Basic cosmology - Haus der Astronomie

Transcription

Basic cosmology - Haus der Astronomie
Basic cosmology
Heraeus Summer School 2013
Markus Pössel
Haus der Astronomie
August 19, 2013
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
Contents
1 Introduction
2 Expansion with a scale factor
3 The Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) metric
4 Dynamics of FLRW universes
5 Observing the expanding universe
Markus Pössel
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
The framework behind cosmology
Modern framework for cosmology: homogeneous, isotropic
models based on general relativity
• A surprising amount can be derived in a Newtonian way! (cf. tutorial)
• Inaccessible to Newton:
• consistent theory of the behavior of light
• non-flat spaces
• some sources of gravity
⇒ general relativity needed!
Markus Pössel
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
Goals of this lecture
• Introduce Friedmann-Lemaı̂tre-Robertson-Walker models
• Distinguish between kinematic (scale factor, metric) and dynamic
(Friedmann equations) effects
• Introduce concepts, motivation and nomenclature needed in later
lectures
Markus Pössel
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
General relativity
• Einstein’s theory (1915) linking space-time-geometry and gravity
• Central model-building element: space-time metric gµν (or line
element ds 2 )
• Light and freely falling particles move along the straightest-possible
space-time paths (geodesics)
• Einstein’s equations link space-time geometry (“Einstein tensor
Gµν ”) and sources of gravity (“Stress-energy tensor Tµν )
• Physical models: solutions of Einstein’s equations
Markus Pössel
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
...for our purposes:
• What does it mean to have a universal scale factor?
• Heuristic introduction of the metric
• (Newtonian) derivation of dynamic equations (⇒ tutorial)
• Basic parameters
• Observing the expanding universe
Markus Pössel
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
Expansion with a scale factor
Deduced from Hubble’s (and later) results:
scale factor expansion
Idea: cosmic substratum (i.e. “galaxy dust”) floating in space.
All distances between substratum particles change proportional to
a (t ), e.g. distance d12 between galaxy 1 and galaxy 2:
d12 (t1 ) =
Markus Pössel
a (t1 )
· d12 (t0 ).
a (t0 )
Basic cosmology
ph
en
we
g
Scale-factor expansion
16a
6
Heidelberg Suites
FLRW spacetimes
18b
20
26
8
Heidelberg
College 16
18
Introduction
19
hilosoph
enweg
18a
FLRW dynamics
Observations
L 534
22
Phil oso
24
28
Expansion with a scale factor
32
36
38
30
fad
Leinp
traße
nds
er La
nheim
Neue
34
eberle-Straße
38/2
Alte Brücke
Alb
ert
-U
Neckar
Neckar
r
Necka
40
Unitas
Haus
40/1
44
M önc
hg
as
se
L 534
eufel
Am Hackt
Neckarstaden
2
e
12
14
Kettengasse
