References And Answers to Odd Problems
Transcription
References And Answers to Odd Problems
Cómo usar el glosario en español: 1. Busca el término en inglés que desees encontrar. 2. El término en español, junto con la definición, se encuentran en la columna de la derecha. Glossary/Glosario Español English A valor absoluto Distancia entre un número y cero en una recta numérica; se denota con x. absolute value function (90) A function written as f(x) x, where f(x) 0 for all values of x. función del valor absoluto Una función que se escribe f(x) x, donde f(x) 0, para todos los valores de x. absolute value inequalities (42) For all real numbers a and b, b 0, the following statements are true. 1. If a b, then b a b 2. If a b, then a b or a b. desigualdades con valor absoluto Para todo número real a y b, b 0, se cumple lo siguiente. 1. Si a b, entonces b a b 2. Si a b, entonces a b o a b. algebraic expression (7) An expression that contains at least one variable. expresión algebraica Expresión que contiene al menos una variable. amplitude (763) For functions in the form y a sin b or y a cos b, the amplitude is a. amplitud Para funciones de la forma y a sen b o y a cos b, la amplitud es a. angle of depression (705) The angle between a horizontal line and the line of sight from the observer to an object at a lower level. ángulo de depresión Ángulo entre una recta horizontal y la línea visual de un observador a una figura en un nivel inferior. angle of elevation (705) The angle between a horizontal line and the line of sight from the observer to an object at a higher level. ángulo de elevación Ángulo entre una recta horizontal y la línea visual de un observador a una figura en un nivel superior. arccosine (747) The inverse of y cos x, written as x arccos y. arcocoseno La inversa de y cos x, que se escribe como x arccos y. arcsine (747) The inverse of y sin x, written as x arcsin y. arcoseno La inversa de y sen x, que se escribe como x arcsen y. arctangent (747) The inverse of y tan x written as x arctan y. arcotangente La inversa de y tan x que se escribe como x arctan y. arithmetic mean (580) The terms between any two nonconsecutive terms of an arithmetic sequence. media aritmética Cualquier término entre dos términos no consecutivos de una sucesión aritmética. arithmetic sequence (578) A sequence in which each term after the first is found by adding a constant, the common difference d, to the previous term. sucesión aritmética Sucesión en que cualquier término después del primero puede hallarse sumando una constante, la diferencia común d, al término anterior. arithmetic series (583) The indicated sum of the terms of an arithmetic sequence. serie aritmética Suma específica de los términos de una sucesión aritmética. asymptote (442, 485) A line that a graph approaches but never crosses. asíntota Recta a la que se aproxima una gráfica, sin jamás cruzarla. augmented matrix (208) A coefficient matrix with an extra column containing the constant terms. matriz ampliada Matriz coeficiente con una columna extra que contiene los términos constantes. axis of symmetry (287) is symmetric. eje de simetría Recta respecto a la cual una figura es simétrica. A line about which a figure f (x ) f (x ) eje de simetría axis of symmetry O x O x Glossary/Glosario R1 Glossary/Glosario absolute value (28) A number’s distance from zero on the number line, represented by x. 1 bn B (257) integer n, even. 1 bn binomial (229) terms. 1 bn For any real number b and for any positive b, except when b 0 and n is Para cualquier número real b y para cualquier 1 entero positivo n, b n b, excepto cuando b 0 y n es par. n A polynomial that has two unlike binomio n Polinomio con dos términos diferentes. binomial experiment (677) An experiment in which there are exactly two possible outcomes for each trial, a fixed number of independent trials, and the probabilities for each trial are the same. experimento binomial Experimento con exactamente dos resultados posibles para cada prueba, un número fijo de pruebas independientes y en el cual cada prueba tiene igual probabilidad. Binomial Theorem (613) If n is a nonnegative integer, then (a b)n Teorema del binomio Si n es un entero no negativo, entonces (a b)n n(n 1) 12 n 1 n(n 1) 12 n 1 1anb0 an 1b1 an 2b2 … 1a0bn. 1anb0 an 1b1 an 2b2 … 1a0bn. boundary (96) A line or curve that separates the coordinate plane into two regions. frontera Recta o curva que divide un plano de coordenadas en dos regiones. bounded (129) A region is bounded when the graph of a system of constraints is a polygonal region. acotada Una región está acotada cuando la gráfica de un sistema de restricciones es una región poligonal. C Cartesian coordinate plane (56) A plane divided into four quadrants by the intersection of the x-axis and the y-axis at the origin. plano de coordenadas cartesiano Plano dividido en cuatro cuadrantes mediante la intersección en el origen de los ejes x y y. Quadrant II Cuadrante II Glossary/Glosario Quadrant I y-axis x-coordinate (3, 2) origin y-coordinate O Quadrant III Cuadrante I eje y coordenada x (3, 2) origen coordenada y eje x O x-axis Quadrant IV Cuadrante III Cuadrante IV center of a circle (426) The point from which all points on a circle are equidistant. centro de un círculo El punto desde el cual todos los puntos de un círculo están equidistantes. center of an ellipse (434) The point at which the major axis and minor axis of an ellipse intersect. centro de una elipse Punto de intersección de los ejes mayor y menor de una elipse. center of a hyperbola (442) The midpoint of the segment whose endpoints are the foci. centro de una hipérbola Punto medio del segmento cuyos extremos son los focos. change of base formula (548) For all positive numbers a, b, and n, where a 1 and b 1, fórmula del cambio de base Para todo número positivo a, b y n, donde a 1 y b 1, log n logb a log n logb a b loga n . b logb n . circle (426) The set of all points in a plane that are equidistant from a given point in the plane, called the center. círculo Conjunto de todos los puntos en un plano que equidistan de un punto dado del plano llamado centro. y radius (x, y ) r O (h, k ) y radio (x, y ) r O (h, k ) x center circular functions (740) unit circle. R2 Glossary/Glosario Functions defined using a x centro funciones circulares Funciones definidas en un círculo unitario. coefficient (222) monomial. coeficiente Factor numérico de un monomio. The numerical factor of a column matrix (155) column. A matrix that has only one matriz columna Matriz que sólo tiene una columna. combination (640) An arrangement of objects in which order is not important. combinación Arreglo de elementos en que el orden no es importante. common difference (578) The difference between the successive terms of an arithmetic sequence. diferencia común Diferencia entre términos consecutivos de una sucesión aritmética. common logarithms (547) the base. logaritmos comunes El logaritmo de base 10. Logarithms that use 10 as common ratio (588) The ratio of successive terms of a geometric sequence. razón común Razón entre términos consecutivos de una sucesión geométrica. Commutative Property of Addition (12) For any real numbers a and b, a b b a. Propiedad conmutativa de la adición Para cualquier número real a y b, a b b a. Commutative Property of Multiplication (12) any real numbers a and b, a b b a. Propiedad conmutativa de la multiplicación Para cualquier número real a y b, a b b a. For completar el cuadrado Proceso mediante el cual una expresión cuadrática se transforma en un trinomio cuadrado perfecto. complex conjugates (273) Two complex numbers of the form a bi and a bi. conjugados complejos Dos números complejos de la forma a bi y a bi. complex fraction (475) A rational expression whose numerator and/or denominator contains a rational expression. fracción compleja Expresión racional cuyo numerador o denominador contiene una expresión racional. complex number (271) Any number that can be written in the form a bi, where a and b are real numbers and i is the imaginary unit. número complejo Cualquier número que puede escribirse de la forma a bi, donde a y b son números reales e i es la unidad imaginaria. composition of functions (384) A function is performed, and then a second function is performed on the result of the first function. The composition of f and g is denoted by f g, and [f g](x) f[g(x)]. composición de funciones Se evalúa una función y luego se evalúa una segunda función en el resultado de la primera función. La composición de f y g se define con f g y [f g](x) f[g(x)]. compound event (658) evento compuesto Dos o más eventos simples. Two or more simple events. Two inequalities joined desigualdad compuesta Dos desigualdades unidas por las palabras y u o. conic section (419) Any figure that can be obtained by slicing a double cone. sección cónica Cualquier figura obtenida mediante el corte de un cono doble. conjugate axis (442) The segment of length 2b units that is perpendicular to the transverse axis at the center. eje conjugado El segmento de 2b unidades de longitud que es perpendicular al eje transversal en el centro. conjugates (253) Binomials of the form ab cd and ab cd, where a, b, c, and d are rational numbers. conjugados Binomios de la forma ab cd y ab cd, donde a, b, c y d son números racionales. consistent (111) A system of equations that has at least one solution. consistente Sistema de ecuaciones que posee por lo menos una solución. constant (222) constante compound inequality (40) by the word and or or. Monomials that contain no variables. constant function (90) f(x) b. A linear function of the form constant of variation (492) The constant k used with direct or inverse variation. Monomios que carecen de variables. función constante Función lineal de la forma f(x) b. constante de variación La constante k que se usa en variación directa o inversa. Glossary/Glosario R3 Glossary/Glosario completing the square (307) A process used to make a quadratic expression into a perfect square trinomial. constant term (286) constant term. In f(x) ax2 bx c, c is the término constante En f(x) ax2 bx c, c es el término constante. constraints (129) Conditions given to variables, often expressed as linear inequalities. restricciones Condiciones a que están sujetas las variables, a menudo escritas como desigualdades lineales. continuity (485) A graph of a function that can be traced with a pencil that never leaves the paper. continuidad La gráfica de una función que se puede calcar sin levantar nunca el lápiz del papel. continuous probability distribution (671) The outcome can be any value in an interval of real numbers, represented by curves. distribución de probabilidad continua El resultado puede ser cualquier valor de un intervalo de números reales, representados por curvas. cosecant (701) For any angle, with measure , a point P(x, y) on its terminal side, r x2 y2, r csc . cosecante Para cualquier ángulo de medida , un punto P(x, y) en su lado terminal, r x2 y2, r csc . cosine (701) For any angle, with measure , a point P(x, y) on its terminal side, r x2 y2, x cos r. coseno Para cualquier ángulo de medida , un punto P(x, y) en su lado terminal, r x2 y2, x cos r. cotangent (701) For any angle, with measure , a point P(x, y) on its terminal side, r x2 y2, x cot . cotangente Para cualquier ángulo de medida , un punto P(x, y) en su lado terminal, r x2 y2, x cot . coterminal angles (711) Two angles in standard position that have the same terminal side. ángulos coterminales Dos ángulos en posición estándar que tienen el mismo lado terminal. Cramer’s Rule (189) A method that uses determinants to solve a system of linear equations. Regla de Crámer Método que usa determinantes para resolver un sistema de ecuaciones lineales. y y Glossary/Glosario y y D degree (222) The sum of the exponents of the variables of a monomial. degree of a polynomial in one variable (346) greatest exponent of the variable of the polynomial. grado Suma de los exponentes de las variables de un monomio. The grado de un polinomio de una variable El exponente máximo de la variable del polinomio. dependent events (633) The outcome of one event does affect the outcome of another event. eventos dependientes El resultado de un evento afecta el resultado de otro evento. dependent system (111) A consistent system of equations that has an infinite number of solutions. sistema dependiente Sistema de ecuaciones que posee un número infinito de soluciones. dependent variable (59) The other variable in a function, usually y, whose values depend on x. variable dependiente La otra variable de una función, por lo general y, cuyo valor depende de x. depressed polynomial (366) The quotient when a polynomial is divided by one of its binomial factors. polinomio reducido El cociente cuando se divide un polinomio entre uno de sus factores binomiales. determinant (182) A square array of numbers or variables enclosed between two parallel lines. determinante Arreglo cuadrado de números o variables encerrados entre dos rectas paralelas. dilation (176) A transformation in which a geometric figure is enlarged or reduced. dilatación Transformación en que se amplía o reduce una figura geométrica. dimensional analysis (225) Performing operations with units. análisis dimensional Realizar operaciones con unidades. dimensions of a matrix (155) The number of rows, m, and the number of columns, n, of the matrix written as m n. tamaño de una matriz El número de filas, m, y columnas, n, de una matriz, lo que se escribe m n. R4 Glossary/Glosario directrix (419) See parabola. directriz Véase parábola. direct variation (492) y varies directly as x if there is some nonzero constant k such that y kx. k is called the constant of variation. variación directa y varía directamente con x si hay una constante no nula k tal que y kx. k se llama la constante de variación. discrete probability distributions (671) Probabilities that have a finite number of possible values. distribución de probabilidad discreta Probabilidades que tienen un número finito de valores posibles. discriminant (316) In the Quadratic Formula, the expression b2 4ac. discriminante En la fórmula cuadrática, la expresión b2 4ac. Distance Formula (413) The distance between two points with coordinates (x1, y1) and (x2, y2) is Fórmula de la distancia La distancia entre dos puntos (x1, y1) y (x2, y2) viene dada por 2 given by d (x2 x (y2 y1)2. 1) 2 d (x2 x (y2 y1)2. 1) domain (56) The set of all x-coordinates of the ordered pairs of a relation. dominio El conjunto de todas las coordenadas x de los pares ordenados de una relación. E e (554) The irrational number 2.71828.... e is the base of the natural logarithms. e El número irracional 2.71828.... e es la base de los logaritmos naturales. element (155) elemento Cada valor de una matriz. Each value in a matrix. elimination method (118) Eliminate one of the variables in a system of equations by adding or subtracting the equations. método de eliminación Eliminar una de las variables de un sistema de ecuaciones sumando o restando las ecuaciones. ellipse (433) The set of all points in a plane such that the sum of the distances from two given points in the plane, called foci, is constant. elipse Conjunto de todos los puntos de un plano en los que la suma de sus distancias a dos puntos dados del plano, llamados focos, es constante. y y (a, 0) a a b eje mayor (a, 0) (a, 0) a a b O F1 (c, 0) c F2 (c, 0) Center Minor axis x F1 (c, 0) centro (a, 0) O c F2 (c, 0) x eje menor empty set (29) The solution set for an equation that has no solution, symbolized by { } or . conjunto vacío Conjunto solución de una ecuación que no tiene solución, denotado por { } o . end behavior (349) The behavior of the graph as x approaches positive infinity (+) or negative infinity (). comportamiento final El comportamiento de una gráfica a medida que x tiende a más infinito (+) o menos infinito (). equal matrices (155) Two matrices that have the same dimensions and each element of one matrix is equal to the corresponding element of the other matrix. matrices iguales Dos matrices que tienen las mismas dimensiones y en las que cada elemento de una de ellas es igual al elemento correspondiente en la otra matriz. equation (20) A mathematical sentence stating that two mathematical expressions are equal. ecuación Enunciado matemático que afirma la igualdad de dos expresiones matemáticas. expansion by minors (183) A method of evaluating a third or high order determinant by using determinants of lower order. expansión por determinantes menores Un método de calcular el determinante de tercer orden o mayor mediante el uso de determinantes de orden más bajo. Glossary/Glosario R5 Glossary/Glosario Major axis exponential decay (524) Exponential decay occurs when a quantity decreases exponentially over time. desintegración exponencial Ocurre cuando una cantidad disminuye exponencialmente con el tiempo. f (x ) f (x ) 3 2 1 2 1 O 3 2 Exponential Decay 1 1 2 x 2 1 O 1 2 x exponential equation (526) An equation in which the variables occur as exponents. ecuación exponencial Ecuación en que las variables aparecen en los exponentes. exponential function (524) A function of the form y abx, where a 0, b 0, and b 1. función exponencial Una función de la forma y abx, donde a 0, b 0, y b 1. exponential growth (524) Exponential growth occurs when a quantity increases exponentially over time. crecimiento exponencial El que ocurre cuando una cantidad aumenta exponencialmente con el tiempo. f (x ) f (x ) 3 3 2 1 2 1 Glossary/Glosario desintegración exponencial O 2 Exponential Growth 1 1 2 x 2 1 O crecimiento exponencial 1 2 x extraneous solution (263) A number that does not satisfy the original equation. solución extraña Número que no satisface la ecuación original. extrapolation (82) Predicting for an x-value greater than any in the data set. extrapolación Predicción para un valor de x mayor que cualquiera de los de un conjunto de datos. F factorial (613) If n is a positive integer, then n! n(n 1)(n 2) … 2 1. factorial Si n es un entero positivo, entonces n! n(n 1)(n 2) … 2 1. failure (644) Any outcome other than the desired outcome. fracaso Cualquier resultado distinto del deseado. family of graphs (70) A group of graphs that displays one or more similar characteristics. familia de gráficas Grupo de gráficas que presentan una o más características similares. feasible region (129) The intersection of the graphs in a system of constraints. región viable Intersección de las gráficas de un sistema de restricciones. Fibonacci sequence (606) A sequence in which the first two terms are 1 and each of the additional terms is the sum of the two previous terms. sucesión de Fibonacci Sucesión en que los dos primeros términos son iguales a 1 y cada término que sigue es igual a la suma de los dos anteriores. focus (419, 433, 441) See parabola, ellipse, hyperbola. foco Véase parábola, elipse, hipérbola. FOIL method (230) The product of two binomials is the sum of the products of F the first terms, O the outer terms, I the inner terms, and L the last terms. método FOIL El producto de dos binomios es la suma de los productos de los primeros (First) términos, los términos exteriores (Outer), los términos interiores (Inner) y los últimos (Last) términos. formula (8) A mathematical sentence that expresses the relationship between certain quantities. fórmula Enunciado matemático que describe la relación entre ciertas cantidades. R6 Glossary/Glosario function (57) A relation in which each element of the domain is paired with exactly one element in the range. función Relación en que a cada elemento del dominio le corresponde un solo elemento del rango. function notation (59) An equation of y in terms of x can be rewritten so that y f(x). For example, y 2x 1 can be written as f(x) 2x 1. notación funcional Una ecuación de y en términos de x puede escribirse en la forma y f(x). Por ejemplo, y 2x 1 puede escribirse como f(x) 2x 1. G geometric mean (590) The terms between any two nonsuccessive terms of a geometric sequence. media geométrica Cualquier término entre dos términos no consecutivos de una sucesión geométrica. geometric sequence (588) A sequence in which each term after the first is found by multiplying the previous term by a constant r, called the common ratio. sucesión geométrica Sucesión en que cualquier término después del primero puede hallarse multiplicando el término anterior por una constante r, llamada razón común . geometric series (594) The sum of the terms of a geometric sequence. serie geométrica La suma de los términos de una sucesión geométrica. greatest integer function (89) A step function, written as f(x) x, where f(x) is the greatest integer less than or equal to x. función del máximo entero Una función etapa que se escribe f(x) [x], donde f(x) es el meaximo entero que es menor que o igual a x. H hyperbola (441) The set of all points in the plane such that the absolute value of the difference of the distances from two given points in the plane, called foci, is constant. center transverse axis vertex F1 O asymptote b eje transversal c vertex a F2 x F1 conjugate axis hypothesis (686) y asíntota centro vértice O asíntota b c vértice F2 a x eje conjugado A statement to be tested. hipótesis Proposición que debe ser verificada. I identity function (90, 391) The function I(x) x. función identidad La función I(x) x. identity matrix (195) A square matrix that, when multiplied by another matrix, equals that same matrix. If A is any n n matrix and I is the n n identity matrix, then A I A and I A A. matriz identidad Matriz cuadrada que al multiplicarse por otra matriz, es igual a la misma matriz. Si A es una matriz de n n e I es la matriz identidad de n n, entonces A I A y I A A. image (175) The graph of an object after a transformation. imagen Gráfica de una figura después de una transformación. imaginary unit (270) i, or the principal square root of 1. unidad imaginaria i, o la raíz cuadrada principal de 1. inclusive (659) the same. inclusivo Dos eventos que pueden tener los mismos resultados. Two events whose outcomes may be Glossary/Glosario R7 Glossary/Glosario y asymptote hipérbola Conjunto de todos los puntos de un plano en los que el valor absoluto de la diferencia de sus distancias a dos puntos dados del plano, llamados focos, es constante. inconsistent (111) solutions. A system of equations that has no inconsistente Sistema de ecuaciones que no tiene solución alguna. independent (111) A system of equations that has exactly one solution. independiente Sistema de ecuaciones que sólo tiene una solución. independent events (632) each other. eventos independientes Eventos que no se afectan mutuamente. Events that do not affect independent variable (59) In a function, the variable, usually x, whose values make up the domain. variable independiente En una función, la variable, por lo general x, cuyos valores forman el dominio. index of summation (585) The variable used with the summation symbol. In the expression below, the index of summation is n. índice de suma Variable que se usa con el símbolo de suma. En la siguiente expresión, el índice de suma es n. 3 3 4n 4n n1 n1 inductive hypothesis (618) The assumption that a statement is true for some positive integer k, where k n. hipótesis inductiva El suponer que un enunciado es verdadero para algún entero positivo k, donde k n. infinite geometric series (599) A geometric series with an infinite number of terms. serie geométrica infinita Serie geométrica con un número infinito de términos. initial side of an angle (709) angle. lado inicial de un ángulo El rayo fijo de un ángulo. The fixed ray of an y 90˚ terminal side y 