PDF file - TU Wien

Transcription

PDF file - TU Wien
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Massive Quantum Liquids from holographic Angel’s Trumpets
Matthias C. Wapler
[email protected]
Center for Quantum Spacetime (CQUeST), Sogang University
Erwin Schrödinger Insitute, August 5th 2010
M.W.: JHEP 1005, 019 (2010)
[arXiv:1002.0336 [hep-th]]
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
1) Angel’s Trumpets (Brugmansia)
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
1) Angel’s Trumpets (Brugmansia)
What does that have to do with QCD?
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
2) Low-temperature limit
Look at the “low-temperature limit” of “top-down” holographic
fundamental matter confined to d + 1 dimensions at:
Quark mass Mq T > Tdeconf.
d
Baryon number density ρ T d > Tdeconf.
⇒ interesting scaling (see later...)
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
2) Low-temperature limit
Look at the “low-temperature limit” of “top-down” holographic
fundamental matter confined to d + 1 dimensions at:
Quark mass Mq T > Tdeconf.
d
Baryon number density ρ T d > Tdeconf.
⇒ interesting scaling (see later...)
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
2) Low-temperature limit
Look at the “low-temperature limit” of “top-down” holographic
fundamental matter confined to d + 1 dimensions at:
Quark mass Mq T > Tdeconf.
d
Baryon number density ρ T d > Tdeconf.
⇒ interesting scaling (see later...)
At Nf 6= 1 only at vanishing isospin density
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
2) Low-temperature limit
The Experiment
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
2) Low-temperature limit
The Experiment
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Outline
1
Massive Probe Branes
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Outline
1
Massive Probe Branes
2
Finding the Scaling Solution
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Outline
1
Massive Probe Branes
2
Finding the Scaling Solution
3
Thermodynamics
Preliminaries
Free Energy
Response Functions
Subleading Terms
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Outline
1
Massive Probe Branes
2
Finding the Scaling Solution
3
Thermodynamics
Preliminaries
Free Energy
Response Functions
Subleading Terms
4
Generalization
General Issues
3+1 D3-D7
1+1 D3-D3
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
D3/SYM background
Nc D3 branes in AdS5 × S 5 ⇔ N = 4 U (Nc ) SYM on the AdS boundary
String coupling gs
AdS radius L
Schwarzschild radius r0 6= 0
Do supergravity, L2 /ls2 1
⇔
⇔
⇔
⇔
Yang-Mills coupling gY2 M = 4πgs
L4
t’Hooft coupling λ = gY2 M Nc = 2l
4
s
r0
thermal SYM with T = √
πL2
Consider strong coupling λ 1
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
D3/SYM background
Nc D3 branes in AdS5 × S 5 ⇔ N = 4 U (Nc ) SYM on the AdS boundary
String coupling gs
AdS radius L
Schwarzschild radius r0 6= 0
Do supergravity, L2 /ls2 1
⇔
⇔
⇔
⇔
Yang-Mills coupling gY2 M = 4πgs
L4
t’Hooft coupling λ = gY2 M Nc = 2l
4
s
r0
thermal SYM with T = √
πL2
Consider strong coupling λ 1
The setup:
Put D3s at r = 0, then in dimensionless coordinates (factors of πT ) and
u = rr0 , we have
»
–
d u2
L2
4
2
2
2
2
ds = 2 −(1 − u ) d t +
+ d x + d y + d z + L2 dΩ25
u
(1 − u4 )
2
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Creating the Defect
Add fundamental matter ↔ probe branes to the D3 background:
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Creating the Defect
Add fundamental matter ↔ probe branes to the D3 background:
background
probe (1 + 1)
probe (2 + 1)
probe (3 + 1)
:
:
:
:
D3
D3
D5
D7
0
t
×
×
×
×
1
x
×
×
×
×
2
y
×
×
×
MCW
3
z
×
×
4
r
5
6
×
×
×
×
×
×
×
×
7
8
9
θ
or
or
×
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Creating the Defect
Add fundamental matter ↔ probe branes to the D3 background:
background
probe (1 + 1)
probe (2 + 1)
probe (3 + 1)
:
:
:
:
D3
D3
D5
D7
0
t
×
×
F
×
1
x
×
×
F
×
MCW
2
y
×
F
×
3
z
×
×
4
r
5
6
×
F
×
×
F
×
F
×
7
8
9
θ
or
or
×
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Creating the Defect
Add fundamental matter ↔ probe branes to the D3 background:
background
probe (1 + 1)
probe (2 + 1)
probe (3 + 1)
:
:
:
:
D3
D3
D5
D7
0
t
×
×
F
×
1
x
×
×
F
×
2
y
×
F
×
3
z
×
×
4
r
5
6
×
F
×
×
F
×
F
×
7
8
9
θ
or
or
×
D5
Half supersymmetry broken ⇒ expect stability
→ N = 2 gauge theory of Nf hypermultiplets confined to the 2+1 defect; in
the fundamental representation of the original SU (Nc ) SYM in the 3+1
bulk
[A. Karch and L. Randall:’01]
[J. Erdmenger, Z. Guralnik and I. Kirsch,: ’02]
[O. DeWolfe, D.Z. Freedman and H. Ooguri:’02]
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Creating the Defect
Add fundamental matter ↔ probe branes to the D3 background:
background
probe (1 + 1)
probe (2 + 1)
probe (3 + 1)
:
:
:
:
D3
D3
D5
D7
0
t
×
×
F
×
1
x
×
×
F
×
2
y
×
F
×
3
z
×
×
4
r
5
6
×
F
×
×
F
×
F
×
7
8
9
θ
or
or
×
D5
Half supersymmetry broken ⇒ expect stability
→ N = 2 gauge theory of Nf hypermultiplets confined to the 2+1 defect; in
the fundamental representation of the original SU (Nc ) SYM in the 3+1
bulk
Turn on flux on the S 2
q units of flux ⇔ funny things happen
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Aside:
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Aside:
What is the defect like in the 3+1 bulk?
Like a sheet of semiconductor, plus:
“Cloud of gluey excitations” around the defect
R
Turn on f ⇒ “ P [C 4 ] ∧ F ” sources C 4 ⇒ change Nc → Nc + q
towards one side.