Ke
7
3
Dokumentationsund Kulturzentrum
Deutscher
Sinti und
Roma
2
7a
7b
ue
Ne
Oberer
Fauler
Pelz
h
Sc
e
raß
ssst
hlo
e Sc
Neu
41
18
39
e
straß
loss
Sch
ue 22
Ne
17
9
27
21
11 13 15
berg
Schloss
3a
23
29
31
33
35
g
ossber
Schl
ue
Ne
6
erg
ossb
Schl
el
nn
tu
rg
be
ss
hlo
Sc
10
lz
Pe
ler
au
rF
ere
Ob
37
e
raß
sst
los
Sch
aße
lossstr
e Sch
Neu
10
42
16
4
16a
Klingentor
6c
eg
Rudolf
Steiner
Haus
gw
6a
10
Klinge
nteic
hst
raß
e
6b
34 36
13
lz
r Pe
Faule
rer
Unte
tte
ngas
se
2
Arthotel Heidelberg
8
32
e
gass
rbad
Obe
4
10
5
Hotel Anlage
1
Sporthalle
Klingenteich
r
be
aim
Gr
3
6
t
ark
rnm
Ko
Piccolo
Mondo
e
hgass
Mönc
4
28
1
traße 3
ims
Ingr
15
30
sse
adga
Mittelb
2
e
ass
badg
Ober
66
platz
Markt
6
1
64
13
11
22 24 26
5
8 7
10
12
14 9
16
ergasse
Kräm
Hotel Acor
rt-Anlage
h-Ebe
Friedric
sse
erga
Apothek
e
ert-Anlag
Friedrich-Eb
53 53a 53b
rgasse
Fische
rgasse
Kräme
traße
inars
Sem
3
3
rsität
Unive
Neue
-Anlage
h-Ebert
Friedric
t-Anlage
Friedrich-Eber
tplatz
Mark
Fischmarkt
Parkhaus
am Theater
62
lage
rt-An
-Ebe
drich
Frie
Seminar
for Roman
Languages
Peterskirche
56a
56a
6
9
3
Tangente
Zuckerladen
Marakesch Friedrich-Ebert-Anlage
Steingasse
Markus Pössel
Riegler
Europahaus
III
Chili's Raja Rani Plöck
4
3
engasse
Kett
age
t-Anl
Eber
richFried
Plöck
e
gass
Sand
asse
Märzg
Platz
h-EbertFriedric
Sporthalle
Hölderlin-Gymnasium
Schießtorstraße
Plöck
Hölderlin-Gymnasium
Göbes
t
rsitä
nive
ue U
Ne
rsität
Unive
Neue engasse
Grab
rstraße
Theate
e
hstraß
Friedric
asse
Märzg
Plöck
Coffee
Inn
Schulgasse
sse
Märzga
71
61
57
Plöck
Plöck
4
Zwinger1 und Zwinger3
Figurenhof
Zentrum
für Lehrerbildung
1
1
2
1
12
ße
tra
ers
ing
Zw
12
Philosophisches
Seminar,
Slavisches
Institut
Universitätsbibliothek
Plöck
1
rsität
Unive
Neue
Friedrich-Ebert-Grundschule
Sporthalle
Theodor-Heuss-Realschule
6
Neue
Universität
14
9
57a
Sprachlabor
Yufka's
Kebap
& Pizza
aße
Ingrimstr
6
Universitätsbibliothek
Hochschule
für Jüdische
Studien
5
5
Prinz Friedrich
4
9
ät
ersit
Univ
Neue
Triplex-Mensa
traße
frieds
Land
e
straß
fried
Land
Falafel
7
191-201
traße
Haupts
200202
190
Stefansbäck
Goldene
Sonne
6-8
Rathaus
10
Marktplatz
e
Hauptstraß
2
sse
enga
Grab
3
Regie
16
Café Moro Coffee
& Kiss
ra ß
Merianst
Der
Kleine
Gundel
Städtische Bühne
Bäckerei
Grimm
22
2
Zimmertheater
Heiliggeistkirche
Schmidts
168
Gloria & Gloriette
Altstadt
Hallhuber
Hauptstraße
MoschMosch
Alte Universität
4
6
Kaiser
Avatar
Foods
Cafe Romantic
120
e
gass
Sand
74
La Fée
Bar Café
Schiller
Korea
8 Mel's
Cenmoro
tz
Marktpla
Universitäts-Apotheke
rstraße
Theate
Schmelzpunkt
traße
dwig-S
Karl-Lu
72
126
Marktstube
Floringasse
Sayuki
aße
ichstr
Friedr
86
82
70
La Flamm-Pâtisserie
Weisser
Schwan
9
6
3
Fischm
arkt
aße
Untere Str
Alfredo
OSTERIA
Heugasse
straße
Bienen
e
ass
elg
97
78
Unisex
57
e
tstraß 64
Haup
58
Hörnchen
124
traße
Haupts
114
