geometry and the nocturnal urban heat island: Comparison of scale model and field observations. Int. J. Climatol., 1, 237-254. Oke, T. R., 1988: The urban energy balance. Prog. Phys. Geogr., 12, 471-508. Oke, T. R., 1995: The heat island of the urban boundary layer: Characteristics, causes and effects. Wind Climate in Cities, J. E. Cermak et al., Kluwer Academic Publishers, 81107. 194 Referencias Oleson, K. W., G. B. Bonan, J. Feddema, and T. Jackson, 2010: An examination of urban heat island characteristics in a global climate model. Int. J. Climatol. Doi: 10.1002/joc.2201. Rotach, M. W., 1993: Turbulence close to a rough urban surface part I: Reynolds stress. Boundary-Layer Meteorol, 65, 1-28. Rotach, M. W., and Co-authors, 2005: BUBBLE-an urban boundary layer meteorology project. Theor. Appl. Climatol., 81, 231-261. Roth, M., and T. R. Oke, 1993: Turbulent transfer relationships over an Urban Surface I: Spectral characteristics. Quart. J. Roy. Meteorol. Soc., 119, 1071-1104. Salamanca, F., E. S. Krayenhoff, and A. Martilli, 2009: On the Derivation of Material Thermal Properties Representative of Heterogeneous Urban Neighbourhoods. Journal of Applied Meteorology and Climatology, 48, 1725-1732. Salamanca, F., A. Krpo, A. Martilli, and A. Clappier, 2010a: A New Building Energy Model coupled with an urban canopy parameterization for urban climate simulations-part I. formulation, verification, and sensitivity analysis of the model. Theor. Appl. Climatol., 99, 331-344. Salamanca, F., and A. Martilli, 2010: A New Building Energy Model coupled with an urban canopy parameterization for urban climate simulations-part II. Validation with one dimension off-line simulations. Theor. Appl. Climatol., 99, 345-356. Salamanca, F., A. Martilli, M. Tewari, and F. Chen, 2010b: A study of the urban boundary layer using different urban parameterizations and high-resolution urban canopy parameters with WRF. Journal of Applied Meteorology and Climatology. (accepted). Salamanca, F., A. Martilli, and C. Yagüe, 2010c: A numerical study of the urban boundary layer over Madrid during the DESIREX (2008) campaign with WRF and an evaluation 195 Referencias of simple mitigation strategies of the UHI. Submitted to Atmospheric Environment. Sobrino, J. A., and Co-authors, 2009: DESIREX 2008 Final Report Contract nº: 21717/08/ILG (http://www.uv.es/desirex). Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Dordrecht, Boston, London: Kluwer Academic Publishers, 666 pp. UIUC, LBNL., 2005: EnergyPlus Engineering Reference: The Reference to EnergyPlus Calculations, U.S. Department of Energy. Uno, I., S. Wakamatsu, H. Ueda, and A. Nakamura, 1988: An observational study of the structure of the nocturnal urban boundary layer. Boundary-Layer Meteorol., 45, 59-82. Walton, G. N. 1983. Thermal Analysis Research Program (TARP) Reference Manual, U. S. Department of Commerce, National Bureau of Standards, National Engineering Laboratory, Washington, DC, March. 196 Appendices 197 Appendices APPENDIX A This appendix contains several abstracts of publications co-authored by the author of this thesis. 198 Boundary-Layer Meteorol (2010) 136:105–127 DOI 10.1007/s10546-010-9491-2 ARTICLE On the Impact of Anthropogenic Heat Fluxes on the Urban Boundary Layer: A Two-Dimensional Numerical Study Andrea Krpo · Francisco Salamanca · Alberto Martilli · Alain Clappier Received: 3 March 2009 / Accepted: 23 March 2010 / Published online: 21 April 2010 © Springer Science+Business Media B.V. 2010 Abstract The heat generated in buildings and the manner in which this heat is exchanged with the ambient environment can play an important role in urban climate. Recent studies have shown that anthropogenic heat from air-conditioning facilities can increase the exterior ambient temperature and should be taken into account for a more complete urban heat island (UHI) mitigation study. For this purpose, the first part of the present work is focused on the coupling of a new building energy model (BEM) and an urban canopy parameterisation (UCP). The new scheme is implemented in a finite volume mesoscale model (MM) and tested in a two-dimensional (2D) configuration of a city over flat terrain. A sensitivity study is