90˚ lado terminal O initial side 180˚ x Glossary/Glosario vertex O lado inicial 180˚ x vértice 270˚ 270˚ interpolation (82) Predicting for an x-value between the least and greatest values of the set. interpolación Predecir un valor de x entre los valores máximo y mínimo del conjunto de datos. intersection (40) The graph of a compound inequality containing and. intersección Gráfica de una desigualdad compuesta que contiene la palabra y. interval notation (35) Using the infinity symbols, and , to indicate that the solution set of an inequality is unbounded in the positive or negative direction, respectively. notación de intervalo Uso de los símbolos de infinito, y , para indicar que el conjunto solución de una desigualdad no es acotado en la dirección positiva o negativa, respectivamente. inverse (195) Two n n matrices are inverses of each other if their product is the identity matrix. inversa Dos matrices de n n son inversas mutuas si su producto es la matriz identidad. inverse function (391) Two functions f and g are inverse functions if and only if both of their compositions are the identity function. función inversa Dos funciones f y g son inversas mutuas si y sólo si las composiciones de ambas son la función identidad. inverse of a trigonometric function (746) The arccosine, arcsine, and arctangent relations. inversa de una función trigonométrica Las relaciones arcocoseno, arcoseno y arcotangente. inverse relations (390) Two relations are inverse relations if and only if whenever one relation contains the element (a, b) the other relation contains the element (b, a). relaciones inversas Dos relaciones son relaciones inversas mutuas si y sólo si cada vez que una de las relaciones contiene el elemento (a, b), la otra contiene el elemento (b, a). inverse variation (493) y varies inversely as x if there is some nonzero constant k such that xy k k or y . variación inversa y varía inversamente con x si hay una constante no nula k tal que xy k o k y . x R8 Glossary/Glosario x irrational number (11) A real number that is not rational. The decimal form neither terminates nor repeats. número irracional Número que no es racional. Su expansión decimal no es ni terminal ni periódica. isometry (175) A transformation in which the image and preimage are congruent figures. isometría Transformación en que la imagen y la preimagen son figuras congruentes. iteration (608) The process of composing a function with itself repeatedly. iteración Proceso de componer una función consigo misma repetidamente. J joint variation (493) y varies jointly as x and z if there is some nonzero constant k such that y kxz, where x 0 and z 0. variación conjunta y varía conjuntamente con x y z si hay una constante no nula k tal que y kxz, donde x 0 y z 0. L latus rectum El segmento de recta que pasa por el foco de una parábola y que es perpendicular a su eje de simetría. Law of Cosines (733–734) Let ABC be any triangle with a, b, and c representing the measures of sides, and opposite angles with measures A, B, and C, respectively. Then the following equations are true. a2 b2 c2 2bc cos A b2 a2 c2 2ac cos B c2 a2 b2 2ab cos C Ley de los cosenos Sea ABC un triángulo cualquiera, con a, b y c las longitudes de los lados y con ángulos opuestos de medidas A, B y C, respectivamente. Entonces se cumplen las siguientes ecuaciones. a2 b2 c2 2bc cos A b2 a2 c2 2ac cos B c2 a2 b2 2ab cos C Law of Sines (726) Let ABC be any triangle with a, b, and c representing the measures of sides opposite angles with measurements A, B, and C, sin A sin B sin C respectively. Then . Ley de los senos Sea ABC cualquier triángulo con a, b y c las longitudes de los lados y con ángulos opuestos de medidas A, B y C, respectivamente. sin A sin B sin C Entonces . leading coefficient (346) The coefficient of the term with the highest degree. coeficiente líder Coeficiente del término de mayor grado. like radical expressions (252) Two radical expressions in which both the radicands and indices are alike. expresiones radicales semejantes Dos expresiones radicales en que tanto los radicandos como los índices son semejantes. like terms (229) términos semejantes Monomios que pueden combinarse. a b c Monomials that can be combined. a b c limit (593) The value that the terms of a sequence approach. límite El valor al que tienden los términos de una sucesión. linear equation (63) An equation that has no operations other than addition, subtraction, and multiplication of a variable by a constant. ecuación lineal Ecuación sin otras operaciones que las de adición, sustracción y multiplicación de una variable por una constante. linear function (63) A function whose ordered pairs satisfy a linear equation. función lineal Función cuyos pares ordenados satisfacen una ecuación lineal. linear permutation (638) The arrangement of objects or people in a line. permutación lineal Arreglo de personas o figuras en una línea. linear programming (130) The process of finding the maximum or minimum values of a function for a region defined by inequalities. programación lineal Proceso de hallar los valores máximo o mínimo de una función lineal en una región definida por las desigualdades. linear term (286) In the equation f(x) ax2 bx c, bx is the linear term. término lineal En la ecuación f(x) ax2 bx c, el término lineal es bx. Glossary/Glosario R9 Glossary/Glosario latus rectum (421) The line segment through the focus of a parabola and perpendicular to the axis of symmetry. line of fit (81) of data. A line that closely approximates a set recta de ajuste Recta que se aproxima estrechamente a un conjunto de datos. logarithm (531) In the function x by, y is called the logarithm, base b, of x. Usually written as y logb x and is read “y equals log base b of x.” logaritmo En la función x b y, y es el logaritmo en base b, de x. Generalmente escrito como y logb x y se lee “y es igual al logaritmo en base b de x.” logarithmic equation (533) An equation that contains one or more logarithms. ecuación logarítmica Ecuación que contiene uno o más logaritmos. logarithmic function (532) The function y logb x, where b 0 and b 1, which is the inverse of the exponential function y bx. función logarítmica La función y logb x, donde b 0 y b 1, inversa de la función exponencial y bx. M Glossary/Glosario m n matrix (155) columns. A matrix with m rows and n matriz de m n Matriz de m filas y n columnas. major axis (434) The longer of the two line segments that form the axes of symmetry of an ellipse. eje mayor El más largo de dos segmentos de recta que forman los ejes de simetría de una elipse. mapping (57) How each member of the domain is paired with each member of the range. transformaciones La correspondencia entre cada miembro del dominio con cada miembro del rango. margin of sampling error (ME) (682) The limit on the difference between how a sample responds and how the total population would respond. margen de error muestral (EM) Límite en la diferencia entre las respuestas obtenidas con una muestra y cómo pudiera responder la población entera. mathematical induction (618) A method of proof used to prove statements about positive integers. inducción matemática Método de demostrar enunciados sobre los enteros positivos. matrix (154) Any rectangular array of variables or constants in horizontal rows and vertical columns. matriz Arreglo rectangular de variables o constantes en filas horizontales y columnas verticales. maximum value (288) The y-coordinate of the vertex of the quadratic function f(x) ax2 bx c, where a 0. valor máximo La coordenada y del vértice de la función cuadrática f(x) ax2 bx c, donde a 0. measure of central tendency (665) A number that represents the center or middle of a set of data. medida de tendencia central Número que representa el centro o medio de un conjunto de datos. measure of variation (664) A representation of how spread out or scattered a set of data is. medida de variación Número que representa la dispersión de un conjunto de datos. midline (771) A horizontal axis used as the reference line about which the graph of a periodic function oscillates. recta central Eje horizontal que se usa como recta de referencia alrededor de la cual oscila la gráfica de una función periódica. minimum value (288) The y-coordinate of the vertex of the quadratic function f(x) ax2 bx c, where a 0. valor mínimo La coordenada y del vértice de la función cuadrática f(x) ax2 bx c, donde a 0. minor (183) The determinant formed when the row and column containing that element are deleted. determinante menor El que se forma cuando se descartan la fila y columna que contienen dicho elemento. minor axis (434) The shorter of the two line segments that form the axes of symmetry of an ellipse. eje menor El más corto de los dos segmentos de recta de los ejes de simetría de una elipse. monomial (222) An expression that is a number, a variable, or the product of a number and one or more variables. monomio Expresión que es un número, una variable o el producto de un número por una o más variables. R10 Glossary/Glosario mutually exclusive (658) Two events that cannot occur at the same time. mutuamente exclusivos Dos eventos que no pueden ocurrir simultáneamente. N nth root (245) For any real numbers a and b, and any positive integer n, if an b, then a is an nth root of b. raíz enésima Para cualquier número real a y b y cualquier entero positivo n, si an b, entonces a se llama una raíz enésima de b. natural base exponential function (554) An exponential function with base e, y ex. función exponencial natural La función exponencial de base e, y ex. natural logarithm (554) written ln x. logaritmo natural Logaritmo de base e, el que se escribe ln x. Logarithms with base e, natural logarithmic function (554) y ln x, the inverse of the natural base exponential function y ex. negative exponent (222) función logarítmica natural y ln x, la inversa de la función exponencial natural y ex. For any real number a 0 exponente negativo Para cualquier número real a 0 1 1 and any integer n, an n and n an. a a 1 a 1 cualquier entero positivo n, an n y n an. a normal distribution (671) A frequency distribution that often occurs when there is a large number of values in a set of data: about 68% of the values are within one standard deviation of the mean, 95% of the values are within two standard deviations from the mean, and 99% of the values are within three standard deviations. distribución normal Distribución de frecuencia que aparece a menudo cuando hay un número grande de datos: cerca del 68% de los datos están dentro de una desviación estándar de la media, 95% están dentro de dos desviaciones estándar de la media y 99% están dentro de tres desviaciones estándar de la media. Normal Distribution Distribución normal Glossary/Glosario O octants (136) space. The eight regions of three-dimensional octantes Las ocho regiones del espacio tridimensional. odds (645) The ratio of the number of the successes of an event to the number of failures. posibilidades Razón del número de éxitos de un evento a su número de fracasos. one-to-one function (57, 392) 1. A function where each element of the range is paired with exactly one element of the domain 2. A function whose inverse is a function. función biunívoca 1. Función en la que a cada elemento del rango le corresponde sólo un elemento del dominio. 2. Función cuya inversa es una función. open sentence (20) A mathematical sentence containing one or more variables. enunciado abierto Enunciado matemático que contiene una o más variables. ordered pair (56) A pair of coordinates, written in the form (x, y), used to locate any point on a coordinate plane. par ordenado Un par de números, escrito en la forma (x, y), que se usa para ubicar cualquier punto en un plano de coordenadas. ordered triple (136, 139) 1. The coordinates of a point in space 2. The solution of a system of equations in three variables x, y, and z. triple ordenado 1. Las coordenadas de un punto en el espacio 2. Solución de un sistema de ecuaciones en tres variables x, y y z. Glossary/Glosario R11 Order of Operations (6) Step 1 Evaluate expressions inside grouping symbols. Step 2 Evaluate all powers. Step 3 Do all multiplications and/or divisions from left to right. Step 4 Do all additions and subtractions from left to right. Orden de las operaciones Paso 1 Evalúa las expresiones dentro de símbolos de agrupamiento. Paso 2 Evalúa todas las potencias. Paso 3 Ejecuta todas las multiplicaciones y divisiones de izquierda a derecha. Paso 4 Ejecuta todas las adiciones y sustracciones de izquierda a derecha. outcomes (632) The results of a probability experiment/an event. resultados Lo que produce un experimento o evento probabilístico. outlier (826) A data point that does not appear to belong to the rest of the set. valor atípico Dato que no parece pertenecer al resto el conjunto. P parabola (286, 419) The set of all points in a plane that are the same distance from a given point, called the focus, and a given line, called the directrix. parábola Conjunto de todos los puntos de un plano que están a la misma distancia de un punto dado, llamado foco, y de una recta dada, llamada directriz. y y xh xh axis of symmetry vertex Glossary/Glosario O eje de simetría (h, k) vértice x O (h, k) x parallel lines (70) Nonvertical coplanar lines with the same slope. rectas paralelas Rectas coplanares no verticales con la misma pendiente. parent graph (70) family. The simplest of graphs in a gráfica madre La gráfica más sencilla en una familia de gráficas. partial sum (599) series. The sum of the first n terms of a suma parcial La suma de los primeros n términos de una serie. Pascal’s triangle (612) A triangular array of numbers such that the (n 1)th row is the coefficient of the terms of the expansion (x y)n for n 0, 1, 2 ... Triángulo de Pascal Arreglo triangular de números en el que la fila (n 1)n proporciona los coeficientes de los términos de la expansión de (x y)n para n 0, 1, 2 ... period (741) The least possible value of a for which f(x) f(x a). período El menor valor positivo posible para a, para el cual f(x) f(x a). periodic function (741) A function is called periodic if there is a number a such that f(x) f(x a) for all x in the domain of the function. función periódica Función para la cual hay un número a tal que f(x) f(x a) para todo x en el dominio de la función . permutation (638) An arrangement of objects in which order is important. permutación Arreglo de elementos en que el orden es importante. perpendicular lines (71) In a plane, any two oblique lines the product of whose slopes is 1. rectas perpendiculares En un plano, dos rectas oblicuas cualesquiera cuyas pendientes tienen un producto igual a 1. phase shift (769) A horizontal translation of a trigonometric function. desvío de fase Traslación horizontal de una función trigonométrica. piecewise function (91) A function that is written using two or more expressions. función a intervalos Función que se escribe usando dos o más expresiones. R12 Glossary/Glosario point discontinuity (485) If the original function is undefined for x a but the related rational expression of the function in simplest form is defined for x a, then there is a hole in the graph at x a. discontinuidad evitable Si la función original no está definida en x a pero la expresión racional reducida correspondiente de la función está definida en x a, entonces la gráfica tiene una ruptura o corte en x a. f (x ) f (x ) point discontinuity O discontinuidad evitable O x x point-slope form (76) An equation in the form y y1 m(x x1) where (x1, y1) are the coordinates of a point on the line and m is the slope of the line. forma punto-pendiente Ecuación de la forma y y1 m(x x1) donde (x1, y1) es un punto en la recta y m es la pendiente de la recta. polynomial (229) monomials. polinomio A monomial or a sum of Monomio o suma de monomios. polynomial function (347) A function that is represented by a polynomial equation. función polinomial Función representada por una ecuación polinomial. polynomial in one variable (346) a0xn a1xn 1 … an2x2 an 1x an, where the coefficients a0, a1, …, an represent real numbers, and a0 is not zero and n is a nonnegative integer. polinomio de una variable a0xn a1xn 1 … an2x2 an 1x an, donde los coeficientes a0, a1, …, an son números reales, a0 no es nulo y n es un entero no negativo. power (222) An expression of the form xn. potencia Expresión de la forma xn. función potencia Ecuación de la forma f(x) axb, donde a y b son números reales. prediction equation (81) An equation suggested by the points of a scatter plot that is used to predict other points. ecuación de predicción Ecuación sugerida por los puntos de una gráfica de dispersión y que se usa para predecir otros puntos. preimage (175) The graph of an object before a transformation. preimagen Gráfica de una figura antes de una transformación. principal root (246) raíz principal La raíz no negativa. The nonnegative root. principal values (746) The values in the restricted domains of trigonometric functions. valores principales Valores en los dominios restringidos de las funciones trigonométricas. probability (644) A ratio that measures the chances of an event occurring. probabilidad Razón que mide la posibilidad de que ocurra un evento. probability distribution (646) A function that maps the sample space to the probabilities of the outcomes in the sample space for a particular random variable. distribución de probabilidad Función que aplica el espacio muestral a las probabilidades de los resultados en el espacio muestral obtenidos para una variable aleatoria particular. pure imaginary number (270) The square roots of negative real numbers. For any positive real número imaginario puro Raíz cuadrada de un número real negativo. Para cualquier número number b, b2 b2 1 , or bi. real positivo b, b2 b2 1 ó bi. Q quadrantal angle (718) An angle in standard position whose terminal side coincides with one of the axes. ángulo de cuadrante Ángulo en posición estándar cuyo lado terminal coincide con uno de los ejes. quadrants (56) The four areas of a Cartesian coordinate plane. cuadrantes Las cuatro regiones de un plano de coordenadas cartesiano. Glossary/Glosario R13 Glossary/Glosario power function (704) An equation in the form f(x) axb, where a and b are real numbers. quadratic equation (294) A quadratic function set equal to a value, in the form ax2 bx c, where a 0. ecuación cuadrática Función cuadrática igual a un valor, de la forma ax2 bx c, donde a 0. quadratic form (360) For any numbers a, b, and c, except for a 0, an equation that can be written in the form a[f(x)2] b[f(x)] c 0, where f(x) is some expression in x. forma de ecuación cuadrática Para cualquier número a, b y c, excepto a 0, una ecuación que puede escribirse de la forma a[f(x)2] b[f(x)] c 0, donde f(x) es una expresión en x. Quadratic Formula (313) The solutions of a quadratic equation of the form ax2 bx c 0, where a 0, are given by the Quadratic Formula, which Fórmula cuadrática Las soluciones de una ecuación cuadrática de la forma ax2 bx c 0, donde a 0, se dan por la fórmula cuadrática, que es b b2 4ac . x b b2 4ac . is x 2a quadratic function (286) A function described by the equation f(x) ax2 bx c, where a 0. función cuadrática Función descrita por la ecuación f(x) ax2 bx c, donde a 0. quadratic term (286) In the equation f(x) ax2 bx c, ax2 is the quadratic term. término cuadrático En la ecuación f(x) ax2 bx c, el término cuadrático es ax2. Glossary/Glosario R radian (710) The measure of an angle in standard position whose rays intercept an arc of length 1 unit on the unit circle. radián Medida de un ángulo en posición normal cuyos rayos intersecan un arco de 1 unidad de longitud en el círculo unitario. radical equation (263) An equation with radicals that have variables in the radicands. ecuación radical Ecuación con radicales que tienen variables en el radicando. radical inequality (264) An inequality that has a variable in the radicand. desigualdad radical Desigualdad que tiene una variable en el radicando. random (645) All outcomes have an equally likely chance of happening. aleatorio Todos los resultados son equiprobables. random variable (646) The outcome of a random process that has a numerical value. range (56) The set of all y-coordinates of a relation. variable aleatoria El resultado de un proceso aleatorio que tiene un valor numérico. rango Conjunto de todas las coordenadas y de una relación. rate of change (69) How much a quantity changes on average, relative to the change in another quantity, often time. tasa de cambio Lo que cambia una cantidad en promedio, respecto al cambio en otra cantidad, por lo general el tiempo. rate of decay (560) The percent decrease r in the equation y a(1 r)t. tasa de desintegración Disminución porcentual r en la ecuación y a(1 r)t. rate of growth (562) The percent increase r in the equation y a(1 r)t. tasa de crecimiento Aumento porcentual r en la ecuación y a(1 r)t. rational equation (505) Any equation that contains one or more rational expressions. ecuación racional Cualquier ecuación que contiene una o más expresiones racionales. rational exponent (258) For any nonzero real number b, and any integers m and n, with n 1, exponente racional Para cualquier número real no nulo b y cualquier entero m y n, con n 1, m n n m b n bm b , except when b 0 and n is even. rational expression (472) expressions. rational function (472) A ratio of two polynomial An equation of the m m b n bm b , excepto cuando b 0 y n es par. n n expresión racional Razón de dos expresiones polinomiales. función racional Ecuación de la forma p(x) form f(x) , where p(x) and q(x) are q(x) f(x) , donde p(x) y q(x) son funciones polynomial functions, and q(x) 0. polinomiales y q(x) 0. R14 Glossary/Glosario p(x) q(x) rational inequality (508) Any inequality that contains one or more rational expressions. desigualdad racional Cualquier desigualdad que contiene una o más expresiones racionales. rationalizing the denominator (251) To eliminate radicals from a denominator or fractions from a radicand. racionalizar el denominador La eliminación de radicales de un denominador o de fracciones de un radicando. m n Any number , where m and rational number (11) n are integers and n is not zero. The decimal form is either a terminating or repeating decimal. m n número racional Cualquier número , donde m y n son enteros y n no es cero. Su expansión decimal es o terminal o periódica. real numbers (11) All numbers used in everyday life; the set of all rational and irrational numbers. números reales Todos los números que se usan en la vida cotidiana; el conjunto de los todos los números racionales e irracionales. recursive formula (606) Each term is formulated from one or more previous terms. fórmula recursiva Cada término proviene de uno o más términos anteriores. reference angle (718) The acute angle formed by the terminal side of an angle in standard position and the x-axis. ángulo de referencia El ángulo agudo formado por el lado terminal de un ángulo en posición estándar y el eje x. reflection (177) A transformation in which every point of a figure is mapped to a corresponding image across a line of symmetry. reflexión Transformación en que cada punto de una figura se aplica a través de una recta de simetría a su imagen correspondiente. reflection matrix (177) A matrix used to reflect an object over a line or plane. matriz de reflexión Matriz que se usa para reflejar una figura sobre una recta o plano. regression line (87) recta de regresión relation (56) A line of best fit. A set of ordered pairs. Una recta de óptimo ajuste. relación Conjunto de pares ordenados. histograma de frecuencia