Hotel The Dubliner
Big Pommes
Perkeo
71
aße
Untere Str
Heumarkt
Kupferkanne
Institutsgebäude
Kamps
Schnitzelbank
Chocolaterie
YilliY
Weinloch
3
Hotel Weisser Bock
135Starbucks
12
C&A
6
se
Haspelgas
Bauamtsgasse
se
Schiffgas
Konomi
e
fengass
Karp
Zie
g
56
sse
Pfaffenga
54
Vinothek
Goldener
Anker
Thai Restaurant
Phuket
14
13
25
21
17
ßchen
Küchengä
ße
rstra
cka
e Ne
Unter
Jubiläumsplatz
Zum Binsebub
Europahaus
IV
straße
Marstall
B 37
Kollegiengebäude
asse
Kraneng
Kongresshaus
Stadthalle
Heidelberg
raße
rst
ka
e Nec
Unter
Wirtshaus
Spreisel
ße
nigstra
Dreikö
taden
Neckars
13
Kilimanjaro
Bussemgasse
traße
ckars
e Ne
Unter
7-11
17
Montpellierplatz
Kleine Mantelgasse
Wohnheim
Wartburg
lgasse
Große Mante
Marstallcafé
32
24
ße
Marstallstra
Zeughaus-Mensa
n
stade
Neckar
Semann's
lsgasse
Semme
Goldener LENOX
Stern
Hörsaalgebäude
r
Necka
Brem
enec
kgas
se
100 m
re
Neckarfäh
Nectar
Heidelberger
Brückenaffe
Am Brückentor
Karl
Lauerstraße
kteufel
Neckarstaden Karl Theodor Am Hac
Neckarstaden
Neckarstaden
rstaden
Necka
Hotel Villa Marstall
lo
ss
st
ra
ße
ar
Neck
8
Basic cosmology
Moore
Haus
43
ph
en
we
g
Scale-factor expansion
16a
6
Heidelberg Suites
FLRW spacetimes
18b
20
26
8
Heidelberg
College 16
18
Introduction
19
hilosoph
enweg
18a
FLRW dynamics
Observations
L 534
22
Phil oso
24
28
Expansion with a scale factor
32
36
38
30
fad
Leinp
traße
nds
er La
nheim
Neue
34
eberle-Straße
38/2
Alte Brücke
Alb
ert
-U
Neckar
Neckar
r
Necka
40
Unitas
Haus
40/1
44
M önc
hg
as
se
L 534
eufel
Am Hackt
Neckarstaden
2
e
12
14
Kettengasse
Ke
7
3
Dokumentationsund Kulturzentrum
Deutscher
Sinti und
Roma
2
7a
7b
ue
Ne
Oberer
Fauler
Pelz
h
Sc
e
raß
ssst
hlo
e Sc
Neu
41
18
39
e
straß
loss
Sch
ue 22
Ne
17
9
27
21
11 13 15
berg
Schloss
3a
23
29
31
33
35
g
ossber
Schl
ue
Ne
6
erg
ossb
Schl
el
nn
tu
rg
be
ss
hlo
Sc
10
lz
Pe
ler
au
rF
ere
Ob
37
e
raß
sst
los
Sch
aße
lossstr
e Sch
Neu
10
42
16
4
16a
Klingentor
6c
eg
Rudolf
Steiner
Haus
gw
6a
10
Klinge
nteic
hst
raß
e
6b
34 36
13
lz
r Pe
Faule
rer
Unte
tte
ngas
se
2
Arthotel Heidelberg
8
32
e
gass
rbad
Obe
4
10
5
Hotel Anlage
1
Sporthalle
Klingenteich
r
be
aim
Gr
3
6
t
ark
rnm
Ko
Piccolo
Mondo
e
hgass
Mönc
4
28
1
traße 3
ims
Ingr
15
30
sse
adga
Mittelb
2
e
ass
badg
Ober
66
platz
Markt
6
1
64
13
11
22 24 26
5
8 7
10
12
14 9
16
ergasse
Kräm
Hotel Acor
rt-Anlage
h-Ebe
Friedric
sse
erga
Apothek
e
ert-Anlag
Friedrich-Eb
53 53a 53b
rgasse
Fische
rgasse
Kräme
traße
inars
Sem
3
3
rsität
Unive
Neue
-Anlage
h-Ebert
Friedric
t-Anlage
Friedrich-Eber
tplatz
Mark
Fischmarkt
Parkhaus
am Theater
62
lage
rt-An
-Ebe
drich
Frie
Seminar
for Roman
Languages
Peterskirche
56a
56a
6
9
3
Tangente
Zuckerladen
Marakesch Friedrich-Ebert-Anlage
Steingasse
Markus Pössel
Riegler
Europahaus
III
Chili's Raja Rani Plöck
4
3
engasse
Kett
age
t-Anl
Eber
richFried
Plöck
e
gass
Sand
asse
Märzg
