Resonance Chiral Theory towards a "Swiss knife" for low
Transcription
Resonance Chiral Theory towards a "Swiss knife" for low
Resonance Chiral Theory towards a "Swiss knife" for low-energy particle interactions Sergiy IVASHYN [email protected] Instytut Fizyki, Uniwersytet Śla̧ski, Katowice and A.I. Akhiezer Inst. for Theoretical Physics NSC KIPT, Kharkov, Ukraine 12 May 2009 @ IF US 1 2 3 4 Introduction Sample problems ρ → e+ e− ρ → π+π− Pion and kaon form factors Building the framework Power counting Symmetries and external fields Conclusions 2 / 45 Universal tool for low-energy particle phenomenology Lagrangian-based framework light pseudoscalar mesons (π, K , η) vector resonances (ρ, ω, φ, . . . ) axial-vector resonances (a1 , . . . ) scalar resonances (a0 , f0 , . . . ) strong interactions electromagnetic interactions weak interactions Preliminaries 3 / 45 Strong interactions in effective theories Hadrons at low (and intermediate) energies use known symmetries work in terms of hadronic fields respect the phenomenology Introduction 4 / 45 Strong interactions in effective theories Hadrons at low (and intermediate) energies use known symmetries work in terms of hadronic fields respect the phenomenology VMD, vector meson dominance sigma-models (LσM [ Schwinger 1957; Gell-Mann, Lévy 1960 ], NLσM) unitarized chiral theory UχPT [ Oset; Oller nucl-th/0207086; Oller, Meissner (2000), (2001) ] IAM, inverse amplitude method [ Dobado, Pelaez Phys. Rev. D 56 (1997) ] PKU dispersive representation [ H.Q. Zheng, Z.Y. Zhou; see refs. in arXiv:0905.0528 ] HMET [ Jenkins, Manohar, Wise Phys. Rev. Lett. 75 (1995) ] Heavy baryon χPT [ Jenkins, Manohar Phys. Lett. B 255 (1991) ] Resonance chiral theory RχT Introduction [ Ecker et al. Nucl. Phys. B 321 (1989); Phys. Lett. B 223 (1989) ] 4 / 45 What people do with RχT direct application for given decays Introduction 5 / 45 What people do with RχT direct application for given decays Beyond the scope of the seminar: consistent SU(3) flavour breaking renormalizable sectors [ Cirigliano et al. JHEP 0306 (2003) ] [ Rosell et al. JHEP 0512 (2005); Sanz Cillero ] short-distance constraints [ Jamin et al. Nucl. Phys. B 622 (2002) ] resonance “saturation” of ChPT LEC’s [ Ecker et al. Nucl. Phys. B 321 (1989); Phys. Lett. B 223 (1989) ] resonance “saturation” up to O(p6 ) [ Cirigliano et al. Nucl. Phys. B753 (2006) ] SU(3) flavour symmetric case resonance “saturation” at NLO in 1/N − c [ Knecht, Nyffeler EPJ C 21 (2001) ] [ Rosell et al. arXiv:0903.2440 ] Tensor field vs. vector field for vector mesons Introduction 5 / 45 To whom may it concern? Agreed to apply RχT soon for given problem How to start? What exactly is needed? Helpful tricks? Not going to use RχT , but.. Use of the basic ideas? General model-building? What’s up? (“Swiss knife”, heh?) Introduction Outline of seminar 6 / 45 Target consumers of seminar Common: had not worked out the model yet Before starting, estimate how long it’s going to take Expected achievements? What is