Degrees of freedom turn on gradually over z = 0 . . . zmax (q)
Can verify from quasiparticle spectrum
[Rob Myers, MW: ’08, MW: ’09] and thermodynamics [MW: ’09]
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Density
“Quarks” ↔ Endpoints of D3-D5 strings
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Density
DBI Action
Z
q
−det(P [G] + 2πls 2 F )
SDBI = −T5 Nf
D5
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Density
DBI Action
Z
q
−det(P [G] + 2πls 2 F )
SDBI = −T5 Nf
D5
Density
δS
Jˆ ↔ A, so hJ µ i = δA
µ
√
⇒ Find: ρ = λNf Nc T 2 limu→0 ∂u Ãt (u)
⇒ turn on F = ∂u At (u) du ∧ dt
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Density
DBI Action
Z
q
−det(P [G] + 2πls 2 F )
SDBI = −T5 Nf
D5
Density
δS
Jˆ ↔ A, so hJ µ i = δA
µ
√
⇒ Find: ρ = λNf Nc T 2 limu→0 ∂u Ãt (u)
⇒ turn on F = ∂u At (u) du ∧ dt
Also µ =
δS
ρ
= limu→0 At (u), so
⇒ Boundary: A(u) ∼ µ̃ − ρ̃u + O(u2 )
Horizon: A(u) ∼ −q(u − 1) + O(u − 1)2
MCW
–
ρ̃ = q
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Quark Mass
“Quarks” ↔ Endpoints of D3-D5 strings
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Quark Mass
Separate D3 and D5 on the sphere
Embedding scalar Ψ:
dΩ25 = dθ2 + sin2 θ dΩ22 + cos2 θ dΩ22
⇒ Mass: Mq = limu→0
(rH /u) sin θ
2πα0
MCW
=:
√
T
m̃
λ 23/2
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Quark Mass
Separate D3 and D5 on the sphere
Embedding scalar Ψ:
dΩ25 = dθ2 + sin2 θ dΩ22 + cos2 θ dΩ22
⇒ Mass: Mq = limu→0
(rH /u) sin θ
2πα0
=:
√
T
m̃
λ 23/2
Find dual condensate: C = < ψψ > =
MCW
δS
δMq
=:
1
T 2 Nf Nc c̃
4π
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Quark Mass
Separate D3 and D5 on the sphere
Embedding scalar Ψ:
dΩ25 = dθ2 + sin2 θ dΩ22 + cos2 θ dΩ22
⇒ Mass: Mq = limu→0
(rH /u) sin θ
2πα0
=:
√
T
m̃
λ 23/2
Find dual condensate: C = < ψψ > =
δS
δMq
=:
1
T 2 Nf Nc c̃
4π
Define: Ψ := sin θ
- Asymptotically: Ψ ∼ m̃ u + c̃ u2 + . . .
Ψ (1−Ψ2 )2
Horizon: Ψ ∼ Ψ0 + 21 ρ̃2 0+(1−Ψ02 )2 + . . .
0
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Quark Mass
Massive embeddings
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Quark Mass
Massive embeddings
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Quark Mass
Massive embeddings
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Equations...
Now, Action:
Z
p
p
S = 4πL2 T5 Nf dσ 4 − det P [G]4 1 − (2πls2 ∂u At (u))2 P [G]tt P [G]uu (1−Ψ2 )
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Equations...
Now, Action:
Z
p
p
S = 4πL2 T5 Nf dσ 4 − det P [G]4 1 − (2πls2 ∂u At (u))2 P [G]tt P [G]uu (1−Ψ2 )
Induced metric:
„
„
«
«
u2 Ψ0 (u)2
L2
1
2
2
2
2
+
du
+
u
(1
−
Ψ(u)
)dΩ
ds2 = 2 −(1 − u4 )dt̃2 + d~x̃22 +
2
u
1 − u4
1 − Ψ(u)2
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Equations...
Now, Action:
Z
p
p
S = 4πL2 T5 Nf dσ 4 − det P [G]4 1 − (2πls2 ∂u At (u))2 P [G]tt P [G]uu (1−Ψ2 )
Induced metric:
„
„
«
«
u2 Ψ0 (u)2
L2
1
2
2
2
2
+
du
+
u
(1
−
Ψ(u)
)dΩ
ds2 = 2 −(1 − u4 )dt̃2 + d~x̃22 +
2
u
1 − u4
1 − Ψ(u)2
Equations of motion:
√
∂u At (u) =
p
1 − Ψ2 (u) + u2 h(u)Ψ0 (u)2
p
λT p
1 − Ψ(u)2 ρ̃2 u4 + (1 − Ψ(u)2 )2
ρ̃
and
`
´
2(1 − Ψ2 )3 + u2 (1 − u4 ) ρ̃2 u4 + (1 − Ψ2 )2 Ψ02
q
`
´`
´
u4 (1−Ψ2 ) (1−Ψ2 ) 1−Ψ2 + (u2 − u6 )Ψ02 1 + ρ̃2 u4 + Ψ2 (Ψ2 − 2)
s
!
4
ρ̃2 u4 + (1 − Ψ2 )2
01−u
= ∂u Ψ
u2
(1 − Ψ2 )(1 − Ψ2 + (u2 − u6 )Ψ02 )
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Consequences from Equations...
Motivation IIa)
At large ρ̃:
m̃ ∝ ρ̃1/d
⇒
Mq
T
∼ α(Ψ0 )
`
´
ρ 1/d
Td
⇒ Temperature-independent!
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Some Preliminaries
Work at fixed Mq , rather than fixed T :
T̄
=
ρ̄
=
c̄
=
√
1
T
= λ 3/2
m̃
2 Mq
ρ
λ
ρ̃
√
=
m̃2
Nf Nc λ 8Mq2
c̃
πλ
C
=
,
m̃2
2Nf Nc Mq2
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Some Preliminaries
Work at fixed Mq , rather than fixed T :
T̄
=
ρ̄
=
c̄
=
√
1
T
= λ 3/2
m̃
2 Mq
ρ
λ
ρ̃
√
=
m̃2
Nf Nc λ 8Mq2
c̃
πλ
C
=
,
m̃2
2Nf Nc Mq2
10.
Ρ = 1, T = 1, 12, ...
Ž
Ž
Ρ = 1, m = 1, 2, ...
T = 15, 110, ...
Ž
m = 5, 10, ...
sin HΘL
u
8.