relativa Tabla de probabilidades o gráfica para asistir en la visualización de una distribución de probabilidad. relative maximum (354) A point on the graph of a function where no other nearby points have a greater y-coordinate. máximo relativo Punto en la gráfica de una función en donde ningún otro punto cercano tiene una coordenada y mayor. f (x ) f (x ) relative maximum O x relative minimum máximo relativo O x mínimo relativo relative minimum (354) A point on the graph of a function where no other nearby points have a lesser y-coordinate. mínimo relativo Punto en la gráfica de una función en donde ningún otro punto cercano tiene una coordenada y menor. root (294) raíz Las soluciones de una ecuación cuadrática. The solutions of a quadratic equation. rotation (178) A transformation in which an object is moved around a center point, usually the origin. rotación Transformación en que una figura se hace girar alrededor de un punto central, generalmente el origen. rotation matrix (178) object. matriz de rotación Matriz que se usa para hacer girar un objeto. row matrix (155) A matrix used to rotate an A matrix that has only one row. matriz fila Matriz que sólo tiene una fila. Glossary/Glosario R15 Glossary/Glosario relative frequency histogram (646) A table of probabilities or a graph to help visualize a probability distribution. S sample space (632) of an event. scalar (162) The set of all possible outcomes A constant. escalar Una constante. scalar multiplication (162) Multiplying any matrix by a constant called a scalar; the product of a scalar k and an m n matrix. multiplicación por escalares Multiplicación de una matriz por una constante llamada escalar; producto de un escalar k y una matriz de m n. scatter plot (81) A set of data graphed as ordered pairs in a coordinate plane. gráfica de dispersión Conjuntos de datos graficados como pares ordenados en un plano de coordenadas. scientific notation (225) The expression of a number in the form a 10n, where 1 a 10 and n is an integer. notación científica Escritura de un número en la forma a 10n, donde 1 a 10 y n es un entero. secant (701) For any angle, with measure , a point P(x, y) on its terminal side, r x2 y2, r sec . secante Para cualquier ángulo de medida , un punto P(x, y) en su lado terminal, r x2 y2, r sec . second-order determinant (182) a 2 2 matrix. determinante de segundo orden El determinante de una matriz de 2 2. x The determinant of x sequence (578) A list of numbers in a particular order. sucesión series (583) serie Suma específica de los términos de una sucesión. The sum of the terms of a sequence. Lista de números en un orden particular. set-builder notation (34) The expression of the solution set of an inequality, for example {x x 9}. notación de construcción de conjuntos Escritura del conjunto solución de una desigualdad, por ejemplo, {x x 9}. sigma notation (585) notación de suma Para cualquier sucesión a1, a2, a3,…, la suma de los k primeros términos puede For any sequence a1, a2, a3,…, k Glossary/Glosario espacio muestral Conjunto de todos los resultados posibles de un experimento probabilístico. the sum of the first k terms may be written an, n1 which is read “the summation from n 1 to k of k an.” Thus, an a1 a2 a3 … ak, where k n1 is an integer value. simple event (658) One event. k escribirse an, lo que se lee “la suma de n 1 a n1 k k de los an.” Así, an a1 a2 a3 … ak, n1 donde k es un valor entero. evento simple Un solo evento. simplify (222) To rewrite an expression without parentheses or negative exponents. reducir Escribir una expresión sin paréntesis o exponentes negativos. simulation (681) The use of a probability experiment to mimic a real-life situation. simulación Uso de un experimento probabilístico para imitar una situación de la vida real. sine (701) For any angle, with measure , a point P(x, y) on its terminal side, r x2 + y2, sin seno Para cualquier ángulo, de medida , un punto P(x, y) en su lado terminal, r x2 + y2, sin y r . skewed distribution (671) that is not symmetric. Positively Skewed R16 Glossary/Glosario y r . A curve or histogram Negatively Skewed distribución asimétrica Curva o histograma que no es simétrico. Positivamente Alabeada Negativamente Alabeada pendiente La razón del cambio en coordenadas y al cambio en coordenadas x. slope-intercept form (75) The equation of a line in the form y mx b, where m is the slope and b is the y-intercept. forma pendiente-intersección Ecuación de una recta de la forma y mx b, donde m es la pendiente y b la intersección. solution (20) A replacement for the variable in an open sentence that results in a true sentence. solución Sustitución de la variable de un enunciado abierto que resulta en un enunciado verdadero. solving a right triangle (704) The process of finding the measures of all of the sides and angles of a right triangle. resolver un triángulo rectángulo Proceso de hallar las medidas de todos los lados y ángulos de un triángulo rectángulo. square matrix (155) A matrix with the same number of rows and columns. matriz cuadrada Matriz con el mismo número de filas y columnas. square root (245) For any real numbers a and b, if a2 b, then a is a square root of b. raíz cuadrada Para cualquier número real a y b, si a2 b, entonces a es una raíz cuadrada de b. square root function (395) A function that contains a square root of a variable. función radical Función que contiene la raíz cuadrada de una variable. Square Root Property (306) For any real number n, if x2 n, then x n . Propiedad de la raíz cuadrada Para cualquier número real n, si x2 n, entonces x n . standard deviation (665) The square root of the variance, represented by . desviación estándar La raíz cuadrada de la varianza, la que se escribe . standard form (64) A linear equation written in the form Ax By C, where A, B, and C are real numbers and A and B are not both zero. forma estándar Ecuación lineal escrita de la forma Ax By C, donde A, B, y C son números reales y A y B no son cero simultáneamente. standard position (709) An angle positioned so that its vertex is at the origin and its initial side is along the positive x-axis. posición estándar Ángulo en posición tal que su vértice está en el origen y su lado inicial está a lo largo del eje x positivo. step function (89) A function whose graph is a series of line segments. función etapa Función cuya gráfica es una serie de segmentos de recta. substitution method (116) A method of solving a system of equations in which one equation is solved for one variable in terms of the other. método de sustitución Método para resolver un sistema de ecuaciones en que una de las ecuaciones se resuelve en una de las variables en términos de la otra. success (644) éxito El resultado deseado de un evento. The desired outcome of an event. synthetic division (234) A method used to divide a polynomial by a binomial. división sintética Método que se usa para dividir un polinomio entre un binomio. synthetic substitution (365) The use of synthetic division to evaluate a function. sustitución sintética Uso de la división sintética para evaluar una función polinomial. system of equations (110) the same variables. sistema de ecuaciones Conjunto de ecuaciones con las mismas variables. A set of equations with system of inequalities (123) A set of inequalities with the same variables. sistema de desigualdades Conjunto de desigualdades con las mismas variables. T tangent (427, 701) 1. A line that intersects a circle at exactly one point. 2. For any angle, with measure , a point P(x, y) on its terminal side, y x x2 y2, tan . r tangente 1. Recta que interseca un círculo en un solo punto. 2. Para cualquier ángulo, de medida , un punto P(x, y) en su lado terminal, y x x2 y2, tan . r Glossary/Glosario R17 Glossary/Glosario slope (68) The ratio of the change in y-coordinates to the change in x-coordinates. term (229, 578) 1. The monomials that make up a polynomial. 2. Each number in a sequence or series. término 1. Los monomios que constituyen un polinomio. 2. Cada número de una sucesión o serie. terminal side of an angle (709) A ray of an angle that rotates about the center. lado terminal de un ángulo Rayo de un ángulo que gira alrededor de un centro. y 90˚ terminal side y 90˚ lado terminal O initial side 180˚ x vertex x vértice 270˚ third-order determinant (183) 3 3 matrix. Glossary/Glosario O lado inicial 180˚ 270˚ Determinants of a determinante de tercer orden matriz de 3 3. Determinante de una transformation (175) Functions that map points of a pre-image onto its image. transformación Funciones que aplican puntos de una preimagen en su imagen. translation (175) A figure is moved from one location to another on the coordinate plane without changing its size, shape, or orientation. traslación Se mueve una figura de un lugar a otro en un plano de coordenadas sin cambiar su tamaño, forma u orientación. translation matrix (175) translated figure. matriz de traslación Matriz que representa una figura trasladada. A matrix that represents a transverse axis (442) The segment of length 2a whose endpoints are the vertices of a hyperbola. eje transversal El segmento de longitud 2a cuyos extremos son los vértices de una hipérbola. trigonometric equation (799) An equation containing at least one trigonometric function that is true for some but not all values of the variable. ecuación trigonométrica Ecuación que contiene por lo menos una función trigonométrica y que sólo se cumple para algunos valores de la variable. trigonometric functions (701, 717) For any angle, with measure , a point P(x, y) on its terminal x2 y2, the trigonometric functions of side, r are as follows. funciones trigonométricas Para cualquier ángulo, de medida , un punto P(x, y) en su lado x2 y2, las funciones terminal, r trigonométricas de son las siguientes. y r r csc y sin x r r sec x cos y x x cot y y r r csc y tan x r r sec x sen cos y x x cot y tan trigonometric identity (777) An equation involving a trigonometric function that is true for all values of the variable. identidad trigonométrica Ecuación que involucra una o más funciones trigonométricas y que se cumple para todos los valores de la variable. trigonometry (701) The study of the relationships between the angles and sides of a right triangle. trigonometría Estudio de las relaciones entre los lados y ángulos de un triángulo rectángulo. trinomial (229) A polynomial with three unlike terms. trinomio Polinomio con tres términos diferentes. U unbiased sample (682) A sample in which every possible sample has an equal chance of being selected. muestra no sesgada Muestra en que cualquier muestra posible tiene la misma posibilidad de seleccionarse. unbounded (130) A system of inequalities that forms a region that is open. no acotado Sistema de desigualdades que forma una región abierta. union (41) The graph of a compound inequality containing or. unión Gráfica de una desigualdad compuesta que contiene la palabra o. R18 Glossary/Glosario unit circle (710) A circle of radius 1 unit whose center is at the origin of a coordinate system. (0, 1) (0, 1) measures 1 radian. y 1 (1, 0) círculo unitario Círculo de radio 1 cuyo centro es el origen de un sistema de coordenadas. 1 1 unit (1, 0) x O mide 1 radián. y 1 unidad x O (1, 0) (1, 0) (0, 1) (0, 1) V variables Símbolos, por lo general letras, que se usan para representar cantidades desconocidas. variance (665) The mean of the squares of the deviations from the arithmetic mean. varianza Media de los cuadrados de las desviaciones de la media aritmética. vertex (287, 442) 1. The point at which the axis of symmetry intersects a parabola. 2. The point on each branch nearest the center of a hyperbola. vértice 1. Punto en el que el eje de simetría interseca una parábola. 2. El punto en cada rama más cercano al centro de una hipérbola. vertex form (322) A quadratic function in the form y a(x h)2 k, where (h, k) is the vertex of the parabola and x h is its axis of symmetry. forma de vértice Función cuadrática de la forma y a(x h)2 k, donde (h, k) es el vértice de la parábola y x h es su eje de simetría. vertex matrix (175) A matrix used to represent the coordinates of the vertices of a polygon. matriz de vértice Matriz que se usa para escribir las coordenadas de los vértices de un polígono. vertical asymptote (485) If the related rational expression of a function is written in simplest form and is undefined for x a, then x a is a vertical asymptote. asíntota vertical Si la expresión racional que corresponde a una función racional se reduce y está no definida en x a, entonces x a es una asíntota vertical. vertical line test (57) If no vertical line intersects a graph in more than one point, then the graph represents a function. prueba de la recta vertical Si ninguna recta vertical interseca una gráfica en más de un punto, entonces la gráfica representa una función. vertices (129) The maximum or minimum value that a linear function has for the points in a feasible region. vértices El valor máximo o mínimo que una función lineal tiene para los puntos en una región viable. X x-intercept (65) The x-coordinate of the point at which a graph crosses the x-axis. intersección x La coordenada x del punto o puntos en que una gráfica interseca o cruza el eje x. Y y-intercept (65) The y-coordinate of the point at which a graph crosses the y-axis. intersección y La coordenada y del punto o puntos en que una gráfica interseca o cruza el eje y. Z zeros (294) The x-intercepts of the graph of a quadratic equation; the points for which f(x) 0. ceros Las intersecciones x de la gráfica de una ecuación cuadrática; los puntos x para los que f(x) 0. zero matrix (155) is zero. matriz nula Matriz cuyos elementos son todos igual a cero. A matrix in which every element Glossary/Glosario R19 Glossary/Glosario variables (7) Symbols, usually letters, used to represent unknown quantities. Selected Answers Chapter 1 Solving Equations and Inequalities Page 5 Chapter 1 1. 19.84 3. 17.51 2 13. 2 3 4 15. 8 5 Getting Started 5 1 5. 7. 2 9. 0.48 12 6 11. 1.1 4 9 17. 8 19. 49 21. 0.64 23. 25. false 27. true 29. false 31. true Pages 8–10 Lesson 1-1 1. First, find the sum of c and d. Divide this sum by e. Multiply the quotient by b. Finally, add a. 3. b; The sum of the cost of adult and children tickets should be subtracted from 50. Therefore parentheses need to be inserted around this sum to insure that this addition is done before subtraction. 5. 6 7. 1 9. 119 11. 23 13. $432 15. $1162.50 17. 3 29. 3 27. 14 31. 162 drops per min 1 49. 2 6 1 35. 25 3 33. 2.56 41. 4.2 39. 2 51. 16 21. 34 23. 5 19. 25 43. 4 53. $8266.03 Pages 14–17 57. C 37. 31.25 1. 14 61. 10 63. 2 2 3 65. Lesson 1-2 1 0 not have a multiplicative inverse since is undefined. 5. N, W, Z, Q, R 7. Multiplicative Inverse 1 3 11. , 3 Selected Answers 13. 2x 4y 9. Additive 15. 3c 18d 17. 1.5(10 15 12 8 19 22 31) or 1.5(10) 1.5(15) 1.5(12) 1.5(8) 1.5(19) 1.5(22) 1.5(31) 19. W, Z, Q, R 21. N, W, Z, Q, R 23. I, R 25. N, W, Z, Q, R 27. Q, R; 2.4, 2.49, 2.4 9, 2.49, 2.9 29. Associative () 31. Associative () 33. Multiplicative Inverse 35. Multiplicative Identity 37. m; Additive 1 Inverse 39. 1 41. 2 units 43. 10; 45. 0.125; 8 4 3 3 4 47. , 49. 3a 2b 51. 40x 7y 10 53. 12r 4t 55. 3.4m 1.8n 57. 8 9y 59. true 61. false; 6 63. 6.5(4.5 4.25 5.25 6.5 5) or 6.5(4.5) 6.5(4.25) (6.5)5.25 6.5(6.5) 6.5(5) 65. 32 21 1 4 1 8 32 21 1 4 1 8 Definition of a mixed number 3(2) 3 2(1) 2 Distributive Property 1 4 1 8 3 4 1 4 3 1 6 2 4 4 3 1 8 4 4 3 1 8 4 4 6 2 8 1 or 9 67. 4700 ft2 69. $62.15 R20 Selected Answers Multiply. Commutative Property () Add. Associative Property () Add. 85. 4.3 Practice Quiz 1 3. 6 6 7 7 6 7. N, W, Z, Q, R 9. , 5. 2 amperes Pages 24–27 1a. Sample answer: 2 1b. Sample answer: 5 1c. Sample answer: 11 1d. Sample answer: 1.3 1e. Sample answer: 2 1f. Sample answer: 1.3 3. 0; Zero does Identity 83. 11 47. 8 55. Sample answer: 59. 3 81. 2.75 Page 17 45. 1.4 2 3 77. False; 2 3 , which is not a whole number. 79. 6 25. 31 4 4 4 4 1; 4 4 4 4 2; (4 4 4) 4 3; 4 (4 4) 4 4; (4 4 4) 4 5; (4 4) 4 4 6; 44 4 4 7; (4 4) (4 4) 8; 4 4 4 4 9; (44 4) 4 10 71. Answers should include the following. • Instead of doubling each coupon value and then adding these values together, the Distributive Property could be applied allowing you to add the coupon values first and then double the sum. • If a store had a 25% off sale on all merchandise, the Distributive Property could be used to calculate these savings. For example, the savings on a $15 shirt, $40 pair of jeans, and $25 pair of slacks could be calculated as 0.25(15) 0.25(40) 0.25(25) or as 0.25(15 40 25) using the Distributive Property. 73. C 75. False; 0 1 1, which is not a whole number. Lesson 1-3 1. Sample answer: 2x 14 3. Jamal; his method can be confirmed by solving the equation using an alternative method. 5 9 5 5 C F (32) 9 9 5 5 C (32) F 9 9 9 5 C (32) F 5 9 9 C 32 F 5 C (F 32) 5. 2n n3 7. Sample answer: 5 plus 3 times the square of a number is twice that number. 9. Addition () 11. 14 13. 4.8 I rt 17. p 15. 16 23. 5(9 n) 25. n 2 4 19. 5 3n 21. n2 4 27. 2 rh 2 r2 29. Sample answer: 5 less than a number is 12. 31. Sample answer: A number squared is equal to 4 times the number. 33. Sample answer: A number divided by 4 is equal to twice the sum of that number and 1. 35. Substitution () 37. Transitive () 39. Symmetric () 41. 7 43. 3.2 1 47. 8 12 3V 59. 2 h r 45. 1 55 d 57. r 4 2 t x(c 3) 61. b 2 63. n number of games; a 51. 1 53. 55. 49. 7 2(1.50) n(2.50) 16.75; 5 65. x cost of gasoline per mile; 972 114 105 7600x 1837; 8.5¢/mi 67. a Chun-Wei's age; a (2a 8) (2a 8 3) 94; Chun-Wei: 15 yrs old, mother: 38 yrs old, father: 41 yrs old 69. n number of lamps broken; 12(125) 45n 1365; 3 lamps 71. 15.1 mi/month 73. The Central Pacific had to lay their track through the Rocky Mountains, while the Union Pacific mainly built track over flat prairie. 75. the product of 3 and the difference of a number and 5 added to the product of four times the number and the sum of the number and 1 77. B 79. 6x 8y 4z 81. 6.6 83. 105 cm2 85. 3 1 4 87. 89. 5 6y Pages 30–32 Lesson 1-4 1. a a when a is a negative number and the negative of a negative number is positive. 3. Always; since the opposite of 0 is still 0, this equation has only one case, b ax b 0. The solution is . a 5. 8 7. 17 9. {18, 12} 11. {32, 36} 13. {8} 15. least: 158°F; greatest: 162°F 17. 15 19. 0 21. 3 23. 4 25. 9.4 27. 55 29. {8, 42} 31. {45, 21} 33. {2, 16} 35. 37. 2, 39. 3 2 9 2 11 3 maximum: 205°F; minimum: 195°F 49. x 13 5; maximum: 18 km, minimum: 8 km 51. sometimes; true only if c 0 53. B 55. x 1 2 x 4; x 1 2 (x 4) 57. {1.5} 63. 14 65. Distributive 71. false; 1.2 73. 364 Pages 37–39 2 77. 3 75. 8 16 3 69. true 3 79. 4 5 5 5. xx or , 3 3 0 1 2 3 0 0.5 8 6 1 2 0 2 4 6 4 1 0 1 2 3 4 5 6 7 8 9 10 19. {gg 27} or (, 27] 4 4 2 22 24 2 0 2 2 4 3 5 26 4 28 3 0 1 5 1 5 4 2 3 5 1 0 2 4 1 2 41. n 8 2; n 6 43. n 7 5; 45. 2(n 5) 3n 11; n 1 47. 2(7m) 17; 49. n 34.97; She must sell at least 35 cars. 51. s 91; Ahmik must score at least 91 on her next test to have an A test average. 53. Answers should include the following. • 150 400 • Let n equal the number of minutes used. Write an expression representing the cost of Plan 1 and for Plan 2 for n minutes. The cost for Plan 1 would include a monthly access fee of $35 plus 40¢ for each minute over 150 minutes or 35 0.4(n 150). The cost for Plan 2 for 400 minutes or less would be $55. To find where Plan 2 would cost less than Plan 1 solve 55 35 0.4(n 150) for n. The solution set is {nn 200}, which means that for more than 200 minutes of calls, Plan 2 is cheaper. 55. D 57. x 2 59. {14, 20} 61. 63. N, W, Z, Q, R 65. I, R 67. {7, 7} 69. 4, 71. {11, 1} 4 5 Page 39 Practice Quiz 2 4 4 3. 14 5. mm or , 9 9 30 2 9 Pages 43–46 2 2 0 2 9 4 9 2 3 8 1 9 Lesson 1-6 1. 5 c 15 3. Sabrina; an absolute value inequality of the form a b should be rewritten as an or compound inequality, a b or a b. 5. n 3 23. {mm 4} or (4, ) 2 1 5 6 21. {kk 3.5} or [3.5, ) 5 0 39. at least 25 h 1. 0.5 4 2.5 4 6 4 2 0 2 4 Selected Answers R21 Selected Answers 8 17. {xx 7} or (, 7) 6 2 17 m ; at least 2 child care staff members 14 13. 2n 3 5; n 4 15. {nn 11} or [11, ) 14 12 10 6 n 24 11. all real numbers or (, ) 6 1.5 33. {gg 2} or (, 2) 37. 8 9 10 11 12 13 14 15 16 17 18 19 7 6 31. {dd 5} or [5, ) 1 9. {pp 15} or (15, ) 20 4 27. {nn 1.75} or [1.75, ) 1 5 1 0 1 2 3 4 5 6 7 8 9 10 4 2 35. yy or , 7. {yy 6} or (6, ) 6 0 Lesson 1-5 1. Dividing by a number is the same as multiplying by its inverse. 3. Sample answer: x 2 x 1 2 286 284 282 280 278 276 59. 2(n 11) 61. 67. Additive Identity ft2 4 29. {xx 279} or (, 279) 43. , 3 45. {8} 47. x 200 5; 41. {5, 11} 25. {tt 0} or (, 0] 7. n 2 9. {d2 d 3} 53b. 4 2 0 2 4 8 4 0 4 13. all real numbers 4 2 0 15. n 5 17. n 4 19. n 8 2 4 4 6 8 4 0 4 8 12 4 2 0 2 4 6 8 4 0 4 8 12 0 2 4 8 2 6 4 4 35. 0 2 4 6 12 8 4 4 8 57. 6 4 2 0 2 4 2 0 2 4 6 65. {10, 16} 67. 69. Symmetric () 71. 3a 7b 73. 2 75. 7 4 2 4 2 0 8 12 Pages 47–50 0 0 63. {nn 1} or (, 1) 0 2 4 8 Chapter 1 6 23. 5a 24b 25. 14 12 Study Guide and Review 1. compound inequality 3. Commutative () 5. Reflexive () 7. Multiplicative Inverse 9. absolute value 11. 22 13. 49 15. 23 17. 37.5 19. Q, R 21. I, R 37. {bb 10 or b 2} Selected Answers 2 53d. 3 x 2 8 can be rewritten as x 2 3 and x 2 8. The solution of x 2 3 is x 1 or x 5. The solution of x 2 8 is 10 x 6. Therefore, the union of these two sets is (x 1 or x 5) and (10 x 6). The union of the graph of x 1 or x 5 and the graph of 10 x 6 is shown below. From this we can see that solution can be rewritten as (10 x 5) or (1 x 6). 8 4 0 4 4 4 6 33. {g9 g 9} 8 6 59. (5x 2 3) or (5x 2 3); {xx 0.2 or x 1} 61. {dd 6} or [6, ) 0 8 4 12 31. {f7 f 5} 10 2 25. n 1 1 29. {x2 x 4} 4 0 55. x 5 or x 6 21. n 1 23. n 1.5 27. {pp 2 or p 8} 8 2 53c. 11. {g13 g 5} 16 12 4 6 A 1 rt 33. p 16 35. {6, 18} 37. {6} 39. , 1 3 2 41. {xx 5} or [5, ) 39. w w 1 7 3 2 1 0 1 2 3 4 5 6 7 8 9 10 1 0 1 43. {aa 2} or (2, ) 41. all real numbers 2 4 2 0 7 43. nn 2 2 0 4 1 6 2 0 2 4 6 8 45. {xx 1.8} or (1.8, ) 3 4 45. 6.8 x 7.4 47. 45 s 55 49. 108 in. L D 130 in. 51. a b c, a c b, b c a 5 2.2 2.0 1.8 1.6 1.4 1.2 47. y y 5 5 3 53a. 4 2 R22 Selected Answers 0 2 4 6 1 2 3 4 5 C By A 27. 13 29. 4 31. x 6 27. D {3.6, 0, 1.4, 2}, R {3, 1.1, 2, 8}; yes 49. {y9 y 18} 29. D all reals, R all reals; yes y 12 6 0 6 12 y 18 (3.6, 8) 51. bb 4 or b 10 3 x O 4 3 Chapter 2 Functions Page 55 2 1 (1.4, 2) x O (0, 1.1) (2, 3) Linear Relations and Chapter 2 1. (3, 3) 3. (3, 1) 13. x 1 15. 2x 6 y 5x Getting Started 5. (0, 4) 7. 2 1 2 17. x 2 9. 9 19. 3 11. 2 21. 15 23. 2.5 31. D all reals, R all reals; yes 33. D all reals, R {yy 0}; yes y y Pages 60–62 Lesson 2-1 1. Sample answer: {(4, 3), (2, 3), (1, 5), (2, 1)} 3. Molly; to find g(2a), replace x with 2a. Teisha found 2g(a), not g(2a). 5. yes 7. D {7}, R {1, 2, 5, 8}, 9. D all reals, R all no reals, yes (7, 8) y American League Leaders 170 x O 165 y 2x 1 11. 10 x O 35. (7, 2) 160 RBI (7, 1) y x2 y 3x 4 y (7, 5) O x O x 155 150 145 13. D {70, 72, 88}, R {95, 97, 105, 114} 140 0 15. Record High Temperatures 48 50 52 54 56 HR 115 July 37. No; the domain value 56 is paired with two different range values. 105 100 95 39. 70 80 January 17. yes 19. no 21. yes 23. D {3, 1, 2}, R {0, 1, 5}; yes 70 60 50 25. D {2, 3}, R {5, 7, 8}; no (2, 8) y Stock Price 90 y (3, 7) (1, 5) Price ($) 0 40 30 20 10 (2, 5) 0 1996 (2, 1) 1998 2000 2002 Year 2004 (3, 0) O x O x 41. Yes; each domain value is paired with only one range value. Selected Answers R23 Selected Answers 110 43. 45. none, 2 43. 0, 0 30+ Years of Service y Representatives 14 12 y yx 10 O 8 x 6 4 y 2 2 0 ’87 ’91 ’95 Year ’99 1 4 49. , 1 47. 