performed with respect to different parameters in order to test the simulation system and enhance the understanding of the possible impacts of the BEM on the exterior microclimate. Keywords Anthropogenic heat · Building energy model · Urban canopy parameterisation · Urban heat island 1 Introduction Urban regions are perhaps the most complex of all microclimates. Nowadays more than 50% of the global population can be classified as urban, and this proportion is forecast to increase to 75% during the next twenty five years. So it is not surprising that these areas have been A. Krpo (B) HBI Haerter Ltd., Thunstrasse 32, 3005 Bern, Switzerland e-mail: [email protected] F. Salamanca · A. Martilli CIEMAT, Avenida Complutense 22, 28040 Madrid, Spain A. Clappier Université de Strasbourg, Laboratoire Image Ville Environnement 3, rue de l’Argonne, 67000 Strasbourg, France 123 199 INTERNATIONAL JOURNAL OF CLIMATOLOGY Int. J. Climatol. (2010) Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/joc.2158 The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems Fei Chen,a * Hiroyuki Kusaka,b Robert Bornstein,c Jason Ching,d† C. S. B. Grimmond,e Susanne Grossman-Clarke,f Thomas Loridan,e Kevin W. Manning,a Alberto Martilli,g Shiguang Miao,h David Sailor,i Francisco P. Salamanca,g Haider Taha,j Mukul Tewari,a Xuemei Wang,k Andrzej A. Wyszogrodzkia and Chaolin Zhangh,l a National Center for Atmospheric Research, Boulder, CO, USA Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan c Department of Meteorology, San Jose State University, San Jose, CA, USA d National Exposure Research Laboratory, ORD, USEPA, Research Triangle Park, NC, USA Environmental Monitoring and Modelling, Department of Geography, King’s College London, London, UK f Global Institute of Sustainability, Arizona State University, Tempe, AZ, USA g Center for Research on Energy, Environment and Technology, Madrid, Spain h Institute of Urban Meteorology, China Meteorological Administration, Beijing, China i Mechanical and Materials Engineering Department, Portland State University, Portland, OR, USA j Altostratus Inc., Martinez, CA, USA k Department of Environmental Science, Sun Yat-Sen University, Guangzhou, China l Department of Earth Sciences, National Natural Science Foundation of China, Beijing, China b e ABSTRACT: To bridge the gaps between traditional mesoscale modelling and microscale modelling, the National Center for Atmospheric Research, in collaboration with other agencies and research groups, has developed an integrated urban modelling system coupled to the weather research and forecasting (WRF) model as a community tool to address urban environmental issues. The core of this WRF/urban modelling system consists of the following: (1) three methods with different degrees of freedom to parameterize urban surface processes, ranging from a simple bulk parameterization to a sophisticated multi-layer urban canopy model with an indoor–outdoor exchange sub-model that directly interacts with the atmospheric boundary layer, (2) coupling to fine-scale computational fluid dynamic Reynolds-averaged Navier–Stokes and Large-Eddy simulation models for transport and dispersion (T&D) applications, (3) procedures to incorporate highresolution urban land use, building morphology, and anthropogenic heating data using the National Urban Database and Access Portal Tool (NUDAPT), and (4) an urbanized high-resolution land data assimilation system. This paper provides an overview of this modelling system; addresses the daunting challenges of initializing the coupled WRF/urban model and of specifying the potentially vast number of parameters required to execute the WRF/urban model; explores the model sensitivity to these urban parameters; and evaluates the ability of WRF/urban to capture urban heat islands, complex boundary-layer structures aloft, and urban plume T&D for several major metropolitan regions. Recent applications of this modelling system illustrate its promising utility, as a regional climate-modelling tool, to investigate impacts of future urbanization on regional meteorological conditions and on air quality under future climate change scenarios. Copyright 2010 Royal Meteorological Society