Platz
h-EbertFriedric
Sporthalle
Hölderlin-Gymnasium
Schießtorstraße
Plöck
Hölderlin-Gymnasium
Göbes
t
rsitä
nive
ue U
Ne
rsität
Unive
Neue engasse
Grab
rstraße
Theate
e
hstraß
Friedric
asse
Märzg
Plöck
Coffee
Inn
Schulgasse
sse
Märzga
71
61
57
Plöck
Plöck
4
Zwinger1 und Zwinger3
Figurenhof
Zentrum
für Lehrerbildung
1
1
2
1
12
ße
tra
ers
ing
Zw
12
Philosophisches
Seminar,
Slavisches
Institut
Universitätsbibliothek
Plöck
1
rsität
Unive
Neue
Friedrich-Ebert-Grundschule
Sporthalle
Theodor-Heuss-Realschule
6
Neue
Universität
14
9
57a
Sprachlabor
Yufka's
Kebap
& Pizza
aße
Ingrimstr
6
Universitätsbibliothek
Hochschule
für Jüdische
Studien
5
5
Prinz Friedrich
4
9
ät
ersit
Univ
Neue
Triplex-Mensa
traße
frieds
Land
e
straß
fried
Land
Falafel
7
191-201
traße
Haupts
200202
190
Stefansbäck
Goldene
Sonne
6-8
Rathaus
10
Marktplatz
e
Hauptstraß
2
sse
enga
Grab
3
Regie
16
Café Moro Coffee
& Kiss
ra ß
Merianst
Der
Kleine
Gundel
Städtische Bühne
Bäckerei
Grimm
22
2
Zimmertheater
Heiliggeistkirche
Schmidts
168
Gloria & Gloriette
Altstadt
Hallhuber
Hauptstraße
MoschMosch
Alte Universität
4
6
Kaiser
Avatar
Foods
Cafe Romantic
120
e
gass
Sand
74
La Fée
Bar Café
Schiller
Korea
8 Mel's
Cenmoro
tz
Marktpla
Universitäts-Apotheke
rstraße
Theate
Schmelzpunkt
traße
dwig-S
Karl-Lu
72
126
Marktstube
Floringasse
Sayuki
aße
ichstr
Friedr
86
82
70
La Flamm-Pâtisserie
Weisser
Schwan
9
6
3
Fischm
arkt
aße
Untere Str
Alfredo
OSTERIA
Heugasse
straße
Bienen
e
ass
elg
97
78
Unisex
57
e
tstraß 64
Haup
58
Hörnchen
124
traße
Haupts
114
Hotel The Dubliner
Big Pommes
Perkeo
71
aße
Untere Str
Heumarkt
Kupferkanne
Institutsgebäude
Kamps
Schnitzelbank
Chocolaterie
YilliY
Weinloch
3
Hotel Weisser Bock
135Starbucks
12
C&A
6
se
Haspelgas
Bauamtsgasse
se
Schiffgas
Konomi
e
fengass
Karp
Zie
g
56
sse
Pfaffenga
54
Vinothek
Goldener
Anker
Thai Restaurant
Phuket
14
13
25
21
17
ßchen
Küchengä
ße
rstra
cka
e Ne
Unter
Jubiläumsplatz
Zum Binsebub
Europahaus
IV
straße
Marstall
B 37
Kollegiengebäude
asse
Kraneng
Kongresshaus
Stadthalle
Heidelberg
raße
rst
ka
e Nec
Unter
Wirtshaus
Spreisel
ße
nigstra
Dreikö
taden
Neckars
13
Kilimanjaro
Bussemgasse
traße
ckars
e Ne
Unter
7-11
17
Montpellierplatz
Kleine Mantelgasse
Wohnheim
Wartburg
lgasse
Große Mante
Marstallcafé
32
24
ße
Marstallstra
Zeughaus-Mensa
n
stade
Neckar
Semann's
lsgasse
Semme
Goldener LENOX
Stern
Hörsaalgebäude
r
Necka
Brem
enec
kgas
se
200 m
re
Neckarfäh
Nectar
Heidelberger
Brückenaffe
Am Brückentor
Karl
Lauerstraße
kteufel
Neckarstaden Karl Theodor Am Hac
Neckarstaden
Neckarstaden
rstaden
Necka
Hotel Villa Marstall
lo
ss
st
ra
ße
ar
Neck
8
Basic cosmology
Moore
Haus
43
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
Distances between galaxies
Consider galaxies in the Hubble flow:
d (t0 )
t = t0
All distances change as d (t ) =
Markus Pössel
a (t )
· d (t0 ).