8, none 45. Yes; no; each domain value is paired with only one range value so the relation is a function, but the range value 12 is paired with two domain values so the function is not one-to-one. 47. 6 49. 3 51. 25n2 5n 53. 11 55. f(x) 4x 3 57. B 59. discrete 61. discrete 63. {y8 y 6} 65. {xx 5.1} 67. $29.82 69. 31a 10b 71. 2 73. 15 Pages 65–67 8 6 4 2 8 64 2 2 4 6 8 y f (x ) f (x ) 4x 1 x8 O 2 4 6 51. Lesson 2-2 y 1 1. The function can be written as f(x) x 1, so it is of 2 1 the form f(x) mx b, where m and b 1. 3. Sample 2 answer: x y 2 x x O The lines are parallel but have different y-intercepts. 53. 90°C x y 5 5. yes 7. 2x 5y 3; 2, 5, 3 x O 5 3 9. , 5 11. 2, 3 y y x O xy0 x y 5 3x 2y 6 x O 55. 57. y 3x 5 Selected Answers x O 160 120 80 40 13. $177.62 15. yes 17. No; y is inside a square root. 19. No; x appears in a denominator. 21. No; x has an exponent other than 1. 23. x2 5y 0 25. 7200 m 27. 3x y 4; 3, 1, 4 29. x 4y 5; 1, 4, 5 31. 2x y 5; 2, 1, 5 33. x y 12; 1, 1, 12 35. x 6; 1, 0, 6 37. 25x 2y 9; 25, 2, 9 10 3 5 2 41. , 39. 3, 5 y y 3x 4y 10 0 5x 3y 15 O x O R24 Selected Answers x 4 32 c T (d ) O1 2 3 4 d 40 80 120 T (d ) 35d 20 160 350 300 250 200 150 100 50 0 1.75b 1.5c 525 100 200 400b 59. no 61. A linear equation can be used to relate the amounts of time that a student spends on each of two subjects if the total amount of time is fixed. Answers should include the following. • x and y must be nonnegative because Lolita cannot spend a negative amount of time studying a subject. • The intercepts represent Lolita spending all of her time on one subject. The x-intercept represents her spending all of her time on math, and the y-intercept represents her spending all of her time on chemistry. 63. B 65. D {0, 1, 2}, R {1, 0, 2, 3}; no y 67. {xx 6 or x 2} 1 71. 3 69. 3s 14 75. 5 77. 0.4 (1, 3) (0, 2) 43. 45. 73. 2 (1, 0) 49. y 1 2 vice versa. 5. y x O y 9. y x O 13. 1.25°/hr y x O x O 11. x O 47. Lesson 2-3 1. Sample answer: y 1 3. Luisa; Mark did not subtract in a consistent manner when using the slope formula. If y2 5 and y1 4, then x2 must be 1 and x1 must be 2, not 7. x O x (2, 1) O Pages 71–74 y y 5 2 3 5 15. 17. 19. 0 21. 8 23. 4 25. undefined 27. 1 29. about 0.6 51. Yes; slopes show that adjacent sides are perpendicular. 53. The grade or steepness of a road can be interpreted mathematically as a slope. Answers should include the following. • Think of the diagram at the beginning of the lesson as being in a coordinate plane. Then the rise is a change in y-coordinates and the horizontal distance is a change in x-coordinates. Thus, the grade is a slope expressed as a percent. • y x O x y 0.08x O 31. 33. y y x 55. D 57. The graphs have the same y-intercept. As the slopes become more negative, the lines get steeper. 8 3 59. 2, O x y x x O 37. about 68 million per year 39. The number of cassette tapes shipped has been decreasing. 41. 45 mph 35. O y 4x 3y 8 0 61. 7 5 2 63. 65. {x1 x 3} 71. y 4x 2 Page 74 5 2 1 2 67. at least 8 2 3 69. 9 11 3 73. y x 75. y x Practice Quiz 1 1. D {7, 3, 0, 2}, R {2, 1, 2, 4, 5} 3. 6x y 4 Selected Answers R25 Selected Answers O 9a. 5. y Broadway Play Revenue x Revenue ($ millions) O 700 600 500 400 300 200 100 0 1. Sample answer: y 3x 2 3 5 3. Solve the equation for y 2 5 3 5 to get y x . The slope of this line is . The slope of a parallel line is the same. 3 5 16 5 9. y x 3 2 3 4 5. , 5 5 4 7. y x 2 2 3 11. y x 7 13. , 4 19. y 0.8x 21. y 4 17. undefined, none 1 2 5 2 15. , 1 7 23. y 3x 6 25. y x 27. y 0.5x 2 2 2 4 17 29. y x 31. y 0 33. y x 4 5 5 1 2 10 23 35. y x 37. y x 39. y 3x 2 15 3 3 5 41. d 180c 360 43. 540° 45. 10 mi 47. 68°F y x 49. y 0.35x 1.25 51. y 2x 4 53. C 55. 1 5 57. 2 59. 0 Pages 83–86 61. 63. {rr 6} 65. 6.5 67. 5.85 Households (millions) Cable Television 40 35 80 70 60 30 25 20 15 10 5 50 0 40 200 400 600 Elevation (ft) 30 20 10 0 ’88 ’90 ’92 ’94 ’96 ’98 ’00 Year 17. Sample answer: about 23 in. 19. Sample answer: Using (1975, 62.5) and (1995, 81.7): 96.1% 23. D 25. 1988, 1993, 1998; 247, 360.5, 461 27. 354 29. y 21.4x 42,294.03 31. y 4x 6 39. 11 33. 3 29 3 35. 2 41. 3 37. {xx 7 or x 1} 5b. Sample answer using (1992, 57) and (1998, 67): y 1.67x 3269.64 5c. Sample answer: about 87 million 7a. 2000–2001 Detroit Red Wings 60 50 Assists Selected Answers 9b. Sample answer using (1, 499) and (3, 588): y 44.5x 454.5, where x is the number of seasons since 1995–1996 9c. Sample answer: about $1078 million or $1.1 billion 11. Sample answer: $1091 13. Sample answer: Using the data for August and November, a prediction equation for Company 1 is y 0.86x 25.13, where x is the number of months since August. The negative slope suggests that the value of Company 1’s stock is going down. Using the data for October and November, a prediction equation for Company 2 is y 0.38x 31.3, where x is the number of months since August. The positive slope suggests that the value of Company 2’s stock is going up. Since the value of Company 1’s stock appears to be going down, and the value of Company 2’s stock appears to be going up, Della should buy Company 2. 15. World Cities Lesson 2-5 1. d 3. Sample answer using (4, 130.0) and (6, 140.0): y 5x 110 5a. 1 2 3 4 Seasons Since ’95–’96 Lesson 2-4 Precipitation (in.) Pages 78–80 Pages 92–95 Lesson 2-6 1. Sample answer: [[1.9]] 1 3. Sample answer: f(x) x 1 5. S 7. D all reals, R all 9. D all reals, R all integers nonnegative reals 40 g(x) f(x) 30 g(x) 2x 20 10 0 O 10 20 30 40 Goals 7b. Sample answer using (4, 5) and (32, 37): y 1.14x 0.44 7c. Sample answer: about 13 R26 Selected Answers x f (x) |3x 2| O x 11. D all reals, R all reals 37. D all reals, R all nonnegative reals 13. Cost ($) | 17. S 19. A 21. 2| f(x) x 1 x 0 15. C h(x) f(x) h(x) O 39. D {xx 2 or x 2}, R {1, 1} 5 4 3 2 1 O x O Time (hr) 41. D all reals, R {yy 2} 23. $1.00 y 43. D all reals, R all nonnegative whole numbers g(x) 60 x O x 180 300 g(x) O x x O g(x) | x| 25. D all reals, R all integers 27. D all reals, R {3aa is an integer.} g(x) 12 9 6 g(x) x 2 x O O 4 3 2 1 3 6 9 12 h(x) 45. f(x) x 2 h(x) 3 x 47. x 49. 1 2 3 4 y f(x) |x| |y| 3 x O 29. D all reals, R all integers 31. D all reals, R all nonnegative reals h(x) f(x) 51. B 53. f(x) x 1 Selected Answers 78 x O Expectancy (yr) x 33. D all reals, R {yy 4} 76 74 72 70 68 66 0 35. D all reals, R all nonnegative reals g(x) 10 20 30 40 50 Years Since 1950 f(x) g(x) |x| 4 O Life Expectancy h(x) |x| O x O f(x) |x 2| x O x 55. Sample answer: 78.7 yr 57. y x 2 59. yy 5 6 61. no 3 2 1 0 1 2 3 63. yes 65. yes Selected Answers R27 Page 95 2 3 Practice Quiz 2 11 3 21. 23. y 1. y x 3. Sample answer using (66, 138) and (74, 178): y 5x 192 5. D all reals, R nonnegative reals f(x) y y 1x 5 3 4x 5y 10 0 x O f(x) |x 1| x O O 25. 27. y Pages 98–99 x y Lesson 2-7 3. Sample answer: y x 1. y 3x 4 5. 7. y y x y |x| O x O y |x| 3 x x O O x 2y 5 y 2x 3 31. x 2 29. y 9. 11. y d x y 1 10c 13d 40 x c y 3|x| 1 13. 15. Selected Answers x x y 1 33. y y 6x 2 O y 350 250 x x O x y 5 0.4x 0.6y 90 150 50 O 17. 19. y y y 4x 3 R28 Selected Answers O O y O x 2 O x O y x y 1 O x 50 150 250 350 x 35. 4a 3s 2000 37. yes 39. yes 41. Linear inequalities can be used to track the performance of players in fantasy football leagues. Answers should include the following. • Let x be the number of receiving yards and let y be the number of touchdowns. The number of points Dana gets from receiving yards is 5x and the number of points he gets from touchdowns is 100y. His total number of points is 5x 100y. He wants at least 1000 points, so the inequality 5x 100y 1000 represents the situation. • 12 • the first one y 9. D {2, 2, 6}, R {1, 3}; 11. D all reals, R all reals; yes yes y y 5x 100y 1000 10 (6, 3) (2 , 3) 8 y 0.5x (2 , 1) 6 O x x O 4 2 O 50 100 200 13. 21 15. 5y 9 17. No; x has an exponent other than 1. 19. No; x is inside a square root. 21. 5x 2y 4; 5, 2, 4 300 x 23. 4, 20 43. B 45. 4 [10, 10] scl: 1 by [10, 10] scl: 1 25. 9, 9 y O 16 12 8 4 4 8 12 16 20 24 28 47. 2 x 4 8 12 16 2 y O x 2 4 6 8 10 12 14 4 6 8 10 12 14 1 5 y x 4 y x 9 3 11 27. 29. 31. y y x [10, 10] scl: 1 by [10, 10] scl: 1 O x O 49. D all reals, R {yy 1} g (x ) g(x) |x| 1 33. 35. y y O x 51. x O Sales vs. Experience Sales ($) 10,000 5 3 3 4 17 4 8000 37. y x 3 6000 using (1980, 29.3) and (1990, 33.6): y 0.43x 822.1 4000 43. D all reals, R all integers 2000 0 1 2 3 4 Years 53. Sample answer: $10,000 5 6 1. identity Chapter 2 3. standard 41. Sample answer 45. D all reals, R {y y 4} g (x ) f (x ) 7 f(x) x 2 55. 3 O Pages 100–104 39. y x Study Guide and Review 5. domain 7. slope x g(x) |x | 4 O x Selected Answers R29 Selected Answers x O 47. D all reals, R {y y 0 or y 2} 49. 17. f (x ) 19. 9 y y 21. 0 23. 22 x O x O O 2x y 6 x y 3x 5 51. 53. y Pages 112–115 y y |x | 2 y 0.5x 4 x O Lesson 3-1 1. Two lines cannot intersect in exactly two points. 3. A graph is used to estimate the solution. To determine that the point lies on both lines, you must check that it satisfies both equations. x O 7. consistent and independent 5. y y 3x 2y 10 (1, 5) yx4 (2, 2) y6x 2x 3y 10 Chapter 3 Systems of Equations and Inequalities Page 109 Chapter 3 Getting Started y 1. x O x O x 2y 8 y 2x 3 7. y 2x 9. y 6 3x 11. y 2 6x y 5. Selected Answers x O 2y x 1 xy4 2 13. 15. y y x 2y 6 y 3x 1 x O (4, 1) x O 2x 3y 12 y 2x 4 13. y x 2y 11 (5, 3) 2x 3y 7 3x 7y 6 y 2x 2 (3.5, 0) x O x O 2x y 9 19. y y x x O (1, 2) 17. 15. y y 2 O x O 9. consistent and dependent 11. The cost is $5.60 for both y stores to develop 30 prints. y 3. x O O x 2x 3y 7 R30 Selected Answers 21. 23. y 1 x 2y 5 4 2x y 4 1 xy0 2 (4, 2) x O z 3 71. x2 6 73. 1 75. 9y 1 77. 12x 18y 6 79. x 4y x O x O 2x y 6 61. A 63. P 65. {15, 9} 67. {2, 3} 69. {9} y 59. y (4, 2) 1 x 1 y 2 4 2 25. inconsistent yx4 27. consistent and independent y y (1, 5) Pages 119–122 11. 3, 2 13. (9, 5) 15. (3, 2) 1 3 x O x yx4 29. inconsistent O 4x y 9 31. consistent and independent y y yx5 2y x (1 , 1) 2 4 x O x 8y 2x 1 O 2y 2x 8 33. consistent and independent 35. inconsistent y y 1x2 3 (5, 4) Lesson 3-2 3. Vincent; Juanita subtracted the two equations incorrectly; y y 2y, not 0. 5. (1, 3) 7. (5, 2) 9. (6, 20) xy4 2 3 17. no solution 19. (4, 3) 21. (2, 0) 23. (10, 1) 25. (4, 3) 27. (8, 3) 29. no solution 31. , 33. (6, 11) 35. (1.5, 0.5) 2 2 37. 8, 6 39. x y 28, 16x 19y 478 41. 4 2-bedroom, 2 3-bedroom 43. x y 30, 700x 200y 15,000 45. 2x 4y 100, y 2x 47. Yes; they should finish the test within 40 minutes. 49. 25 min of step aerobics, 15 min of stretching 51. You can use a system of equations to find the monthly fee and rate per minute charged during the months of January and February. Answers should include the following. • The coordinates of the point of intersection are (0.08, 3.5). • Currently, Yolanda is paying a monthly fee of $3.50 and an additional 8¢ per minute. If she graphs y = 0.08x + 3.5 (to represent what she is paying currently) and y = 0.10x + 3 (to represent the other long-distance plan) and finds the intersection, she can identify which plan would be better for a person with her level of usage. 1 3 53. A 55. consistent and dependent y y 4y 2x 4 0.8x 1.5y 10 O x y 1x1 2 3y x 2 37. (3, 1) 39. y 52 0.23x, y 80 41. Deluxe Plan 43. Supply, 300,000; demand, 200,000; prices will tend to fall. 45. y 304x 15,982, y 98.6x 18,976 47. FL will probably be ranked third by 2020. The graphs intersect in the year 2015, so NY will still have a higher population in 2010, but FL will have a higher population in 2020. 49. You can use a system of equations to track sales and make predictions about future growth based on past performance and trends in the graphs. Answers should include the following. • The coordinates (6, 54) represent that 6 years after 1999 both the in-store sales and online sales will be $54,000. • The in-store sales and the online sales will never be equal and in-store sales will continue to be higher than online sales. 51. C 53. (5.56, 12) 55. no solution 57. (2.64, 42.43) 57. Selected Answers O x O x 1.2x 2.5y 4 59. y y 3x 9y 15 x O O x xy3 61. x y 0; 1, 1, 0 63. 2x y 3; 2, 1, 3 65. 3x 2y 21; 3, 2, 21 67. yes 69. no Selected Answers R31 Page 122 Practice Quiz 1 1. y 3x 10 (1, 7) 29. (4, 3), (2, 7), (4, 1), 7, 2 31. 64 units2 1 3 3. (2, 7) 5. Hartsfield, 78 million; O’Hare, 72.5 million y 33. s 111, s 130, h 9, h 12 16 Lesson 3-3 1. Sample answer: y x 3, y x 2 3d. 3 y 3a. 4 3b. 2 3c. 1 h 12 12 s 111 y s 0 y 2x 1 y 2x 4 x1 O x y 14 Swedish Soda 9. (4, 3), (1, 2), (2, 9), (7, 4) 11. Sample answer: 3 packages of bagels, 4 packages of muffins; 4 packages of bagels, 4 packages of muffins; 3 packages of bagels, 5 packages of muffins 13. 15. 12 10 x 2.5y 26 8 6 4 0 y 2 x O yx3 2 y 4x 3y 7 O 4 6 8 10 12 14 Pumpkin x 37. 6 pumpkin, 8 soda 39. The range for normal blood pressure satisfies four inequalities that can be graphed to find their intersection. Answers should include the following. • Graph the blood pressure as an ordered pair; if the point lies in the shaded region, it is in the normal range. • High systolic pressure is represented by the region to the right of x 140 and high diastolic pressure is represented by the region above y 90. 19. no solution 17. Selected Answers 2x 1.5y 24 x y 4 160 2 y y2 x 1 100 120 140 Wind Speed (mph) x 2y 3 35. y 80 x yx2 O s 130 h9 10 8 7. O Storm Surge (ft) x O 5. h 14 y x 6 Pages 125–127 1 3 x 2y x 6 41. Sample answer: y 6, y 2, x 5, x 1 45. 21. 47. y 23. y x2 O y y 2x y 4 x 8y 12 O x x (4, 2) y 2x 1 2x 4y 7 x 3y 6 43. (6, 5) (2, 3) x O O x y 1x4 2 x 4 25. (3, 4), (5, 4), (1, 4) R32 Selected Answers 2x y 6 x 3y 2 27. (6, 9), (2, 7), (10, 1) 49. 5 51. 8 53. 5 Pages 132–135 Lesson 3-4 1. sometimes y 3. y 19. vertices: (1, 2), (1, 4), (5, 2); max: f(5, 2) 4, min: f(1, 4) 10 (1, 4) (5, 2) x O y 21. y (1, 3) vertices: (0, 1), (1, 3), (6, 3), (10, 1); max: f(10, 1) 31, min: f(0, 1) 1 (6, 3) (0, 1) O (0, 2) O (0, 0) (2, 1) x (3, 0) x (4, 1) (3, 0) x O 9. c 0, 0, c 3 56, 4c 2 104 11. (0, 0), x O vertices: (3, 0), (0, 3); min: f(0, 3) 12; no maximum y vertices: (2, 4), (2, 3), (2, 3), (4, 1); max: f(2, 3) 5; min: f(2, 4) 6 y (2, 4) (0, 3) (26, 0), (20, 12), 0, 18 2 3 (2, 3) 13. 20 canvas tote bags and 12 leather tote bags (2, 3) y 15. vertices: (0, 0), (0, 2), (2, 1), (3, 0); max: f(0, 2) 6; min: f(3, 0) 12 (10, 1) 23. 7. x O (3, 1) (1, 2) 5. vertices: (3, 1), (3, 5); min: f(3, 1) 9; no maximum (3, 5) vertices: (0, 2), (4, 3), 73, 13; max: f(4, 3) 25, (0, 2) vertices: (0, 1), (6, 1), (6, 13); max: f(6, 13) 19; min: f(0, 1) 1 (6, 13) y 25. min: f(0, 2) 6 (4, 3) x O ( 73 , 13 ) vertices: (2, 5), (3, 0); no maximum; no minimum (2, 5) (0, 1) (6, 1) (3, 0) x O y 17. vertices: (1, 4), (5, 8), (5, 2), (1, 2); max: f(5, 2) 11, min: f(1, 4) 5 (5, 8) 29. y (4, 4) (2, 3) (1, 4) (1, 2) (2, 1) (5, 2) O O x O (5, 3) vertices: (2, 1), (2, 3), (4, 1), (4, 4), (5, 3); max: f(4, 1) 0, min: f(4, 4) 12 (4, 1) x x Selected Answers R33 Selected Answers y 27. 31. g 0, c 0, 1.5g c 85, 2g 0.5c 40 33. (0, 0), (0, 20), (80, 0) 35. 0 graphing calculators, 80 CAS calculators 39. (0, 0), (0, 4000), S (2500, 2000), (4500, 0) 4000 3000 2000 (0, 4000) Pages 142–144 1 2 11. 4 lb chicken, 3 lb sausage, 6 lb rice 13. (2, 1, 5) (2500, 2000) 15. (4, 0, 1) 1 3 (4500, 0) (0, 0) 2000 17. (1, 5, 7) 19. infinitely many 21. , , 23. (5, 9, 4) 25. 8, 1, 3 27. enchilada, 1000 0 Lesson 3-5 1. You can use elimination or substitution to eliminate one of the variables. Then you can solve two equations in two variables. 3. Sample answer: x y z 4, 2x y z 9, x 2y z 5; 3 5 2 4, 2(3) 5 2 9, 3 2(5) 2 5 5. (1, 3, 7) 7. (5, 2, 1) 9. (4, 0, 8) $2.50; taco, $1.95; burrito, $2.65 29. x y z 355, c 4000 1 1 2 4 41. 4500 acres corn, 0 acres soybeans; $130,500 43. There are many variables in scheduling tasks. Linear programming can help make sure that all the requirements are met. Answers should include the following. • Let x the number of buoy replacements and let y the number of buoy repairs. Then, x 0, y 0, x 8 and x 2.5y 24. • The captain would want to maximize the number of buoys that a crew could repair and replace so f(x, y) x y. • Graph the inequalities and find the vertices of the intersection of the graphs. The coordinate (0, 24) maximizes the function. So the crew can service the maximum number of buoys if they replace 0 and repair 24 buoys. y 45. C 47. 3x 2y 6 x 2y 3z 646, y z 27 3 3 y 2x2 0x 3 or y 2x2 3 33. D 35. 120 units of notebook paper and 80 units of newsprint y 37. 39. Sample answer using (7, 15) and (14, 22): y x 8 3x y 3 41. x 3y 43. 9s 4t x O 4y 2x 4 Pages 145–148 1. c 3. f 5. a y 11. Study Guide and Review 7. h 9. d 3x 2y 12 (4, 0) x O 3 31. a 2, b 0, c 3; x O y 3x 1 2 x 2y 4 49. (2, 3) 51. c average cost each year; 15c 3479 7489 53. Additive Inverse 55. Multiplicative Inverse 57. 9 59. 16 61. 8 Page 135 1. Practice Quiz 2 Selected Answers y yx0 y y 2x 8 4x y 16 x 3y 15 yx4 5. y x O O (5, 6) (1, 3) x O (1, 3) R34 Selected Answers 21. 23. y y yx1 y4 O (5, 1) 1 x4 2 (8, 8) x vertices: (1, 3), (1, 3), (5, 6), (5, 1); max: f(5, 1) 17, min: f(1, 3) 13 y x O 3. 15. (3, 2) 17. (9, 4) 19. (1, 2) y 13. y 3 x x5 O 25. 160 My Real Babies, 320 My First Babies x 27. (4, 2, 1) Chapter 4 Matrices Page 153 Chapter 4 Getting Started 3 1 1 1. 6 3. 4 5. 13 7. 3; 9. 8; 4 3 8 8 3 13. ; 3 8 15. 11. 1.25; 0.8 15. impossible y x O 1.5 21. 4.5 x O 3 9 Pages 156–158 Lesson 4-1 1. The matrices must have the same dimensions and each element of one matrix must be equal to the corresponding element of the other matrix. 3. Corresponding elements are elements in the same row and column positions. 5. 3 4 7. (3, 3) 9. 2 5 11. 3 1 13. 3 3 15. 3 2 17. 3, 19. (3, 5, 6) 1 3 21. (4, 3) 23. (14, 15) 25. (5, 3, 2) 27. 3 3 29. Sample answer: Mason’s Steakhouse; it was given the highest rating possible for service and atmosphere, location was given one of the highest ratings, and it is moderately priced. 245 228 33. 319 227 117 37. 4 3 5 5 15 5 vertices: (3, 1), , , 2 2 3 17 15 5 , ; max: f , 2 2 2 2 3 17 35, min: f , 1 2 2 y 41. 39. , , 11 y x 10 Cost ($) 5 5 6 1 2 4 7 120 75 72 31. 164 124 182 160 1 1 4 149 130 108 39. 1.00 1.50 1.00 1.50 566 18 530 10 7 785 22 19 710 26 12 26 45 38 40 32 29 1257 987 1380 11 80 2608 52 • Add the three matrices: 2091 67 82 . 65 2620 43. A 45. 1 4 47. 3 3 53. (2, 5) 55. (6, 1) s 57. 40 61 49. 4 3 51. (5, 3, 7) 59. Multiplicative Inverse 61. Distributive 0.30p 0.15s 6 24 x 16 8 p 3 2 57. 4 2 3 29. 1 45. $4.50 47. 2 49. 20 51. 10 53. 18 55. 3 6 1 2 2 Selected Answers 43. 1 x 3 184 2 1 3 4 32 y 232 9 2 2.25 1.75 y 5x 16 O 25. 3 35. 1996, floods; 1997, floods; 1998, floods; 1999, tornadoes; 2000, lightning Dinner 35. B 37. (7, 5, 4) 1 2 2 10 3 5 13 3 23 19. • Breakfast 482 12 17 , Lunch 622 23 20 , 33. row 6, column 9 2 16 4 8 10 12 41. You can use matrices to track dietary requirements and add them to find the total each day or each week. Answers should include the following. Single Double Suite Weekday 60 70 75 31. Weekend 79 89 95 1.50 1.00 4 6 14 21. (8, 5) 23. (2, 2) 17. 23. 4 6 42 38 27. 32 18 19. (6, 1) 13. No; many schools offer the same sport for males and females, so those schools would be counted twice. 17. y 456,873 405,163 340,480 257,586 133,235 16,439 549,499 14,545 477,960 455,305 , Females 12,679 7931 321,416 5450 83,411 16,763 14,620 11. Males 14,486 9041 5234 O 8 16 24 32 3 2 1 0 Pages 171–174 1 2 3 4 Hours Pages 163–166 5 4 4 4 4 4 5. 7. 223 248 2 5 6 7 8 9. 2112 3. The Right Distributive Property says that (A B)C AC BC, but AC BC CA CB since the Commutative Property does not hold for matrix multiplication in most cases. 5. undefined Lesson 4-2 71 105 1 1. Sample answer: 3 4 9 10 1. They must have the same dimensions. 3. 4 Lesson 4-3 29 22 7. 1524 5 20 8 32 9. 2441 350 11. [45 55 65], 320 180 280 165 120 Selected Answers R35 13. 4 2 59. 15. undefined 17. undefined y 1 23. 29 19. [6] 21. not possible 2 25 1 30 16 5 11 24 25. 32 48 27. yes 1 2 5 AC BC 4 3 2 41 54 23 52 1 9 21 13 26 8 26 8 20 4 52 16 14 52 5 1 4 0 8 6 2 4 20 4 52 16 (A B)C 2 5 2 3 4 3 29. no 5 C(A B) 1 4 1 4 Page 174 1. (6, 3) 1. 14,285 33. 13,270 0 4295 75 110 a b Size same Shape same same same yes same same yes dilation changes same no 41 04 5 4 4 4 1 1 5 0 0 0 Selected Answers and e h 1 4 15. 02 1.5 1.5 2.5 0 17. 19. X′(1, 1), Y′(4, 2), Z′(1, 7) A' y 21. A C' C 24 5 4 4 1 1 1 O x B e f B' 23. 39. $431 5. A′(4, 3), B′(5, 6), 9. A′(0, 4), B′(5, 4), C′(5, 0), 35. any two matrices c d and g h where bg cf, a d, 96.50 99.50 37. 118 117 41 33 Isometry yes rotation 7. 7. D′(0, 0) 11. B 13. D′(3, 6), E′(2, 3), F′(10, 4) 210 149 103 120 159 translation C′(3, 7) 14 23 52 41 54 23 52 1 9 21 13 26 8 26 8 20 4 52 16 165 159 200 Lesson 4-4 Transformation reflection 3. Sample answer: AC BC 31. 175 240 190 Pages 178–181 2 5 2 3 4 3 1 4 Practice Quiz 1 232 3. (1, 3, 5) 5. 134 9. not possible 1 4 2 5 1 4 0 2 4 8 6 6 12 40 24 290 x O y D E 41. $26,360 43. a 1, b 0, c 0, d 1; the original matrix 45. B G F x O G' D' 47. 312 6 21 49. 2 20 28 12 55. 8; 16 51. (5, 9) F' O E' 57. y 4 53. $2.50; $1.50 25. J(5, 3), K(7, 2), L(4, 1) 27. y 4 8 x y S' R' Q 4 T' 8 O x O T 12 16 x x 1 y8 2 R36 Selected Answers Q' S R 29. 44 4 4 4 4 4 4 31. 44 4 4 49. C 51. 36.9 53. 493 55. 3252 57. A′(5, 2.5), B′(2.5, 5), C′(5, 7.5) 59. [4] 61. undefined 4 4 4 4 33. (1.5, 1.5), (4.5, 1.5), (6, 3.75), (3, 3.75) 35. 34 37. (8, 7), (7, 8), and (8, 7) coordinates by 10 4 3 63. [14 8] 39. Multiply the 65. 138,435 ft 67. y x 71. (1, 9) 73. (1, 1) 75. (4, 7) 0 6 , then add the result to . 1 0 41. (17, 2), (23, 2) 43. Transformations are used in computer graphics to create special effects. You can simulate the movement of an object, like in space, which you wouldn’t be able to recreate otherwise. Answers should include the following. • A figure with points (a, b), (c, d), (e, f ), (g, h), and (i, j) a could be written in a 2 5 matrix b c d e f g h i and j multiplied on the left by the 2 2 rotation matrix. • The object would get smaller and appear to be moving away from you. 11 45. A 47. undefined 49. 18 33 51. 24 13 8 7 8 21 53. y y x y2 x O x O Pages 192–194 Lesson 4-6 1. The determinant of the coefficient matrix cannot be zero. 3. 3x 5y 6, 4x 2y 30 5. (0.75, 0.5) 7. no solution 9. 6, , 2 11. savings account, $1500; certificate of 1 2 deposit, $2500 13. (12, 4) 15. (6, 3) 17. (0.75, 3) 19. (8.5625, 19.0625) 21. (4, 8) 23. , 25. (3, 4) 141 29 45. 13 1 3 Lesson 4-5 2 1 1. Sample answer: 3. It is not a square matrix. 8 4 x 1 1 1 1 1 1 1 47. If you know the coordinates of the vertices of a triangle, you can use a determinant to find the area. This is convenient since you don’t need to know any additional information such as the measure of the angles. Answers should include the following. • You could place a coordinate grid over a map of the Bermuda Triangle with one vertex at the origin. By using the scale of the map, you could determine coordinates to represent the other two vertices and use a determinant to estimate the area. • The determinant method is advantageous since you don’t need to physically measure the lengths of each side or the measure of the angles between the vertices. C 1 x y 1 2 (4, 3) 51. c 10h 35 53. 7266 Selected Answers 5. Cross out the column and row that contains 6. The minor is the remaining 2 2 matrix. 7. 38 9. 40 11. 43 13. 45 15. 20 17. 22 19. 29 21. 63 23. 32 25. 32 27. 58 29. 62 31. 172 33. 22 35. 5 37. 141 39. 6 41. 14.5 units2 43. about 26 ft2 x C' O 1 (4, 3) A 9 63. 4 Pages 185–188 45. Sample answer: 1 y xy 7 B 49. B' 61. 28 1 3 y A' D {xx 0}, R {all real numbers}; no 57. x 1 1 59. 