6.
4.
2.
BH
0.
0.
5.
10.
15.
MCW
20.
25.
H1uL30.
cosHΘL
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Some Preliminaries
How it looks like
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Some Preliminaries
How it looks like
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Some Preliminaries
Motivation IIb): Studied Phase Diagram... [MW: ’09]
(ρ̃ = 0.5)
...and found...
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Some Preliminaries
Motivation IIb): ... and found [MW: ’09]:
⇒ temperature-independent entropy
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Scaling solution
Split in two Regimes
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Funnel Region
Linear regime, Ψ(u) = Ψ0 + ψ(u)
Equation of motion for Ψ(u) = Ψ0 + ψ(u):
`
´
2Ψ0 (1 − Ψ20 ) = ρ̃2 u6 ∂u (1 − u4 )∂u ψ(u) + O(ψ 2 )
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Funnel Region
Linear regime, Ψ(u) = Ψ0 + ψ(u)
Equation of motion for Ψ(u) = Ψ0 + ψ(u):
`
´
2Ψ0 (1 − Ψ20 ) = ρ̃2 u6 ∂u (1 − u4 )∂u ψ(u) + O(ψ 2 )
→ Solution
ψ(u) =
−Ψ0 (1 − Ψ20 )
10ρ̃2 u4
„
1 − u4 − 2u4 tan−1
MCW
(1 + u2 )(1 + u)2
1−u
+ u4 ln
1+u
8 u4
«
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Funnel Region
Linear regime, Ψ(u) = Ψ0 + ψ(u)
Equation of motion for Ψ(u) = Ψ0 + ψ(u):
`
´
2Ψ0 (1 − Ψ20 ) = ρ̃2 u6 ∂u (1 − u4 )∂u ψ(u) + O(ψ 2 )
→ Solution
ψ(u) =
−Ψ0 (1 − Ψ20 )
10ρ̃2 u4
⇒ Ψ(u) = Ψ0 −
region.
„
1 − u4 − 2u4 tan−1
Ψ0 (1−Ψ2
0)
10 ρ̃2 u4
(1 + u2 )(1 + u)2
1−u
+ u4 ln
1+u
8 u4
«
is the boundary condition for the asymptotic
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Trumpet Region
√
Define ξ := u ρ̃ ;
u ∈]0, 1] → ξ ∈]0,
MCW
√
ρ̃]
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Trumpet Region
√
Define ξ := u ρ̃ ;
u ∈]0, 1] → ξ ∈]0,
√
ρ̃]
Observables
ρ̄ = (∂ξ Ψ|ξ→0 )−2
2
∂ξ Ψ|ξ→0
1
c̄ = ρ̄ ∂ξ2 Ψ|ξ→0 =
2
2(∂ξ Ψ|ξ→0 )2
p
1
T̄ = ρ̄/ρ̃ = √
ρ̃∂ξ Ψ|ξ→0
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Trumpet Region
√
Define ξ := u ρ̃ ;
u ∈]0, 1] → ξ ∈]0,
√
ρ̃]
Obtaining the solution
Equation of motion:
„
„
««
p
p
Ψ(ξ)
2
4
2
2
0 = ∂ξ
1 − Ψ(ξ) ξ + (1 − Ψ(ξ) ) ∂ξ
ξ
„
„
««2
“
”
p
p
Ψ(ξ)
∂ξ Ψ(ξ)
1 − Ψ(ξ)2 ξ 4 + (1 − Ψ(ξ)2 )2
+
ξ∂ξ
∂Ψ(ξ)
Ψ(ξ)
ξ
solve numerically, but find ∂ξ2 Ψ|ξ→0 = −2Ψ0 ↔ c̄ = −ρ̄ Ψ0
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Trumpet Region
√
Define ξ := u ρ̃ ;
u ∈]0, 1] → ξ ∈]0,
√
ρ̃]
Obtaining the solution
Equation of motion:
„
„
««
p
p
Ψ(ξ)
2
4
2
2
0 = ∂ξ
1 − Ψ(ξ) ξ + (1 − Ψ(ξ) ) ∂ξ
ξ
„
„
««2
“
”
p
p
Ψ(ξ)
∂ξ Ψ(ξ)
1 − Ψ(ξ)2 ξ 4 + (1 − Ψ(ξ)2 )2
+
ξ∂ξ
∂Ψ(ξ)
Ψ(ξ)
ξ
solve numerically, but find ∂ξ2 Ψ|ξ→0 = −2Ψ0 ↔ c̄ = −ρ̄ Ψ0
Linear regime, ρ̄ 1:
0 = 2Ψ − 2ξ∂ξ Ψ + ξ 2 (1 + ξ 4 )∂ξ2 Ψ
⇒ Ψ0 ∼ √
1
√
ρ̄ K(1/ 2)
ρ̄ 1, (1 − Ψ0 ) 1: 1 − Ψ ∝ ρ̄2
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Scaling solution
How it looks like
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Scaling solution
How it looks like
1.
Ρ = 0.01, 0.02, ...
Ρ = 0.1, 0.2, ...
Ρ = 1, 2, ...
Y
0.8
0.6
0.4
0.2
0.
0.
0.2
0.4
0.6
MCW
0.8
1.
1.2
1.4 Ξ
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Scaling solution
How it looks like
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Scaling solution
How it looks like
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Preliminaries
Free Energy
Response Functions
Subleading Terms
Thermodynamics
Obtain contribution only from the fundamental matter, can be discussed
independently.
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Preliminaries
Free Energy
Response Functions
Subleading Terms
Thermodynamics
Obtain contribution only from the fundamental matter, can be discussed
independently.
General strategy:
1
Ru
Compute Euclidean action Ie = u max Le + Ibdy ;
min
√
√
boundary terms are unique, here Ibdy. = − 31 γ + 12 Ψ2 γ
[Karch, O’Bannon, Skenderis, Kostas: ’04]
2
Vary fields ⇒ Thermodynamic variables X i , T δIe = µi δX i
3
Do appropriate Legendre transformations
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Preliminaries
Free Energy
Response Functions
Subleading Terms
Thermodynamics
Obtain contribution only from the fundamental matter, can be discussed
independently.