a (t0 )
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
Distances between galaxies
Consider galaxies in the Hubble flow:
d (t1 )
t = t1
All distances change as d (t ) =
Markus Pössel
a (t )
· d (t0 ).
a (t0 )
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
Expansion with a scale factor
Signals emitted at time te with time difference ∆te , initial spatial
separation v · ∆t
1
2
v ∆t
⇒ if separation is stretched with the expansion factor and signals
arrive at time t1 , then
∆t0 =
Markus Pössel
a (t0 )
· ∆te .
a (te )
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
Cosmological redshift
Wavelength scaling with scale factor:
wavelength
Redshift defined as
z=
a (t0 )
λ0 − λ1
−1
=
λ1
a (te )
or
1+z =
a (t0 )
a (te )
For co-moving galaxies: z is directly related to re .
For monotonous a (t ): distance measure.
Markus Pössel
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
Cosmological redshift
Redshift for a (t0 ) > a (te ); blueshift for a (t0 ) < a (te )
Markus Pössel
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
Taylor expansion of the scale factor
Generic Taylor expansion:
1
ä · (t − t0 )2 + . . .
2
Re-define the Taylor parameters by introducing two functions
a (t ) = a (t0 ) + ȧ (t0 )(t − t0 ) +
H (t ) ≡
ȧ (t )
ä (t )a (t )
and q(t ) ≡ −
a (t )
ȧ (t )2
and corresponding constants
H0 ≡ H (t0 ) and q0 ≡ q(t0 )
"
a (t ) = a0 1 + (t − t0 )H0 −
Markus Pössel
1
q0 H02 (t − t0 )2 + . . .
2
#
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
Some nomenclature and values 1/2
t0 is the standard symbol for the present time. If coordinates are
chosen so cosmic time t = 0 denotes the time of the big bang
(phase), then t0 is the age of the universe. Sometimes, the age of
the universe is denoted by τ.
H (t ) is the Hubble parameter (sometimes misleadingly Hubble
constant)
H0 ≡ H (t0 ) is the Hubble constant. Current values around
H0 = 70
Markus Pössel
km/s
.
Mpc
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
Some nomenclature and values 2/2
Sometimes, the Hubble constant is written as
H0 = h · 100
km/s
Mpc
(keep your options open!) with h the dimensionless Hubble
constant.
The inverse of the Hubble constant is the Hubble time (cf. the
linear case and the models later on).
1
/s
h · 100 km
Mpc
Markus Pössel
≈ h −1 · 1010 a.
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
For “nearby” galaxies. . .
. . . use the Taylor expansion
a (t ) = a (t0 )[1 + H0 (t − t0 ) + O ((t − t0 )2 )]:
1−z ≈
1
1+z
=
a (te )
≈ 1 + H0 (te − t0 )
a (t0 )
or, using the classical Doppler formula v = cz and defining
distance d = c ∆t for light-travel time ∆t,
v = cz ≈ H0 c (t0 − te ) ≈ H0 d
for small z, small t0 − te .
