leifi physik
Transcription
leifi physik
Electric Current transport of charge per unit time Teil 3 STROM und SPANNUNG 1 A = 1 Ampere = 1 C/s dQ I= = dt ! ⃗ ⃗j · dS current density = A/cm2 EX-II 2014 Charge Carriers Drift Velocity ‘ mean directed speed ‘ electrons and/or positively or negatively charged ions Paul Drude (1863-1906) microscopic model : N = density [m-3] drift velocity ⃗j = N q ⃗v Drude model electrons move in an ! array of positive ions ! with thermal speed vthermal = ⃗j = N q ⃗v − − − + + + N q ⃗v + for example in an electrolyte p hv 2 i ⇡ 105 m/s 1 3 mhv 2 i = kB T 2 2 without external field ! there is no directed ! motion hvi = 0 Diffusion: ⟨v 2 ⟩ = ̸ 0 Drift Velocity electrical conductivity ! # ! ⃗ ⃗ ⃗j = N q⟨⃗v ⟩ = N q 2 τ E/m = σE Drude model $ ! " ⌧ = mean time between collisions with positive ions external field accelerates electrons over this mean time U U = L R I = σA ! % homogeneous conductor ⃗ ⃗a = F⃗ /m = q E/m R= define resistance ~ mean drift velocity : h~v i = ⌧ q E/m ! unit of R ⃗ ⃗ ⃗j = N q⟨⃗v ⟩ = N q 2 τ E/m = σE A σ= V ·m [V/A]=[⌦] conductivity Ohm’s Law L L = ρs · σA A " specific ! resistance ρs = [Ω m] potential difference $ () (! % (*(! ' a linear potential drop ! across R is assumed : & U (x) = φ1 − φx = R · I R= U I U R I= I U R ! ! # ! $ % U =R·I ! " % # $ & U1 = U0 x L U2 = U0 L−x L & potential differences along a voltage divider x L Joule Heating Equation of Continuity current flow through a closed surface Work required to move a charge Q ! against a potential difference U ! ! ! ⃗=−dQ=−d ⃗j · dS dt dt S work : W = Q U power : P = W =U t Q = U I = I 2 R = U 2 /R t Unit of power (”Leistung”) : [Watt] = [V A] ! ⃗= ⃗j · dS S " " ρ dV V ⃗ · ⃗j = − ∂ρ ∇ ∂t ⃗ · ⃗j) dV (∇ V conservation of charge heat generated in a current circuit is equal to the power dissipated stationary current ⃗ · ⃗j = 0 ∇ Kirchhoff’s Laws Kirchhoff’s Laws applicable to circuits with stationary currents applicable to circuits with stationary currents 2) potential drops are additive 1) branching of conductors ! ! Ii = 0 ⃗j ! " ! ! ! # i ! ! " $ Ui = U0 i ! ! ! % % $ ! # resistors in series ! ! ! Iges = ! # " Rges = resistors in parallel $ ! i & Ri & ! ! U Ii = Ri i ! " " & " # $ ! ! # # i ! ! 1 1 = Rges Ri i % ! wiring of an ammeter ! $ % bridge circuit current at the ammeter is zero if # # # ! # # R2 R1 = Rx R3 % ! " ' % ' ! $ # ! ! " ! $ # % # $ " U1 = U2 " ! ! $ & ' ( ' Ampere-Meter # ) ' Volt-Meter Ri ≪ R ≪ Rv Ohm-Meter % & ammeters hot-wire ammeter % & ' ! ! !spring " # " $ two pieces of magnetized iron repel each other http://leifi.physik.uni-muenchen.de/web_ph10/versuche/02_dreheiseninst ammeter detection of electric charges , -&. / 0 ! 12 $3 14 ! 1 " ! /8 ' ' ' /* ' ' ' " ! " ! = ' ( ! : 2 ; < ) * ' ' ' ( # ! $% && http://leifi.physik.uni-muenchen.de/web_ph10/versuche/02_dreheiseninst * ' +! 5 " 6 2 7 " 6 1 ! 9 $ "#= . $ > ? > 9 > "#@ . $ > ? > 9 A 2D-voltage divider 2D voltage divider of a position sensitive detector ! determine charges at the corners ' " undesirable 2D voltage divider ! $ % ( )* Blitz & , -&. / 0 ! 12 $3 14 ! 