6 102 244 29 29 33. race car, 5 plays; snowboard, 3 plays 35. silk, $34.99; cotton, $24.99 37. peanuts, 2 lb; raisins, 1 lb; pretzels, 2 lb 39. Cramer’s Rule is a formula for the variables x and y where (x, y) is a solution for a system of equations. Answers should include the following. • Cramer’s Rule uses determinants composed of the coefficients and constants in a system of linear equations to solve the system. • Cramer’s Rule is convenient when coefficients are large or involve fractions or decimals. Finding the value of the determinant is sometimes easier than trying to find a greatest common factor if you are solving by using elimination or substituting complicated numbers. 41. 111°, 69° 43. 40 D {3, 4, 5}, R {4, 5, 6}; yes 2 5 3 6 155 143 673 31. , , 28 70 140 29. , , 27. (2, 1, 3) 47. 55. x 2.8 1 2 69. y x 5 9 23 Page 194 Practice Quiz 2 1 4 1 2 1. 2 1 4 1 3. y A' B' D A O C' 5. 58 7. 26 D' B x C 9. (4, 5) Selected Answers R37 Pages 198–201 15. 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1. 0 0 7. dimensions 9. equal matrices 11. (5, 1) 13. (1, 0) Lesson 4-7 7. no inverse exists 11. yes 13. no 31. 10 7 3 3 4 1 5 5 8 3 10 Page 221 33a. yes B'' B 49. 1 5 2 5 3 5 1 5 1 1 1 51. 3 2 3 8 3 7 3 55. (5, 4, 1) 57. 14 65. 7.82 tons/in2 77. 34 Selected Answers Pages 205–207 9 11 5 2 63. 73. 2 75. 4 Lesson 4-8 1. 2r 3s 4, r 4s 2 3. Tommy; a 2 1 matrix cannot be multiplied by a 2 2 matrix. 5. 42 3 g 8 7 h 5 11. h 1, c 12 13. 15. 19. 36 7. (5, 2) 43 3 11 5 5 12 8 3 17. 1 4 21 r 6 16 s 15 7 t 3 25. , 4 27. (2, 2) 1 3 5 7 0 9 x 2 3 y 11 1 z 3 21. (3, 4) 47. (6, 8) Pages 209–214 R38 Selected Answers 7. 6y2 74 9 11. 2 2 cd 1 4 9. 9p2q3 13. 4.21 105 15. 3.762 17. about 1.28 s 19. b4 21. z10 23. 8c3 3 2 25. y z 27. 21b5c3 29. 24r7s5 31. 90a4b4 8y3 x m4n9 3 1 vw 2x3y2 5z 39. 3 6 41. 7 37. 6 103 43. 7 47. 6.81 49. 6.754 45. 4.32 51. 6.02 105 53. 6.2 1010 55. 1.681 107 57. 2 107 m 59. about 330,000 times 61. Definition of an exponent 63. Economics often involves large amounts of money. Answers should include the following. • The national debt in 2000 was five trillion, six hundred seventy-four billion, two hundred million or 5.6742 1012 dollars. The population was two hundred eighty-one million or 2.81 108. • Divide the national debt by the population. 108 5.6742 1012 $2.0193 104 or about $20,193 per person. 2.81 108 1 3 69. 2 2 1 2 71. 7 73. (2, 0, 4) 75. Sample answer using (0, 4.9) and (28, 8.3): y 0.12x 4.9 77. 7 79. 2x 2y 81. 4x 8 83. 5x 10y Pages 231–232 Lesson 5-2 1. Sample answer: x5 x4 x3 x x x 3. 3 1 2 3 5 9 49. {4, 10} 51. {2, 7} Chapter 4 1. identity matrix Lesson 5-1 103 x 43. 3 2 11. a 1 13. 6.3; reals, 23. (6, 1) 35. The solution set is the empty set or infinite solutions. 45. (4, 2) 5. 16b4 29. (0, 9) 31. , 33. 2010 37. D 39. (6, 2, 5) 41. (0, 1, 3) 47. (3, 1) 9. x 3 65. B 67. (3, 3) 9. (3, 5) x 2 7 y 9 5 m 43 7 n 10 5 2 on a. Also, in his second step, (2)2 should be , not 4. a2c2 3b 53. (2, 4) 71. 300 2 3 Getting Started 104 61. 5 69. 3 2 3 1 6 4 41. 24 3 2 3. x (y) 5. 2xy (6yz) 33. 35. 4 1 3 59. 1 1 67. 5 2 5 6 1 3 0 25. A′(3, 5), B′(4, 3), 1. Sample answer: (2x2)3 8x6 since (2x2)3 (2x2)3 (2x2)3 (2x2)3 2x2 2x2 2x2 2x x 2x x 2x x 8x6 3. Alejandra; when Kyle used the Power of a Product property in his first step, he forgot to put an exponent of 39. MEET_IN_THE_LIBRARY 41. BRING_YOUR_BOOK 45. A 47. 21. not possible Polynomials Pages 226–228 x 37. dilation by a scale factor of 43. a 1, d 1, b c 0 19. [18] rationals 15. 17; reals, rationals, integers, whole numbers, natural numbers 17. 4; reals, rationals, integers, whole numbers, natural numbers 1 2 8 8 2 9 45. (4, 2) 7. 8x3 2x 6 y B' 4 12 2 0 Chapter 5 1. 2 (7) C' 4 4 39. Chapter 5 A A'' O A' 0 0 1 4 10 5 5 2 C C'' 35. 141 1 2 14 4 37. (1, 2, 1) 43. 1 1 29. 32 6 33b. Sample answer: 17. C′(1, 2) 27. 109 29. 0 31. 52 33. , 5 35. (1, 3) 15. yes 17. true 0 6 23. A′(1, 0), B′(8, 2), C′(3, 7) 5. yes 1 3 0 2 6 1 27. 12 5 3 3 1 1 23. 7 4 19. false 21. no inverse exists 1 6 25. 4 2 3 3. Sample answer: 3 3 2 Study Guide and Review 3. Scalar multiplication 5. determinant x 2 x 2 x 2 x x x x x x 2 5. yes, 3 7. 10a 2b 9. 6xy 18x 11. y2 3y 70 13. 4z2 1 15. 7.5x2 12.5x ft2 17. yes, 3 19. no 21. yes, 7 23. 3y 3y2 25. 10m2 5m 15 27. 7x2 8xy 4y2 29. 12a3 4ab 31. 6x2y4 8x2y2 4xy5 33. 2a4 3a3b 4a4b4 35. 0.001x2 5x 500 37. p2 2p 24 39. b2 25 41. 6x2 34x 48 43. a6 b2 45. x2 6xy 9y2 47. d2 1 2 4 d 49. 27b3 27b2c 9bc2 c3 51. 12cd 53. 2RW W 2 55. The expression for how much an amount of money will grow to is a polynomial in terms of the interest rate. Answers should include the following. • If an amount A grows by r percent for n years, the amount will be A(1 r)n after n years. When this expression is expanded, a polynomial results. • 8820(1 r)3, 8820r3 26,460r2 26,460r 8820 • Evaluate one of the expressions when r 0.04. For example, 8820(1 r)3 8820(1.04)3 or $9921.30 to the nearest cent. The value given in the table is $9921 rounded to the nearest dollar. 9c2 57. B 59. 20r3t4 7d2 R2 b2 4a 61. 2 63. 65. y y x O 61. D 63. y4z4 y3z3 3y2z 65. a2 2ab b2 67. y x 2 69. 9 71. 4 73. 6 Page 238 Practice Quiz 1 1. 6.53 108 x y 13 x 2 19 m4 9. m2 3 Pages 242–244 39 25. x3 5x2 11x 22 x2 3 31. a3 6a2 7a 7 a1 27. x2 29. y2 y 1 5c4d) 56 x3 2 3d 2 35. g 5 39. 3t2 2t 3 6 2x 3 1000 51. $0.03x 4 x 41. 3d2 2d 3 43. x3 x 45. x 3 49. x2 x 3 55. x3 x2 6x 24 ft 57. x2 3x 12 ft/s 59. Division of polynomials can be used to solve for unknown quantities in geometric formulas that apply to manufacturing situations. Answers should include the following. • 8x in. by 4x s in. • The area of a rectangle is equal to the length times the width. That is, A w. • Substitute 32x2 x for A, 8x for , and 4x s for w. Solving for s involves dividing 32x2 x by 8x. A w 32x2 x 8x(4x s) x 4x s 8x 1 4x 4x s 8 32x2 x4 x 2x 4 51. x 2 49. 2 53. 16x 16 ft/s 55. (8pn 1)2 57. B 59. yes 61. no; (2x 1)(x 3) 63. t2 2t 1 65. x2 2 67. 4x2 3xy 3y2 69. [2] 71. 15 in. by 28 in. 73. no 75. Associative Property () 77. irrational 79. rational 81. rational Lesson 5-5 29. 13 31. 18 33. 2 1 5 35. 37. 0.4 39. x 41. 8a4 43. c2 45. 4z2 47. 6x2z2 49. 3p6q3 51. 3c3d4 53. p q 55. z 4 57. not a real number 59. 5 61. about 1.35 m 63. x 0 and y 0, or y 0 and x 0 65. B 67. 7xy2(y 2xy3 4x2) 8 x2 69. (2x 5)(x 5) 71. 4x2 x 5 73. 810 1418 2320 2504 75. (1, 3) 77. x2 11x 24 81. x2 9y2 Pages 254–256 Lesson 5-6 n 1 1. Sometimes; n a only when a 1. a 3. The product of two conjugates yields a difference of two squares. Each square produces a rational number and the difference of 4 two rational numbers is a rational number. 5. 2xyx 3 7. 24 35 9. 2a2b23 11. 222 13. 2 5 3 15. 93 17. 32 19. 5x22 21. 3xy 2y 3 3 4 6 1 a2b 2 23. 6y z7 25. cdc 27. 29. 31. 367 3 b2 2 6 33. 35. 33 37. 73 22 2 39. 25 52 56 23 41. 13 222 28 73 1 3 x2 1 43. 45. 47. 49. 6 162 yd, 13 2 24 62 yd2 51. 0 ft/s 53. about 18.18 m 55. x and y are nonnegative. 57. B 59. 12z4 61. y 2 x1 x4 63. 69. 5 3 8 65. 51 71. 2, 4 4 4 67. consistent and independent 73. {xx 6} 1 4 5 6 13 24 75. 77. 79. 81. Selected Answers R39 Selected Answers 37. t4 2t3 4t2 5t 10 170 t 1 x5 x6 47. 79. a2 7a 18 33. x4 3x3 2x2 6x 19 53. 170 2 15. 2x(y3 5) 13. 4c 19. (2z 3)(4y 3) 17. 21. (x 1)(x 6) 23. (2a 1)(a 1) 25. (2c 3)(3c 2) 27. 3(n 8)(n 1) 29. (x 6)2 31. prime 33. (y2 z)(y2 z) 35. (z 5)(z2 5z 25) 37. (p2 1)(p 1)(p 1) 39. (7a 2b)(c d)(c d) 41. (a b)(5ax 4by 3cz) 43. (3x 2)(x 1) 2cd2(6d 27. 59.161 Lesson 5-3 1. Sample answer: (x2 x 5) (x 1) 3. Jorge; Shelly is subtracting in the columns instead of adding. 5. 5b 4 7a 7. 3a3 9a2 7a 6 9. x2 xy y2 11. b3 b 1 13. 3b 5 15. 3ab 6b2 17. 2c2 3d 4d2 19. 2y2 4yz 8y3z4 21. b2 10b 23. n2 2n 3 47. x 2 2y y4 11. (h 20)(h2 20h 400) 1. Sample answer: 64 3. Sometimes; it is true when x 0. 5. 2.668 7. 4 9. 3 11. x 13. 6ab2 15. about 3.01 mi 17. 12.124 19. 2.066 21. 7.830 23. 3.890 25. 4.647 69. 3a2 Pages 236–238 Lesson 5-4 1. Sample answer: x2 2x 1 3. sometimes 5. a(a 5 b) 7. (y 2)(y 4) 9. 3(b 4)(b 4) Pages 247–249 67. 2y3 x2 z 3. 108x8y3 5. 6 7. 3t2 2t 8 45. 30 ft by 40 ft 2x y 1 O 1 s 8 1 The seam is inch. 8 Page 256 2 Practice Quiz 2 1. x2y(3x y 1) 9. 1 7 Pages 260–262 5. 6xy3 7. 2n 3 3. a(x 3)2 49. (x2 1) 3 to 1 y 30x 20y 160 Lesson 5-7 n By the Power of a Power Property, m (2, 5) m n 1 (bm) n b . x y 7 But, b n is also equal to b n by the Power of a Power m n Property. This last expression is equal to b . Thus, m 1 1 5 7 bm b . 5. x2 or x n n 2 3 m 3 13. x z(x 2y) 17. x 2y 15. a b 1 2 23. c2 or c 5 5 2 3 1 2 3 2 2 3 2 2 3 19. 3 1 2 25. 23 27. 2z 29. 2 1 4 3 y2 2y 2 51. y4 xyz 59. z 61. 2 53. 5 5 21. 6 55. 1 y 1 5 1 9 1 w 45. w 47. t 4 6 4 55. 1717 57. 63. 26 5 3 2 5x2y2 1 2 65. 2 3 67. 880 vibrations per second 69. about 336 71. The equation that determines the size of the region around a planet where the planet’s gravity is stronger than the Sun’s can be written in terms of a fractional exponent. Answers should include the following. • The radical form of the equation is Mp 2 or r D Ms M3 under the radical by 3s . Ms 2 3 M M p 5 s r D M2s M3s rD 5 5 M2p 2 . Multiply the fraction Ms D M2p M3s M5s 5 x O 2 3 M p Ms 5 D 5 Ms5 Pages 273–275 5. 5ixy2 2 5 1 5 41. i 43. 20 15i Selected Answers 77. 8 Pages 265–267 6 17 10 17 1 22 45. i 3 47. (5 2i)x2 (1 i)x 7 i 49. 4i 51. 2i3 5 67 19 5 53. 2i 10 55. i 57. 4, 3 59. , 4 61. , 2 3 11 11 63. 13 18j volts 65. Case 1: i 0 Multiply each side by i to get i2 0 i or 1 0. This is a contradiction. Case 2: i 0 Since you are assuming i is negative in this case, you must change the inequality symbol when you multiply each side by i. The result is again i2 0 i or 1 0, a contradiction. Since both possible cases result in contradictions, the order relation “” cannot be applied to the complex numbers. 67. C 69. 1, i, 1, i, 1, i, 1, i, 1 71. 12 73. 4 • If Mp and Ms are constant, then r increases as D increases because r is a linear function of D with positive slope. 75. 362 11 17 9. 6 3i 11. i 77. 23 2 1 1 2 79. 32 1 2 2 1 81. sofa: $1200, love seat: $600, coffee table: $250 y 83. 85. 0 5 83. x 2x 1 7 17 7. 1803 33. 4 5i 35. 6 7i 37. 8 4i 39. i 1 2 M3 DM p s The simplified radical form is r . Ms 73. C Lesson 5-9 13. 2i2 15. 3, 3 17. 10 3j amps 19. 9i 21. 10a2bi 23. 12 25. 75i 27. 1 29. i 31. 6 5 1 79. x2 2 59. 3 10x 8x2 1b. true 3. Sample answer: 1 3i and 1 3i 1a. true 75. y 3 D M2p M3s Ms 57. 11 31. 33. 1 5 3 5 a 12 49. 6a 1 3 9. 11. 2 7. 6 3 x 3 y 3 37. 39. 41. y4 43. b 5 35. 81 10 53. x y 7, 30x 20y 160; (2, 5) 1. Sample answer: 64 3. In exponential form bm is equal (bm) n . 3 00 1 51. xy1 81. x 2 x O x 2y 4 Lesson 5-8 1. Since x is not under the radical, the equation is a linear equation, not a radical equation. The solution is 3 1 x . 3. Sample answer: x x 3 3 5. 9 2 7. 15 9. 31 11. 0 b 4 13. 16 15. no solution 17. 9 19. 1 21. 20 23. no solution 25. x 1 27. x 11 29. no solution 31. 3 33. 0 x 2 35. b 5 37. 3 39. 1152 lb 41. 34 ft 43. Since x 2 0 and 2x 3 0, the left side of the equation is nonnegative. Therefore, the left side of the equation cannot equal 1. 3 Thus, the equation has no solution. 45. D 47. 5 7 R40 Selected Answers Pages 276–280 Chapter 5 1. scientific notation Study Guide and Review 3. FOIL method 5. extraneous 1 f solution 7. square root 9. principal root 11. 3 13. 8xy4 15. 1.7 108 21. x3y x2y4 17. 9 102 23. 4a4 19. 4x2 22x 34 24a2 36 3 x3 25. 2x3 x 27. x 4 29. 50(2x 1)(2x 1) 31. (5w2 3)(w 4) 33. (s 8)(s2 8s 64) 35. 16 37. 8 39. x4 3 6 41. 2m2 43. 22 45. 53 47. 20 86 49. 9 3 5 210 51. 7 61. 4 63. 5 53. 81 65. 8 3 21i 10 y5 55. y 5 3 57. 3x 4x 59. 343 71. 23 14i 73. i 67. 8m6i 69. 72 75. Chapter 6 Quadratic Functions and Inequalities Page 284 Chapter 6 15b. x 2 1 0 1 2 13. $8.75 f(x) 20 5 0 5 20 15a. 0; x 0; 0 15c. f (x) O y 3. 17a. 9; x 0; 0 17b. x f(x) y 2x 3 x O y x2 4 x O 2 1 0 1 2 5 8 9 8 5 17c. f (x) 4 4 2 9x2 Pages 290–293 (0, 9) 19a. 1; x 0; 0 19b. x f(x) 2 1 0 1 2 3 0 1 0 3 19c. 7a. 3; x 4; 4 7b. x f(x) O 13 4 1 4 13 f (x) 4 x O 4 3 4 4.5 5 6 21c. f (x) 9 11 11.25 11 9 2 O 12 (4, 13) f(x) 3 8 5 3 5 3 1 0 7 0 23a. 36; x 6; 6 23b. x f(x) 9c. f (x) 4 25 3 4 2 O 2 x 4 8 f (x) 3x 2 10x 5 , 25 3 3 12 ( ) (4 12 , 1114 ) 12 9a. 0; x ; 8 7 6 5 4 x 12 f (x ) x 2 9x 9 8 f (x) x 2 8x 3 x 3 2 8 4 8 9b. 4 23c. f (x) 4 1 0 1 4 6 4 2 f (x ) x 12x 36 16 12 2 8 4 (6, 0) O x Selected Answers R41 Selected Answers 8 x (1, 1) 21a. 9; x 4.5; 4.5 21b. x f(x) 10 (0, 1) O x 7c. 9 12 13 12 9 5 3 f (x) f (x ) 3x 2 1 f (x) x 2 2x 6 5 4 3 2 f (x ) x 2 9 Lesson 6-1 1. Sample answer: f(x) 3x2 5x 6; 3x2, 5x, 6 3a. up; min. 3b. down; max. 3c. down; max. 3d. up; min. 5a. 0; x 1; 1 5b. x f(x) 5c. f (x) 3 2 1 0 1 4x 2 O 4 16x 48 7. 6x 1 9. (x 6)(x 5) 5. 11. (x 8)(x 7) 13. prime 15. (x 11)2 17. 15 19. 65 21. 5i 23. 3i30 7x2 x (0, 0) f (x ) 5x 2 Getting Started y 1. 25 4 11. min.; 8 3 25a. 3; x 2, 2 25b. x f(x) f (x) 3 3 5 3 3 0 1 2 3 4 • You can locate the vertex of the parabola on the graph of the function. It occurs when x 40. Algebraically, this is 25c. b 2a found by calculating x which, for this case, is (2, 5) f (x ) 2x 2 8x 3 4000 2(50) x or 40. Thus the ticket price should be set at $40 each to achieve maximum profit. 57. C 59. 3.20 61. 3.38 63. 1.56 65. 1 3i 67. 23 x O 69. 4 71. [5 13 8] 73. Pages 297–299 5 5 27a. 0; x ; 4 4 27b. x 3 2 f(x) 3 2 5 4 1 0 3 0 27c. f (x) 25 8 f (x ) 2x 2 5x O x ( 54 , 258) 29a. 0; x 6; 6 29b. x f(x) 8 7 6 5 4 (6, 9) 8 f (x) 4 4 x O 4 2 f (x ) 0.25x 3x 1 1 3 3 31a. ; x ; 31b. x f(x) 1 7 9 8 9 Selected Answers 0 1 3 1 1 2 31c. f (x) 2 5 9 7 1 9 24 14 2 3 8 75. 5 77. 2 Lesson 6-2 1a. The solution is the value that satisfies an equation. 1b. A root is a solution of an equation. 1c. A zero is the x value of a function that makes the function equal to 0. 1d. An x-intercept is the point at which a graph crosses the x-axis. The solutions, or roots, of a quadratic equation are the zeros of the related quadratic function. You can find the zeros of a quadratic function by finding the x-intercepts of its graph. 3. The x-intercepts of the related function are the solutions to the equation. You can estimate the solutions by stating the consecutive integers between which the x-intercepts are located. 5. 2, 1 7. 7, 0 9. 7, 4 11. between 2 and 1, 3 13. 2, 7 15. 3 17. 0 19. no real solutions 21. 0, 4 23. between 1 and 0; 1 2 8 8 9 0 1 2 1 2 between 2 and 3 25. 3, 6 27. 6 29. , 2 31. 2, 3 29c. 8 8.75 9 8.75 8 6 33. between 0 and 1; between 3 and 4 35. between 3 and 2; between 2 and 3 37. no real solutions 39. Let x be the first number. Then, 7 x is the other number. x(7 x) 14 x2 7x 14 0 Since the graph of the related y function does not intersect the 2 y x 7x 14 x-axis, this equation has no real x O solutions. Therefore no such numbers exist. 41. 2, 14 43. 3 s 45. about 35 mph 47. 4 and 2; The value of the function changes from negative to positive, therefore the value of the function is zero between these two numbers. 49. A 51. 1 53. 3, 5 55. 1.33 57. 4, x 3; 3 8 f (x ) x 2 3 x 9 59. 4; x 6; 6 f (x) f (x) O 8 f (x) 1 x 2 3x 4 x ( 1 , 1 3 4 ) 4 x O O 33. max.; 9 35. min.; 11 7 8 39. max.; 41. min.; 11 12 8 37. max.; 12 R42 Selected Answers f (x) x 2 6x 4 1 3 43. min.; 10 45. 40 m 47. The y-intercept is the initial height of the object. 49. 60 ft by 30 ft 51. $11.50 53. 5 in. by 4 in. 55. If a quadratic function can be used to model ticket price versus profit, then by finding the x-coordinate of the vertex of the parabola you can determine the price per ticket that should be charged to achieve maximum profit. Answers should include the following. • If the price of a ticket is too low, then you won’t make enough money to cover your costs, but if the ticket price is too high fewer people will buy them. 4 4 (6, 5) (3, 5) 10 13 2 13 61. i 63. 24 x 65. 60 67. x(x 5) 69. (x 7)(x 4) 71. (3x 2)(x 2) Pages 303–305 Lesson 6-3 1. Sample answer: If the product of two factors is zero, then at least one of the factors must be zero. 3. Kristin; the Zero Product Property applies only when one side of the equation is 0. 5. {8, 2} 7. {3} 9. {3, 4} 11. 6x2 11x 4 0 19. {3, 7} 3 9 29. , 4 4 13. D 3 21. 0, 4 31. {3, 1} 15. {4, 7} 17. {9, 9} 1 25. , 4 4 23. {8} 33. 0, 3, 3 2 3 27. , 3 2 35. x2 5x 14 0 16x 5 0 37. 14x 48 0 39. 41. 10x2 23x 12 0 43. 14, 16 or 14, 16 45. B D2 8D 16 47. y (x p)(x q) y x2 px qx pq y x2 (p q)x pq a 1, b (p q), c pq x2 55. D 57. x2 3x 2 0 59. 3x2 19x 6 0 1 61. between 4 and 3; between 0 and 1 63. 4, 1 65. (2, 5) 2 67. x (257) 2 69. 37 71. 121 3x2 Pages 317–319 Lesson 6-5 1a. Sample answer: 1b. Sample answer: y b 2a (p q) x 2(1) pq x 2 y axis of symmetry: x The axis of symmetry is the average of the x-intercepts. Therefore the axis of symmetry is located halfway between the x-intercepts. 49. 6 51. D 53. 5, 1 55. between 1 and 0; between 3 and 4 57. 32 23 59. 33 202 61. (3, 5) 63. 22 67. 2i3 Page 305 y 1 2 5. 3x2 11x 4 0 x O f (x) 3x 2 12x 4 4 8 12 x 3. b2 4ac must equal 0. 5a. 8 5b. 2 irrational 2 2 3 i3 5c. 7a. 3 7b. two complex 7c. 2 2 5 i2 9. 3, 2 11. 13. No; the discriminant of 4 8 1c. Sample answer: 65. 33 3. 1, 4 f (x) O (2, 8) 2 Pages 310–312 16t2 85t 120 is 455, indicating that the equation has no real solutions. 15a. 240 15b. 2 irrational 1 i23 15 17a. 23 17b. 2 complex 17c. 15c. 8 2 Lesson 6-4 19a. 49 4 2 that coefficient. 5. 3 15 9 5 46 31. 33. 35. 7. ; x 9 4 3 2 2 9. {4 5} 13. Earth: 4.5 s, Jupiter: 2.9 s 5 11 15. {2, 12} 17. {3 22} 19. 23. about 8.56 s 25. 81; (x 9)2 21. {1.6, 0.2} 3 49 7 2 27. ; x 4 2 25 5 2 29. 1.44; (x 31. ; x 33. {12, 10} 16 4 1 2 10 35. {2 3} 37. {–3 2i} 39. , 1 41. 2 3 5 i 23 3 x 1 43. 45. {0.7, 4} 47. 2 49. , 6 4 1 x1 1.2)2 51. Sample answers: The golden rectangle is found in much of ancient Greek architecture, such as the Parthenon, as well as in modern architecture, such as in the windows of the United Nations building. Many songs have their climax at a point occurring 61.8% of the way through the piece, with 0.618 being about the reciprocal of the golden ratio. The reciprocal of the golden ratio is also used in the design of some violins. 53. 18 ft by 32 ft or 64 ft by 9 ft 19b. 2 rational 19c. 2, 21a. 24 21b. 2 irrational 21c. 1 6 23a. 0 23b. one rational 5 1 i15 23c. 25a. 135 25b. 2 complex 25c. 2 27a. 1.48 1 20.37 27b. 2 irrational 27c. 2 2 3 3 10 37. 0, 4 29. i 21 39. 2, 6 41. This means that the cables do not touch the floor of the bridge, since the graph does not intersect the x-axis and the roots are imaginary. 43. 1998 45a. k 6 45b. k 6 or k 6 45c. 6 k 6 47. D 49. 14, 4 1 22 51. 53. 2, 7 55. a4b10 57. 4b2c2 2 y 59. xy9 8 yx4 6 4 2 6 4 O 4 6 61. no 2 4 6 8 xy 3 63. yes; (2x 3)2 x 65. no Selected Answers R43 Selected Answers 3 33 11. 4 2 1 3 1. Completing the square allows you to rewrite one side of a quadratic equation in the form of a perfect square. Once in this form, the equation is solved by using the Square Root Property. 3. Tia; before completing the square, you must first check to see that the coefficient of the quadratic term is 1. If it is not, you must first divide the equation by x O Practice Quiz 1 1. 4; x 2; 2 4 x O Pages 325–328 Lesson 6-6 35. y y 1 x 2 5x 27 1a. y 2(x 1)2 5 1b. y 2(x 1)2 1c. y 2(x 3)2 3 1d. y 2(x 2)2 3 2 2 x O 1e. Sample answer: y 4(x 1)2 3 1f. Sample answer: y (x 1)2 3 1g. y 2(x 1)2 3 3. Sample answer: y 2(x 2)2 1 5. (3, 1); x 3; up 7. y 3(x 3)2 38; (3, 38); x 3; down y 9. 37. Sample answer: the graph of y 0.4(x 3)2 1 is narrower than the graph of y 0.2(x 3)2 1. 2 1 39. y 9(x 6)2 1 41. y (x 3)2 43. y x2 5 3 3 2 45. y 2x 47. 34,000 feet; 32.5 s after the aircraft begins its parabolic flight 49. d(t) 16t2 8t 50 51. Angle A; the graph of the equation for angle A is higher than the other two since 3.27 is greater than 2.39 or 1.53. 53. y ax2 bx c 1 y 3 (x 1)2 3 x O y ax2 x c 11. y 4(x 2)2 1 2 13. y (x 2)2 3 15. (3, 0); x 3; down 17. (0, 6); x 0; up 19. y (x 2)2 12; (2, 12); x 2; down 63. 25. y 3x ; , ; x ; up 1 2 7 4 27. b 2a 55. D 57. 12; 2 irrational 59. 23; 2 complex 23. y 4(x 1)2 7; (1, 7); x 1; up 7 4 The axis of symmetry is x h or . 21. y 3(x – 2)2 12; (2, 12); x 2; down 1 2 2 b a b 2 b 2 b y a x2 x c a 2a 2a a b 2 b2 y a x c 2a 4a 1 2 2t2 3 2t t1 65. n3 3n2 61. {3 3i} 15n 21 67a. Sample answer using (1994, 76,302) and (1997, 99,448): y 7715x 15,307,408 67b. 161,167 69. no 71. no 29. y y Page 328 Practice Quiz 2 9 55 1. {7 23} 3. 11; 2 complex 5. 2 3 7. y (x 2)2 5 1 y 4 (x 2)2 4 y 4(x 3)2 1 O Selected Answers 31. x O x Pages 332–335 y O x 4 2 33. y y y x 2 5x 6 12 O 8 4x 2 4 y x 2 16 9. {x1 x 7} 15. y y 4x 2 16x 11 3b. x 1 or x 5 y 4 8 12 20 y x 2 6x 2 Lesson 6-7 1. y (x 3)2 1 3a. x 1, 5 3c. 1 x 5 5. 7. 12 8 4 2 9. y (x 6)2; (6, 0), x 6; down 2 O 2 6x 4 11. 13. about 6.1 s 17. y y x 2 7x 8 12 O 8 x 4 O x 4 R44 Selected Answers O 4 8 x y x 2 4x 19. 11a. 7; x 4; 4 11b. x f(x) 21. 2 y x 7x 10 y y 20 12 x O 11c. f (x) 5 8 9 8 5 2 3 4 5 6 4 O 4 12 8 4 y x 6x 5 f (x) x 2 8x 7 8 13a. 3; x 2; 2 13b. x f(x) y 2 y x 13x 36 4 3 2 1 0 6 2 2 x 4 25. O 12 (4, 9) 23. y 8 4x O 4 2 4 6 x 10 x O 13c. f (x) 3 0 1 0 3 f (x) x 2 4x 3 (2, 1) x O 4 y 2x 2 x 3 8 27. 2 x 6 29. x 7 or x 3 31. {x7 x 4} 33. {xx 6 or x 4} 35. {xx 7 or x 1} 37. all reals 39. {xx 7} 41. 43. 0 to 10 ft or 24 to 34 ft 45. The width should be greater than 12 cm and the length should be greater than 18 cm 47. 6 49. 89 16 15. min.; 17. max.; 7 19. 2, 5 21. between 3 and 2; between 38 and 37 y 25. {1} 39a. 24 39b. 2 complex 39c. 1 6i 41a. 73 41b. 2 irrational 7 73 7 2 13 7 13 41c. 43. y 5x ; , ; y x 2 4 6 7 2 2 4 2 4 x ; up x O 23. 2, 8 1 3 27. {11, 2} 29. , 31. x2 3x 70 0 3 2 49 7 2 33. 289; (x 17)2 35. ; x 37. 3 25 16 4 45. 47. y y x2 4 y y 9x 2 18x 6 O 51. C 53. {xall reals, x 2} 55. {xx 9 or x 3} 57. {x1.2 x 0.4} 59. y (x 1)2 8; (1, 8), 1 2 67. xy3 1 y x 21 48 69. 13 22 x O y (x 2)2 2 71. x 0.08 0.002; 1 2 49. y (x 2)2 3 0.078 x 0.082 51. 53. 25 Pages 336–340 Chapter 6 y y x 2 7x 11 Study Guide and Review 1. f 3. a 5. i 7. c 9a. 20; x 3; 3 9b. x f(x) 9c. 5 4 3 2 1 y 15 y x 2 5x 15 5 f (x) 15 12 11 12 15 O 24 x O 1 3 5 7x 10 16 (3, 11) 2 f(x) x 6x 20 8 8 4 O 4 8x 57. xx or x 3 1 2 3 26 3 26 59. xx or x 3 3 55. all reals Selected Answers R45 Selected Answers x 1; up 61. y (x 6)2; (6, 0), x 6; up 2 5 i3 63. 65. 4a2b2 2a2b 4ab2 12a 7b x Chapter 7 Page 345 Polynomial Functions Chapter 7 3. f (x) Getting Started 1. between 0 and 1, between 4 and 5 3. between 5 and 4, 3 2 O 1 7 x between 0 and 1 5. , 7. 3x 4 9. 19 11. 18b2 3b 6 Pages 350–352 Lesson 7-1 1. 4 4x0; x x1 3. Sample answer given. f (x) 5. x O 5. 6; 5 7. 21; 3 9. 2a9 6a3 12 11. 6a3 5a2 8a 45 13a. f(x) → as x → , f(x) → as x → 13b. even 13c. 0 15. 109 lumens 17. 3; 1 19. 4; 6 21. No, this is not 1 c a polynomial because the term cannot be written in the form xn, where n is a nonnegative integer. 23. 12; 18 25. 1008; 36 27. 86; 56 29. 7; 4 31. 12a2 8a 20 33. 12a6 4a3 5 35. 3x4 16x2 26 37. x6 x3 2x2 4x 2 39a. f(x) → as x → , f(x) → as x → 39b. odd 39c. 3 41a. f(x) → as x → , f(x) → as x → 41b. even 41c. 0 43a. f(x) → as x → , f(x) → as x → 43b. odd 43c. 1 45. 5.832 units 1 47. f(x) → as x → ; f(x) → as x → 49. 1 2 3 2 51. f(x) x3 x2 2x f(x) 3 20 2 9 1 2 0 5 1 0 2 5 3 26 8 4 4 8 7. between 2 and 1, between 1 and 0, between 0 and 1, and between 1 and 2 f (x) Selected Answers x O f (x ) x 4 4x 2 2 9. Sample answer: rel. max. at x 0, rel. min. at x 2 and at x 2 f (x) 4 x 2 3 4x f (x ) x 4 7x 2 x 5 2 y 1 (x 5)2 1 2 4 8 O 2 O 55. 8 points 57. C 4 5 y 12 8 f (x) 2 53. 4 59. {x2 x 6} 61. x1 x 63. x 4 2 2 O 4x 4 4 f (x ) x 4 8x 2 10 65. 4 32 67. 23,450(1 p); 23,450(1 p)3 y 69. 11. rel. max. between x 15 and x 16, and no rel. min.; f(x) → as x → , f(x) → as x → . 