possible to do with this tool? Introduction Outline of seminar 7 / 45 Quick start guide 1 “Read in manual” what to take and what to do Lagrangian terms Introduction Outline of seminar 8 / 45 Quick start guide 1 “Read in manual” what to take and what to do Lagrangian terms 2 Work out ( and compare with data, . . . ) Couplings? Widths, form factors Introduction Outline of seminar 8 / 45 Quick start guide 1 “Read in manual” what to take and what to do Lagrangian terms 2 Work out ( and compare with data, . . . ) Couplings? Widths, form factors 3 Understand why to take/do this-or-that (Theoretical grounds of model building) Introduction Outline of seminar 8 / 45 Quick start guide 1 “Read in manual” what to take and what to do Lagrangian terms 2 Work out ( and compare with data, . . . ) Couplings? Widths, form factors 3 Understand why to take/do this-or-that (Theoretical grounds of model building) 4 Limits of applicability 5 Troubleshooting In a “review" some steps would be hidden, and the order would differ Introduction Outline of seminar 8 / 45 Contents 1 2 3 4 Sample problems Introduction Sample problems ρ → e+ e− ρ → π+π− Pion and kaon form factors Building the framework Power counting Symmetries and external fields Conclusions ρ → e+ e− 9 / 45 Leptonic electromagnetic decays of vector mesons FV L = √ Vµν f+µν 2 2 [ Lagrangian — Ecker et al. Phys. Lett. B 223 (1989) ] Sample problems ρ → e+ e− 10 / 45 Leptonic electromagnetic decays of vector mesons FV L = √ Vµν f+µν 2 2 [ Lagrangian — Ecker et al. Phys. Lett. B 223 (1989) ] Vµν — tensor field for vector meson: √ 0 √ + ∗+ ρ K ρ / 2 + ω/ 2 √ √ Vµν = ρ− −ρ0 / 2 + ω/ 2 K ∗0 K ∗− K̄ ∗0 φ µν Sample problems ρ → e+ e− 10 / 45 Leptonic electromagnetic decays of vector mesons FV L = √ Vµν f+µν 2 2 [ Lagrangian — Ecker et al. Phys. Lett. B 223 (1989) ] Vµν — tensor field for vector meson: √ 0 √ + ∗+ ρ K ρ / 2 + ω/ 2 √ √ Vµν = ρ− −ρ0 / 2 + ω/ 2 K ∗0 K ∗− K̄ ∗0 φ µν f+µν ⇒ eF µν (uQu † + u † Qu) F µν — e.m. field strength tensor Q = diag( 23 , − 13 , − 13 ) — quark charge matrix √ Φ2 u = exp(iΦ/ 2F ) = 1 + i √Φ − 4F 2 + ··· 2F thus f+µν ⇒ 2QeF µν + O(Φ2 ) Sample problems ρ → e+ e− 10 / 45 Leptonic electromagnetic decays of vector mesons FV L = √ Vµν f+µν 2 2 [ Lagrangian — Ecker et al. Phys. Lett. B 223 (1989) ] Vµν — tensor field for vector meson: √ 0 √ + ∗+ ρ K ρ / 2 + ω/ 2 √ √ Vµν = ρ− −ρ0 / 2 + ω/ 2 K ∗0 K ∗− K̄ ∗0 φ µν f+µν ⇒ eF µν (uQu † + u † Qu) F µν — e.m. field strength tensor Q = diag( 23 , − 13 , − 13 ) — quark charge matrix √ Φ2 u = exp(iΦ/ 2F ) = 1 + i √Φ − 4F 2 + ··· 2F thus f+µν ⇒ 2QeF µν + O(Φ2 ) LγV Sample problems = eFV F µν 1 0 1 1 ρµν + ωµν − √ φµν 2 6 3 2 ρ → e+ e− 10 / 45 Leptonic electromagnetic decays of vector mesons Vertex function: eFV [gνλ qµ − gνµ qλ ] × coeff coeff ρ ω φ 1 2 1 6 −1 √ 3 2 normalization for tensor field: h0|vµν (0)|v , Qi = i [Qµ Eν −Qν Eµ ] MV−1 [ Ecker et al. Nucl. Phys. B 321 (1989) ] Eµ — vector meson polarization vector; Eµ Q µ = 0 Γρ→e+ e− = Sample problems e4 FV2 12πMρ ρ → e+ e− 11 / 45 Contents 1 2 3 4 Sample problems Introduction Sample problems ρ → e+ e− ρ → π+π− Pion and kaon form factors Building the framework Power counting Symmetries and external fields Conclusions ρ → π+ π− 12 / 45 ρ → π+π− iGV L = √ hVµν u µ u ν i 2 [ Lagrangian — Ecker et al. Phys. Lett. B 223 (1989) ] Sample problems ρ → π+ π− 13 / 45 ρ → π+π− iGV L = √ hVµν u µ u ν i 2 [ Lagrangian — Ecker et al. Phys. Lett. B 223 (1989) ] uµ i[u † (∂µ − irµ )u − u(∂µ − ilµ )u † ] √ √ 2 2 ∂µ Φ − ieBµ [Φ, Q] + O(Φ3 ) ⇒ − F F (lµ , rµ ⇒ −eQBµ ) = √ √ π 0 / 2 + η8 / 6 π+ K+ √ √ Φ = π− −π 0 / 2 + η8 / 6 K0 √ − 0 K K̄ −2η8 / 6 Sample problems ρ → π+ π− 13 / 45 ρ → π+π− iGV L = √ hVµν u µ u ν i 2 [ Lagrangian — Ecker et al. Phys. Lett. B 223 (1989) ] keeping only O(Φ2 ) terms and dropping the terms with photon field Bµ , LVPP = iGV 1 fπ2 (2 ρ0µν ∂ µ π + ∂ ν π − ) √ 1 0 (ρµν + ωµν − 2φµν )(∂ µ K + ∂ ν K − ) 2 fK √ 1 + 2 (−ρ0µν + ωµν − 2φµν )(∂ µ K 0 ∂ ν K̄ 0 ) . fK + Sample problems ρ → π+ π− 13 / 45 ρ → π+π− Vertex function: π ± (fP = fπ ) K ± (fP = fK ) K 0 (fP = fK ) GV 2fP2 ρ 2 1 −1 −+ lµ lλ − lµ+ lλ− × coeff ω 0 1 1 Γtot,ρ (Q 2 ) = Sample problems φ 0 √ −√2 − 2 3/2 GV2 Mρ2 Q 2 − 4mπ2 4 2 48πfπ Q ρ → π+ π− 14 / 45 Contents 1 2 3 4 Sample problems Introduction Sample problems ρ → e+ e− ρ → π+π− Pion and kaon form factors Building the framework Power counting Symmetries and external fields Conclusions Pion and kaon form factors 15 / 45 γ → π+π− L= F2 huµ u µ i 4 [ Lagrangian — Ecker et al. Phys. Lett. B 223 (1989) ] recall uµ Sample problems i[u † (∂µ − irµ )u − u(∂µ − ilµ )u † ] √ √ 2 2 ⇒ − ∂µ Φ − ieBµ [Φ, Q] + O(Φ3 ) F F (lµ , rµ ⇒ −eQBµ ) = Pion and kaon form factors 16 / 45 γ → π+π− L= F2 huµ u µ i 4 [ Lagrangian — Ecker et al. Phys. Lett. B 223 (1989) ] √ uµ √ 2 2 = − ∂µ Φ − ieBµ [Φ, Q] + O(Φ3 ) F F ↔ LγPP ↔ = −ieBµ (π + ∂µ π − + K + ∂µ K − ), ↔ a ∂µ b ≡ a ∂µ b − b ∂µ a Sample problems Pion and kaon form factors 16 / 45 γ → π+π− Vertex function: i e (q + − q − )ν coincides with the scalar QED result Sample problems Pion and kaon form factors 17 / 45 Electromagnetic form factor µ hP1 (q1 )P2 (q2 )|Jem (0)|0i ≡ (q1 − q2 )µ FP (Q 2 ) All possible intermediate vector resonances V = ρ0 , ω, φ, ... in general contribute. For real photons only the first term on the r.h.s. is non-zero. Sample problems Pion and kaon form factors 18 / 45 Electromagnetic form factor µ hP1 (q1 )P2 (q2 )|Jem (0)|0i ≡ (q1 − q2 )µ FP (Q 2 ) π (Q 2 ) = 1 − Fem FV GV 2 Q Dρ (Q 2 ), fπ2 p DV (Q 2 ) = [Q 2 − MV2 + ı Q 2 Γtot,V (Q 2 )]−1 . Γtot,ρ (Q 2 ) = Sample problems GV2 Mρ2 2 2 3/2 Q − 4m π 48πfπ4 Q 2 Pion and kaon form factors 18 / 45 Electromagnetic form factor µ hP1 (q1 )P2 (q2 )|Jem (0)|0i ≡ (q1 − q2 )µ FP (Q 2 ) In SU(3) symmetry limit; charged kaon K+ Fem (Q 2 ) FV GV 2 = 1− Q fK2 1 1 1 2 2 2 Dρ (Q ) + Dω (Q ) + Dφ (Q ) , 2 6 3 For advanced approach see [Ivashyn, Korchin EPJ C 49 (2007)] p DV (Q 2 ) = [Q 2 − MV2 + ı Q 2 Γtot,V (Q 2 )]−1 . Γtot,ρ (Q 2 ) = Sample problems GV2 Mρ2 2 2 3/2 Q − 4m π 