KEY WORDS urban modelling; mesoscale modelling; urban environmental issues; WRF urban model Received 14 October 2009; Revised 22 March 2010; Accepted 28 March 2010 1. Introduction We describe an international collaborative research and development effort between the National Center for * Correspondence to: Fei Chen, National Center for Atmospheric Research/RAL, PO Box 3000, Boulder, CO 80307-3000, USA. E-mail: [email protected] † The United States Environmental Protection Agency through its Office of Research and Development collaborated in the research described here. It has been subjected to Agency review and approved for publication. Atmospheric Research (NCAR) and partners with regard to a coupled land-surface and urban modelling system for the community weather research and forecasting (WRF) model in this paper. The goal of this collaboration is to develop a cross-scale modelling capability that can be used to address a number of emerging environmental issues in urban areas. Today’s changing climate poses two formidable challenges. On the one hand, the projected climate change by Intergovernmental Panel on Climate Change (IPCC) Copyright 2010 Royal Meteorological Society 200 1268 JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY VOLUME 49 The International Urban Energy Balance Models Comparison Project: First Results from Phase 1 C. S. B. GRIMMOND,a M. BLACKETT,a M. J. BEST,b J. BARLOW,c J.-J. BAIK,d S. E. BELCHER,c S. I. BOHNENSTENGEL,c I. CALMET,e F. CHEN,f A. DANDOU,g K. FORTUNIAK,h M. L. GOUVEA,a R. HAMDI,i M. HENDRY,b T. KAWAI,j Y. KAWAMOTO,k H. KONDO,l E. S. KRAYENHOFF,m S.-H. LEE,d T. LORIDAN,a A. MARTILLI,n V. MASSON,o S. MIAO,p K. OLESON,f G. PIGEON,o A. PORSON,b,c Y.-H. RYU,d F. SALAMANCA,n L. SHASHUA-BAR,q G.-J. STEENEVELD,r M. TOMBROU,g J. VOOGT,s D. YOUNG,a AND N. ZHANGt a King’s College London, London, United Kingdom b Met Office, Exeter, United Kingdom c University of Reading, Reading, United Kingdom d Seoul National University, Seoul, South Korea e Laboratoire de Mécanique des Fluides, CNRS-Ecole Centrale de Nantes, Nantes, France f National Center for Atmospheric Research, Boulder, Colorado g National and Kapodistrian University of Athens, Athens, Greece h University of Łódź, Łódź, Poland i Royal Meteorological Institute, Uccle, Belgium j Ehime University, Matsuyama, Japan k The University of Tokyo, Tokyo, Japan l National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan m University of British Columbia, Vancouver, British Columbia, Canada n CIEMAT, Madrid, Spain o CNRM-GAME Meteo France-CNRS, Toulouse, France p IUM, CMA, Beijing, China q Ben Gurion University of the Negev, Beer-Sheva, Israel r Wageningen University, Wageningen, Netherlands s University of Western Ontario, London, Ontario, Canada t Nanjing University, Nanjing, China (Manuscript received 27 July 2009, in final form 4 February 2010) ABSTRACT A large number of urban surface energy balance models now exist with different assumptions about the important features of the surface and exchange processes that need to be incorporated. To date, no comparison of these models has been conducted; in contrast, models for natural surfaces have been compared extensively as part of the Project for Intercomparison of Land-surface Parameterization Schemes. Here, the methods and first results from an extensive international comparison of 33 models are presented. The aim of the comparison overall is to understand the complexity required to model energy and water exchanges in urban areas. The degree of complexity included in the models is outlined and impacts on model performance are discussed. During the comparison there have been significant developments in the models with resulting improvements in performance (root-mean-square error falling by up to two-thirds). Evaluation is based on a dataset containing net all-wave radiation, sensible heat, and latent heat flux observations for an industrial area in Vancouver, British Columbia, Canada. The aim of the comparison is twofold: to identify those modeling approaches that minimize the errors in the simulated fluxes of the urban energy balance and to determine the degree of model complexity required for accurate