Uses of persistence for interpreting coarse instructions
Transcription
Uses of persistence for interpreting coarse instructions
ICRA Workshop on Emerging Topological Techniques in Robotics 20th May 2016 SubramanianRamamoorthy SchoolofInforma-cs TheUniversityofEdinburgh Scenario:Human-RobotCo-Work 20/05/16 2 HowDoPeopleGiveInstruc-ons forSpa-alNaviga-on? HCRCMapTask:Instruc-onGiver’staskistocommunicatearoutetoaFollower, whosemapmaydiffer.RouteisGiver’sgoalwhichtheFollowertriestoinfer. 20/05/16 A.Eshky,B.Allison,S.Ramamoorthy,M.Steedman,Agenera9vemodelforusersimula9on inaspa9alnaviga9ondomain,InProc.EACL2014. 3 ExampleDataforMapTask 20/05/16 4 Genera-veModel:BehaviourinMapTask [A.Eshkyetal.,EACL2014] CoreQues9on:Canwehavemul9-scalestatees9ma9ontodealwith evidencefrommul9plesuchmodali9es,ofvaryingcoarseness? 20/05/16 5 Representa-vePriorWork • Variableresolu-onpar-clefiltering[Verma,Thrun,Simmons IJCAI‘03]:clumpstatestodefine‘macrostate’ • Hierarchicalsubspacefiltering[e.g.,Brandaoetal.‘06]:track subsetofvariablesseparatelyandaggregate 20/05/16 6 OurApproach 20/05/16 [M.Hawasly,F.T.Pokorny,S.Ramamoorthy,HierarchicalFilteringwithSpa9al Abstrac9ons,Manuscriptinprepara-on] 7 HierarchicalAgglomera-veClustering • Iteratedopera-on:mergetwoclustersatlowerleveltogeta singlenewcluster • Yieldsatreedatastructure – leavesaretheindividualdataitems – rootnodeistheclustermadebymergingalldatapoints • Orderofmergingdependsondistancebetweenclusters,such thatthepairwiththesmallestdistanceismergedfirst. • Everynewclustercanbeassignedadistancevalueatwhichit getscreated. 20/05/16 8 SimpleClusteringScheme • Collec-onofobjects(e.g.,trajectories): C = {c1 , c2 , ..., cM } • Distancematrix: D(i, j) = (ci , cj ) [ cu • Mergetocreatenewcluster: cij = u2arg mini,j,i6=j Di,j bij = Di,j cij • Birthindex,,isdistancethresholdatwhichclass startstoexist ci (cj ) • Deathindex,,isdistanceindexwhen di = dj = Di,j ceasestoexist 20/05/16 9 OutputofHierarchicalClustering • Treestructure,T hC, ⇢i C : collection of all original/hierarchical classes ⇢ : C 7! C : maps class to its ‘parent’ ⇢(ci ) = cj • If then bj = di and ci ⇢ cj ci 2 C • Treenodeisalive when bi b < di Cb denotethelevelby 20/05/16 10 FréchetDistance • Distancebetweentwocurves(orsurfaces) • ThediscreteFréchetdistanceisdefinedas F (⌧1 , ⌧2 ) = inf max ↵, j E (⌧1 (↵(j)), ⌧2 ( (j))) ↵, arere-parametrisa-onsthataligntrajectoriestoeach otherpoint-wise 20/05/16 11 Illustra-veExample:HierarchicalClustering withFréchetDistance 20/05/16 12 ClusteringbyTopology 20/05/16 13 Recap:Construc-ngFiltra-onsfromSamples Observedtrajectoriesyield samplesintheC-Space, Then,considerthespace, 20/05/16 14 UnionsofBalls 20/05/16 15 UnionsofBalls 20/05/16 16 Delaunay–ČechComplex IfwecantransformasimplicialcomplexKintoanothercomplexK0by asequenceofelementarycollapses,thenthetwocomplexeshavethe samehomotopytype. AdiscreteMorsefunc-oncanencodesuchasimplicialcollapse, whichisusedtoestablishtheaboveresult. U.Bauer,H.Edelsbrunner.TheMorsetheoryofČechandDelaunayfiltra9ons. InProc.Symp.Comp.Geometry,SOCG’14. 20/05/16 17 HomologyComputa-on byMatrixReduc-on a a d e a i j h f b g c b c d b c g+h+i=[0000]T h+i=[0110]T d e f g h i 1 1 0 0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 j e 0 f 0 g 1 h 1 i 1 j [H.Edelsbrunner,J.Harer,Contemp.Math.453:257-282,2008.] 