48πfπ4 Q 2 Pion and kaon form factors 18 / 45 Electromagnetic form factor µ hK 0 (q1 )K̄ 0 (q2 )|Jem (0)|0i ≡ (q1 − q2 )µ FP (Q 2 ) In SU(3) symmetry limit; neutral kaon K0 Fem (Q 2 ) = FV GV 2 Q fK2 1 1 1 2 2 2 Dρ (Q ) − Dω (Q ) − Dφ (Q ) , 2 6 3 For advanced approach see [Ivashyn, Korchin EPJ C 49 (2007)] p DV (Q 2 ) = [Q 2 − MV2 + ı Q 2 Γtot,V (Q 2 )]−1 . Γtot,ρ (Q 2 ) = Sample problems GV2 Mρ2 2 2 3/2 Q − 4m π 48πfπ4 Q 2 Pion and kaon form factors 18 / 45 Constraints on the form factor behavior Pion form factor: π Fem (Q 2 ) = 1 − FV GV Q2 fπ2 Q 2 − Mρ2 1 (Q 2 → 0) π (Q 2 ) = 1 limQ 2 →0 Fem 2 (Q 2 → ∞) π (Q 2 ) = 0 limQ 2 →∞ Fem π Fem (Q 2 ) ≈ Mρ2 FV GV 1− − + ··· fπ2 Q2 Thus one gets a short-distance constraint for effective couplings: FV GV = fπ2 Sample problems Pion and kaon form factors 19 / 45 Electromagnetic vertex for the off-shell pseudoscalar Γµ (q + , q − ) = −ie(q + − q − )µ Fem (Q 2 ) Q = q+ + q− Sample problems Pion and kaon form factors 20 / 45 Contents 1 2 3 4 Building the framework Introduction Sample problems ρ → e+ e− ρ → π+π− Pion and kaon form factors Building the framework Power counting Symmetries and external fields Conclusions Power counting 21 / 45 Chiral perturbative expansion Lagrangian is organized as series in the masses of light quarks mq and derivatives ∂µ acting on the pseudoscalar NGB fields Leff = L2 + L4 + L6 + ..., where L2n ∼ O(p2n ). Expansion coefficients are called low energy constants Building the framework Power counting 22 / 45 Chiral perturbative expansion Lagrangian is organized as series in the masses of light quarks mq and derivatives ∂µ acting on the pseudoscalar NGB fields Leff = L2 + L4 + L6 + ..., where L2n ∼ O(p2n ). Expansion coefficients are called low energy constants Generic RχT Lagrangian at O(p6 ): 0 0 R RR R + LRR LRχT = LNGB + LNGB + LNGB + LR 0 2 + L4 + L2 2 4 6 6 00 RχT Lagrangian at O(p4 ) of [ Ecker et al. Nucl. Phys. B 321 (1989); Phys. Lett. B 223 (1989) ] LRχT = LNGB + LR 2 2 4 Building the framework Power counting 22 / 45 Power counting [ Weinberg Physica 96 A (1979) ] Chiral power counting scheme LEC’s ∼ R ∼ O(1) u ∼ R ∼ O(1) ∂µ ∼ lµ ∼ rµ ∼ uµ ∼ O(p) mq ∼ O(p2 ) (because mq ∝ M 2 , where M is the NGB mass) s, p ∼ O(p2 ) χ ∼ χ± ∼ O(p2 ) Building the framework Power counting 23 / 45 Power counting [ Weinberg Physica 96 A (1979) ] Chiral power counting scheme LEC’s ∼ R ∼ O(1) u ∼ R ∼ O(1) ∂µ ∼ lµ ∼ rµ ∼ uµ ∼ O(p) mq ∼ O(p2 ) (because mq ∝ M 2 , where M is the NGB mass) s, p ∼ O(p2 ) χ ∼ χ± ∼ O(p2 ) (Exercise 1) LNGB = 2 χ+ = u † χu † + uχu, Building the framework F2 µ hu uµ + χ+ i 4 χ ≡ 2B0 (s + i p) ≈ 2B0 diag(mu , md , ms ) Power counting 23 / 45 Power counting [ Weinberg Physica 96 A (1979) ] Chiral power counting scheme LEC’s ∼ R ∼ O(1) u ∼ R ∼ O(1) ∂µ ∼ lµ ∼ rµ ∼ uµ ∼ O(p) mq ∼ O(p2 ) (because mq ∝ M 2 , where M is the NGB mass) s, p ∼ O(p2 ) χ ∼ χ± ∼ O(p2 ) (Exercise 2) FV L = √ Vµν f+µν 2 2 f±µν = uFLµν u † ± u † FRµν u, FRµν = ∂ µ r ν − ∂ ν r µ − i[r µ , r ν ], FLµν = ∂ µ l ν − ∂ ν l µ − i[l µ , l ν ] Building the framework Power counting 23 / 45 Main RχT Lagrangian The lowest-order resonance piece [ Ecker et al. Nucl. Phys. B 321 (1989); Phys. Lett. B 223 (1989) ] R LR = LR 2 kin + Lint LR kin * M2 ∇ Rλµ ∇ν R − R Rνµ R νµ 2 R=V ,A E 1 X D ν ∇ R ∇ν R − MR2 R 2 , + 2 1 X = − 2 λ + νµ R=S,P ∇µ X = ∂µ X + [Γµ , X ], Γµ = 1 † {u (∂µ − irµ )u + u(∂µ − ilµ )u † } 2 (with antisymmetric tensor representation for spin-1 fields Vµν , Aµν ) Building the framework Power counting 24 / 45 Main RχT Lagrangian The lowest-order resonance piece [ Ecker et al. Nucl. Phys. B 321 (1989); Phys. Lett. B 223 (1989) ] R LR = LR 2 kin + Lint LR int = iG iF FV √ Vµν f+µν + √ V hVµν u µ u ν i + √A Aµν f−µν 2 2 2 2 2 µ +cd hSuµ u i + cm hSχ+ i + idm hPχ− i , f±µν = uFLµν u † ± u † FRµν u, FRµν = ∂ µ r ν − ∂ ν r µ − i[r µ , r ν ], FLµν = ∂ µ l ν − ∂ ν l µ − i[l µ , l ν ] (with antisymmetric tensor representation for spin-1 fields Vµν , Aµν ) Building the framework Power counting 24 / 45 Large-Nc [ t’ Hooft Nucl. Phys. B 772 (1974) ] Single flavour trace terms dominate. Each additional flavour trace brings a suppression of order 1/Nc Meson resonances, are the narrow states with equal masses within the multiplet in large-Nc limit Building the framework Power counting 25 / 45 Contents 1 2 3 4 Building the framework Introduction Sample problems ρ → e+ e− ρ → π+π− Pion and kaon form factors Building the framework Power counting Symmetries and external fields Conclusions Symmetries and external fields 26 / 45 Symmetries of Lagrangian Fundamental theory: massless QCD 1 a µν a L0QCD = − Gµν G + i q̄L γ µ Dµ qL + i q̄R γ µ Dµ qR 4 Color structure local color SU(3)c a — gluon field Ga strength tensor Gµν µ a Dµ = ∂µ − igs λ2 Gµa — covariant derivative Gell-Mann matrices λa (a = 1, ..., 8) in the color space gs is the strong interaction constant. Building the framework Symmetries and external fields 27 / 45 Symmetries of Lagrangian Fundamental theory: massless QCD 1 a µν a L0QCD = − Gµν G + i q̄L γ µ Dµ qL + i q̄R γ µ Dµ qR 4 Chiral structure The “right” and “left” quark spinor fields (chiral basis) ⇔ Dirac spinor q 1 1 (1 + γ5 )q + (1 − γ5 )q ≡ qR + qL 2 2 Left and right massless fermions do not communicate with each other q= Building the framework Symmetries and external fields 27 / 45 Symmetries of Lagrangian Fundamental theory: massless QCD 1 a µν a L0QCD = − Gµν G + i q̄L γ µ Dµ qL + i q̄R γ µ Dµ qR 4 Flavour structure quark fields q have got flavour indices: q = (u, d, s)T ⇔ q b Lagrangian L0QCD has global SU(3)L × SU(3)R flavour symmetry qL → UL qL , qR → UR qR , b UR/L = exp(iλb θR/L /2) (in addition to global U(1)V ) The axial global U(1)A symmetry is broken on the quantum level Building the framework Symmetries and external fields 27 / 45 Symmetries of Lagrangian Fundamental theory: massless QCD 1 a µν a L0QCD = − Gµν G + i q̄L γ µ Dµ qL + i q̄R γ µ Dµ qR 4 Flavour structure Important in building the effective theory There is a flavour manifestation in QCD spectrum. Meson, baryon