Phase Effects in the Nonlinear Interaction of “Negative”
Transcription
Phase Effects in the Nonlinear Interaction of “Negative”
206 F. ENGELMANN AND H. WILHELMSSON Phase Effects in the Nonlinear Interaction of “Negative”-Energy Waves F. E n g e l m a n n and H. W il h e l m s s o n * Laboratori Gas Ionizzati (Associazione EURATOM -CNEN ), Frascati (Rome), Italy (Z. Naturforsdi. 24 a, 206— 207 [1969] ; received 30 September 1968) Nonlinear interaction of “negative”-energy waves is studied assuming well-defined phases and perfect matching conditions. The results are compared with those of the random-phase approach, and significant differences in the dynamics due to phase effects are pointed out. The lowest-order nonlinear interaction of three monochromatic waves, with well-defined phases, hav ing the frequencies co0 , « j , 0 ) 2 where oj0= oj1 + o) 2 , (2 a) 3 r.., sign |fg-— [ o j j 2 e { a ) j) (2 b) si ui~ ~ s 2 u 2 - m 12 , du2/d r= s0 s1 u 0 u 1 cos 0 , (2 c) 50 0 sin 0 . S0 S2 dr ] (5) From Eqs. (2) and (3) one obtains , d (» o 2) all Sj are equal, or 5X52= —1 and s0 = arbitrary; (6 b) S0 U02 + S1 u 2 = m 0 1 , (6 c) -)- S2 U 22 = //Iq o u 0 ux u 2 sin & = T (7) with the m’s and r integration constants, and (8) of the waves has negative energy (in any frame of reference) 4-6. Qualitatively, the evolution of the Uj2 and 0 is readily obtained from the preceding relations (cf. Fig. 1). For U j2 oo one has 51ä2= +1 and 50 = —5 != —s2 (or, equivalently, 5„ Sl = s„ , s = - 1). (6 a) , U q" — —2 l/ ^ 52[u0" (m01 —50 u02) (m 02 —s0 u02) —7"2] sign[cos 0]. Two different cases may occur: II) = s0 s2 u0 u2 cos $1 «So 1) 2) Sj th amplitude, and d u jd x = (3) I) j the phase of the with (4) e(toj) being the dielectric constants. du0/dr = —Sj s2 ux u 2 cos dr 2> = <P0 (1) can be shown to be described by d<P The Uj > 0 are the moduli of the wave amplitudes, ^ ^ Uj2^ (too - r) ~ 2 (9) depending on ^ conditions Hence> Case I has been extensively treated 1-3 with the resuit that the U j ( r ) are oscillatory and bounded. Physically, it corresponds to an interaction of waves of positive energy (in an appropriate frame of re ference) . We are interested here in case II, for which all duj/dr have the same sign. Hence, all amplitudes vary in the same sense, which is only possible if one the increase of the wave amplitudes — after a transient period, depending on | | and during which the uj may even decrease — is faster than exponen tial ' and leads to a divergence at a finite t x . At the same time, the phase is locked 7 to 0 = ± n for sign ^ o = — 1’ irrespective of • W e note that, as in case I, one can solve Eqs. (2) and (3) exactly in terms of elliptic functions 1’ 3. * Permanent address: Institute of Physics, University of Uppsala, Sweden. 1 J. A. A r m s t r o n g , N. B l o e m b e r g e n , J. D u c u i n g , and P. S. P e r s h a n . P h y s . Rev. 127, 1918 [1962]. 2 A. S j ö l u n d and L. S t e n f l o , Appl. Phys. Lett. 10, 201 [1967] ; Physica 33, 499 [1967]. 3 R. S u g i h a r a , Phys. Fluids 11, 178 [1968]. 4 B. B. K a d o m t s e v , A. B. M i k h a i l o v s k i i , and A. V. T i m o Sov. Phys. JE T P 20, 1517 [1965]. 5 V. M. D i k a s o v , L. I. R u d a k o v , and D . D . R y u t o v , S o v . Phys. JETP 21. 608 [1965]. 0 M. N. R o s e n b l u t h , B. C o p p i , and R. N. S u d a n , 3 rd Conf. on Plasma Phys. and Contr. Nucl. Fusion Res. Novosibirsk 1968. Paper CN 24/E13. 7 Cf. also P. A. S t u r r o c k , Phys. Rev. Lett. 16. 270 [1966]. feev, Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz. This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License. Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Lizenzbedingung „Keine Bearbeitung“) beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen. On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition “no derivative works”). This is to allow reuse in the area of future scientific usage. NONLINEAR INTERACTION OF NEGATIVE-ENERGY WAVES 207 Let us consider the same interaction problem in random-phase approximation. The corresponding equations of motion are 5’ 6>8’ 9 d K 2) — - 2 —2 = Ux~ U - —2 —2 —0 —2 s0 Sx u 0z U .S - s0 So u 0~ u x% [1f.\ (10) and two similar equations for d(üx2)/df and d(ü22)/df, from which the validity of Eqs. (6) in terms of the üj2 is easily shown. By using them, exact solutions for the üj2(f) are readily obtained. For üj2—> oo , one has in case II üj2^ \ { r o o - t)“ 1 (11) with rx determined by the initial conditions. Hence, the final increase of the wave amplitudes is less “ex plosive” 7 here than in the case of determined phase. On the other hand, no decrease of the amplitudes, even transitory, is possible in the random-phase case. In conclusion, phase effects may have consider able importance for the dynamics of the considered wave interaction. Fig. 1. Qualitative plot of a) u0z as a function of r with the modulus |0 O|as a parameter, assuming the initial value u002 of u02 larger than either u102 or u202, and b) 0 as a function of u02; the arrows refer to increasing r. H. W i l h e l m s s o n wishes to thank Prof. B. B r u n e l l i for the kind hospitality extended to him at the Laboratori Gas Ionizzati at Frascati. 8 V. N. 9 R. E. A a m o d t and M. L. [1967]. T s y t o v ic h , Sov. Phys. Uspekhi 9, 805 [1967]. S lo a n , Phys. Rev. Lett. 19, 1227