simulations. There is evidence that some classes of models perform better for individual fluxes but no model performs best or worst for all fluxes. In general, the simpler models perform as well as the more complex models based on all statistical measures. Generally the schemes have best overall capability to model net all-wave radiation and least capability to model latent heat flux. Corresponding author address: Sue Grimmond, Environmental Monitoring and Modelling Group, Department of Geography, King’s College London, London, WC2R 2LS, United Kingdom. E-mail: [email protected] DOI: 10.1175/2010JAMC2354.1 Ó 2010 American Meteorological Society 201 INTERNATIONAL JOURNAL OF CLIMATOLOGY Int. J. Climatol. (2010) Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/joc.2227 Initial results from Phase 2 of the international urban energy balance model comparison C. S. B. Grimmond,a * M. Blackett,a M. J. Best,b J.-J. Baik,c S. E. Belcher,d J. Beringer,e S. I. Bohnenstengel,d I. Calmet,f F. Chen,g A. Coutts,e A. Dandou,i K. Fortuniak,j M. L. Gouvea,a R. Hamdi,k M. Hendry,b M. Kanda,l T. Kawai,m Y. Kawamoto,n H. Kondo,o E. S. Krayenhoff,p S.-H. Lee,c T. Loridan,a A. Martilli,q V. Masson,r S. Miao,s K. Oleson,h R. Ooka,n G. Pigeon,r A. Porson,b,d Y.-H. Ryu,c F. Salamanca,q G.J. Steeneveld,t M. Tombrou,i J. A. Voogt,u D. T. Younga and N. Zhangv a Department of Geography, King’s College London, London WC2R 2LS, UK b Met Office, FitzRoy Road, Exeter, EX1 3PB, UK c School of Earth and Environmental Sciences, Seoul National University, Seoul 151-742, Republic of Korea d Department of Meteorology, University of Reading, Reading, RG6 6BB, UK e School of Geography and Environmental Science, Monash University, Melbourne, Vic, 3800, Australia f Equipe Dynamique de l’Atmosphère Habitée Laboratoire de Mécanique des Fluides (UMR CNRS 6598) Ecole Centrale de Nantes, B.P. 92101, F-44321 NANTES Cedex 3, France g Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado, 80307, USA h Earth System Laboratory, National Center for Atmospheric Research, Boulder, Colorado, 80307, USA i National and Kapodistrian University of Athens, Faculty of Physics, Department of Environmental Physics and Meteorology, Laboratory of Meteorology, Building Physics V, University Campus, 157 84 Athens, Greece j Department of Meteorology and Climatology University of Lodz Narutowicza 88 Lodz Poland 90139 k Royal Meteorological Institute, Department II, section 3 Avenue Circulaire, 3, B-1180 Brussels, Belgium l Department of International Development Engineering. Tokyo Institute of Technology,2-12-1-14-9, O-okayama, Megro-KU, Tokyo, Japan m Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba-City, Ibaraki, 305-8506 Japan n School of Engineering, The University of Tokyo, 7-3-1 Hongo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan o Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Sciecne and Technology,Tsukuba, Ibaraki, 305-8569, JAPAN p Department of Geography, University of British Columbia, Vancouver, British Columbia, V6T 1Z2, Canada q Department of Environment, CIEMAT, Madrid, 28040, Spain r CNRM-GAME, Météo France/CNRS, Toulouse, 31057 Cedex 1, France s Institute of Urban Meteorology, China Meteorological Administration, Beijing, 100089, China t Meteorology and Air Quality Section, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands u Department of Geography, University of Western Ontario, London ON N6A 5C2 Canada v School of Atmospheric Sciences, Nanjing University 22 Hankou Road, Nanjing, 210093, China ABSTRACT: Urban land surface schemes have been developed to model the distinct features of the urban surface and the associated energy exchange processes. These models have been developed for a range of purposes and make different assumptions related to the inclusion and representation of the relevant processes. Here, the first results of Phase 2 from an international comparison project to evaluate 32 urban land surface schemes are presented. This is the first large-scale systematic evaluation of these models. In four stages, participants were given increasingly detailed information about an urban site for which urban fluxes were directly observed. At each stage, each group