This is Hubble’s law.
Originally discovered by Alexander Friedmann (cf. Stigler’s law).
Markus Pössel
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
The Friedmann-Lemaı̂tre-Robertson-Walker metric
Next step: Re-visit scale factor expansion within the framework of
general relativity.
Space-time described by a metric
. . . say what?
Markus Pössel
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
The meaning of the metric: the flat/Cartesian case
Ordinary Cartesian coordinates: Pythagoras!
ds 2 = dx 2 + dy 2
Markus Pössel
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
The meaning of the metric: spherical coordinates
Introduce spherical coordinates r , θ, φ:
x
= r · sin θ · cos φ
y
= r · sin θ · sin φ
z
= r · cos θ
The line element is given by
ds 2 = dr 2 + r 2 (dθ2 + sin2 θ dφ2 ) ≡ dr 2 + r 2 dΩ.
Markus Pössel
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
A different kind of metric: Special relativity
t [s]
1
0,97 s
0,88 s
0,71 s
0,42 s
0,42 Ls = 125000 km
0,71 Ls = 212000 km
0,88 Ls = 262000 km
0,97 Ls = 291000 km
x [Ls = 300000 km]
−1
0
1
ds 2 = −c 2 dτ2 = d~x 2 − c 2 dt 2 .
Markus Pössel
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
Cosmological model-building: strategy
Two-step model-building strategy guided by the cosmological
principle:
1
Build idealized exactly homogeneous and isotropic models:
Friedmann-Lemaı̂tre-Robertson-Walker, FLRW (exact family of
solutions; this lecture)
2
Add inhomogeneities on smaller scales as perturbations (Björn
Malte Schäfer on Saturday)
Markus Pössel
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
The Friedmann-Robertson-Walker Metric
Only possibility of describing an isotropic and homogeneous
universe (up to freedom of choosing different coordinates):
"
2
2
2
ds = −c dt + a (t )
2
dr 2
+ r 2 dΩ
1 − Kr 2
#
with a (t ) the cosmic scale factor. From now on: convention c ≡ 1.
K a parameter that describes spatial geometry:


+1 spherical space




0 Euclidean space
K =



 −1 hyperbolical space
Markus Pössel
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
A caveat: global vs. local
Globally, there is topology to consider — e.g. a flat metric can
belong to infinite Euclidean space, but also, say, to a torus (a patch
of Euclidean space with certain identifications).
• K = 0: 18 topologically different forms of space. Some inifinite,
some finite.
• K = +1: inifinitely many topologically different forms. All are finite.
• K = −1: infinitely many topologically different forms of space. Some
inifinite, some finite.
Markus Pössel
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
Light in an FRW universe
Great advantage of GR: Light propagation along geodesic
(straightest-possible) lines!
As in special relativity: for light, ds 2 = 0 (alternative: geodetic
equation).
Also: use symmetries! Move origin of your coordinate system
wherever convenient. Look only at radial movement.
"
ds 2 = −dt 2 + a (t )2
dr 2
+ r 2 dΩ
1 − Kr 2
#
becomes
a (t ) dr
dt = ± √
.
1 − Kr 2
⇒ this will become important in Andreas Just’s lecture
Markus Pössel
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
The evolution of the scale factor
Up to now, all our conclusions drawn from metric — derived by
symmetry.
To find the explicit form of a (t ) in a rigorous way, we need
Einstein’s equations,
Gµν = 8πG Tµν
with a perfect-fluid stress-energy tensor
T µν = (ρ + p ) uµ uν + pg µν
— both are beyond the scope of this lecture.
Here, we will directly skip to the solution — in the tutorial, we will
find sort-of-Newtonian answers
Markus Pössel
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
Solving Einstein’s equations for FRW
00 component of Einstein’s eq.:
3
ȧ 2 + K
= 8πG ρ
a2
i0 components vanish. ij components give
2
ä
ȧ 2 + K
= −8πGp
+
a
a2
These are the Friedmann equations. Their solutions are the
Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) universes.