General strategy:
1
Ru
Compute Euclidean action Ie = u max Le + Ibdy ;
min
√
√
boundary terms are unique, here Ibdy. = − 31 γ + 12 Ψ2 γ
[Karch, O’Bannon, Skenderis, Kostas: ’04]
2
Vary fields ⇒ Thermodynamic variables X i , T δIe = µi δX i
3
Do appropriate Legendre transformations
Want canonical ensemble F (ρ, T ; M ):
Z umax
F = T I˜e , I˜e =
Le + Ibdy + ρAt ,
umin
Here use F̄Mq (ρ̄, T̄ ):
F̄ := F
λ
Mq3 29/2 Nc Nf
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Preliminaries
Free Energy
Response Functions
Subleading Terms
Thermodynamics
Obtain contribution only from the fundamental matter, can be discussed
independently.
General strategy:
1
Ru
Compute Euclidean action Ie = u max Le + Ibdy ;
min
√
√
boundary terms are unique, here Ibdy. = − 31 γ + 12 Ψ2 γ
[Karch, O’Bannon, Skenderis, Kostas: ’04]
2
Vary fields ⇒ Thermodynamic variables X i , T δIe = µi δX i
3
Do appropriate Legendre transformations
Want canonical ensemble F (ρ, T ; M ):
Z umax
F = T I˜e , I˜e =
Le + Ibdy + ρAt ,
umin
Here use F̄Mq (ρ̄, T̄ ):
F̄ := F
λ
Mq3 29/2 Nc Nf
Aside: At large temperatures T̄ 1,
MCW
T̄ ρ̄ = − 31 T̄ 3
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Preliminaries
Free Energy
Response Functions
Subleading Terms
Obtain the free energy
Find
F̄ = −ρ̄
3/2
√
ρ̃
Z
0
dξp 4
ξ + (1 − Ψ2 )2
ξ4
MCW
!
˛
ξ 2 Ψ02
2 − 3Ψ2 ˛˛
+ O(ρ̃−1/2 )
1+
−
1 − Ψ2
6ξ 3 ˛bdy.
r
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Preliminaries
Free Energy
Response Functions
Subleading Terms
Obtain the free energy
Find
F̄ = −ρ̄
3/2
√
ρ̃
Z
0
dξp 4
ξ + (1 − Ψ2 )2
ξ4
!
˛
ξ 2 Ψ02
2 − 3Ψ2 ˛˛
+ O(ρ̃−1/2 )
1+
−
1 − Ψ2
6ξ 3 ˛bdy.
r
√
√
ρ̃] → ξ ∈]0, ∞[ − ξ ∈] ρ̃, ∞[
R∞
√
Integrate ξ ∈] ρ̃, ∞[: √ρ̃ d ξ (ξ −2 + O(ξ −6 ))
Split ξ ∈]0,
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Preliminaries
Free Energy
Response Functions
Subleading Terms
Obtain the free energy
Find
F̄ = −ρ̄
3/2
√
ρ̃
Z
0
dξp 4
ξ + (1 − Ψ2 )2
ξ4
!
˛
ξ 2 Ψ02
2 − 3Ψ2 ˛˛
+ O(ρ̃−1/2 )
1+
−
1 − Ψ2
6ξ 3 ˛bdy.
r
√
√
ρ̃] → ξ ∈]0, ∞[ − ξ ∈] ρ̃, ∞[
R∞
√
Integrate ξ ∈] ρ̃, ∞[: √ρ̃ d ξ (ξ −2 + O(ξ −6 ))
Split ξ ∈]0,
√
F̄ = ρ̄3/2 Φ(ρ̄) − T̄ ρ̄ + O(T̄ 4 / ρ̄)
- Φ(ρ̄) :=
R∞
0
dξ
2ξ4
„
q
p
2 ξ 4 + (1 + Ψ2 )2 1 +
MCW
ξ2 Ψ02
1−Ψ2
− 2 + 3Ψ2 − 2ξΨΨ0
«
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Preliminaries
Free Energy
Response Functions
Subleading Terms
Obtain the free energy
Find
F̄ = −ρ̄
3/2
√
ρ̃
Z
0
dξp 4
ξ + (1 − Ψ2 )2
ξ4
!
˛
ξ 2 Ψ02
2 − 3Ψ2 ˛˛
+ O(ρ̃−1/2 )
1+
−
1 − Ψ2
6ξ 3 ˛bdy.
r
√
√
ρ̃] → ξ ∈]0, ∞[ − ξ ∈] ρ̃, ∞[
R∞
√
Integrate ξ ∈] ρ̃, ∞[: √ρ̃ d ξ (ξ −2 + O(ξ −6 ))
Split ξ ∈]0,
√
F̄ = ρ̄3/2 Φ(ρ̄) − T̄ ρ̄ + O(T̄ 4 / ρ̄)
„
«
q
p
2 Ψ02
2
0
2 ξ 4 + (1 + Ψ2 )2 1 + ξ1−Ψ
2 − 2 + 3Ψ − 2ξΨΨ
√
ρ̄ 1: Φ(ρ̄) = 32 K(1/ 2) + 0.2697
+ O(ρ̄−4 )
ρ̄
- Φ(ρ̄) :=
R∞
0
dξ
2ξ4
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Preliminaries
Free Energy
Response Functions
Subleading Terms
Obtain the free energy
Find
F̄ = −ρ̄
3/2
√
ρ̃
Z
0
dξp 4
ξ + (1 − Ψ2 )2
ξ4
!
˛
ξ 2 Ψ02
2 − 3Ψ2 ˛˛
+ O(ρ̃−1/2 )
1+
−
1 − Ψ2
6ξ 3 ˛bdy.
r
√
√
ρ̃] → ξ ∈]0, ∞[ − ξ ∈] ρ̃, ∞[
R∞
√
Integrate ξ ∈] ρ̃, ∞[: √ρ̃ d ξ (ξ −2 + O(ξ −6 ))
Split ξ ∈]0,
√
F̄ = ρ̄3/2 Φ(ρ̄) − T̄ ρ̄ + O(T̄ 4 / ρ̄)
„
«
q
p
2 Ψ02
2
0
2 ξ 4 + (1 + Ψ2 )2 1 + ξ1−Ψ
2 − 2 + 3Ψ − 2ξΨΨ
√
ρ̄ 1: Φ(ρ̄) = 32 K(1/ 2) + 0.2697
+ O(ρ̄−4 )
ρ̄
- Φ(ρ̄) :=
R∞
0
dξ
2ξ4
ρ̄ 1: Φ(ρ̄) =
1
√
ρ
+ O(ρ̄3/2 )
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Preliminaries
Free Energy
Response Functions
Subleading Terms
F
FHΡL
5.
small-Ρ: FHΡL ~ Ρ
2
0.270
KH 1  2 L +
large-Ρ: FHΡL ~
3
Ρ
4.