returned their models’ calculated surface energy balance fluxes. Wide variations are evident in the performance of the models for individual fluxes. No individual model performs best for all fluxes. Providing additional information about the surface generally results in better performance. However, there is clear evidence that poor choice of parameter values can cause a large drop in performance for models that otherwise perform well. As many models do not perform well across all fluxes, there is need for caution in their application, and users should be aware of the implications for applications and decision making. Copyright 2010 Royal Meteorological Society KEY WORDS urban climate; energy balance; surface atmosphere exchanges; land surface modelling; sustainable cities; radiation; turbulent heat fluxes; evaporation Received 29 March 2010; Revised 18 August 2010; Accepted 21 August 2010 1. Introduction Land surface models (LSMs) parameterize energy exchanges between the surface and the atmosphere for a * Correspondence to: C. S. B. Grimmond, Department of Geography, King’s College London, London WC2R 2LS, UK. E-mail: [email protected] wide range of different land surface types (e.g. deciduous trees, coniferous trees, grasses, bare soil, and urban). They provide the lower boundary conditions (fluxes) to meso- and global-scale atmospheric models and are forced with meteorology from the overlying atmospheric model. A wide variety of approaches are taken to model the influence of the underlying land surface type. To Copyright 2010 Royal Meteorological Society 202 Appendices APPENDIX B Numerical treatment to solve the heat diffusion equation using an energetic balance as boundary conditions. The diffusion equation in one dimension can be written as, ∂T ∂ λ ∂T ∂ ∂T = = K , ∂t ∂z ρC P ∂z ∂z ∂z (B1) where T (K ) is the temperature, λ (W / mK ) is the conductivity, ρ (kg / m 3 ) is the density, and C P ( J / kgK ) is the heat capacity of the material. Grouping the different physical parameters K = λ ρC P , and supposing that the material is divided in n layers (see Fig. B.1), we can discretize the diffusion equation in the following way for a particular indoor layer 1< k < n: Tkm +1 − Tkm T m +1 − Tkm +1 T m+1 − Tkm−1+1 1 = K k +1 k +1 − Kk k ∆z k +1 + ∆z k ∆z k + ∆z k −1 ∆t ∆z k 2 2 . (B2) Grouping the previous equation we can write the eq. (B2) in the form; Tkm = a (0, k )Tkm +1 + a (1, k )Tkm+1+1 + a (−1, k )Tkm−1+1 , (B3) where a (0, k ) = 1 + a (1, k ) = − 2∆tK k +1 2∆tK k + ∆z k (∆z k +1 + ∆z k ) ∆z k (∆z k + ∆z k −1 ) 2∆tK k +1 ∆z k (∆z k +1 + ∆z k ) a (−1, k ) = − . (B4) 2∆tK k ∆z k (∆z k + ∆z k −1 ) 203 Appendices Figure B.1. Schematic picture showing the different layers that compose an arbitrary material. The treatment at the boundary conditions is different and requires the knowledge of the net heat fluxes φ1 and φ 2 (W / m 2 ) at the external boundary surfaces. The criterion followed here is that a positive value means a gain for the surface. For the first layer and using the previous eq. (B1) can write: T1m +1 − T1m T m +1 − T1m +1 φm 1 . = K2 2 + 1 ∆z1 + ∆z 2 ∆t ∆z1 ρ1C P1 2 (B5) Again, after some algebraic operations we transform the eq. (B5) in ∆tφ1m T + = a (1,1)T2m +1 + a (0,1)T1m +1 , ∆z1 ρ1C P1 m 1 (B6) 204 Appendices where a (0,1) = 1 + 2 K 2 ∆t ∆z1 (∆z 2 + ∆z1 ) 2∆tK 2 a (1,1) = − ∆z1 (∆z 2 + ∆z1 ) . (B7) For the other external layer the treatment is similar, and the use of the eq. (B1) leads to Tnm +1 − Tnm φ 2m Tnm+1 − Tnm−1+1 1 = − Kn ∆z n + ∆z n −1 ∆t ∆z n ρ n C Pn 2 , (B8) and finally we derive that ∆tφ 2m T + = a (0, n)Tnm +1 + a (−1, n)Tnm−1+1 ∆z n ρ n C Pn m n (B9) where a (0, n) = 1 + 2∆tK n ∆z n (∆z n + ∆z n −1 ) 2∆tK n a (−1, n) = − ∆z n (∆z n + ∆z n−1 ) . (B10) Proceeding in this way, the problem is solved inverting the three-diagonal matrix system AX = B , where T1m + ∆tφ1m ∆z1 ρ1C P1 T2m B= . ,X = . T1m+1 a (0,1) . a (−1,2) a (0,2) . . Tnm−1 . ∆tφ 2m T + ∆z n ρ n C Pn Tnm+1 m n ,A= 0 a (1,1) 0 0.......................0 a (1,2) 0.......................0 a (−1,3) a (0,3) a (1,3) 0............0 (B11) ............................................................... 