Markus Pössel
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
Re-casting the Friedmann equations
8πG ρ
ȧ 2 + K
=
2
3
a
and for ȧ , 0
(by differentiating the above and inserting the ij-equation)
ȧ
a
ρ̇ = −3 (ρ + p ) = −3H (t )(ρ + p ).
(in tutorial, this will be linked to energy conservation).
Markus Pössel
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
How does density change with the scale factor?
ȧ
a
links density changes to expansion. Details depend on equations
of state. In cosmology, most important examples satisfy p = w ρ:
ρ̇ = −3 (ρ + p ) = −3H (t )(ρ + p ).
1
Dust: w = 0 ⇒ ρ ∼ 1/a 3
2
Radiation: w = 1/3 ⇒ ρ ∼ 1/a 4
3
Dark energy/cosmological constant: w = −1 ρ =const.
Whenever these are the only important components, a universe
can have different phases — depending on size, different
components will dominate.
Markus Pössel
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
Different eras depending on the scale factor
1021
Density ρ
1014
107
Dust
100
Dark energy
10−7
10−14 −6
10
Markus Pössel
Radiation
10−5
10−4
10−3 10−2 10−1
Scale factor a
100
101
102
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
Deceleration from the Friedmann equations
Recombine Friedmann equations to give equation for ä:
ä
4πG
=−
(ρ + 3p )
a
3
⇒
q0 =
4πG
3H02
(ρ0 + 3p0 )
(with ρ0 and p0 the present density/pressure).
Recall equation of state p = w ρ: Ordinary matter decelerates, but
w = −1 accelerates via its pressure!
Markus Pössel
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
The initial singularity
Shows that, for universes where dark energy (w = −1) does not
dominate, ä /a ≤ 0. But by our earlier considerations (eras), this is
true for small a, that is, in the early universe!
a
t0
t
Initial singularity — special case of Hawking-Penrose theorems.
Convenient: Choose as zero point for cosmic time.
Markus Pössel
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
The critical density and the Ω parameters
Rescale all present densities (M Matter, R Radiation, Λ dark
energy) in terms of the present critical density,
ρc0 ≡
3H02
8πG
,
and re-scale K accordingly:
ΩΛ = ρλ (t0 )/ρc0 ,
ΩM = ρM (t0 )/ρc0 ,
ΩR = ρR (t0 )/ρc0 , ΩK = −K /(a0 H0 )2 .
Re-write the present-day Friedmann equation as
ΩΛ + ΩM + ΩR + ΩK = 1.
⇒ link densities and spatial geometry (important later on for CMB)
Markus Pössel
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
General considerations for FLRW models
Scaling behaviour of the different densities means that
ρ(t ) =
3H02 
8πG

ΩM
a0
a (t )
!3
+ ΩR
a0
a (t )
!4


+ ΩΛ  .
Substitute back into the Friedmann equation
ȧ 2 + K
8πG ρ
=
2
3
a
and substitute x (t ) ≡ a (t )/a0 = 1/(1 + z ) to obtain
dt =
Markus Pössel
dx
.
p
H 0 x Ω Λ + Ω K x −2 + Ω M x −3 + Ω R x −4
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
The age of the universe in FLRW models
Defining t = 0 by a (0) = 0 [initial singularity] corresponds to
z → ∞ or x = 0. With this zero point, emission time tE (z ) of light
reaching us with redshift z:
1
tE (z ) =
H0
1/(1+z )
Z
0
dx
.
p
x Ω Λ + Ω K x −2 + Ω M x −3 + Ω R x −4
Special case z = 0 corresponds to the present time — gives the
age of the universe τ,
1
τ=
H0
Markus Pössel
1
Z
0
dx
.
p
x Ω Λ + Ω K x −2 + Ω M x −3 + Ω R x −4
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
The acceleration parameter q0
Present pressure:
p0 =
3H02
8πG
inserting in
q0 =
we find that
q0 =
Markus Pössel
1
3
(−ΩΛ + ΩR ).