1 ! Equi-! potential! lines % " ! ! /8 ' ' ' /* ' ' ' " ! # = ' ( : 2 ; < & ) * ' ' ' ( 5 " 6 2 7 " 6 1 ! x ∝ y ∝ (Q1 + Q2 ) − (Q3 + Q4 ) $ Q +Q +Q +Q 1 2 3 4 > 9 A + Q ) − (Q + Q ) " # = . $ > ? > 9 > " # @ . $ > ? (Q 2 3 1 4 9 * ' +! Q1 + Q2 + Q3 + Q4 electrical currents in liquids molecules in liquid environment Dissoziationdissociate von Molekülen in flüssiger Umgebung Faraday’s constant: CuSO4 → Cu2+ + SO42− ! # " " ! gel! electrophoresis : ! mobility is ! mass dependent !" # $ # %& " # ' ( F = 96486 C / mol Debye screening length + - + + -- + - + - + -+ - + ++ + - -+ - +- - + -+ - - + -++ +- - - + -- + - + +- - -+ + - + - - +- + - + - - - - -+ + electrode D= ! ϵ0 k T 2e2 n∞ n+ = n− ! = n∞ electrolyte is ! quasineutral screening by a region ! of negative charge density Potential drop and EMF DC current sources electromotive force EMF ( deutsch: EMK) internal resistance limits ! the maximal current flow ) * + ,,+ Imax $ & EM K < Ri ! " # ' # ( $ Klemmenspannung UKL = EM K % Ra Ra + Ri Open-circuit voltage! = Leerlaufspannung Electrochemial Series Galvanic Cell oxydation: loss of electrons! reduction: gain of electrons! ! redox pair : 1.11 V Cu ↔ Cu2+ + 2e− solid aqueous redox potential :! a measure of the willingness of ions to pick up electrons Cu/Cu2+ -Paar +0, 35 V Zn/Zn2+ -Paar −0, 76 V gradient of the potential accelerates electrons downhill EMF carries electrons against the field to the top } 1, 11 V noble metals more readily accept electrons electro-chemistry Galvanic corrosion rechargable batteries Ladevorgang: charging the discharged battery: Galvanic corrosion is an electrochemical action : two dissimilar metals in the presence of an electrolyte and an electron-conductive path. Occurs when dissimilar metals are in contact with liquid. lead-sulfate + nearly water P bSO4 + 2 OH − → P bO2 + H2 SO4 + 2e P bSO4 + 2H + → P b + H2 SO4 − 2e Entladevorgang: discharging the battery: Anode anode! cathode Kathode lead-oxide + sulfuric acid P bO2 + 3H + + HSO4− + 2e → P bSO4 + 2H2 O P b + SO4−− → P bSO4 + 2e specs Anode anode! cathode Kathode Fuel cells Battery specifications! proton-conducting fuel cell ! Energy/weight 30-40 Wh/kg! Energy/size 60-75 Wh/L! Power/weight 180 W/kg! Charge/discharge efficiency 70%-92%! Self-discharge rate 3%-20%/month! Time durability 6 months! % Cycle durability 500-800 cycles! Nominal Cell Voltage 2.0 Volt! ( & ! " ) ' % * ' & # $ http://en.wikipedia.org/wiki/Fuel_cell Surface Contact potential electrons in a potential well L ! ! ! ! " ! ! ) ) n=4 " " ! " # $ %& ''() energy ! # $ %& ''(" * + , %& - % E/ 2n + 1 L2 n=3 n=2 Φ = work function n=1 0.0 Fermi-Dirac distribution f(E) 0.2 0.0 0.0 0.8 kB Têm = 0. 0.03 0.1 0.6 0.4 f (E) = 1.0 Eêm 1.5 1 e(E µ)/kB T +1 2.0 0.0 0.0 free space for electrons 0.6 kB Têm = 0. 0.1 0.4 0.2 0.2 0.5 2.0 0.8 fHEL DHEL 0.4 DHEL 1.0 fHEL DHEL fHEL 0.6 1.5 1.0 1.2 kB Têm = 0. 0.03 0.1 1.0 x HnmL density of states D(E) 1.0 0.8 0.5 0.5 1.0 Eêm 1.5 2.0 0.0 0.0 0.5 1.0 Eêm 1.5 2.0 thermo couple temperature dependence of resistivity ( ) ! ! " # $ ! ! * + ,- . % & $ " # ! $ ' & & $ ! % / 0) / 1" 2 " lattice ! superconductor & " '( thermocouple voltage ! # with $ % & ' ( impurities ) # * + %, # ) ! pure ( ) $- !" # ! doped r0 1 e $ p. /u phonon excitation ' ( ' ) * + &, ' ( ' - * + &, " % conductor &' semiconductor http://de.wikipedia.org/w/index.php?title=Datei%3AThermocouple_voltages.PNG doped semiconductor current flow through gases # $ %%& $ ' ( Si Si Si Si Si ) * + , - ./0 1 ' %2 Si -) * 5! ( ) * + ! Si P Si Si In " Si " ! , -.' ' ' " Si Si Si Si Si Si ! " ! extra electron missing electron! “hole” " / ) 0) ! 1 ! ! ! ! " " ! 2) ! .3 1 4.) ! 3 & 1 ' ' + 0 ! " donor n-type ! acceptor p-type # $ % # $ $ % # & % -) * 56 q# E