0 .....................................0 a (−1, n) a (0, n) 205 Appendices By inverting the matrix system X = A −1 B it is possible to obtain the temperature for every layer of the material at time m + 1 knowing the value at time m . 206 CURRICULUM VITAE Family Names: Salamanca Palou Name: Francisco Place of Birth: Mallorca (Balearic Islands, Spain) Professional position Center: Research Centre for Energy, Environment and Technology (CIEMAT, http://www.ciemat.es/). Department: Environmental Department, Atmospheric Pollution Modelling Division. Address: Avenida Complutense 22, Madrid 28040, Spain. Telephone: +34-913466299 e-mail: [email protected] Position: recipient of a grant since January 2007. Research Lines Atmospheric sciences, mesoscale modelling, urban climate, urban boundary layer, and open to any creative physical-mathematical challenge. Academic Degrees ‘Licenciado’ in Physical Sciences at University of the Balearic Islands (UIB), February 1999. PhD in Physics “Development of numerical models to investigate the Urban Heat Island in cities, and sensitivity study of different urban parameters”, University Complutense of Madrid (UCM). Defense planned in December 2010. 207 Thesis Advisors: Dr. Alberto Martilli and Dr. Carlos Yagüe Anguís. Participation in Research Projects 1.- Urban Surface Energy Balance: Land Surface Scheme Comparison (www.kcl.ac.uk/ip/suegrimmond/model_comparison.htm) 2.- Mesoscale simulations of urban climate, and development of an evaluation technique of Urban Heat Island mitigation strategies (funded by the Ministry of Environment of Spain, file 200800050084408). Publications in international journals 1.- Salamanca, F., A. Krpo, A. Martilli, and A. Clappier, 2010. A New Building Energy Model coupled with an Urban Canopy Parameterization for urban climate simulations–Part I. Formulation, verification and a sensitive analysis of the model. Theoretical and Applied Climatology, 99, 331-344. 2.- Salamanca, F., and A. Martilli, 2010. A New Building Energy Model coupled with an Urban Canopy Parameterization for urban climate simulations–Part II. Validation with one dimension off-line simulations. Theoretical and Applied Climatology, 99, 345356. 3.- Salamanca, F., E. S. Krayenhoff, and A. Martilli, 2009. On the derivation of material thermal properties representative of heterogeneous urban neighbourhoods. Journal of Applied Meteorology and Climatology, 48, 1725-1732. 4.- C.S.B. Grimmond, M. Blackett, M.J. Best, J. Barlow, J.-J. Baik, S.E. Belcher, S.I. Bohnenstengel, I. Calmet, F. Chen, A. Dandou, K. Fortuniak, M.L. Gouvea, R. Hamdi, M. Hendry, T. Kawai, Y. Kawamoto, H. Kondo, E.S. Krayenhoff, S.-H. Lee, T. Loridan, A. Martilli, V. Masson, S. Miao, K. Oleson, G. Pigeon, A. Porson, Y.-H. Ryu, F. Salamanca, L. Shashua-Bar, G.-J. Steeneveld, M. Tombrou, J. 208 Voogt, D. Young, N. Zhang. The International Urban Energy Balance Models Comparison Project: First results from Phase 1 (2010). Journal of Applied Meteorology and Climatology, 49, 1268-1292. 5.- Krpo, A., F. Salamanca, A. Martilli, and A. Clappier, 2010. On the impact of anthropogenic heat fluxes on the urban boundary layer: a two-dimensional numerical study. Boundary Layer Meteorology, 136, 105-127. 6.- Chen, F., Hiroyuki Kusaka, Robert Bornstein, Jason Ching, C.S.B. Grimmond, Susanne Grossman-Clarke, Thomas Loridan, Kevin W. Manning, Alberto Martilli, Shiguang Miao, David Sailor, Francisco P. Salamanca, Haider Taha, Mukul Tewari, Xuemei Wang, Andrzej A. Wyszogrodzki, Chaolin Zhang, 2010. The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems. International Journal of Climatology. Doi: 10.1002/joc.2158. 7.- Salamanca, F., A. Martilli, M. Tewari, and F. Chen, 2010. A study of the urban boundary layer using different urban parameterizations and high-resolution urban canopy parameters with WRF. Journal of Applied Meteorology and Climatology. (In press). 8.- CSB Grimmond, M Blackett, MJ Best, J-J Baik, SE Belcher, J Beringer, SI Bohnenstengel, I Calmet, F Chen, A Coutts, A Dandou, K Fortuniak, ML Gouvea, R Hamdi, M Hendry, M Kanda, T Kawai, Y Kawamoto, H Kondo, ES Krayenhoff, S-H Lee, T Loridan, A Martilli, V Masson, S Miao, K Oleson, R Ooka, G Pigeon, A Porson, Y-H Ryu, F Salamanca, G-J Steeneveld, M Tombrou, JA Voogt, D Young, N Zhang. Initial Results from Phase 2 of the International Urban Energy Balance Comparison Project. International Journal of Climatology. Doi: 10.1002/joc.2227. 