20/05/16 18 TrajectoryClassifica-oninSimplicialComplex are not homotopy equivalent in 20/05/16 19 PersistentHomologyGroups Forafiltra9onofsimplicialcomplexes , definethep-thpersistenthomologygroups: 20/05/16 20 TwoTrajectoryClassesfor4-linkArm Class“S” 20/05/16 Class“Z” 21 ClusteringEndEffectorTrajectories: 3-dim,97trajectories Thereexistsafiltra-onintervalwith3classes whichlatermergeintotwoclasses 20/05/16 22 TwoDiscoveredEquivalenceClasses 20/05/16 23 Recap:Approach 20/05/16 24 HierarchicalBeliefs-Intui-on • Probabilityofnodesinthetreeóprobabili-esassignedto regionsinametricspace • Intui-on:ConsiderVoronoitessella-onof2-dimspaceby pointsondiscretecurves 20/05/16 25 BankofPar-cleFilters(MPF) 1. Samplenpar-cleswithequalweightsfromaprior, (C0 ⇥ <d ) C0 = {c 2 C|bc = b0 } 2. Buildtreeprobabili-es* 3. Samplenewpar-clesforparentnodes: Inaloop: a. Foreachpar-cleateachlevel,computenewposi-on: b. Forpar-clesatchosenlevel,updatewithobserva-ons* c. Propagateweightsalongtree&resample(atlowestlevel)* 20/05/16 26 Mo-onModels l Amo-onmodelislearntforeveryclass(treenode) ✓i = P(z 0 |z, ci ), z, z 0 2 <d l Thecollec-onoftrajectoriesdefine: - Eitheraglobalmodel,e.g.,usingGMM/GMR - Or,alocalisedmodel-theaveragevelocityofthe trajectorypointsinaballaroundthestudiedpointz 20/05/16 27 Incorpora-ngEvidence,BaseCase • Atlevel0(i.e.,atthelevelofthefinestscale),compute Euclideandistancebetweenobservedposi-onandclass predic-on E (z, ⇠ t ) • Updateweights,inverselypropor-onaltodistance p(z t , c) : w / 20/05/16 log( t (z, ⇠ )) E 28 Incorpora-ngEvidence, withCoarseObserva-ons Firstfindallclassesthatarealiveatthelevelofobserva-on, b⇠ + d ⇠ ˆ C = {ci 2 C| bi < di } 2 Foreachoftheseclasses: Computedistancebasedonbirthindexoffirstsharedparent t (c, ⇠ ) = b̂ T Foreverypar-cleinclassc,updateas p(z t , c) : w / log( t (c, ⇠ )) T Rebuildtreeprobabili-esandnormalise 20/05/16 29 RebuildingProbabili-esintheTree 1. Updatebasedoncomputedweights,w,&nodeprobability, 2. Downwardpass:Recursivelyupdatechildrens’probabili-es 3. Upwardpass:Recursivelyupdateparents’probabili-es 20/05/16 30 Recap:Approach 20/05/16 31 Experiment1:Qualita-veBehaviour • Wecharacterisethe temporalbehaviourusinga synthe-cdataset • Thedatamimicstypical paternofmovementof pedestriansinbuilt environments • Weupdateallprobabili-es inthetree 20/05/16 32 Results:BeliefsOverTimeandLevel 20/05/16 33 TimeEvolu-onofBeliefs 20/05/16 34 Experiment2:UnderstandingPerformance MPFvs.BaselinePF Averagenormaliseddistancefromtruetrajectory • Metric:distancebetweenmaximumaposterioriclassofthe filterandthetruetrajectory,ascapturedbythetreedistance, averagedover-me • Coarseobserva-onsareprovideduniformlyatrandom(50% ofthe-metherewillalsobeacoarseobserva-on) 20/05/16 35 MPFvs.Baseline 20/05/16 36 Experiment2:UnderstandingPerformance MPFvs.BaselinePF Timetoconvergence • Metric:normalised-metaken(%)fores-matetobewithinε, bysimilarityintreedistance,oftruetrajectory. • Bothversionsreceivefineobserva-onsforasmallburn-in periodfollowedbyonlycoarseobserva-ons(whichbaseline PFisunabletouse) 20/05/16 37 MPFvs.Baseline 20/05/16 38 OngoingExperimentwithUberDataset 20/05/16 39 Recap:Filtra-onsArisingfromSublevelSets WithgeneralmodelssuchasGaussianProcesses,doesthisapproachoffer leveragebyextrac-ngqualita-vestructuretomakelearningmoretractable? 20/05/16 40 ExampleSurfacesofInterest: MDPAc-vityModels [F.Previtalietal., ICRA2015,IROS16subm] InverseRLmethods canbeusedto es-matecostfunc-ons Realisedpathsareactuallydeterminesbyavaluefunc-on,expensivecomputa-on: Cantopologicalcategorisa-onofrewardfunc-onsyieldfastercomputa-onofV? 04/06/16 41 Conclusions • Persistenceasdefinedin TDAprovidesamul--scale representa-onthatisripe forcombina-onswith probabili-es • Someuses: – Var.noisesensors/ actuators – Coarseinstruc-ons 20/05/16 42 Acknowledgements ThisworkwassupportedbytheEUprojects TOMSY(IST-FP7-270436)andTOPOSYS(ICT-FP7-18493) Wehavebenefitedfromtheuseofequipmentwithinthe EPSRCRobotariumResearchFacilityattheEdinburghCentreforRobo-cs. 20/05/16 43