4πG
3H02
(ρ0 + 3p0 ),
1
(ΩM − 2ΩΛ + 2ΩR ).
2
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
The fate of the universe
Rewrite
ȧ 2 + K
8πG ρ
=
2
3
a
as
h
ȧ 2 = (H0 a0 )2 ΩΛ x 2 + ΩM x −1 + ΩR x −2 + ΩK
i
where x = a /a0 . Forget about ΩR .
If we want a re-collapse, we must have ȧ = 0 at some time, in
other words:
ΩΛ x 3 + Ω K x + Ω M = 0 .
Markus Pössel
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
The fate of the universe
Discussion of
ΩΛ x 3 + Ω K x + Ω M = 0
• We know that, for x = 1, this expression is +1
• For ΩΛ < 0, for sufficiently large x, the expression will become
negative ⇒ must have a zero
• For ΩΛ = 0, we know recollapse for ΩM > 1, requiring K = +1
• For ΩΛ > 0, recollapse if ΩK sufficiently negative (again, K = +1).
Markus Pössel
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
Overview of FLRW solutions
Image from: d’Inverno, Introducing Einstein’s Relativity, ch. 22.3
Markus Pössel
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
FLRW model with K = 0, Λ > 0
scale factor a
This is the special case that is probably our own universe:
cosmic time t
Markus Pössel
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
Observing the expanding universe
• Age of the universe (current best: 13.8 billion a) – upper limit!
• Tracing a (t ) gives H0 and constraints on Ω parameters
• Early universe (nucleosynthesis, cosmic background radiation)
• Geometry from CMB and large-scale structure
• Consistency checks: SN time dilation, surface brightness, energy
inventory
Markus Pössel
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
Reconstructing cosmic history
1.5
}
Eternal expansion
}
0.01
0.1
1
0.0001
0.001
RELATIVE BRIGHTNESS OF SUPERNOVAE
1.0
0
0.0
–20
Markus Pössel
de
cel
e
ra
t es
REDSHIFT z
s
alw
ays
t
firs
ion
s
n
pa
era
cel
de
te
ra
–10
0
BILLIONS OF YEARS FROM TODAY
0.5
1
1.5
2
3
. . . or
Ex
0.5
en
, th
tes
le
ce
ac
Eventual collapse
LINEAR SCALE OF UNIVERSE RELATIVE TO TODAY
Perlmutter, Physics Today 2003
+10
Figure 4.
expansion
high-reds
data poin
geometry
universe
ent, so it
curves in
represent
which the
vacuum e
comes th
the mass
sume vac
ranging fr
down to 0
shaded re
sent mod
expansion
due to hig
sume ma
right) from
fact, for th
pansion e
verses int
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
Supernova Cosmology Project Plot
Suzuki et al. 2011
Markus Pössel
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
...directly related to our Ω formulae:
Sensitivity of SNe and CMB
observations directly linked to
q0 =
1
(ΩM − 2ΩΛ + 2ΩR ).
2
and
ΩΛ + ΩM + ΩR + ΩK = 1.
Markus Pössel
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
The matter content of our universe
(
ΩM =
Ωr
Ωb
Ωd
= 4.9%
= 26.8%
)
= 31.7%
= 0.005%
ΩΛ = 68.3%
Image: ESA/Planck Collaboration
Where Ωb = ordinary matter (protons, neutrons, . . . ),
Ωd = dark matter (no interaction with light)
ΩΛ = (accelerating) dark energy
Markus Pössel
Basic cosmology
Introduction
Scale-factor expansion
FLRW spacetimes
FLRW dynamics
Observations
Literature
d’Inverno, Ray: Introducing Einstein’s Relativity. Oxford University
Press 1992.
Weinberg, Steven: Cosmology. Oxford University Press 2008
Wright, Ned: Cosmology tutorial at
http://www.astro.ucla.edu/ wright/cosmolog.htm
Markus Pössel
Basic cosmology