fields can not be only flavour singlets; they may carry flavour indices as well. Building the framework Symmetries and external fields 27 / 45 What’s “wrong” at this point? We are about to have an effective theory at ≈ 1 GeV. Mass pattern for the light quarks Can not neglect it! Masses are due to interaction with the scalar field (Higgs mechanism) s = diag(mu , md , ms )(1 + H/v ) = diag(mu , md , ms ) + . . . ( VEV of the scalar field v ≈ 246 GeV ) But... how to handle the chiral symmetry? Building the framework Symmetries and external fields 28 / 45 What’s “wrong” at this point? We are about to have an effective theory at ≈ 1 GeV. Important in building the effective theory Quark masses can be related to the light pseudoscalar masses via the quark condensate hq̄qi [ GOR Phys. Rev. 175 (1968) ] − 3Mη28 Mπ20,± MK2 0 MK2 ± hq̄qi = = = = mu + md md + ms mu + ms mu + md + 4ms F2 hq̄qi ≈ (−240 ± 10 MeV)3 (at scale µ = 1 GeV) But... how to handle the chiral symmetry? Building the framework Symmetries and external fields 28 / 45 External sources Generic external vector, axial-vector, scalar and pseudoscalar fields: vµ = vµb λb /2, aµ = aµb λb /2, s = sb λb , p = p b λb b = 0, 1, . . . , 8 λb — Gell-Mann matrices in the flavour space of the light quarks Properties of the external sources hermitean: vµ† = vµ , aµ† = aµ , s† = s, p† = p 3 × 3 matrices in flavour space (mind λb ) vector and axial sources are traceless: hvµ i = haµ i = 0 scalar source s contains the quark mass matrix Building the framework Symmetries and external fields 29 / 45 QCD interaction with external fields [ Gasser, Leutwyler Ann. Phys. 158 (1984); Nucl. Phys. B 250 (1985) ] Lext. fields = q̄[γ µ (vµ + γ5 aµ ) − (s − ipγ5 )]q = q̄L γ µ lµ qL + q̄R γ µ rµ qR − q̄R (s + ip)qL − q̄L (s − ip)qR rµ = vµ + aµ , q = (u, d, s)T lµ = vµ − aµ — right and left vector fields — quark fields In general, the source term of QCD Lagrangian is not invariant under chiral transformations! Building the framework Symmetries and external fields 30 / 45 QCD interaction with external fields [ Gasser, Leutwyler Ann. Phys. 158 (1984); Nucl. Phys. B 250 (1985) ] Lext. fields = q̄[γ µ (vµ + γ5 aµ ) − (s − ipγ5 )]q = q̄L γ µ lµ qL + q̄R γ µ rµ qR − q̄R (s + ip)qL − q̄L (s − ip)qR External sources w.r.t. global chiral transformations Let us require (see spurion method) rµ → UR rµ UR† , lµ → UL lµ UL† , s + ip → UR (s + ip) UL† , s − ip → UL (s − ip) UR† . then, the Lagrangian is invariant! Building the framework Symmetries and external fields 30 / 45 QCD interaction with external fields [ Gasser, Leutwyler Ann. Phys. 158 (1984); Nucl. Phys. B 250 (1985) ] Lext. fields = q̄[γ µ (vµ + γ5 aµ ) − (s − ipγ5 )]q = q̄L γ µ lµ qL + q̄R γ µ rµ qR − q̄R (s + ip)qL − q̄L (s − ip)qR External sources w.r.t. global local chiral transformations One can require even more: rµ → UR (x) rµ UR (x)† + iUR (x) ∂µ UR (x)† , lµ → UL (x) lµ UL (x)† + iUL (x) ∂µ UL (x)† , s + ip → UR (x) (s + ip) UL (x)† , s − ip → UL (x) (s − ip) UR (x)† . which, also