13a. x O y x 2 6x 5 Pages 356–358 Lesson 7-2 1. There must be at least one real zero between two points on a graph when one of the points lies below the x-axis and the other point lies above the x-axis. R46 Selected Answers x f (x ) f(x) 5 25 4 0 3 9 2 8 1 3 0 0 1 5 2 24 4 O 2 2 4x 4 8 f (x) x 3 4x 2 13b. at x 4 and x 0 13c. Sample answer: rel. max. at x 0, rel. min. at x 3 15a. 23b. between 0 and 1, between 1 and 2, between 2 and 3, and between 4 and 5 23c. Sample answer: rel. max. at x 2, rel. min. at x 0.5 and at x 4 25a. f (x ) x f(x) f (x ) x f(x) 2 18 1 2 0 2 1 0 2 2 3 2 4 18 x O 4 77 3 30 2 7 16 1 2 8 0 3 1 2 2 55 f (x) x 3 3x 2 2 15b. at x 1, between 1 and 0, and between 2 and 3 15c. Sample answer: rel. max. at x 0, rel. min. at x 2 17a. f (x ) x f(x) 1 75 0 16 1 3 2 0 3 7 4 0 5 4 4 2 4x 2 O 3 x 0 2 4 6 8 10 12 14 16 18 20 25 34 40 45 50 54 59 64 68 71 71 G(x) 26 33 39 44 49 53 56 59 61 61 60 2 y f(x) 73 2 8 1 7 0 8 1 7 2 8 3 73 Average Height (in.) 17b. between 0 and 1, at x 2, and at x 4 17c. Sample answer: rel. max. at x 3, rel. min. at x 1 19a. f (x ) x 4 4 2 x 2 O 4 f (x) x 4 8 8 f(x) 169 3 31 2 7 1 5 0 1 1 1 2 1 3 43 O 65 0 6 1 1 2 2 3 3 4 10 5 11 35 30 2 2 4 6 8 10 12 14 16 18 x Age (yrs) y 37. 35. 3.4 s y 39. 4x 4 x O x O 8 f (x ) x 4 5x 2 2x 1 21b. between 3 and 2, between 1 and 0, between 0 and 1, and between 1 and 2 21c. Sample answer: rel. max. at x 2 and at x 1.5, rel. min. at x 0 23a. f (x ) x f(x) 1 40 33. 0 and between 5 and 6 4 2 45 0 8 4 G (x ) 50 41. D 43. 1.90; 1.23 45. 0; 1.22, 1.22 47. 24a3 4a2 2 49. 8a4 10a2 4 51. 2x4 11x2 16 53. 4 2 O 2 4 55. y y x 4 y x 2 4x 6 8 O f (x) x 4 9x 3 25x 2 24x 6 x O x 2 y x 2x Selected Answers R47 Selected Answers x B (x ) 70 65 60 55 25 20 19b. between 2 and 1 and between 1 and 2 19c. Sample answer: no rel. max., rel. min. at x 0 21a. f (x ) 4 4x 2 O B(x) f (x) 3x 20x 36x 16 3 2 25b. between 4 and 3, between 2 and 1, between 1 and 0, between 0 and 1, and between 1 and 2 25c. Sample answer: rel. max. at x 3 and at x 0, rel. min. at x 1 and at x 1 27. highest: 1982; lowest: 2000 29. 5 8 39 4 f (x) x 5 4x 4 x 3 9x 2 3 31. 4 24 57. (3, 2) 59. (1, 3) 61. (x 5)(x 6) 63. (3a 1)(2a 5) 65. (t 3)(t2 3t 9) Pages 362–364 Lesson 7-3 1. Sample answer: 16x4 12x2 0; 4[4(x2)2 3x2] 0 3. Factor out an x and write the equation in quadratic form so you have x[(x2)2 2(x2) 1] 0. Factor the trinomial and solve for x using the Zero Product Property. The solutions are 1, 0, and 1. 5. 84(n2)2 62(n2) 7. 4, 1, 4, 1 9. 64 11. 2(x2)2 6(x2) 10 13. 11(n3)2 44(n3) 15. not 19. 3, 3, i3, i3 9 9i3 9 9i3 23. 9, , 17. 0, 4, 3 possible 21. 2, 2, 22, 22 2 2 25. 81, 625 27. 225, 16 29. 1, 1, 4 31. w 4 cm, 8 cm, h 2 cm 33. 3 3 in. 35. h2 4, 3h 2, h 3 37. Write the equation in quadratic form, u2 9x 8 0, where u a 3. Then factor and use the Zero Product Property to solve for a; 11, 4, 2, and 5. 39. D 41. f (x ) x f(x) 2 21 1 1 0 5 1 3 2 1 3 1 4 9 5 35 49. x2 5x 4 Page 364 4 4 2 2 O 4x 4 f (x) x 4 2x 3 3x 2 7x 4 Lesson 7-5 1. Sample answer: p(x) x3 6x2 x 1; p(x) has either 2 or 0 positive real zeros, 1 negative real zero, and 2 or 0 imaginary zeros. 3. 6 5. 7, 0, and 3; 3 real 7. 2 or 0; 1; 2 or 4 x O 1715 3 9. 2, 1 i, 1 i 11. 2 3i, 2 3i, 1 8 3 13. ; 1 real 15. 0, 3i, 3i; 1 real, 2 imaginary 17. 2, 2, 2i, and 2i; 2 real, 2 imaginary 19. 2 or 0; 1; 2 or 0 21. 3 or 1; 0; 2 or 0 23. 4, 2, or 0; 1; 4, 2, or 0 25. 2, 2 3i, 2 3i f (x) x 3 4x 2 x 5 47. A′(1, 2), B′(3, 3), C′(1, 3) 54 51. x3 6x 20 x3 Practice Quiz 1 1. 2a3 6a2 5a 1 3. Sample answer: maximum at x 2, minimum at x 0.5 8 6 Pages 375–377 45. ; 135 43. 17; 27 39. 7.5 ft/s, 8 ft/s, 7.5 ft/s 41. By the Remainder Theorem, the remainder when f(x) is divided by x 1 is equivalent to f(1), or a b c d e. Since a b c d e 0, the remainder when f(x) is divided by x 1 is 0. Therefore, x 1 is a factor of f(x). 43. $16.70 45. No, he will still owe $4.40. 47. D 49. (x2)2 8(x2) 4 51. not possible 53. Sample answer: rel. max. and x 1 and x 1.5, rel. min. at x 1 55. (4, 2) 57. A f (x ) 9 57 59. S 61. 8 i 2 i 2 3 2 27. 2i, 2i, , 29. , 1 4i, 1 4i 31. 4 i, 4 i, 3 33. 3 2i, 3 2i, 1, 1 35. f(x) x3 2x2 19x 20 37. f(x) x4 7x2 144 39. f(x) x3 11x2 23x 45 41a. 41b. f (x ) f (x ) 5. 3, 3, i3, i3 f (x ) x O O x Selected Answers 4 4 2 4x 2 O 41c. 4 f (x ) 8 f (x) x 3 2x 2 4x 6 Pages 368–370 O Lesson 7-4 1. Sample answer: f(x) x2 2x 3 3. dividend: x3 6x 32; divisor: x 2; quotient: x2 2x 10; remainder: 12 5. 353, 1186 7. x 1, x 2 9. x 2, x2 2x 4 11. $2.894 billion 13. 9, 54 15. 14, 42 17. 19, 243 19. 450, 1559 21. x 1, x 2 23. x 4, x 1 1 2 25. x 3, x or 2x 1 29. x 1, x2 2x 3 33. 3 35. 1, 4 x 37. R48 Selected Answers 43. 1 ft 45. radius 4 m, height 21 m 47. 24.1, 4.0, 0, and 3.1 27. x 7, x 4 31. x 2, x 2, x2 1 5 1 14 5 1 9 69 140 100 45 120 100 24 20 0 [30, 10] scl: 5 by [20, 20] scl: 5 49. Sample answer: f(x) x3 6x2 5x 12 and g(x) 2x3 12x2 10x 24; each have zeros at x 4, x 2, and x 3. 51. If the equation models the level of a medication in a patient’s bloodstream, a doctor can use the roots of the equation to determine how often the patient should take the medication to maintain the necessary concentration in the body. Answers should include the following. • A graph of this equation reveals that only the first positive real root of the equation, 5, has meaning for this situation, since the next positive real root occurs after the medication level in the bloodstream has dropped below 0 mg. Thus according to this model, after 5 hours there is no significant amount of medicine left in the bloodstream. • The patient should not go more than 5 hours before taking their next dose of medication. 53. C 55. 254, 915 57. min.; 13 59. min.; 7 61. (6p 5)(2p 9) 1 2 5 2 67. , 1, , 5 Pages 380–382 63. 3 3 2 2 4 9 1 9 1 3 65. 29 8 16 8 9 16 69. , , 1, 3 Lesson 7-6 1. Sample answer: You limit the number of possible solutions. q p p q 3. Luis; Lauren found numbers in the form , not as Luis did according to the Rational Zero Theorem. 5. 1, 2, 1 2 1 3 1 6 2 3 , , , 7. 2, 4, 7 11 cm 13 cm 7 2 9. 2, 2, 11. 10 cm 13. 1, 2, 3, 6 15. 1, 2, 3, 6, 1 1 9, 18 17. 1, , , 3, 9, 27 19. 1, 1, 2 3 9 1 1 21. 0, 9 23. 0, 2, 2 25. 2, 4 27. , , 2 2 3 1 1 1 3 4 5 i 3 33. 1, 2, 5, i, i 29. , , , 31. , 0, 2 3 2 4 5 35. 2, 3 i3; 2 1 39. V 3 32 3 37. V 2h3 8h2 64h 3x2 2 53. 3xy2x 55. 6 cm, 8 cm, 10 cm 57. 4x2 8x 3 59. x5 7x4 8x3 106x2 85x 25 5 x1 61. x2 x 4 Practice Quiz 2 1. 930, 145 3. x4 4x3 7x2 22x 24 0 7. {(2, 7)}; {(1, 0), (2, 10)} 3 4 9. x2 11; x2 10x 31 11. 11 13. p(x) x; c(x) x 5 15. $33.74; price of CD when coupon is subtracted and then x9 x9 2x2 2 2 3 2 19. 2x x 8; 2x x 8; 2x 16x ; , x 8 8x x3 x2 1 x3 x2 2x 1 21. , x 1; , x 1; x2 x, x1 x1 x3 x2 x 1 x 1; x, x 0 23. {(1, 3), (3, 1), (2, 1)}; 25% discount is taken 17. 2x; 18; x2 81; , x 9 {(1, 0), (0, 1)} 25. {(0, 0), (8, 3), (3, 3)}; {(3, 6), (4, 4), (6, 6), (7, 8)} 27. {(5, 1), (8, 9)}; {(2, 4)} 29. 8x 4; 8x 1 31. x2 2; x2 4x 4 33. 2x3 2x2 2x 2; 8x3 4x2 2x 1 35. 12 37. 39 39. 25 41. 2 43. 79 45. 226 47. P(x) 50x 1939 49. p(x) 0.70x; s(x) 1.0575x 51. $110.30 53. 373 K; 273 K 55. $700, $661.20, $621.78, $581.73, $541.04 57. Answers should include the following. • Using the revenue and cost functions, a new function that represents the profit is p(x) r(c(x)). • The benefit of combining two functions into one function is that there are fewer steps to compute and it is less confusing to the general population of people reading the formulas. 1 1 3 3 59. C 61. 1, , , 2, 3, , , 6 63. x3 4x2 2 4 2 4 17x 60 65. 6x3 13x2 9x 2 67. x3 9x2 31x 39 2 2 2 1 3 69. 10 2j 71. 1 1 5 16 3 75. 1 4x2 5x I pr Fr2 GM 81. m Lesson 7-8 1. no 3. Sample answer: f(x) 2x, f 1(x) 0.5x; f[f 1(x)] f 1[f(x)] x 5. {(4, 2), (1, 3), (8, 2)} 7. f 1(x) x 9. y 2x 10 4 2 4 2 f (x ) 12 f (x) x f 1(x ) x O 2 y y 1x 5 2 8 4 4x 2 4 O 4 4 4 3 2 5. 1. Sometimes; sample answer: If f(x) x 2, g(x) x 8, then f ° g x 6 and g ° f x 6. 3. Danette; [g ° f ](x) g[f(x)] means to evaluate the f function first and then the g function. Marquan evaluated the 8 y 1 12 x 2x 10 11. no 13. 15.24 m/s2 15. {(8, 3), (2, 4), (3, 5)} 17. {(2, 1), (2, 3), (4, 1), (6, 0)} 19. {(8, 2), (5, 6), (2, 8), (6, 5)} 1 2 g (x ) 21. g1(x) x Lesson 7-7 2 4 77. y 79. t 2 23. g1(x) x 4 g (x ) 4 g1(x ) 1 x 2 2 g (x ) x 4 x Pages 386–389 1 1 2 3 73. 4 2 O 2 g (x ) 2x 2 4 4 2 O 2 4x g1(x) x2 4 4 Selected Answers R49 Selected Answers 43. The Rational Zero Theorem helps factor large numbers by eliminating some possible zeros because it is not practical to test all of them using synthetic substitution. Answers should include the following. • The polynomial equation that represents the volume of the compartment is V w3 3w2 40w. • Reasonable measures of the width of the compartment are, in inches, 1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 22, 28, 33, 36, 42, 44, 63, 66, 77, and 84. The solution shows that w 14 in., 22 in., and d 9 in. 45. Sample answer x5 x4 27x3 41x2 106x 120 47. 4, 2 i, 2 i 49. 7, 5 2i, 5 2i 51. x 4, Page 382 x2 3 x3 4x2 3x 12; , x 4 x4 Pages 393–394 41. 30 in., w 30 in., h 21 in. 5. x2 x 1; x2 x 7; functions in the wrong order. 1 2 1 2 y 4 y 1 8 5 f (x ) 27. f 1(x) x 25. y x 4 1x 1 2 2 9. 11. 8 6 2 y y 2x 4 4 4 2 O 4 4x 2 2 O 8 4 2 O 2 6x 4 y x 2 1 1 2 3 4 5 6x O 2 3 4 2 f (x) 5 x 2 2 y 2x 1 4 2 4x 2 y 4 3 2 1 f 1(x) 8 x 5 29. f 1(x) 5 35 x 4 4 31. f 1(x) f (x)1 5 x 35 4 4 f (x ) 30 20 10 O x 40 13. Yes; sample answer: The advertised pump will reach a maximum height of 87.9 ft. 8 4 x 7 7 f (x ) 4 f 1(x) 8 x 2 4 7 7 10 4 2 O 20 2 30 4 4x 2 f (x) 7x 4 8 f (x) 4 x 7 5 17. 11 2 33. no 35. yes 37. yes 39. y x 41. I(m) 320 0.04m; $4500 Fahrenheit. 43. It can be used to convert Celsius to 45. Inverses are used to convert between two units of measurement. Answers should include the following. • Even if it is not necessary, it is helpful to know the imperial units when given the metric units because most measurements in the U.S. are given in imperial units so it is easier to understand the quantities using our system. • To convert the speed of light from meters per second to miles per hour, 3.0 108 meters 1 second 3600 seconds 1 hour 1 mile 1600 meters f(x) Selected Answers 675,000,000 mi/hr 47. B 49. g[h(x)] 6x 10; h[g(x)] 6x 53. 64 55. 3 57. 117 Pages 397–399 51. 7, 2, 3 25 61. 4 59. 7 Lesson 7-9 8 7 6 5 4 3 2 1 y 1 x 2 1 2 3 4 5 6 7 8x O O y 4x 1 2 3 4 5 6 7 8x D: x 0; R: y 0 R50 Selected Answers O y x 7 1 2 3 4 5 6 7 8x O D: x 7, R: y 0 21. 23. y 8 7 6 5 4 3 2 1 8 y 6 4 y 5x 3 y 5 x 4 2 O O 1 2 3 4 5 6 7 8x 25. 7. y D: x 0, R: y 0 2x 4 y 5. 8 7 6 5 4 3 2 1 y 5x 8 7 6 5 4 3 2 1 D: x 0.6, R: y 0 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8x 19. y 1. In order for it to be a square root function, only the nonnegative range can be considered. 3. Sample answer: y y O 1 2 3 4 5 6 7 8 D: x 0, R: y 0 40 1 2 15. 4 2 4x 2 D: x 4, R: y 5 27. y 8 y 8 y 23 4x 3 6 6 4 y x 1 3 y y x 5 4 2 2 O 1 2 3 4 5 6 7 8x D: x 1; R: y 3 3 2 1 O D: x 0.75, R: y 3 x 4 2 2 x 29. 8 7 6 5 4 3 2 1 27. 20, 20 29. x2 2x 3 31. 1; 0; 2 33. 3 or 1; 1; 0 or 2 35. 2 or 0; 2 or 0; 4, 2, or 0 37. 1, 1 31. y 8 7 6 5 4 3 2 1 y 5x 8 1 2 3 4 5 6 7 8x O O y 1 2 39. 1, 2, 4, 3 41. , 2 43. x2 1; x2 6x 11 45. 15x 5; 15x 25 y 6x 2 1 x 3 2 f (x ) 47. x 4; x 4 49. f 1(x) f (x ) 2x 3 2 1 f (x ) x 3 1 2 3 4 5 6 7 8x 33. 317.29 mi 37. Square root functions are used in bridge design because the engineers must determine what diameter of steel cable needs to be used to support a bridge based on its weight. Answers should include the following. • Sample answer: When the weight to be supported is less than 8 tons. • 13,608 tons x5 39. D 41. no 43. 2x 2; 8; x2 2x 15; , x 3 x3 8x3 12x2 18x 26 3 8x3 12x2 18x 28 45. , x ; , 2x 3 2x 3 2 3 3 3 3 2 x; 2x 3, x ; 8x 12x 18x 27, x 2 2 2 2 4 2 O 4x 2 2 4 2x 1 3 f (x ) 4 2 47. 2x2 4x 16 49. a3 1 1 2 y 3 2 53. y1 x 51. f 1(x) 4 f (x) 3x 1 y (2x 3)2 2 2 x Pages 400–404 Chapter 7 Study Guide and Review 1. f 3. a 5. e 7. 6; x h 2 9. 21; 6x 6h 3 11. 20; x2 2xh h2 x h 13a. 13b. at x 3 h (x ) x 13c. Sample answer: O 4 rel. max. at x 1.4, 8 4 8 rel. min. at x 1.4 4 8 12 h (x) x 3 6x 9 15a. 4 8 4 O 4 2 O 4 4x 2 2 2 O y 1 x 3 3 2 3 5 55. D: x , R: y 0 O 4 2 f 1(x) 2x 1 8 7 6 5 4 3 2 1 2 2 57. y 6 5 4 3 2 1 y 5x 3 O x y y x 2 1 2 3 4 5 6 7 8x 2 1 2 3 4 5 6 7 8 8x 4 Chapter 8 8 Page 411 p (x ) x 5 x 4 2x 3 1 17a. r (x ) O x 17b. between 2 and 1, between 0 and 1, and between 1 and 2 17c. Sample answer: rel. max. at x 1, rel. min. at x 0.9 Conic Sections Chapter 8 Getting Started 2 4 1 3 1. {4, 6} 3. , 4 5a. 2 2 0 2 3 9 4 5 5 5 5b. 5c. 1 3 5 3 3 3 7. 21. 4, 2 2i3 x x y 3 r (x ) 4x 3 x 2 11x 3 5 3 y O 19. , 3, 0 23. 2, 2 25. 4, 1 Selected Answers R51 Selected Answers 15b. between 2 and 3 15c. Sample answer: rel. max. at x 1.6, rel. min. at x 0.8 p (x ) 4 Pages 414–416 Lesson 8-1 Pages 423– 425 1. Since the sum of the x-coordinates of the given points is negative, the x-coordinate of the midpoint is negative. Since the sum of the y-coordinates of the given points is positive, the y-coordinate of the midpoint is positive. Therefore, the midpoint is in Quadrant II. 3. Sample answer: (0, 0) and (5, 2) 5. (2.5, 2.25) 7. 122 units 9. D 11. (4, 2) 17 27 13. , 2 2 1 5 17. , 24 8 15. (3.1, 2.7) 19. (7, 11) 5. (3, 4), 3, 3, x 3, 3 4 1 4 y x x y y 2 2 x1 x2 2 y1 y2 2 x1 y1 or 2 2 x1 x2 2 y1 y2 2 x1 x2 y1 y2 . The distance from , 2 2 2 2 Selected Answers to (x2, y2) is x1 x2 2 y1 y2 2 x2 x1 2 y2 y1 2 y2 x2 2 2 2 2 x1 x2 2 y1 y2 2 . Therefore the point with or 2 2 x1 x2 y1 y2 coordinates , is equidistant from (x1, y1) and 2 2 43. C 7 12 1 3 11. x y2 6 13. x (y 7)2 29 15. x 3y 11 5 2 6 1 12 y 1 (x 3) 2 6 8 x O 17. (0, 0), , 0, y 0, 19. (1, 4), 1, 3, x 1, 1 2 1 2 1 2 1 2 x , right, 2 units y 4, downward, 2 units y y y 2 2x x O O 2(y 4) (x 1)2 x 21. (4, 8), (3, 8), y 8, x 5, left, 4 units y x 2 y 2x 1 x O 3 51. 1 13i 53. 4 3i 55. y (x 57. y 3(x 1)2 2 59. y 3(x 3)2 17 2)2 R52 Selected Answers x 1 24 1 8 y 9. y (x 3)2 6 y x y y (x 3) 2 4 49. D {xx 0}, R {yy 1} y O 4 3 y , downward, unit 45. on the line with equation y x 47. D {xx 2}, R {yy 0} 3 4 1 2 1 2 , The distance from to (x1, y1) is (x2, y2). 4 3 x O through (x1, y1) and (x2, y2). 2 3 O 4 3 41. The slope of the line y2 y1 and the point-slope through (x1, y1) and (x2, y2) is x2 x1 y2 y1 (x x1). form of the equation of the line is y y1 x2 x1 x1 x2 y1 y2 Substitute , into this equation. The 2 2 y1 y2 y2 y1 . The right side is left side is y1 or 2 2 y2 y1 x1 x2 y2 y1 x2 x1 y2 y1 x1 or . Therefore, x2 x1 2 x2 x1 2 2 x1 x2 y1 y2 , lies on the line the point with coordinates 2 2 7. , , , , x , y 3x 2 8x 6 12 1 16 to complete the square, she forgot to also subtract 9. The standard form is y (x 3)2 9 4 or y (x 3)2 5. y 4, upward, 1 unit 21. Sample answer: Draw several line segments across the U.S. One should go from the northeast corner to the southwest corner; another should go from the southeast corner to the northwest corner; another should go across the middle of the U.S. from east to west; and so on. Find the midpoints of these segments. Locate a point to represent all of these midpoints. 25. 25 units 27. 3 17 units 29. 70.25 units 31. 1 unit 813 58 units, 10 units2 33. units 35. 72 37. 130 units 39. about 0.9 h Lesson 8-2 15 16 1. (3, 7), 3, 6, x 3, y 7 3. When she added 9 16 14 12 10 8 6 4 2 4 321 y (y 8)2 4(x 4) O 1 2 3 4x 23. (24, 7), 23, 7, y 7, 25. (4, 2), 4, 2, x 4, 1 12 3 4 11 12 1 4 x 24, right, 1 unit 24 53. y 1 3 y 1, upward, unit y y x y 2 14y 25 16 y x 1 O x 8 24 16 8 O 8x 8 17 3 67 3 4 4 16 4 69 1 x , left, unit 16 4 y 3 4 29. (123, 18), 122, 18, y 1 4 3 4 y 18, x 123, left, 3 units 20 x 4y 2 6y 2 120 60 x 40 60 Lesson 8-3 9. (0, 14), 34 units 24 y x 2 (y 14)2 34 16 x 1 y 2 12y 15 3 8 16 8 16x 8 O 8 1 16 37. x (y 6)2 8 O 120x 2 3 1 24 61. 43 1. Sample answer: (x 6)2 (y 2)2 16 3. Lucy; 36 is the square of the radius, so the radius is 6 units. 5. (x 1)2 (y 5)2 4 7. (x 3)2 (y 7)2 9 33. y 35. 0.75 cm 31. 1 y 60 O Pages 428– 431 20 O 59. 23 57. 9 x O 27. , , , , y , 55. 4 y 3x 2 24x 50 39. y (x 1)2 7 14 12 10 8 6 x 1 (y 6)2 8 24 4 2 8 6 4 2 1 2 3 4 5 6 7 8x 2 2 1 22 11. , , unit y 3 2 y 1 (x 1)2 7 13. (2, 0), 23 units 3 y y 16 4 321 O1 2 3 4 5 6 x 2 4 6 8 x O 2 2 (x 23 ) (y 12 ) O x 8 9 (x 2)2 y 2 12 y 15. x 1 (y 3)2 4 Selected Answers 1 41. x (y 3)2 4 4 y Earth 4 Satellite 35,800 km x O 6400 km x 43. about y 0.00046x2 325 42,200 km 1 26,200 45. y x2 6550 47. A parabolic reflector can be used to make a car headlight more effective. Answers should include the following. • Reflected rays are focused at that point. • The light from an unreflected bulb would shine in all directions. With a parabolic reflector, most of the light can be directed forward toward the road. 49. A 51. 10 units 17. (x 2)2 (y 1)2 4 1 4 19. (x 8)2 (y 7)2 21. (x 1)2 y 1 2 2 1945 4 23. x 13 (y 42)2 1777 25. (x 4)2 (y 2)2 4 27. (x 5)2 (y 4)2 25 29. (x 2.5)2 (y 2.8)2 1600 2 Selected Answers R53 41. (9, 9), 109 units 31. (0, 0), 12 units 16 y 2 2 x y 144 8 16 8 16x 8 O 8 16 2O 2 33. (3, 7), 9 units (x 3)2 (y 7)2 81 4 2 y 2 4 6 8 10 12 14 16 18 x 45. (1, 2), 14 units 2 2 4 2 y y O 6 42 2 4 6 8 10 x 2 4 6 8 10 12 x 2 y 2 3x 8y 20 x O x 2 y 2 2x 4y 9 47. 0, , 19 units 9 2 35. (3, 7), 52 units 64 2 2 4 6 8 10 12 14 2 x 2 y 18x 18y 53 0 17 3 3 43. , 4, units 12108642 O2 4 6 8 x 2 4 6 8 10 12 14 16 2 y 18 16 14 12 10 8 6 4 2 y y (x 3)2 (y 7)2 50 O 2 4 6 8 10 x x O 4x 2 4y 2 36y 5 0 37. 2, 3, 29 units Selected Answers y O x 2 (y 3)2 4x 25 x 16 ( x 3)2 49. (x 1)2 (y 2)2 5 51. A 53. y 55. [10, 10] scl:1 by [10, 10] scl:1 57. (1, 0), , 0, y 0, 59. (2, 4), 2, 3, x 1, left, unit x 2, y 4, upward, 1 unit 1 12 39. (0, 3), 5 units 11 12 1 3 y 1 4 y y 2 x 2 y 2 6y 16 0 y x 4x x 3y 2 1 O O 3 4 x O x 61. (1, 2) 63. 4, 2, 1 65. 28 in. by 15 in. 69. 25 71. 22 R54 Selected Answers x 67. 6 Page 431 29. (8, 2); 8 37, 2; 24; 18 Practice Quiz 1 1. 13 units 3. (0, 0), 1, 0, y 0, 1 2 1 2 x 1, right, 6 units 12 10 8 6 4 2 y y 2 6x 8642O 2 4 x O 16 5. (0, 4), 7 units y y 8 O 24 16 8 8x 8 (x 8) 2 (y 2)2 1 16 144 81 2 4 6 8x x 2 (y 4)2 49 31. (0, 0); 6, 0; 6; 23 y Pages 437–440 x O Lesson 8-4 (y 5)2 (x 2)2 1. x 1, y 2 3. Sample answer: 1 4 1 (y 4)2 (x 2)2 5. 1 4 36 7. (0, 0): (0, 3); 62; 6 3x 2 9y 2 27 33. (0, 0); 0, 7; 8; 6 y y x O x O y2 x2 1 18 9 9. (0, 0); (2, 0); 42; 4 16x 2 9y 2 144 y 35. (3, 1); (3, 5), (3, 3); 46; 42 y x O 4x 2 8y 2 32 4 x2 2.02 10 y2 y2 20 x 37. (2, 2); (2, 4), (2, 0); 27; 23 y x2 4 23. about 16 16 1 25. 1 2.00 10 Selected Answers O y2 y2 x2 x2 1 13. 1 11. about 15 15 1.32 10 7 1.27 10 16 (y 4)2 y2 (x 2)2 (x 2)2 15. 1 17. 1 4 64 16 4 y2 (y 4)2 x2 (x 5)2 19. 1 21. 1 81 169 25 64 27. (0, 0); 0, 5; 210 ; 25 y x O O x y2 x2 1 10 5 x2 12 y2 9 x2 1.35 10 y2 1.26 10 39. 1 41. C 43. about 19 19 1 45. (x 4)2 (y 1)2 101 47. (x 4)2 (y 1)2 16 Selected Answers R55 Married Americans People (millions) 49. y2 12 x2 4 120 118 116 114 112 110 108 106 104 0 y 112 x2 11. 1 2 13. 1 6 25 y2 x2 15. 1 25 36 y2 x2 19. 1 16 9 (y 3)2 (x 2)2 17. 1 49 4 4 21. (9, 0); 130 , 0; y x 7 9 16 12 8 4 0 2 4 6 8 10 12 14 16 18 20 Years Since 1980 161284 O4 8 12 16x 4 8 12 16 51. Sample answer: 128,600,000 53. 55. y 2 2 y x y 1 81 49 y y 1x 23. (0, 4); 0, 41 ; 2 25. 2, 0; 3, 0; 2 y x 4 y x 5 x O O y 2x 57. x 2 8 6 4 2 y y x 2 2y 2 2 8 6 42 O2 4 6 8 x 2 4 6 8 x2 y2 25 1 16 y x y 2 2(x 1) O 27. (0, 6); 0, 35; 29. (2, 0), (2, 8); (2, 1), y 2x (2, 9); y 4 (x 2) 16 4 3 y 12 8 Selected Answers Pages 445–448 Lesson 8-5 y2 15 x2 1 y2 9 x2 4 5. 1 9. 4 25, 2; 1, 6 35; 4 35, 2; 25 y 6 (x 1) 5 y 20 5 y 2 (x 4) x O 8 4 O 8 16x (x 1)2 25 1 16 12 8 4 1284 4 8 12 16 2 y (x 2)2 (y 4)2 1 49 16 O 8 12 7. 1, 6 25; (y 6)2 16 y 8 y 2 36 4x 2 3. Sample answer: 1 1. sometimes x O 4 4 x 4 31. (3, 3), (1, 3); 33. 1, 3 26; 1 13, 3; 1, 3 42; 3 y 3 (x 1) 2 y y 3 3(x 1) O O4 8 12 16 20 x y x 6 4 2 8 6 42 O2 4 6 8 x 2 4 6 8 10 (y 3)2 (x 1)2 1 9 4 y 2 3x 2 6y 6x 18 0 AA08 10 C A2BLAC R56 Selected Answers y2 7.8975 x2 1.1025 35. 1 39. about 47.32 ft 37. 120 cm, 100 cm y 41. C 43. y xy 2 xy 2 x x x2 2 y 10 8 6 4 2 45. y O y2 4 13. 1, ellipse 11. O 2 4 6 x O x O2 4 6 8 10 12 14 y2 1 x2 4 15. 1, hyperbola 17. y (x 2)2 4, parabola (x 5)2 16 (y 2)2 1 7 53. 5 51. 4, 2 0 20 per year 57. 2x 17y 63. 0, 1, 0 y (y 4)2 9 (x 1)2 25 47. 1 y 49. 1 55. about 5,330,000 subscribers 59. 1, 2, 9 61. 5, 0, 2 x O Page 448 Practice Quiz 2 (y 1)2 (x 3)2 1. 1 32 81 x O y2 32 (x 4)2 32 19. (x 2)2 (y 3)2 9, 21. 1, circle hyperbola 3. (1, 1); 1, 1 11 ; 8; 25 y 8 6 4 2 y x O x O 23. x2 (y 4)2 5, circle (x 2)2 16 (y 2)2 5 1. Sample answer: 1 0 3. The standard form of the equation is (x 2)2 (y 1)2 0. This is an equation of a circle centered at (2, 1) with radius 0. In other words, (2, 1) is the only point that satisfies the equation. y2 x2 5. 1, hyperbola 8 16 y 8 6 4 2 O 8642 2 4 6 8x 2 4 6 8 x O Lesson 8-6 2x2 9. ellipse (y 1)2 3 y x2 4 25. 1, ellipse Selected Answers Pages 450–452 121086 42 O 2 4 x 2 4 6 8 y 5. 1 y 2y2 (y 3)2 7. 1, ellipse 4 1 y (x 1)2 x O (x 3)2 25 (y 1)2 9 27. y (x 4)2 7, 29. 1, parabola ellipse 12 8 y O 4 y 4x 4 8 12 O x x O 16 31. hyperbola 33. circle 35. parabola 37. ellipse Selected Answers R57 39. parabola 41. b 43. c 45. The plane should be vertical and contain the axis of the double cone. (x 3)2 9 x7 y 55. 4 57. (2, 6) Pages 458–460 y (y 6)2 4 51. 1 47. D 49. 0 e 1, e 1 53. x12 35. 59. (0, 2) Lesson 8-7 1a. (3, 4), (3, 4) x O y 4x 3y 0 O x 37. 39. none y 41. none x 2 y 2 25 1b. (1, 4) x O y y 2x 2 2 y 5x 43. Systems of equations can be used to represent the locations and/or paths of objects on the screen. Answers should include the following. • y 3x, x2 y2 2500 • The y-intercept of the graph of the equation y 3x is 0, so the path of the spaceship contains the origin. 2 x O • 510 , 1510 or about (15.81, 47.43) 3. Sample answer: x2 y2 40, y x2 x 5. (4, 3), (3, 4) 7. (1, 5), (1, 5) 9. y (x 2)2 16 y2 4 45. B 47. Sample answer: x2 y2 36, 1 x2 4 y2 100 49. Sample answer: x2 y2 81, 1 51. impossible Selected Answers (y 3)2 9 11. (2, 4), (1, 1) 13. 1 17 , 1 17 , 1 17 , 1 17 15. 5, 5, 5, 5 17. (5, 0), (4, 6) 19. (8, 0) 21. no solution 23. (5, 5), (5, 1), (3, 3) 5 5 25. , , (1, 3) 40 245 45 125 29. , 5 3 7 3 27. 0.5 s 31. No; the comet and Pluto may not be at either point of intersection at the same time. 33. y x2 4 y 53. 1, ellipse x O x O 55. 7, 0 4 3 57. 7, 3 59. 61a. 40 10 61b. two real, irrational 61c. 8 5 1 5 65. i 67. 6 69. 51 Pages 461– 466 Chapter 8 1. true 3. true 5. true O x 63. 2 9i 71. y 3x 2 Study Guide and Review 7. true 9. False; the midpoint x1 x2 y1 y2 , . formula is given by 2 2 17 43 13. , 15. 290 units 40 40 R58 Selected Answers 5 11. , 4 5 2 17. (1, 1); (1, 4); x 1; y 2; upward; 12 units 31. (0, 0); (0, 3); 10; 8 y 8 y x2 y2 1 16 25 4 (x 1)2 12(y 1) 8 8x O 4 x O 8 19. (4, 2); (4, 4); x 4; y 0; downward; 8 units y 33. (1, 2); 1 3, 2; 4; 2 y x O x 2 4y 2 2x 16y 13 0 x O x 2 8x 8y 32 0 1 8 21. y x2 1 35. (0, 2); 0, 13 ; y x 2 3 y y2 x2 1 y 1x 2 1 4 8 y 9 x O x 9 16 23. (x 4)2 y2 25. (x 1)2 (y 2)2 4 4 3 37. (0, 4); (0, 5); y x 27. (5, 11); 7 units 16 12 8 y y 15 (5, 11) 9y 2 16x 2 144 16 128 9 O 3 6x 16 39. y (x 2)2 4; parabola 29. (3, 1); 5 units 8 (3, 1) 8 12 16 x 8 3 18 12 6 Selected Answers (x 5)2 (y 11)2 49 21 y y 4 4 O 4 x 2 y 2 6x 2y 15 0 8 6x O x x 2 4x y 0 Selected Answers R59 y2 4 (x 1)2 1 y y2 4 55. 1; hyperbola 2 (x 1) 1 1 8 x O (y 2)2 1 (x 7)2 9 41. 1; hyperbola 57. odd; 3 59. {1, 4} 61. {0, 5} y 11 69. 18 4 4 4 47. (6, 8), (12, 16) 4 15 x O 43. ellipse 45. circle 49. y 1 9 63. 65. 1 67. 1 8 (x 7) 9 2 12 2 (y 2) 1 1 8 O x Pages 481– 484 Lesson 9-2 1. Catalina: you need a common denominator, not a common numerator, to subtract two rational expressions. 3a. Always; since a, b, and c are factors of abc, abc is always 1 1 1 a common denominator of . 3b. Sometimes; if a, a b c b, and c have no common factors, then abc is the LCD of 1 1 1 . a b c Chapter 9 Rational Expressions and Equations Page 471 Chapter 9 Getting Started 1 1 5 1 1. 3. 5. 16 7. 2 9. 1 24 6 8 2 11. 13. 12 y 19. 6 y2 (x 4)2 1 4 1 O 3c. Sometimes; if a and b have no common 1 a 1 b 1 c factors and c is a factor of ab, then ab is the LCD of . 3d. Sometimes; if a and c are factors of b, then b is the bc 1 1 1 1 1 1 3e. Always; since abc a b c a b c ac ab bc ac ab , the sum is always . 5. 80a2b3c abc abc abc 37 3a 10 13x2 4x 9 2 x3 7. 2 9. 11. 13. units 42m (a 5)(a 4) 2x(x 1)(x 1) xy LCD of . 15. 15 17. 15 1 21. 7 2 x 15. 180x2yz 17. 36p3q4 19. x2(x y)(x y) 31 12v 2x 15y 3y 21. (n 4)(n 3)(n 2) 23. 25. y(y 9) 25b 7a3 110w 423 a3 31. 33. 5a b 90w a4 (y 3)(y 3) 8d 20 x2 6 35. 37. 2 (d 4)(d 4)(d 2) (x 2) (x 3) 2y2 y 4 a7 39. 41. 1 43. 45. 12 ohms a2 (y 1)(y 2) 24 2md 2md 47. h 49. or x4 (d L)2(d L)2 (d2 L2)2 27. 2 29. 2 Selected Answers Pages 476–478 Lesson 9-1 4 4(x 2) 1. Sample answer: , 3. Never; solving the 6 6(x 2) equation using cross products leads to 15 10, which is 1 ab 3c 20b 6 13. D 5 n2 s a1 4bc 1 15. 17. 19. 21. 23. 25. 2p2 7m 3 2a 1 27a 2 b3 2(a 5) 4 w3 27. 22 29. 31. 1 33. 35. xy (a 2)(a 2) 3 w4 2x y 4 37. 2p 39. 41. 43. a b or b 3 2x y 6827 m 2 45. 47. (2x x 15) m2 13,129 a never true. 5. 7. 9. 11. cd2x 49. A rational expression can be used to express the fraction of a nut mixture that is peanuts. Answers should include the following. 8x • The rational expression is in simplest form because 13 x the numerator and the denominator have no common factors. 8x • Sample answer: could be used to represent the 13 x y fraction that is peanuts if x pounds of peanuts and y pounds of cashews were added to the original mixture. 51. A 53. 17, 22 R60 Selected Answers 51. Subtraction of rational expressions can be used to determine the distance between the lens and the film if the focal length of the lens and the distance between the lens and the object are known. Answers should include the following. • To subtract rational expressions, first find a common denominator. Then, write each fraction as an equivalent fraction with the common denominator. Subtract the numerators and place the difference over the common denominator. If possible, reduce the answer. 1 q 1 10 1 60 • could be used to determine the distance between the lens and the film if the focal length of the lens is 10 cm and the distance between the lens and the object is 60 cm. 53. C a(a 2) a1 55. 57. 15. y 0 and 0 C 1 17. asymptotes: x 4, x 2 19. asymptotes: x 1, hole: x 5 21. hole: x 1 59. y y (y 3)2 x 2 6 2 8 x O 23. 25. O 8x 2 6 x y4 8 x O 2 27. 29. f (x) O 2 4 6x (x 2) (y 5) 1 8 16 25 f (x) f (x) 8 4 1 f(x) ( x 3)2 5x x 1 2 4 Page 484 Practice Quiz 1 y2 t2 1. 3. 5. (w 4)(3w 4) t3 32 n 29 9. (n 6)(n 1) Pages 488–490 8 4 O f (x) 3. x 2 and y 0 f (x) f (x) 2 4 x 1 x 3 35. 6 (x 2)(x 3) 37. f (x) f (x) f (x) 8 4 2 O O x O 2 x 1 x2 4 x 8x 4 f(x) x 5 x 1 f (x) 4 11. 1 ( x 2)( x 3) 13. 39. C f(x) f (x) 10 6 O x f(x) x 2 x2 x 6 f (x) C y y 12 1 (x 2)2 2 16 8 O 8 16 y O x 4 Selected Answers R61 Selected Answers 4 x O f (x) 9. x 1 x 1 8x 4 f(x) 2 x O f (x) O x 33. 4 2 O 31. are asymptotes of the graph. The y-intercept is 0.5 and there is no x-intercept because y 0 is an asymptote. 5. asymptote: x 5; hole: x 1 7. f(x) 4 8x 4 4 4a 1 ab 7. Lesson 9-3 1 1. Sample answer: f(x) (x 5)(x 2) 8 8 8 y 2 4 O 4 3 6 5 x 1 x 4 f (x) x 61. 10 8 6 4 2 f (x) 2 x 26 y 2 1 20 16 2 f (x) f (x) 41. The graph is bell-shaped with a horizontal asymptote at f(x) 0. 45. about 43. 45. 0.83 about m/s 0.83 Vf m/s 20 12 4 Vf 8 8 5 49. It represents her original free-throw percentage of 60%. P (x ) 6x 10 4 x 4 O 41. m 20sd 43. 1860 lb k d 1 4 47. I 2 49. The sound will be heard as intensely. 51. about 127,572 calls 53. no; d 0 55. A direct variation can be used to determine the total cost when the cost per unit is known. Answers should include the following. • Since the total cost T is the cost per unit u times the number of units n or T un, the relationship is a direct variation. In this equation u is the constant of variation. • Sample answer: The school store sells pencils for 20¢ each. John wants to buy 5 pencils. What is the total cost of the pencils? ($1.00) x 57. C 59. asymptotes: x 4, x 3 61. 8 m1 47. 12 m1 7 1 6 35. 0.83 37. 39. 100.8 cm3 45. joint O 16 8 4 P (x) m1 7 15. joint; 5 17. direct; 3 19. direct; 7 21. inverse; 2.5 23. V kt 25. 118.5 km 27. 20 29. 64 31. 4 33. 9.6 yx m(m 1) 63. m5 4x 3 67. ; 3 5 65. 0.4; 1.2 69. A 71. P 73. C 4 8 Page 498 51. A rational function can be used to determine how much each person owes if the cost of the gift is known and the number of people sharing the cost is s. Answers should include the following. • • Only the portion in the c 100 first quadrant is significant c 150 in the real world because s 50 there cannot be a negative s0 O number of people nor a 50 100 s 100 50 negative amount of money owed for the gift. 50 c 0 3x 16 (x 3)(x 2) 1. Practice Quiz 2 3. 49 f (x ) 5. 112 f (x ) x 1 x4 x O 53. B 55. 100 Pages 501–504 Lesson 9-5 1. Sample answer: 57. (6, 2); 5 y 59. $65,892 This graph is a rational function. It has an asymptote at x 1. P 2 (x 6) ( y 2)2 25 Selected Answers O x O 61. {12, 10} 63. 4.5 Pages 495–498 d 65. 20 Lesson 9-4 1a. inverse 1b. direct 3. Sample answers: wages and hours worked, total cost and number of pounds of apples; distances traveled and amount of gas remaining in the tank, distance of an object and the size it appears 5. direct; 0.5 7. 24 9. 8 11. 25.8 psi 13. Depth (ft) Pressure (psi) P 0 0 1 0.43 2 0.86 3 1.29 4 1.72 3. The equation is a greatest integer function. The graph looks like a series of steps. 5. inverse variation or rational 7. c 9. identity or direct 11. absolute value y variation y y x2 y x O P 0.43d O x O x d 13. absolute value 15. rational 17. quadratic 19. b 21. g R62 Selected Answers 23. constant 25. square root y 47. (5, 4); 5, 4; y 4; x 4; right; 3 units 3 4 y 1 4 y O y 9x x x O y 1.5 x O 27. rational 3x y 2 8y 31 29. absolute value y y 2 yx 1 x1 49. impossible 1 3 17 6 55. 57. 45x3y3 59. 3(x y)(x y) 61. (t 5)(t 6)(2t 1) x O 51. , 2 53. 1 y 2x O x Pages 509–511 Lesson 9-6 2 1 a2 5 1. Sample answer: 1 3. Jeff; when Dustin 31. C 4.5m 33. a line slanting to the right and passing through the origin multiplied by 3a, he forgot to multiply the 2 by 3a. 35. 7. 6, 2 y 15. 1 a 0 Cost (cents) 160 23. 14 4 6 Ounces 8 19. t 0 or t 3 21. 0 y 2 3 32 29. 31. 32 33. band, 17. 11 25. 27. 7 2 10 • To solve 6, multiply each side of the equation 40 2 5. 2, 6 13. 6, 1 x 80 0 11. 2 80 members; chorale, 50 members 35. 24 cm 37. 5 mL 39. 6.15 41. If something has a general fee and cost per unit, rational equations can be used to determine how many units a person must buy in order for the actual unit price to be a given number. Answers should include the following. 120 37a. absolute value 37b. quadratic 37d. square root 39. C 41. 22 43. 1 9. v 0 or v 16 500 5x x 37c. greatest integer f (x ) y x O f (x ) 8 (x 1)(x 3) y 2x 45. (8, 1); 8, ; x 8; y 1; up; unit 7 8 14 12 10 8 6 4 2 2 2 1 8 y 1 2 x O 47. 36 49. 2130 51. 137 Pages 513–516 1( y 1) (x 8)2 2 O 2 4 6 10 12 x Chapter 9 1. false; point discontinuity 4bc 9. (y 3)(y 6) 33a 3 17. 20b 7. 53. {x0 x 4} Study Guide and Review 3. false; rational 5. true 2 n3 7(x 4) x5 11. 13. 19 3y 15. Selected Answers R63 Selected Answers by x to eliminate the rational expression. Then subtract 5x from each side. Therefore, 500 x. A person would need to make 500 minutes of long distance minutes to make the actual unit price 6¢. • Since the cost is 5¢ per minute plus $5.00 per month, the actual cost per minute could never be 5¢ or less. 43. C 45. square root 19. 21. D {xx is all real numbers.}, R {yy 0} 21. f (x ) f (x ) 23. D {xx is all real numbers.}, R {yy 0} y x O O 4 f (x ) x 2 y x f (x ) x2 y 0.5(4)x )x y 2(3 x O 23. x O f (x ) 25. D {xx is all real numbers.}, R {yy 0} y x x O O f (x ) (x 1)(5x 3) ( 15 )x y 2 3 25. 1 27. 8 1 9 31. absolute value 33. 1 35. 3 29. 80 1 2 37. 1 27. growth 29. decay 35. y 7(3)x 43. n2 Chapter 10 Exponential and Logarithmic Relations 37. y 0.2(4)x 45. n 5 1 x 4 33. y 2 31. decay 47. 1 39. 54 or 625 8 49. 3 41. 742 51. n 3 53. 3 55. 10 57. y 59. y 61. 2144.97 million; 281.42 million; No, the growth rate has slowed considerably. The population in 2000 was much smaller than the equation predicts it would be. 63. A(t) 1000(1.01)4t 65. s 4x 67. Sometimes; true when b 1, but false when b 1. 69. A 100(6.32)x Page 521 Chapter 10 Getting Started 12x3 1. x12 3. 5. a 14 7. y 2 7y5z 1 9. f 1(x) x 11. f 1(x) x 1 2 f (x ) f (x ) 3.93(1.35)x 71. f 1(x ) x 1 f (x ) 2x x O O 1 2 Selected Answers f 1(x ) x x [5, 5] scl: 1 by [1, 9] scl: 1 f (x ) x 1 13. g[h(x)] 3x 2; h[g(x)] 3x 2 15. g[h(x)] x2 8x 16; h[g(x)] x2 4 Pages 527–530 Lesson 10-1 1. Sample answer: 0.8 3. c 5. b 7. D {xx is all real numbers.}, R {yy 0} The graphs have the same shape. The graph of y 2x 3 is the graph of y 2x translated three units up. The asymptote for the graph of y 2x is the line y 0 and for y 2x 3 is the line y 3. The graphs have the same domain, all real numbers, but the range of y 2x is y 0 and the range of y 2x 3 is y 3. The y-intercept of the graph of y 2x is 1 and for the graph of y 2x 3 is 4. 73. y ( 13 )x y2 9. decay 1 x 2 11. y 3 15. 332 or 272 R64 Selected Answers [5, 5] scl: 1 by [1, 9] scl: 1 x O x 2 1 The graphs have the same shape. The graph of y 13. 227 or 47 17. x 0 19. y 65,000(6.20)x 5 1 is the graph of y translated two units to the right. The x 5 1 x 1 x 2 is asymptote for the graph of y and for y 5 5 the line y 0. The graphs have the same domain, all real numbers, and range, y 0. The y-intercept of the graph of 1 x 1 x 2 y is 1 and for the graph of y is 25. 5 5 75. For h 0, the graph of y 2x is translated h units to the right. For h 0, the graph of y 2x is translated h units to the left. For k 0, the graph of y 2x is translated k units up. For k 0, the graph of y 2x is translated k units down. 77. 1, 6 79. 0 x 3 or x 6 81. greatest integer y y 2 x 67b. The graph of y log2 x 3 is the graph of y log2 x translated 3 units up. The graph of y log2 x 4 is the graph of y log2 x translated 4 units down. The graph of log2 (x 1) is the graph of y log2 x translated 1 unit to the right. The graph of log2 (x 2) is the graph of y log2 x translated 2 units to the left. 69. 101.4 or about 25 times as great 71. 2 and 3; Sample answer: 5 is between 22 and 23. 73. A logarithmic scale illustrates that values next to each other vary by a factor of 10. Answers should include the following. • Pin drop: 1 100; Whisper: 1 102; Normal conversation: 1 106; Kitchen noise: 1 1010; Jet engine: 1 1012 • Pin Whisper Normal Jet Kitchen drop (4 feet) 2 10 11 0 10 01 engine noise x O 83. conversation 1 3 51 11 85. 6 5 87. g[h(x)] 2x 6; h[g(x)] 2x 11 89. g[h(x)] 2x 2; h[g(x)] 2x 11 Pages 535–538 6x 58 83. Lesson 10-2 1. Sample answer: x 5y and y log5 x 3. Scott; the value of a logarithmic equation, 9, is the exponent of the equivalent exponential equation, and the base of the logarithmic expression, 3, is the base of the exponential 1 equation. Thus, x 39 or 19,683. 5. log7 2 49 1 1 7. 36 2 6 9. 3 11. 1 13. 1000 15. , 1 17. 3 2 1 19. 107.5 21. log8 512 3 23. log5 3 125 2 1 1 25. log100 10 27. 53 125 29. 41 31. 8 3 4 2 4 1 33. 4 35. 37. 5 39. 7 41. n 5 43. 3 45. 1018.8 2 47. 81 49. 0 y 8 51. 7 53. x 24 55. 4 57. 2 59. 5 61. a 3 63. log5 25 2 log5 5 Original equation log5 52 2 log5 51 25 52 and 5 51 2 2(1) Inverse Property of Exponents and Logarithms log7 70 0 00 67a. y Exponents and Logarithms 3 31 Inverse Property of Exponents and Logarithms 1 70 Inverse Property of Exponents and Logarithms y log2(x 2) y log2x 3 y log2(x 1) O x y log2x 4 6 10 11 8 10 11 1 10 12 (x 3)(x 3)(x 7) 5 85. x10 Page 538 Practice Quiz 1 1. growth 3. log4 4096 6 Page 544–546 87. 8a6b3 4 3 x3 yz 89. 23 3 5 5. 7. 9. x 26 Lesson 10-3 1. properties of exponents 3. Umeko; Clemente incorrectly applied the product and quotient properties of logarithms. log7 6 log7 3 log7 (6 3) or log7 18 Product Property of Logarithms log7 18 log7 2 log7 (18 2) or log7 9 5. 2.6310 7. 6 15. 0.2519 27. 2 9. 3 Quotient Property of Logarithms B 13. 1.3652 C 11. pH 6.1 log10 17. 2.4307 29. 31. 10 19. 0.4307 x3 4 21. 2 23. 4 25. 14 33. 35. False; log2 (22 23) log2 12, log2 22 log2 23 2 3 or 5, and log2 12 5, since 25 12. 37. 2 39. about 0.4214 kilocalories per gram 41. 3 43. About 95 decibels; L 10 log10R, where L is the loudness of the sound in decibels and R is the relative intensity of the sound. Since the crowd increased by a factor of 3, we assume that the intensity also increases by a factor of 3. Thus, we need to find the loudness of 3R. L 10 log10 3R L 10 (log103 log10R) L 10 log103 10 log10R L 10(0.4771) 90 L 4.771 90 or about 95 45. 7.5 47. Let bx m and by n. Then logb m x and logb n y. x m by b n m bx y n Quotient Property m logb bx y logb n m n x y logb m n logb m logb n logb 49. A 51. 4 53. 2x Property of Equality for Logarithmic Equations Inverse Property of Exponents and Logarithms Replace x with logb m and y with logb n. 55. 8 Selected Answers R65 Selected Answers 22 Simplify. 65. log7 [log3 (log2 8)] 0 Original equation log7 [log3 (log2 23)] 0 8 23 log7 (log3 3) 0 Inverse Property of log7 (log3 31) 0 log7 1 0 4 10 11 • On the scale shown above, the sound of a pin drop and the sound of normal conversation appear not to differ by much at all, when in fact they do differ in terms of the loudness we perceive. The first scale shows this difference more clearly. 14 573 75. D 77. b12 79. 3, 81. 57. odd; 3 3b a 59. 5 3x 61. 5 3 65. x 63. 1 log 0.047 log 6 67. 1.7065 69. 5 71. inverse; 4 73. direct; 7 75. 3.32 Pages 549–551 1. 10; common logarithms 3. A calculator is not programmed to find base 2 logarithms. 5. 1.3617 7. 1.7325 9. 4.9824 log 9 log 2 15. ; 3.1699 11. 11.5665 17. 0.6990 log 5 log 7 13. ; 0.8271 19. 0.8573 21. 0.0969 23. 11 25. 2.1 27. {xx 2.0860} 29. {aa 1.1590} 31. 0.4341 33. 4.7820 35. 1.1909 37. {nn 1.0178} 39. 3.7162 41. 0.5873 log 3 log 7 43. 7.6377 2 log 1.6 log 4 47. 0.5646 log 13 log 2 45. 3.7004 49. 0.6781 51. between 0.000000001 and 0.000001 mole per liter 53. Sirius 55. Vega 57. about 3.75 yr or 3 yr 9 mo 59. Comparisons between substances of different acidities are more easily distinguished on a logarithmic scale. Answers should include the following. Sample Answer: • Tomatoes: 6.3 105 mole per liter Milk: 3.98 107 mole per liter Eggs: 1.58 108 mole per liter • Those measurements correspond to pH measurements of 5 and 4, indicating a weak acid and a stronger acid. On the logarithmic scale we can see the difference in these acids, whereas on a normal scale, these hydrogen ion concentrations would appear nearly the same. For someone who has to watch the acidity of the foods they eat, this could be the difference between an enjoyable meal and heartburn. 61. C 63. 1.6938 65. 64 67. 62 69. (d 2)(3d 4) 71. prime 73. 32 x 75. log5 45 x 77. logb x y Selected Answers Pages 557–559 79. 13.43 Page 559 Practice Quiz 2 log 5 1. ; 1.1610 3. 3 5. 1.3863 log 4 Pages 563–565 Lesson 10-6 1. y a(1 r)t, where r 0 represents exponential growth and r 0 represents exponential decay 3. Sample answer: money in a bank 5. about 33.5 watts 7. y 212,000e0.025t 9. C 11. at most $108,484.93 13. No; the bone is only about 21,000 years old, and dinosaurs died out 63,000,000 years ago. 15. about 0.0347 17. $12,565 billion 19. after the year 2182 21. Never; theoretically, the amount left will always be half of the previous amount. 23. about 19.5 yr 25. ln y 3 27. 4x2 e8 29. p 3.3219 0.5(0.08p) 6 0.5(0.08p) 4 p 150 31. 33. 35. ellipse 39. 8 37. circle 107 Pages 566–570 Chapter 10 Study Guide and Review 1. true 3. false; common logarithm 5. true 7. false; logarithmic function 9. false; exponential function 11. growth 1 x 5 13. y 7 17. x 6 or 15. 1 1 1 x 6 19. log5 2 21. 43 64 23. 62 25 36 3 1 25. 5 27. 2 29. 31. y 3 33. 4, 3 35. 1.7712 2 3 37. 3 39. 6 41. 15 47. x 5.8983 43. 5.7279 45. x 7.3059 log 11 49. ; 1.7297 log 4 log 1000 log 20 51. ; 2.3059 53. ex 7.4 55. 7x 57. x 1.1632 59. 0 x 49.4711 61. 74.2066 63. 5.05 days 65. about 3.6% Lesson 10-5 1. the number e 3. Elsu; Colby tried to write each side as a power of 10. Since the base of the natural logarithmic function is e, he should have written each side as a power of e; 10ln 4x 4x. 5. 0.0334 7. 2.3026 9. e0 1 11. 5x 13. 1.0986 15. 0 x 403.4288 17. 90.0171 19. about 15,066 ft 21. 148.4132 23. 1.6487 25. 2.3026 27. 3.5066 29. about 49.5 cm 31. 2 ln 6x 33. ex 5.2 35. y 37. 45 39. 0.6931 41. x 0.4700 43. 0.5973 45. x 0.9730 47. 49.4711 49. 14.3891 51. 45.0086 53. 1 77. 1.43 Lesson 10-4 100 ln 2 r 55. t Page 577 1. 6 3. 5 Chapter 11 1 5. 2 Getting Started 7. 9. y 56 48 40 32 24 16 8 110 r 57. t 59. about 55 yr 61. about 21 min 63. The number e is used in the formula for continuously compounded interest, A Pert. Although no banks actually pay interest compounded continually, the equation is so accurate in computing the amount of money for quarterly compounding, or daily compounding, that it is often used for this purpose. Answers should include the following. • If you know the annual interest rate r and the principal P, the value of the account after t years is calculated by multiplying P times e raised to the r times t power. Use a calculator to find the value of ert. • If you know the value A you wish the account to achieve, the principal P, and the annual interest rate r, the time t needed to achieve this value is found by first taking the natural logarithm of A minus the natural logarithm of P. Then, divide this quantity by r. 65. 1946, 1981, 2015; It takes between 34 and 35 years for the population to double. R66 Selected Answers Chapter 11 Sequences and Series 11. 17 1 32 13. Pages 580–582 O 8 x O y 2 6 4 x 3 5 15. Lesson 11-1 1. The differences between the terms are not constant. 3. Sample answer: 1, 4, 9, 14, … 5. 3, 5, 7, 9 7. 14, 12, 10, 8, 6 9. 112 11. 15 13. 56, 68, 80 7 3 11 13 3 3 15. 30, 37, 44, 51 17. 6, 10, 14, 18 19. , 3, , 21. 5.5, 5.1, 4.7, 4.3 23. 2, 15, 28, 41, 54 25. 6, 2, 2, 6, 10 4 3 2 1 3 3 27. , 1, , , 0 29. 28 31. 94 33. 335 26 3 35. 37. 27 39. 61 41. 37.5 in. 43. 30th Page 592 Practice Quiz 1 45. 82nd 47. an 7n 25 1. 46 3. 187 5. 1 49. 13, 17, 21 Pages 596–598 Lesson 11-4 1 2 1. Sample answer: 4 2 1 3. Sample answer: The first term is a1 2. Divide the second term by the first to find that the common ratio is r 6. Therefore, the nth term of the series is given by 2 6n 1. There are five terms, so the series can be written as 5 2 6n 1. 51. Yes; it corresponds to n 100. 53. 4, 2 55. 7, 11, 15, 19, 23 57. Arithmetic sequences can be used to model the numbers of shingles in the rows on a section of roof. Answers should include the following. • One additional shingle is needed in each successive row. • One method is to successively add 1 to the terms of the sequence: a8 9 1 or 10, a9 10 1 or 11, a10 11 1 or 12, a11 12 1 or 13, a12 13 1 or 14, a13 14 1 or 15, a14 15 1 or 16, a15 16 1 or 17. Another method is to use the formula for the nth term: a15 3 (15 1)1 or 17. 59. B 61. 0.4055 63. 146.4132 65. 2, 5, 8, 11 67. 11, 15, 19, 23, 27 5. 39,063 7. 165 1093 9 11. 9. 129 n1 13. 3 15. 728 25. 1040.984 17. 1111 19. 244 27. 6564 29. 1,747,625 387 4 37. 39. 3,145,725 35. 2555 728 3 23. 21. 2101 31. 3641 41. 243 43. 2 5461 16 33. 45. 80 47. about 7.13 in. 49. If the number of people that each person sends the joke to is constant, then the total number of people who have seen the joke is the sum of a geometric series. Answers should include the following. • The common ratio would change from 3 to 4. • Increase the number of days that the joke circulates so that it is inconvenient to find and add all the terms of the series. 1 3 51. C 53. 3.99987793 55. , , 9 57. 232 4 2 59. Drive-In Movie Screens 1000 Lesson 11-2 1. In a series, the terms are added. In a sequence, they are 4 not. 3. Sample answer: (3n 4) 5. 230 7. 552 n1 9. 260 11. 95 13. 6, 0, 6 15. 344 17. 1501 19. 9 21. 104 23. 714 25. 14 27. 10 rows 29. 721 31. 162 33. 108 35. 195 37. 315,150 39. 1,001,000 41. 17, 26, 35 43. 12, 9, 6 45. 265 ft 47. False; for example, 7 10 13 16 46, but 7 10 13 16 19 22 25 28 140. 49. C 51. 5555 53. 6683 55. 135 9 61. 26 21 63. 16 65. 2 57. 59. 3 89 2 2 27 Screens Pages 586–587 900 800 700 600 0 0 1 2 3 4 5 Years Since 1995 61. Sample answer: 294 63. 2 Pages 602–604 Lesson 11-3 5. 2, 4 20 40 17. , 27 81 15 64 7. 9. 4 13. 15, 5 15. 54, 81 19. 2.16, 2.592 21. 2, 6, 18, 54, 162 23. 243, 81, 27, 9, 3 33. 78,125 11. 3, 9 3 16 25. 35. 8748 27. 729 29. 243 31. 1 1 n1 3 37. 655.36 lb 39. an 36 41. an 2(5)n 1 43. 18, 36, 72 45. 16, 8, 4, 2 47. 8 days 49. False; the sequence 1, 4, 9, 16, …, for example, is neither arithmetic nor geometric. 51. The heights of the bounces of a ball and the heights from which a bouncing ball falls each form geometric sequences. Answers should include the following. • 3, 1.8, 1.08, 0.648, 0.3888 • The common ratios are the same, but the first terms are different. The sequence of heights from which the ball falls is the sequence of heights of the bounces with the term 3 inserted at the beginning. 61 53. C 55. 203 57. 12, 16, 20 59. 127 61. 81 n 1 1. Sample answer: 2 3. Beth; the common ratio for 3 4 3 4 the infinite geometric series is . Since 1, the a 1r 3 73 not apply. 5. does not exist 7. 9. 100 11. 4 99 54 13. 96 cm 15. does not exist 17. 45 19. 16 21. 5 2 3 23. does not exist 25. 1 27. 29. 31. 2 3 2 1 series does not have a sum and the formula S does 33. 40 202 20 … 7 64 1 39. 8, 3, 1, 25 125 5 35. 900 ft 1 41. 9 37. 75, 30, 12 82 43. 99 427 999 229 990 45. 47. 49. The total distance that a ball bounces, both up and down, can be found by adding the sums of two infinite geometric series. Answers should include the following. a (1 rn) 1r a 1r 1 1 , or S • an a1 r n 1, Sn • The total distance the ball falls is given by the infinite geometric series 3 3(0.6) 3(0.6)2 … . The sum of 3 1 0.6 this series is or 7.5. The total distance the ball bounces up is given by the infinite geometric series 1.8(0.6) 1.8(0.6)2 1.8(0.6)3 … . The sum of this Selected Answers R67 Selected Answers 1a. Geometric; the terms have a common ratio of 2. 1b. Arithmetic; the terms have a common difference of 3. 3. Marika; Lori divided in the wrong order when finding r. 2 3 65. 67. 0.6 Lesson 11-5 n1 Pages 590–592 6 1.8(0.6) or 2.7. Thus, the total distance the ball series is 1 0.6 travels is 7.5 2.7 or 10.2 feet. 51. C 8744 81 53. 61. (x 67. x2 2)2 (y 4)2 36 10x 24 0 decreasing. 71. 3 Pages 608–610 x 7 (x 3)(x 1) 1 3 7 63. , , 65. x2 36 0 2 2 2 57. x 5 55. 3 59. 69. The number of visitors was 1 2 Lesson 11-6 7 7 7 7 7 2 4 6 8 10 23. 67 5 37 1445 2 2 2 ratios 1, 2, , … of the terms are not constant. 3 2 1 6 45. 47. 5208 53. 20 55. 210 49. 3x 7 units 51. 5040 Lesson 11-7 Selected Answers 1. 1, 8, 28, 56, 70, 56, 28, 8, 1 3. Sample answer: (5x y)4 5. 17,160 7. p5 5p4q 10p3q2 10p2q3 5pq4 q5 9. x4 12x3y 54x2y2 108xy3 81y4 11. 1,088,640a6b4 13. 362,880 15. 72 17. 495 19. a3 3a2b 3ab2 b3 21. r8 8r7s 28r6s2 56r5s3 70r4s4 56r3s5 28r2s6 8rs7 s8 23. x5 15x4 90x3 270x2 405x 243 25. 16b4 32b3x 24b2x2 8bx3 x4 27. 243x5 810x4y 1080x3y2 720x2y3 240xy4 32y5 20a2 40a 32 35. 924x6y6 a5 32 5a4 8 29. 5a3 31. 27x3 54x2 36x 8 cm3 33. 45 37. 5670a4 63 8 41. x5 39. 145,152x6y3 43. The coefficients in a binomial expansion give the numbers of sequences of births resulting in given numbers of boys and girls. Answers should include the following. • (b g)5 b5 5b4g 10b3g2 10b2g3 5bg4 g5; There is one sequence of births with all five boys, five sequences with four boys and one girl, ten sequences with three boys and two girls, ten sequences with two boys and three girls, five sequences with one boy and four girls, and one sequence with all five girls. • The number of sequences of births that have exactly k girls in a family of n children is the coefficient of bn kgk in the expansion of (b g)n. According to the Binomial n! Theorem, this coefficient is . 45. C 47. 3, 5, 9, 17, 33 1.2920 Practice Quiz 2 1. 1,328,600 3. 24 5. 1, 5, 13, 29, 61 7. 