3.
2.
1.
0.
0.
0.2
0.4
MCW
0.6
0.8
Ρ
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
5
F
4
Preliminaries
Free Energy
Response Functions
Subleading Terms
FHΡL
small-Ρ: FHΡL ~ Ρ
2
KH 1  2 L
large-Ρ: FHΡL ~
3
3
2
1.5
1.0
0.05
0.1
0.2
0.5
1
MCW
2
5
10
20
Ρ50
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Preliminaries
Free Energy
Response Functions
Subleading Terms
Small densities
(Induced length scale)−1
“
√ ρ
λNc Nf
”1/2
MCW
Mq 23/2
√
λ
meson mass
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Preliminaries
Free Energy
Response Functions
Subleading Terms
Small densities
(Induced length scale)−1
“
√ ρ
λNc Nf
”1/2
Mq 23/2
√
λ
meson mass
S = ρ
U = ρ
µ =
Mq 23/2
√
λ
Mq 23/2
√
λ
−T
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Preliminaries
Free Energy
Response Functions
Subleading Terms
Small densities
(Induced length scale)−1
“
√ ρ
λNc Nf
”1/2
Mq 23/2
√
λ
meson mass
S = ρ
U = ρ
µ =
Mq 23/2
√
λ
Mq 23/2
√
λ
−T
⇒ Gas of deeply bound particles with ground state degeneracy ρ
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Preliminaries
Free Energy
Response Functions
Subleading Terms
Small densities
(Induced length scale)−1
“
√ ρ
λNc Nf
”1/2
Mq 23/2
√
λ
meson mass
S = ρ
U = ρ
µ =
Mq 23/2
√
λ
Mq 23/2
√
λ
−T
⇒ Gas of deeply bound particles with ground state degeneracy ρ
P̄ = −F̄ + ρ̄∂ρ̄ F̄
˛
`
´
˛
K̄T = −V ∂∂VP̄ ˛
= ρ̄∂ρ̄ −F̄ + ρ̄∂ρ̄ F̄ = ρ̄2 ∂ρ̄2 F̄ , K̄T = K̄S
T,N
“ ”−1
˛
2
∂P
∂P ˛
vs = ∂U S = ∂U
= ρ∂Kρ U
∂ρ
∂ρ
“
”
√
ρ3
λ
All vanish ∝ O √λN
N 23/2 M
c
q
f
C.f. ideal classical gas P ∝ ρT
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Preliminaries
Free Energy
Response Functions
Subleading Terms
Small densities
(Induced length scale)−1
“
√ ρ
λNc Nf
”1/2
Mq 23/2
√
λ
meson mass
S = ρ
U = ρ
µ =
Mq 23/2
√
λ
Mq 23/2
√
λ
−T
⇒ Gas of deeply bound particles with ground state degeneracy ρ
P̄ = −F̄ + ρ̄∂ρ̄ F̄
˛
`
´
˛
K̄T = −V ∂∂VP̄ ˛
= ρ̄∂ρ̄ −F̄ + ρ̄∂ρ̄ F̄ = ρ̄2 ∂ρ̄2 F̄ , K̄T = K̄S
T,N
“ ”−1
˛
2
∂P
∂P ˛
vs = ∂U S = ∂U
= ρ∂Kρ U
∂ρ
∂ρ
“
”
√
ρ3
λ
All vanish ∝ O √λN
N 23/2 M
c
q
f
C.f. ideal classical gas P ∝ ρT
⇒ Pressureless gas
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Preliminaries
Free Energy
Response Functions
Subleading Terms
Large densities
(Induced length scale)−1
“
√ ρ
λNc Nf
”1/2
MCW
Mq 23/2
√
λ
meson mass
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Preliminaries
Free Energy
Response Functions
Subleading Terms
Large densities
(Induced length scale)−1
“
√ ρ
λNc Nf
”1/2
Mq 23/2
√
λ
meson mass
S = ρ
U =
2
K( √12 ) ρ
3
q
√ ρ
λNc Nf
q
µ = K( √12 ) √λNρ N − T
c f
√ √
ρ λNc Nf
= 2 K( √1 )
2
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Preliminaries
Free Energy
Response Functions
Subleading Terms
Large densities
(Induced length scale)−1
“
√ ρ
λNc Nf
”1/2
Mq 23/2
√
λ
meson mass
S = ρ
U =
2
K( √12 ) ρ
3
q
√ ρ
λNc Nf
q
µ = K( √12 ) √λNρ N − T
c f
√ √
ρ λNc Nf
= 2 K( √1 )
2
2d Fermi liquid: µ ∝
√
ρ but cv =∝ T
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Preliminaries
Free Energy
Response Functions
Subleading Terms
Large densities
(Induced length scale)−1
“
√ ρ
λNc Nf
”1/2
Mq 23/2
√
λ
meson mass
S = ρ
U =
2
K( √12 ) ρ
3
q
√ ρ
λNc Nf
q
µ = K( √12 ) √λNρ N − T
c f
√ √
ρ λNc Nf
= 2 K( √1 )
2
2d Fermi liquid: µ ∝
√
ρ but cv =∝ T
3/2
P =
1
K( √12 )
3
√√ρ
K =
1
K( √12 )
2
√√ρ
vs2 =
1
2
λNc Nf
3/2
λNc Nf
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Preliminaries
Free Energy
Response Functions
Subleading Terms
Large densities
(Induced length scale)−1
“
√ ρ
λNc Nf
”1/2
Mq 23/2
√
λ
meson mass
S = ρ
U =
2
K( √12 ) ρ
3
q
√ ρ
λNc Nf
q
µ = K( √12 ) √λNρ N − T
c f
√ √
ρ λNc Nf
= 2 K( √1 )
2
2d Fermi liquid: µ ∝
√
ρ but cv =∝ T
3/2
P =
1
K( √12 )
3
√√ρ
K =
1
K( √12 )
2
√√ρ
vs2 =
1
2
λNc Nf
3/2
λNc Nf
Consistent with induced length scale l ∼
MCW
“√
λNc Nf
ρ
”1/2
!