9.- Salamanca, F., A. Martilli, and C. Yagüe, 2010. A numerical study of the urban boundary layer over Madrid during the DESIREX (2008) campaign with WRF and an evaluation 209 of simple mitigation strategies of the UHI. Atmospheric Environment. (submitted). Oral and posters communications in Conferences 1.- F. Salamanca, A. Krpo, A. Martilli, A. Clappier. Implementation of a Building Energy Model in an Urban Canopy Parameterization (poster). 7th Symposium on the Urban Environment, San Diego, USA. September 2007. 2.- Sue Grimmond, M. Blackett, M. Best with Baik, J., Bohnenstengel, S., Calmet, I., Chemel, C., Chen, F., Dandou, A., Fortuniak, K., Gouvea, M., Hamdi, R., Kondo, H., Krayenhoff, S., Lee, S., Loridan, T., Martilli, A., Masson, V., Miao, S., Oleson, K., Pigeon, G. Porson, A., Salamanca, F., Shashua-Bar, L., Steeveveld, G., Sugar, L., Trombou, M., Voogt, J., Zhang N. An international urban surface energy balance model comparison study: first results (oral presentation). 8th Symposium on the Urban Environment, Phoenix, Arizona USA. January 2009. 3.- F. Salamanca and A. Martilli. A detailed study of the different turbulent fluxes in an urban environment considering a Building Energy Model coupled with an Urban Canopy Parameterization (one dimension off-line simulations) (oral presentation). 7th International Conference on Urban Climate (ICUC-7), Yokohama, Japan. Jun 2009 Grimmond CSB, Blackett M and Best M with Baik J, Bohnenstengel S, Calmet I, Chen F, Danndou A, Fortuniak K, Gouvea M, Hamdi R, Hendry M, Kondo H, Krayenhoff S, Lee S, Loridan T, Martilli A, Masson V, Miao S, Oleson K, Pigeon G, Porson A, Salamanca F, Shashua-Bar L, Steeveveld G, Trombou M, Voogt J, Zhang N. Results from the international urban surface energy balance model comparison study (oral presentation). 7th International Conference on Urban Climate (ICUC-7), Yokohama, Japan. Jun 2009. 5.- F. Salamanca, A. Martilli, M. Tewari, F. Chen, C. Yagüe. A study of the Urban Boundary 210 Layer considering different Urban Canopy Parameterizations and high resolution urban databases with WRF (the case of Houston) (poster). European Geosciences Union General Assembly 2010, Vienna, Austria. May 2010. 6.- F. Salamanca, A. Martilli, M. Tewari, F. Chen. A study of the Urban Boundary Layer considering different Urban Canopy Parameterizations and high resolution urban canopy parameters with WRF (the case of Houston) (oral presentation). Ninth Symposium on the Urban Environment, August 2-6, 2010, Keystone, Colorado, USA. August 2010. 7.- F. Salamanca, A. Martilli, C. Yagüe. A numerical study of the Urban Boundary Layer over Madrid during the DESIREX (2008) campaign with WRF (oral presentation). Ninth Symposium on the Urban Environment, August 2-6, 2010, Keystone, Colorado, USA. August 2010. Other I have experience with graphical packages like FERRET, GRADS, and programming language like FORTRAN. I am familiar with WRF (WPS, WRF-ARW, and ARW-post), where I implemented the urban parameterization that I developed during my thesis, and that I used to simulate Houston and Madrid. I am also familiar with the linux environment and supercomputers (clusters). Stages (longer than four weeks) 1.- From May to July 2009. Implementation of a building energy model in an urban parameterization in the atmospheric WRF model. National Center for Atmospheric Research (NCAR), Boulder, CO, USA. The new urban scheme was included in the public release of WRF (V3.2) from April 2, 2010. 211 2.- From July to August 2010. Development and test of a new version of the atmospheric WRF model that is able to use urban morphology information point to point in the numerical grid domain. National Center for Atmospheric Research (NCAR), Boulder, CO, USA. Short stages (less than four weeks) 1.- From 9 to 15 December 2007. Ecole Polytechnique Federale de Lausanne (Switzerland). 2.- From 23 to 28 Jun 2008. Ecole Polytechnique Federale de Lausanne (Switzerland). Referee for Building and Environment, and International Journal of Climatology. 212