leave Lagrangian invariant! Building the framework (Exercise) Symmetries and external fields 30 / 45 SU(3)L × SU(3)R ⇒ SU(3)L+R=V Chiral symmetry SU(3)L × SU(3)R of Lagrangian is hidden (spontaneously broken). [ Nambu, Goldstone ] G = SU(3)L × SU(3)R = SU(3)R−L × H H = SU(3)L+R=V The mesonic degrees of freedom transform under G in a complicated way. We’ve just introduced local chiral symmetry ⇒ non-trivial geometry on G/H, chiral covariant derivative, etc. Building the framework Symmetries and external fields 31 / 45 External sources in the RχT Lagrangian: resonance part [ Ecker et al. Nucl. Phys. B 321 (1989); Phys. Lett. B 223 (1989) ] R LR = LR 2 kin + Lint LR kin * M2 ∇λ Rλµ ∇ν R νµ − R Rνµ R νµ 2 R=V ,A E 1 X D ν ∇ R ∇ν R − MR2 R 2 , + 2 1 X = − 2 + R=S,P ∇µ X = ∂µ X + [Γµ , X ], Γµ = 1 † {u (∂µ − irµ )u + u(∂µ − ilµ )u † } 2 (with antisymmetric tensor representation for spin-1 fields Vµν , Aµν ) Building the framework Symmetries and external fields 32 / 45 External sources in the RχT Lagrangian: resonance part [ Ecker et al. Nucl. Phys. B 321 (1989); Phys. Lett. B 223 (1989) ] R LR = LR 2 kin + Lint LR int = iG iF FV √ Vµν f+µν + √ V hVµν u µ u ν i + √A Aµν f−µν 2 2 2 2 2 +cd hSuµ u µ i + cm hSχ+ i + idm hPχ− i , f±µν = uFLµν u † ± u † FRµν u, FRµν = ∂ µ r ν − ∂ ν r µ − i[r µ , r ν ], FLµν = ∂ µ l ν − ∂ ν l µ − i[l µ , l ν ] (with antisymmetric tensor representation for spin-1 fields Vµν , Aµν ) Building the framework Symmetries and external fields 32 / 45 External sources in the RχT Lagrangian: NGB part LNGB = 2 F2 µ hu uµ + χ+ i 4 uµ = i[u † (∂µ − irµ )u − u(∂µ − ilµ )u † ] χ+ = u † χu † + uχu χ ≡ 2B0 (s + i p) ≈ 2B0 diag(mu , md , ms ) Building the framework Symmetries and external fields 33 / 45 Electromagnetic interactions in RχT External vector field only is responsible for electromagnetic interactions vµ = −eQBµ , aµ = 0 Q = diag( 23 , − 13 , − 13 ) — quark charge matrix Bµ — electromagnetic field √ e = 4πα Building the framework Symmetries and external fields 34 / 45 Weak interactions [ Moussallam hep-ph/0407246 ][ Ecker Prog. Part. Nucl. Phys. 35 (1995) ] g sin2 θW QZµ , cos θW g 1 lµ = (Q sin2 θW + − Q)Zµ cos θW 6 0 Vud Wµ+ Vus Wµ+ g 0 0 − √ Vud Wµ− 2 − Vus Wµ 0 0 rµ = g = e/ sin θW , CKM matrix : Vud = 0.97418 ± 0.00027 (from nuclear β-decays) Vus = 0.2255 ± 0.0019 (from K decays), θW is the weak mixing angle with sin2 θW ≈ 0.23 [ see PDG ]. for application in HMET see [ Bijnens et al. Phys. Lett. B 429 (1998) ] Building the framework Symmetries and external fields 35 / 45 Conclusions Conclusions Summary and conclusions 36 / 45 Summary Thorough respect of fundamental symmetries Symmetry breaking can be introduced Number of parameters is small Short-distance properties are satisfied Interference phases are fixed Conclusions Summary and conclusions 37 / 45 Conclusions Strong Weak Electromagnetic In most cases the application is straightforward Predictive power is promising In the implicit form, Lagrangian has a very good shape Explicit notation