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Preliminaries
Free Energy
Response Functions
Subleading Terms
Heat capacity
Question
cv = 0 + ??
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Preliminaries
Free Energy
Response Functions
Subleading Terms
Heat capacity
Question
cv = 0 + ??
Answer
Do precision numerics of the full equations to obtain
δF : F̄ = ρ̄3/2 Φ(ρ̄) − T̄ ρ̄ + δF
cv = T ∂T2 δF
Parametrize δ F̄ = −aT̄ 4 − bT̄ 5 or δ F̄ = −αT̄ β
Not consistent with δ F̄ = e−Eg /T
ρ̄ 1 consistent with Mq = 0 case [Karch, Son, Starinets: ’08]
[MW: ’09]
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Preliminaries
Free Energy
Response Functions
Subleading Terms
Heat capacity
Answer, δ F̄ = −aT̄ 4 − bT̄ 5
0.100
0.050
0.020
0.010
0.005
5
0.002
0.001
T 4 coefficient
T coefficient
1H10 ΡL
0.2 Ρ
0.1
0.5
1
MCW
5
10
100
Ρ
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
Preliminaries
Free Energy
Response Functions
Subleading Terms
Heat capacity
Answer, δ F̄ = −aT̄ 4 − bT̄ 5
Β
0.1
0.1
Α
0.05
ΑT : Α Hlog scale, rightL
Β Hlinear scale, leftL
1H10 ΡL
0.05
5
Β
0.01
0.005
4.5
4
0.001
0.05 0.1
0.5
1
5
MCW
10
50 100
Ρ
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
General Issues
3+1 D3-D7
1+1 D3-D3
Preliminaries
background
probe (1 + 1)
probe (2 + 1)
probe (3 + 1)
:
:
:
:
D3
D3
D5
D7
0
t
×
F
×
F
1
x
×
F
×
F
2
y
×
×
F
MCW
3
z
×
F
4
r
5
6
F
×
F
F
×
F
×
F
7
8
9
θ
or
or
F
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
General Issues
3+1 D3-D7
1+1 D3-D3
Preliminaries
background
probe (1 + 1)
probe (2 + 1)
probe (3 + 1)
:
:
:
:
D3
D3
D5
D7
0
t
×
F
×
F
1
x
×
F
×
F
2
y
×
×
F
3
z
×
F
4
r
5
6
F
×
F
F
×
F
×
F
7
8
9
θ
or
or
F
˜ and (·)
¯
Dimensionless quantities: (·)
d
d
Radial coordinate ξd := u/ρ̃1/d
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
General Issues
3+1 D3-D7
1+1 D3-D3
Preliminaries
background
probe (1 + 1)
probe (2 + 1)
probe (3 + 1)
:
:
:
:
D3
D3
D5
D7
0
t
×
F
×
F
1
x
×
F
×
F
2
y
×
×
F
3
z
×
F
4
r
5
6
F
×
F
F
×
F
×
F
7
8
9
θ
or
or
F
˜ and (·)
¯
Dimensionless quantities: (·)
d
d
Radial coordinate ξd := u/ρ̃1/d
1+1: Ψ ∼ m̃1 u + c̃1 ln u and Ã1 t ∼ µ̃1 − ρ̃1 ln u
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
General Issues
3+1 D3-D7
1+1 D3-D3
Preliminaries
background
probe (1 + 1)
probe (2 + 1)
probe (3 + 1)
:
:
:
:
D3
D3
D5
D7
0
t
×
F
×
F
1
x
×
F
×
F
2
y
×
×
F
3
z
×
F
4
r
5
6
F
×
F
F
×
F
×
F
7
8
9
θ
or
or
F
˜ and (·)
¯
Dimensionless quantities: (·)
d
d
Radial coordinate ξd := u/ρ̃1/d
1+1: Ψ ∼ m̃1 u + c̃1 ln u and Ã1 t ∼ µ̃1 − ρ̃1 ln u
3+1: Ψ ∼ m̃3 u + c̃3 u3 and Ã3 t ∼ µ̃3 − ρ̃3 u2
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
General Issues
3+1 D3-D7
1+1 D3-D3
Preliminaries
background
probe (1 + 1)
probe (2 + 1)
probe (3 + 1)
:
:
:
:
D3
D3
D5
D7
0
t
×
F
×
F
1
x
×
F
×
F
2
y
×
×
F
3
z
×
F
4
r
5
6
F
×
F
F
×
F
×
F
7
8
9
θ
or
or
F
˜ and (·)
¯
Dimensionless quantities: (·)
d
d
Radial coordinate ξd := u/ρ̃1/d
1+1: Ψ ∼ m̃1 u + c̃1 ln u and Ã1 t ∼ µ̃1 − ρ̃1 ln u
3+1: Ψ ∼ m̃3 u + c̃3 u3 and Ã3 t ∼ µ̃3 − ρ̃3 u2
Again: c̄3 = ρ̄3 Ψ20 and c̄1 = ρ̄1 Ψ0
General free energy
(d+1)/d
F̄d = ρ̄d
Φd (ρ̄d ) − ρ̄d T̄ + O(ρ̃(1−d)/d )
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
General Issues
3+1 D3-D7
1+1 D3-D3
Embeddings
Solve for Ψ0
1
1+1 HD3-D3L
2+1 HD3-D5L
3+1 HD3-D7L
µ Ρ1 -1
µ Ρ2 -12
µ Ρ3 -13
Y0
0.5
0.1
0.1
0.5
1
5
MCW
10
50
100
Ρd
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
General Issues
3+1 D3-D7
1+1 D3-D3
Free energy
Integrate for Φd (ρ̄d )
FHΡL
1+1 HD3-D3L
2+1 HD3-D5L
3+1 HD3-D7L
Ρ1 -1
Ρ2 -12
14 Ρ3 -43
14 Ρ3 -43 + Ρ3 -13
10
5
1
0.5
0.05
0.1
0.5
MCW
1
5
10
50 Ρd
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
General Issues
3+1 D3-D7
1+1 D3-D3
3+1 D3-D7
Generic Features
ρ̄3 1: Deeply bound “gas”
1/3
ρ̄3 1: Lengthscale ∝ ρ̄3
ρ̄3 1: c2v =
1
3
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
General Issues
3+1 D3-D7
1+1 D3-D3
3+1 D3-D7
Generic Features
ρ̄3 1: Deeply bound “gas”
1/3
ρ̄3 1: Lengthscale ∝ ρ̄3
ρ̄3 1: c2v =
1
3
Instability at ρ̄3 1
Φ3 ∼
⇒ F̄3 =
1 −4/3
ρ̄
4 3
1
+ ρ̄3
4
−1/3
+ ρ̄3
.
− T + ...
⇒Negative Pressure!
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
General Issues
3+1 D3-D7
1+1 D3-D3
1+1 D3-D3
Renormalization issues
Ψ ∼ m̃1 u + c̃1 ln u and Ã1 t ∼ µ̃1 − ρ̃1 ln u
√
⇒ Boundary term Ibdy. = 12 γΨ()2 (1 + 1/ ln())
[Karch, O’Bannon, Skenderis, Kostas: ’04]
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
General Issues
3+1 D3-D7
1+1 D3-D3
1+1 D3-D3
Renormalization issues
Ψ ∼ m̃1 u + c̃1 ln u and Ã1 t ∼ µ̃1 − ρ̃1 ln u
√
⇒ Boundary term Ibdy. = 12 γΨ()2 (1 + 1/ ln())
[Karch, O’Bannon, Skenderis, Kostas: ’04]
Still divergent ∼
ρ̃2
2
ln → Only covariant term
Aµ Aν γ µν
2 ln √
γ
[Hung, Sinha: ’09]
Evaluates to a Hawking-Ross term
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
General Issues
3+1 D3-D7
1+1 D3-D3
1+1 D3-D3
Renormalization issues
Ψ ∼ m̃1 u + c̃1 ln u and Ã1 t ∼ µ̃1 − ρ̃1 ln u
√
⇒ Boundary term Ibdy. = 12 γΨ()2 (1 + 1/ ln())
[Karch, O’Bannon, Skenderis, Kostas: ’04]
Still divergent ∼
ρ̃2
2
ln → Only covariant term
Aµ Aν γ µν
2 ln √
γ
[Hung, Sinha: ’09]
Evaluates to a Hawking-Ross term
Thermodynamic variables
Ambiguity how to consider δ Ã1 t ∼ δ µ̃ + δ ρ̃ ln u
Turns out that T δIe = µδρ − Mq δC
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
General Issues
3+1 D3-D7
1+1 D3-D3
1+1 D3-D3
Renormalization issues
Ψ ∼ m̃1 u + c̃1 ln u and Ã1 t ∼ µ̃1 − ρ̃1 ln u
√
⇒ Boundary term Ibdy. = 12 γΨ()2 (1 + 1/ ln())
[Karch, O’Bannon, Skenderis, Kostas: ’04]
Still divergent ∼
ρ̃2
2
ln → Only covariant term
Aµ Aν γ µν
2 ln √
γ
[Hung, Sinha: ’09]
Evaluates to a Hawking-Ross term
Thermodynamic variables
Ambiguity how to consider δ Ã1 t ∼ δ µ̃ + δ ρ̃ ln u
Turns out that T δIe = µδρ − Mq δC
⇒ Need to do Legendre transformation in C Mq
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
General Issues
3+1 D3-D7
1+1 D3-D3
Conclusions
Studied ρ T 2 at Mq 6= 0 for fundamental matter
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
General Issues
3+1 D3-D7
1+1 D3-D3
Conclusions
Studied ρ T 2 at Mq 6= 0 for fundamental matter
→ Temperature-independent scaling solution for probe brane embeddings
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
General Issues
3+1 D3-D7
1+1 D3-D3
Conclusions
Studied ρ T 2 at Mq 6= 0 for fundamental matter
→ Temperature-independent scaling solution for probe brane embeddings
Aside: Brane tension matches string tension
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
General Issues
3+1 D3-D7
1+1 D3-D3
Conclusions
Studied ρ T 2 at Mq 6= 0 for fundamental matter
→ Temperature-independent scaling solution for probe brane embeddings
Aside: Brane tension matches string tension
“
”1/2
M 23/2
Properties controlled by Mρ2 : √λNρ N
Q q√λ
q
MCW
c
f
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
General Issues
3+1 D3-D7
1+1 D3-D3
Conclusions
Studied ρ T 2 at Mq 6= 0 for fundamental matter
→ Temperature-independent scaling solution for probe brane embeddings
Aside: Brane tension matches string tension
“
”1/2
M 23/2
Properties controlled by Mρ2 : √λNρ N
Q q√λ
q
c
f
Suggest ∃ quantum liquid
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
General Issues
3+1 D3-D7
1+1 D3-D3
Conclusions
Studied ρ T 2 at Mq 6= 0 for fundamental matter
→ Temperature-independent scaling solution for probe brane embeddings
Aside: Brane tension matches string tension
“
”1/2
M 23/2
Properties controlled by Mρ2 : √λNρ N
Q q√λ
q
c
f
Suggest ∃ quantum liquid
S = Nbrayon ⇒ large ground state degeneracy;
chemical potential has a term −T , consistent with Bose-Einstein
distribution of degeneracy given by the baryon number.
cv = 0 + O(T 3 . . . T 4 ) – higher order than a classical Fermi or Bose gas –
but no energy gap
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
General Issues
3+1 D3-D7
1+1 D3-D3
Conclusions
Studied ρ T 2 at Mq 6= 0 for fundamental matter
→ Temperature-independent scaling solution for probe brane embeddings
Aside: Brane tension matches string tension
“
”1/2
M 23/2
Properties controlled by Mρ2 : √λNρ N
Q q√λ
q
c
f
Suggest ∃ quantum liquid
S = Nbrayon ⇒ large ground state degeneracy;
chemical potential has a term −T , consistent with Bose-Einstein
distribution of degeneracy given by the baryon number.
cv = 0 + O(T 3 . . . T 4 ) – higher order than a classical Fermi or Bose gas –
but no energy gap
ρ̄ 1: U ∼ Nbaryon × Mmeson ; P, K, cv = 0 ⇒ interacting gas of deeply
bound quarks.