is sometimes messy Automatizing routine is in order Conclusions Summary and conclusions 38 / 45 Spare parts SPARES Technical issues 39 / 45 Transformation of coset representative u(Φ) The NGB fields Φ parametrize the coset space G/H [ Coleman et al.; Callan et al. Phys. Rev. 177 (1969) ] u(Φ) transforms under G in a non-linear way: u(Φ) → u(Φ0 ) = UR (x) u(Φ) h(U, Φ)−1 = h(U, Φ) u(Φ) UL−1 (x) under U(x) = (UR (x), UL (x)). The explicit form of the compensating transformation h(U, Φ) ∈ SU(3)V is usually not needed. SPARES Technical issues 40 / 45 Transformation of coset representative u(Φ) The NGB fields Φ parametrize the coset space G/H [ Coleman et al.; Callan et al. Phys. Rev. 177 (1969) ] Usually the exponential parametrization √ √ u = exp(iΦ/ 2F ) = 1 + iΦ/ 2F − Φ2 /4F 2 + ... is used. Φ is the octet of the pseudoscalar (J P = 0− ) NGB’s √ 0 √ π+ K+ π / 2 + η8 / 6 √ √ Φ = π− −π 0 / 2 + η8 / 6 K0 √ K− K̄ 0 −2η8 / 6 LO ChPT corrections to F are in order; ηη 0 mixing can be accounted for [ Ivashyn, Korchin arXiv:0904.4823 ] SPARES Technical issues 40 / 45 Principal guidelines for model building I Nambu-Goldstone bosons; via coset representative u(Φ), external sources s, p, (vµ , aµ ) = (lµ , rµ ), low-energy coefficients B0 , fπ , . . . ⇓ g µν (em) (f± special Lorentz-tensors, X , obeying X → hXh† = eF µν (em) (uQu † ± u † Qu), Q = diag(2/3, −1/3, −1/3)) g f±µν → hf±µν h† ⇓ SPARES Technical issues 41 / 45 Principal guidelines for model building II combine X tensors to form Lorentz-invariant object and take the trace of it in the flavour space h· · · iflavour ⇓ × effective coupling constants FV , GV , cd , . . . ⇓ Lorentz-invariant, chiral-symmetric effective Lagrangian Leff , carrying a given chiral power (due to counting rules) SPARES Technical issues 42 / 45 Basic building blocks L2 = fπ2 huµ u µ + χ+ i 2 basis ("vielbein field") uµ = i(u † (∂µ − irµ )u − u(∂µ − ilµ )u † ) g uµ → huµ h† mass terms via the external scalar source χ+ = u + χu + + uχu χ = 2B0 (s + ip) = 2B0 diag(mu , md , ms ) ≈ diag(mπ2 , mπ2 , 2mK2 − mπ2 ) g χ+ → hχ+ h† SPARES Technical issues 43 / 45 Transformation properties of resonances and massive mesons [ Ecker et al. Nucl. Phys. B 321 (1989); Phys. Lett. B 223 (1989) ] The other fields, massive mesons or resonances, transform under chiral group as SU(3)V multiplets (octets) R → R 0 = h R h† or singlets R → R0 = R SPARES Technical issues 44 / 45 More complicated building blocks Covariant derivative ∇µ X Γµ g = ∂µ X + [Γµ , X ] ∇µ X → h∇µ Xh† 1 † {u (∂µ − irµ )u + u(∂µ − ilµ )u † } "connection" = 2 (cf. uµ = i(u † (∂µ − irµ )u − u(∂µ − ilµ )u † ) other operators Γµν = 1 i [uµ , uν ] − f+ µν 4 2 "vielbein field") g Γµν → hΓµν h† more traces (suppressed with (1/Nc )n ) h· · · iflavour · · · h· · · iflavour | {z } n It turns out, that the number of the building blocks is finite! SPARES Technical issues 45 / 45
Similar documents
Die BUCHSTAVIER - Das Dosierte Leben
Das Dosierte Leben Das Avant-Avantgarde-Magazin 16. Jahrgang
More information