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
General Issues
3+1 D3-D7
1+1 D3-D3
Conclusions
Studied ρ T 2 at Mq 6= 0 for fundamental matter
→ Temperature-independent scaling solution for probe brane embeddings
Aside: Brane tension matches string tension
“
”1/2
M 23/2
Properties controlled by Mρ2 : √λNρ N
Q q√λ
q
c
f
Suggest ∃ quantum liquid
S = Nbrayon ⇒ large ground state degeneracy;
chemical potential has a term −T , consistent with Bose-Einstein
distribution of degeneracy given by the baryon number.
cv = 0 + O(T 3 . . . T 4 ) – higher order than a classical Fermi or Bose gas –
but no energy gap
ρ̄ 1: U ∼ Nbaryon × Mmeson ; P, K, cv = 0 ⇒ interacting gas of deeply
bound quarks.
„√
«1/2
λNc Nf
−1
−1
ρ̄ 1: U ∼ Nbaryon × lind
(ρ); µ ∼ lind
(ρ) — lind (ρ) =
ρ
- large P, K; vs →
1
√
.
2
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
General Issues
3+1 D3-D7
1+1 D3-D3
Conclusions
Studied ρ T 2 at Mq 6= 0 for fundamental matter
→ Temperature-independent scaling solution for probe brane embeddings
Aside: Brane tension matches string tension
“
”1/2
M 23/2
Properties controlled by Mρ2 : √λNρ N
Q q√λ
q
c
f
Suggest ∃ quantum liquid
Also looked at 3+1 (D3-D7) and 1+1 (D3-D3) dimensions
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
General Issues
3+1 D3-D7
1+1 D3-D3
Conclusions
Studied ρ T 2 at Mq 6= 0 for fundamental matter
→ Temperature-independent scaling solution for probe brane embeddings
Aside: Brane tension matches string tension
“
”1/2
M 23/2
Properties controlled by Mρ2 : √λNρ N
Q q√λ
q
c
f
Suggest ∃ quantum liquid
Also looked at 3+1 (D3-D7) and 1+1 (D3-D3) dimensions
Similar, but:
Thermodynamic instability P < 0 in 3+1
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
General Issues
3+1 D3-D7
1+1 D3-D3
Conclusions
Studied ρ T 2 at Mq 6= 0 for fundamental matter
→ Temperature-independent scaling solution for probe brane embeddings
Aside: Brane tension matches string tension
“
”1/2
M 23/2
Properties controlled by Mρ2 : √λNρ N
Q q√λ
q
c
f
Suggest ∃ quantum liquid
Also looked at 3+1 (D3-D7) and 1+1 (D3-D3) dimensions
Similar, but:
Thermodynamic instability P < 0 in 3+1
Issues because of divergences in 1+1
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
General Issues
3+1 D3-D7
1+1 D3-D3
Conclusions
Studied ρ T 2 at Mq 6= 0 for fundamental matter
→ Temperature-independent scaling solution for probe brane embeddings
Aside: Brane tension matches string tension
“
”1/2
M 23/2
Properties controlled by Mρ2 : √λNρ N
Q q√λ
q
c
f
Suggest ∃ quantum liquid
Also looked at 3+1 (D3-D7) and 1+1 (D3-D3) dimensions
Look at correlators
Transport properties, quasiparticle spectrum
Issues with operator mixing
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
General Issues
3+1 D3-D7
1+1 D3-D3
Y. Kitazawa, “Effective lagrangian for open superstring from five point
function,” Nucl. Phys. B 289, 599 (1987).
C. P. Bachas, P. Bain and M. B. Green, “Curvature terms in D-brane
actions and their M-theory origin,” JHEP 9905, 011 (1999)
[arXiv:hep-th/9903210].
N. R. Constable, R. C. Myers and O. Tafjord, “Non-Abelian brane
intersections,” JHEP 0106, 023 (2001) [arXiv:hep-th/0102080].
P. Kovtun, D.T. Son and A.O. Starinets, “Holography and
hydrodynamics: Diffusion on stretched horizons,” JHEP 0310, 064
(2003) [arXiv:hep-th/0309213].
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
General Issues
3+1 D3-D7
1+1 D3-D3
lisa A. Karch and L. Randall, “Open and closed string interpretation
of SUSY CFT’s on branes with boundaries,” JHEP 0106 (2001) 063
[arXiv:hep-th/0105132]
hirosi O. DeWolfe, D.Z. Freedman and H. Ooguri, “Holography and
defect conformal field theories,” Phys. Rev. D 66 (2002) 025009
[arXiv:hep-th/0111135]
D. Mateos, R.C. Myers and R.M. Thomson, “Thermodynamics of the
brane,” arXiv:hep-th/0701132.
R. C. Myers, A. O. Starinets and R. M. Thomson, “Holographic
spectral functions and diffusion constants for fundamental matter,”
JHEP 0711, 091 (2007) [arXiv:0706.0162 [hep-th]].
J. Erdmenger, Z. Guralnik and I. Kirsch, “Four-dimensional
superconformal theories with interacting boundaries or Phys. Rev. D
66, 025020 (2002) [arXiv:hep-th/0203020].
D. Mateos, R. C. Myers and R. M. Thomson, “Holographic phase
transitions with fundamental matter,” Phys. Rev. Lett. 97 (2006)
091601 [arXiv:hep-th/0605046].
MCW
Massive Quantum Liquids from holographic Angel’s
Massive Probe Branes
Finding the Scaling Solution
Thermodynamics
Generalization
General Issues
3+1 D3-D7
1+1 D3-D3
sl2z E. Witten, “SL(2,Z) action on three-dimensional conformal field
theories with Abelian symmetry,” arXiv:hep-th/0307041.
C.P. Herzog, P. Kovtun, S. Sachdev and D.T. Son, “Quantum critical
transport, duality, and M-theory,” arXiv:hep-th/0701036.
S.A. Hartnoll and P. Kovtun, “Hall conductivity from dyonic black
holes,” arXiv:0704.1160 [hep-th].
MCW
Massive Quantum Liquids from holographic Angel’s

Similar documents

Icosahedron and phi

Icosahedron and phi For example, let’s take the golden rectangle whose shortest side is AB in the pentagonal pyramid ABCDEF. In this pyramid, the perpendicular rectangle to that one is the rectangle whose shortest si...

More information