5, 13, 41 9. a6 12a5 60a4 160a3 240a2 192a 64 Lesson 11-8 1. Sample answers: formulas for the sums of powers of the first n positive integers and statements that expressions involving exponents of n are divisible by certain numbers 3. Sample answer: 3n 1 5. Step 1: When n 1, the left side of the given equation is 1 1 1 . The right side is 1 or , so the equation is true for 2 2 2 n 1. 1 2 1 2 1 2 1 2 (n k)!k! log 5 49. ; 2.3219 log 2 53. asymptotes: x 4, x 1 R68 Selected Answers 1 2 positive integer k. 1 2 1 2 1 2 1 2 1 2 1 1 1 1 k 1 Step 3: 2 3 … k k k 2 2 2 log 8 log 5 51. ; 55. hyperbola 1 1 1 1 k k 2 41. Under certain conditions, the Fibonacci sequence can be used to model the number of shoots on a plant. Answers should include the following. • The 13th term of the sequence is 233, so there are 233 shoots on the plant during the 13th month. • The Fibonacci sequence is not arithmetic because the differences 0, 1, 1, 2, … of the terms are not constant. The Fibonacci sequence is not geometric because the Pages 615–617 Page 617 39. $75.78 43. C 12(1 1)2 4 1(2) 2 Step 2: Assume 2 3 … k 1 k for some 25. 1, 1, 2, 3, 5, … 27. $99,921.21, $99,841.95, $99,762.21, $99,681.99, $99,601.29, $99,520.11, $99,438.44, $99,356.28 29. tn tn 1 n 31. 16, 142, 1276 33. 7, 16, 43 35. 3, 13, 333 37. , , 1(4) or 1. 4 Pages 619–621 73. 75. 4 1. an an 1 d; an r an 1 3. Sometimes; if f(x) x2 and x1 2, then x2 22 or 4, so x2 x1. But, if x1 1, then x2 1, so x2 x1. 5. 3, 2, 0, 3, 7 7. 1, 2, 5, 14, 41 9. 1, 3, 1 11. bn 1.05bn 1 10 13. 6, 3, 0, 3, 6 15. 2, 1, 1, 4, 8 17. 9, 14, 24, 44, 84 19. 1, 5, 4, 9, 13 21. , , , , 1(1 1) 2 57. yes 59. True; or 1. 61. True; 2 1 1 1 k 2 The last expression is the right side of the equation to be proved, where n k 1. Thus, the equation is true for n k 1. 1 2 1 2 1 2 1 2 1 2 Therefore, 2 3 … n 1 n for all positive integers n. 7. Step 1: 51 3 8, which is divisible by 4. The statement is true for n 1. Step 2: Assume that 5k 3 is divisible by 4 for some positive integer k. This means that 5k 3 4r for some positive integer r. Step 3: 5k 3 4r 5k 4r 3 5k 1 20r 15 5k 1 3 20r 12 5k 1 3 4(5r 3) Since r is a positive integer, 5r 3 is a positive integer. Thus, 5k 1 3 is divisible by 4, so the statement is true for n k 1. Therefore, 5n 3 is divisible by 4 for all positive integers n. 9. Sample answer: n 3 11. Step 1: When n 1, the left side of the given equation is 1. The right side is 1[2(1) 1] or 1, so the equation is true for n 1. Step 2: Assume 1 5 9 … (4k 3) k(2k 1) for some positive integer k. Step 3: 1 5 9 … (4k 3) [4(k 1) 3] k(2k 1) [4(k 1) 3] 2k2 k 4k 4 3 2k2 3k 1 (k 1)(2k 1) (k 1)[2(k 1) 1] The last expression is the right side of the equation to be proved, where n k 1. Thus, the equation is true for n k 1. Therefore, 1 5 9 … (4n 3) n(2n 1) for all positive integers n. 13. Step 1: When n 1, the left side of the given equation is 12(1 1)2 13 or 1. The right side is or 1, so the equation is 4 true for n 1. k2(k 1)2 Step 2: Assume 13 23 33 … k3 for some 4 positive integer k. Step 3: 13 23 33 … k3 (k 1)3 k2(k 1)2 4 (k 1)3 k (k 1) 4(k 1) 2 2 3 4 2 2 (k 1) k 4(k 1) 4 (k 1) (k 4k 4) 2 2 4 (k 2) 1)2(k 2 4 2 2 (k 1) (k 1) 1 4 The last expression is the right side of the equation to be proved, where n k 1. Thus, the equation is true for n k 1. n2(n 1)2 Therefore, 13 23 33 … n3 for all 4 positive integers n. 1 15. Step 1: When n 1, the left side of the given equation is . 3 1 1 1 2 3 3 1 1 1 1 1 1 Step 2: Assume 2 3 … k 1 k for some 3 3 3 3 3 2 The right side is 1 or , so the equation is true for n 1. positive integer k. 1 1 1 1 1 1 1 1 1 k Step 3: 2 3 … k 3 3 3 3k 1 3 3k 1 3 2 1 1 1 k 23 3k 1 2 k 1 32 3 2 3k 1 3k 1 1 2 3k 1 1 3k 1 1 3k 1 2 1 1 1 3k 1 2 The last expression is the right side of the equation to be proved, where n k 1. Thus, the equation is true for n k 1. Therefore, 2 3 … n 1 n for all positive 3 3 3 3 3 2 integers n. 1 1 1 1 1 1 19. Step 1: 121 10 22, which is divisible by 11. The statement is true for n 1. Step 2: Assume that 12k 10 is divisible by 11 for some positive integer k. This means that 12k 10 11r for some positive integer r. Step 3: 12k 10 11r 12k 11r 10 12k 1 132r 120 1 2 is a1. The right side is [2a1 (1 1)d] or a1, so the equation is true for n 1. Step 2: Assume a1 (a1 d) (a1 2d) … k 2 [a1 (k 1)d] [2a1 (k 1)d] for some positive integer k. Step 3: a1 (a1 d) (a1 2d) … [a1 (k 1)d] [a1 (k 1 1)d] k 2 [2a1 (k 1)d] [a1 (k 1 1)d] k 2 k[2a1 (k 1)d] 2(a1 kd) 2 [2a1 (k 1)d] a1 kd k 2a (k2 k)d 2a 2kd 2 1 1 (k 1)2a (k2 k 2k)d 2 1 (k 1)2a k(k 1)d 2 k1 (2a1 kd) 2 k1 [2a1 (k 1 1)d] 2 1 The last expression is the right side of the formula to be proved, where n k 1. Thus, the formula is true for n k 1. Therefore, a1 (a1 d) (a1 2d) … [a1 (n 1)d] n [2a1 (n 1)d] for all positive integers n. 2 25. Sample answer: n 3 27. Sample answer: n 2 29. Sample answer: n 11 31. Write 7n as (6 1)n. Then use the Binomial Theorem. 7n 1 (6 1)n 1 n(n 1) 6n n 6n 1 6n 2 … n 6 1 1 2 n(n 1) 2 6n n 6n 1 6n 2 … n 6 Since each term in the last expression is divisible by 6, the whole expression is divisible by 6. Thus, 7n 1 is divisible by 6. 33. C 35. x6 6x5y 15x4y2 20x3y3 15x2y4 6xy5 y6 37. 256x8 1024x7y 1792x6y2 1792x5y3 1120x4y4 448x3y5 112x2y6 16xy7 y8 39. 2, 14, 782 41. 0, 1 Selected Answers R69 Selected Answers 17. Step 1: 1 7, which is divisible by 7. The statement is true for n 1. Step 2: Assume that 8k 1 is divisible by 7 for some positive integer k. This means that 8k 1 7r for some whole number r. Step 3: 8k 1 7r 8k 7r 1 8k 1 56r 8 8k 1 1 56r 7 8k 1 1 7(8r 1) Since r is a whole number, 8r 1 is a whole number. Thus, 8k 1 1 is divisible by 7, so the statement is true for n k 1. Therefore, 8n 1 is divisible by 7 for all positive integers n. 81 12k 1 10 132r 110 12k 1 10 11(12r 10) Since r is a positive integer, 12r 10 is a positive integer. Thus, 12k 1 10 is divisible by 11, so the statement is true for n k 1. Therefore, 12n 10 is divisible by 11 for all positive integers n. 21. Step 1: There are 6 bricks in the top row, and 12 5(1) 6, so the formula is true for n 1. Step 2: Assume that there are k2 5k bricks in the top k rows for some positive integer k. Step 3: Since each row has 2 more bricks than the one above, the numbers of bricks in the rows form an arithmetic sequence. The number of bricks in the (k 1)st row is 6 [(k 1) 1](2) or 2k 6. Then the number of bricks in the top k 1 rows is k2 5k (2k 6) or k2 7k 6. k2 7k 6 (k 1)2 5(k 1), which is the formula to be proved, where n k 1. Thus, the formula is true for n k 1. Therefore, the number of bricks in the top n rows is n2 5n for all positive integers n. 23. Step 1: When n 1, the left side of the given equation Pages 622–626 Chapter 11 Study Guide and Review 1. partial sum 3. sigma notation 5. Binomial Theorem 7. arithmetic series 9. 38 11. 11 13. 3, 1, 5 15. 6, 3, 0, 3 17. 2322 19. 220 21. 32 23. 3 25. 6, 12 16 13 35. 1 2 27. 4, 2, 1, 37. 3, 2, 2, 18, 82 66, 458 43. 1, 4, 31 47. 160x3y3 14,197 16 31. 29. 1452 45. x4 33. 72 39. 1, 3, 4, 7, 11 8x3 24x2 41. 10, 32x 16 49. Step 1: When n 1, the left side of the given equation is 1. The right side is 21 1 or 1, so the equation is true for n 1. Step 2: Assume 1 2 4 … 2k 1 2k 1 for some positive integer k. Step 3: 1 2 4 … 2k 1 2(k 1) 1 2k 1 2k 2 2k 1 2k 1 1 The last expression is the right side of the equation to be proved, where n k 1. Thus, the equation is true for n k 1. Therefore, 1 2 4 … 2n 1 2n 1 for all positive integers n. Chapter 12 Probability and Statistics Page 631 Chapter 12 1 1 2 1. 3. 5. 6 2 3 Getting Started many ways can the first, second, and third prizes be awarded? 3. Sometimes; the statement is only true when r 1. 5. 120 7. 6 9. permutation; 5040 11. 84 13. 9 15. 665,280 17. 70 19. 210 21. 1260 23. combination; 28 25. permutation; 120 27. permutation; 3360 29. combination; 455 31. 60 33. 111,540 35. 80,089,128 37. C(n 1, r) C(n 1, r 1) (n 1)! (n 1)! [n 1 (r 1)]!(r 1)! (n 1 r)!r! (n 1)! (n 1)! (n r 1)!r! (n r)!(r 1)! nr r (n 1)! (n 1)! (n r 1)!r! n r (n r)!(r 1)! r (n 1)!r (n 1)!(n r) (n r)!r! (n r)!r! (n 1)!(n r r) (n r)!r! (n 1)!n (n r)!r! n! (n r)!r! C(n, r) 39. D 41. 24 43. 120 49. x 0.8047 51. 20 days 55. –4; 128 6 65. 7 7. Pages 647–650 20 25 30 35 (y 4)2 9 (x 4)2 4 53. 1 59. 82 57. {2, 5} 3 69. 5 67. {7, 15} 47. Sample answer: n 2 45. 80 1 71. 5 61. 45 63. (0, 2) Lesson 12-3 1. Sample answer: The event July comes before June has a probability of 0. The event June comes before July has a probability of 1. 3. There are 6 6 or 36 possible outcomes for the two dice. Only 1 outcome, 1 and 1, results in a sum 40 9. 1 36 of 2, so P(2) . There are 2 outcomes, 1 and 2 as well as 20 30 40 50 60 70 80 11. 3 13. 13 15. a3 3a2b 3ab2 b3 5 4 17. m 5m n 10m3n2 10m2n3 5mn4 n5 Selected Answers Pages 634–637 7. 8:1 33. 20 mi 35. 28x6y2 43. 1, 2 1 1 51. 7 4 57. 30 37. 7 45. y (x 3)2 2 1 3 59. 720 Pages 641–643 x x 5y 1 2 47. y x2 8 53. no inverse exists 61. 15 1 2 39. 41. 49. 3 2 1 55. y x 3 3 63. 1 Lesson 12-2 1. Sample answer: There are six people in a contest. How R70 Selected Answers 9. 2:7 10 11 1 10 1 8 11. 13. 15. 11 115 6 115 33. 0.109 35. 3:5 37. 5:3 4 9 9 59. 20 1 9 28 55 21. Lesson 12-1 1. HHH, HHT, HTH, HTT, THH, THT, TTH, TTT 3. The available colors for the car could be different from those for the truck. 5. dependent 7. 256 9. D 11. independent 13. dependent 15. 16 17. 30 19. 1024 21. 10,080 23. 362,880 25. 27,216 27. 800 29. The maximum number of license plates is a product with factors of 26s and 10s, depending on how many letters are used and how many digits are used. Answers should include the following. • There are 26 choices for the first letter, 26 for the second, and 26 for the third. There are 10 choices for the first number, 10 for the second, and 10 for the third. By the Fundamental Counting Principle, there are 263 103 or 17,576,000 possible license plates. • Replace positions containing numbers with letters. 31. C 2 1 2 5. 36 18 7 2 6 17. 19. 25 55 2 and 1, that result in a sum of 3, so P(3) or . 90 24 115 23. 25. 27. 29. 0 39. 1:4 3 5 45. 47. 49. 51. 2:23 31. 0.007 41. 3:1 53. 1:4 3 10 43. 1 20 55. 9 20 57. 1 120 61. 63. Probability and odds are good tools for assessing risk. Answers should include the following. s sf 1 750,000 • P(struck by lightning) , so Odds 1:(750,000 1) or 1:749,999. P(surviving a lightning s sf 3 4 strike) , so Odds 3:(4 3) or 3:1. • In this case, success is being struck by lightning or surviving the lightning strike. Failure is not being struck by lightning or not surviving the lightning strike. 1 65. D 67. experimental; about 0.307 69. theoretical; 17 71. permutation; 1260 73. 16 75. direct variation 6 35 9 20 1 4 77. (4, 4) 79. 81. 83. Page 650 1. 24 Practice Quiz 1 3. 18,720 Pages 654–657 5. 56 7. combination; 20,358,520 13 102 9. Lesson 12-4 1. Sample answer: putting on your socks, and then your shoes 3. Mario; the probabilities of rolling a 4 and rolling 4 663 1 5 13. 19. 12 6 2 25 29. 31. independent; 15 81 81 35. dependent; 2401 1 6 25 15. 36 1 4 1 17. 6 a 2 are both . 1 49 2 15 10 21 1 21 33. dependent; Blue First Spin Yellow Red 1 3 1 3 1 3 Blue BB BY BR 1 3 1 9 1 9 1 9 Yellow YB YY YR 1 3 1 9 1 9 1 9 Red RB RY RR 1 3 1 9 1 9 1 9 19 1,160,054 1 3 1 39. 41. 6327 20,825 43. 45. about 4.87% 3 340 55. 57. 1440 ways 59. 36 65. 153 y 47. no 61. x, x 4 67. b 69. (1, 2) 71. (2, 4) 5 6 11 12 73. 75. 5 77. 1 12 Pages 666–670 25 42 15. Lesson 12-6 3. 1 (x x) n n i=1 2 i 5. 8.3, 2.9 7. $7300.50, $5335.25 9. 2500, 50 11. 3.1, 1.7 13. 37,691.2, 194.1 15. 82.9, 9.1 17. 77.7; 32; 19 19. Mean; it is highest. 21. $1047.88, $1049.50, $695 23. Mean or median; they are nearly equal and are more representative of the prices than the mode. 25. Mode; it is lowest. 27. 19.3 29. 19.5 31. 59.8, 7.7 33. 100% 35. Sample answer: The first graph might be used by a sales manager to show a salesperson that he or she does not deserve a big raise. It appears that sales are steady but not increasing fast enough to warrant a big raise. 37. A: 2.5, 2.5, 0.7, 0.8; B: 2.5, 2.5, 1.1, 1.0 39. The statistic(s) that best represent a set of test scores depends on the distribution of the particular set of scores. Answers should include the following. • mean, 73.9; median, 76.5; mode, 94 • The mode is not representative at all because it is the highest score. The median is more representative than the mean because it is influenced less than the mean by the two very low scores of 34 and 19. • Each measure is increased by 5. 4 13 45. inclusive; 61. 380 1 169 13 204 47. 49. 55. 12 cm3 57. (1, 5) 63. 396 Page 670 Practice Quiz 2 3 2 1 3 1. 3. 5. 7. 9. 23.6, 4.9 20 9 6 4 Lesson 12-5 1 1 216 1. Sample answer: {10, 10, 10, 10, 10, 10} 9 5 1. Sample answer: mutually exclusive events: tossing a coin and rolling a die; inclusive events: drawing a 7 and a diamond from a standard deck of cards 3. The events are not mutually exclusive, so the chance of rain is less 1 1 216 55. 4:1 57. 2:5 59. 254 61. (8, 10) 63. (x 1)2(x 1) (x2 1) 65. min: (0.42, 0.62); max: (1.58, 1.38) y 67. (1, 3), (1, 1), (3, 3), (3, 5); max: f(3, 5) 23; min: f(1, 1) 3 69. direct variation 71. 35.4, 34, no mode, 72 x O 73. 63.75, 65, 50 and 65, 30 75. 12.98, 12.9, no mode, 4.7 59. 136 than 100%. 45. 51. 53. 49. C 51. (0, 9); 0, 106 ; 53. 17 y x2 4 Pages 660–663 17 27 3 47. Subtracting P(A and B) from each side and adding P(A or B) to each side results in the equation P(A or B) P(A) P(B) P(A and B). This is the equation for the probability of inclusive events. If A and B are mutually exclusive, then P(A and B) 0, so the equation simplifies to P(A or B) P(A) P(B), which is the equation for the probability of mutually exclusive events. Therefore, the 41. D 43. 1.9 x O 11 4 2 Pages 673–675 Lesson 12-7 1. Sample answer: 5 5. 7. 9. 11. inclusive; 13. 6 13 3 2 3 35 143 3 143 38 143 17. 19. 21. 23. mutually 7 9 21 34 exclusive; 25. inclusive; 4 13 27. 55 221 188 663 29. 31. The use of cassettes since CDs were introduced. Selected Answers R71 Selected Answers 63. 9 equation is correct in either case. 49. Sample answer: As the number of trials increases, the results become more reliable. However, you cannot be absolutely certain that there are no black marbles in the bag without looking at all of the marbles. 51. Probability can be used to analyze the chances of a player making 0, 1, or 2 free throws when he or she goes to the foul line to shoot 2 free throws. Answers should include the following. • One of the decimals in the table could be used as the value of p, the probability that a player makes a given free throw. The probability that a player misses both free throws is (1 p)(1 p) or (1 p)2. The probability that a player makes both free throws is p p or p2. Since the sum of the probabilities of all the possible outcomes is 1, the probability that a player makes exactly 1 of the 2 free throws is 1 (1 p)2 p2 or 2p(1 p). • The result of the first free throw could affect the player’s confidence on the second free throw. For example, if the player makes the first free throw, the probability of he or she making the second free throw might increase. Or, if the player misses the first free throw, the probability that he or she makes the second free throw might decrease. 53. C 1 1 33. 35. 37. 39. 41. 43. 5 780 130 780 8 4 21. 23. 25. 0 27. 37. Second Spin 21 220 1 4 5. 7. 9. 11. dependent; 3. Since 99% of the data is within 3 standard deviations of the mean, 1% of the data is more than 3 standard deviations from the mean. By symmetry, half of this, or 0.5%, is more than 3 standard deviations above the mean. 5. 68% 7. 95% 9. 250 11. 81.5% 13. normally distributed 15. 68% 17. 0.5% 19. 50% 21. 95% 23. 815 25. 16% 27. The mean would increase by 25; the standard deviation would not change; and the graph would be translated 25 units to the right. 29. A 31. 17.5, 4.2 2 13 4 13 1 4 33. 35. 37. 3, 2, 4 39. , 1 41. 0.76 h 43. 56c5d3 Pages 678–680 Lesson 12-8 1. Sample answer: In a 5-card hand, what is the probability that at least 2 cards are hearts? 3a. Each trial has more than two possible outcomes. 3b. The number of trials is not fixed. 3c. The trials are not independent. 1 8 5. 1 1 11 27,648 1 9. 11. about 0.37 13. 15. 17. 28,561 16 16 28,561 4 125 23 1 53 135 105 19. 21. 23. 25. 27. 29. 3888 648 1024 512 512 512 319 7 31. 33. about 0.44 35. about 0.32 37. 3 2 512 7. 39. Getting a right answer and a wrong answer are the outcomes of a binomial experiment. The probability is far greater that guessing will result in a low grade than in a high grade. Answers should include the following. • Use (r w)5 r5 5r4w 10r3w2 10r2w3 5rw4 w5 and the chart on page 48 to determine the probabilities of each combination of right and wrong. • P(5 right): r5 or about 0.098%; 1 5 4 1 1024 15 P(4 right, 1 wrong): or about 1.5%; 1024 45 1 3 3 2 P(3 right, 2 wrong): 10r3w2 10 or about 512 4 4 1 2 3 3 135 8.8%; P(3 wrong, 2 right): 10r2w3 10 or 4 4 512 405 1 3 4 4 about 26.4%; P(4 wrong, 1 right): 5rw 5 1024 4 4 243 3 5 or about 39.6%; P(5 wrong): w5 or 1024 4 about 23.7%. 41. B 43. normal distribution 47. Mean; it is highest. y 49. 45. 10 Selected Answers xy4 would be called since almost everyone has a phone. 15. about 8% 17. about 4% 19. about 3% 21. about 4% 23. about 3% 25. about 2% 27. about 983 29. A political candidate can use the statistics from an opinion poll to analyze his or her standing and to help plan the rest of the campaign. Answers should include the following. • The candidate could decide to skip areas where he or she is way ahead or way behind, and concentrate on areas where the polls indicate the race is close. • about 3.5% • The margin of error indicates that with a probability of 0.95 the percent of the Florida population that favored Bush was between 43.5% and 50.5%. The margin of error for Gore was also about 3.5%, so with probability 0.95 the percent that favored Gore was between 40.5% and 47.5%. Therefore, it was possible that the percent of the Florida population that favored Bush was less than the percent that favored Gore. 5 35. 95% 37. 97.5% 32 Pages 687–692 Chapter 12 Study Guide and Review 33. 31. C 1. c 3. a 5. d 7. f 9. 5040 codes 11. 4 13. 1:3 15. 7:5 1 36 19. independent; 17. 2:3 2 3 1 33. 32 7 13 23. mutually exclusive; 25. inclusive; 29. 3400 31. 800 1 35. 2,176,782,336 x 27. 341.0, 18.5 14,437,500 2,176,782,336 37. 39. 460 mothers Chapter 13 Trigonometric Functions Page 699 1. 10 9. Chapter 13 f 1(x) Getting Started 5. x 7, y 72 3. 16.7 x3 11. f (x ) x 3 7. x 43, y 8 f 1(x) x4 f (x ) x 2 4 f (x ) f (x ) x O Pages 706–708 x O f 1(x ) x 3 O 1 7 21. dependent; f 1(x ) x 4 Lesson 13-1 1. Trigonometry is the study of the relationships between the angles and sides of a right triangle. 3. Given only the measures of the angles of a right triangle, you cannot find ; cos 6; 85 the measures of its sides. 5. sin 51. 0.1 53. 0.039 Pages 684–685 11 55. 0.041 1185 685 ; csc ; sec 11; cot 85 tan 6 Lesson 12-9 1. Sample answer: If a sample is not random, the results of a survey may not be valid. 3. The margin of sampling error decreases when the size of the sample n increases. As p(1 p) n increases, decreases. n 5. No; these students probably study more than average. 7. about 4% 9. The probability is 0.95 that the percent of Americans ages 12 and older who listen to the radio every day is between 72% and 82% 11. No; you would tend to point toward the middle of the page. 13. Yes; a wide variety of people R72 Selected Answers 32 7. cos 23° ; x 34.8 x 9. B 45°, a 6, c 8.5 4 11 11. a 16.6, A 67°, B 23° 13. 1660 ft 15. sin ; 4105 11105 ; tan ; csc 11; sec ; 105 cos 4 105 cot 7 ; cos 3; tan 7 ; 17. sin 4 47 37 ; sec 4; cot csc 3 5 ; 19. sin 19. 1 25 5 ; cos ; tan ; csc 5; sec 21. y y 2 x 17.8 23. sin 54° , 10 x 15 x 22.0 25. cos x° , x 65 36 opp 27a. sin 30° sine ratio hyp x sin 30° Replace opp with x and hyp with 2x. 2x 1 sin 30° Simplify. 2 adj 27b. cos 30° cosine ratio hyp cot 2 21. tan 30° , x 5.8 3x cos 30° 3 cos 30° opp hyp 23. 25. y y 3x and x O O x 150˚ Replace opp with hyp with 2x. opp adj not involve the measure of the hypotenuse, . If the measure of the opposite side is greater than the measure of the adjacent side, the tangent ratio is greater than 1. If the measure of the opposite side is less than the measure of the adjacent side, the tangent ratio is less than 1. 49. C 51. No; band members may be more likely to like the same 5 57. {2, 1, 0, 1, 2} 59. kinds of music. 53. 3 55. 1 8 16 20 qt 61. 12 m2 11 5 , 4 4 y x 13 4 13 2 3 2 53. Sample answer: , 55. 2689° per second; 47 radians per second 57. about 188.5 m2 59. about 640.88 in2 61. Student answers should include the following. • An angle with a measure of more than 180° gives an indication of motion in a circular path that ended at a point more than halfway around the circle from where it started. • Negative angles convey the same meaning as positive angles, but in an opposite direction. The standard convention is that negative angles represent rotations in a clockwise direction. • Rates over 360° per minute indicate that an object is rotating or revolving more than one revolution per minute. 63. D 65. A 22°, a 5.9, c 15.9 67. c 0.8, A 30°, B 60° 69. about 7.07% 71. combination, 35 73. [g ° h](x) 4x2 6x 23, [h ° g](x) 8x2 34x 44 75. 1418.2 or about 1418; the number of sports radio Page 715 10 79. 10 81. Practice Quiz 1 1. B 42°, a 13.3, c 17.9 3. y 300˚ 290˚ 3 4 51. Sample answer: , 35 stations in 2008 77. 5. O 43. Sample answer: 585°, 135° 45. Sample answer: 345°, 375° 47. Sample answer: 8°, 352° 49. Sample answer: O x 70˚ O 7. 18 9. y 60˚ x 11. 135° 13. 1140° 15. 785°, 295° 17. 21 h 19 18 5. O 45˚ x 7. 210° 9. 305°; 415° Pages 722–724 Lesson 13-3 r 0 1. False; sec 0° or 1 and tan 0° or 0. r r 3. To find the value of a trigonometric function of , where is greater than 90°, find the value of the trigonometric function for , then use the quadrant in which the terminal Selected Answers R73 Selected Answers Lesson 13-2 11 79 33. 35. 150° 3 90 1620 41. 515.7° 31. 37. 45° 39. 1305° Simplify. y 12 2 3 27. 29. 3x and 29. B 74°, a 3.9, b 13.5 31. B 56°, b 14.8, c 17.9 33. A 60°, a 19.1, c 22 35. A 72°, b 1.3, c 4.1 37. A 63°, B 27°, a 11.5 39. A 49°, B 41º, a 8, c 10.6 41. about 300 ft 43. about 6° 45. 93.53 units2 47. The sine and cosine ratios of acute angles of right triangles each have the longest measure of the triangle, the hypotenuse, as their denominator. A fraction whose denominator is greater than its numerator is less than 1. The tangent ratio of an acute angle of a right triangle does 1. reals 3. x O 790˚ sine ratio 3x sin 60° Pages 712–715 x O Simplify. 27c. sin 60° 3 sin 60° Replace adj with hyp with 2x. 235˚ side of lies to determine the sign of the trigonometric function value of . 5. sin 0, cos 1, tan 0, csc undefined, sec 1, cot undefined 7. 55° 9. 60º y y 235˚ x O x O 240˚ 3 13. 2 11. 1 6 3 , , cos 15. sin 6 , sec 3 tan 2, csc 24 25 7 7 24 25 25 cos , tan , csc , sec , cot 25 24 7 24 7 17. sin , 889 589 , cos , tan 8, 19. sin , sec , cot 5 21. sin 1, 89 89 csc 8 2 , 23. sin 2 , tan 1, csc 2, sec 2, cos cot 1 27. 30° y y 315˚ ' O ' x 210˚ 4 Selected Answers x O 7 29. 31. y y 13 7 5 4 x O ' 3 33. 35. 3 O ' x 37. undefined 39. 3 3 41. undefined 43. 53. about 173.2 ft 55. 9 meters 57. II 59. Answers should include the following. x • The cosine of any angle is defined as , where x is the x-coordinate of any point on the terminal ray of the angle and r is the distance from the origin to that point. This means that for angles with terminal sides to the left of the y-axis, the cosine is negative, and those with terminal sides to the right of the y-axis, the cosine is positive. Therefore the cosine function can be used to model real-world data that oscillate between being positive and negative. • If we knew the length of the cable we could find the vertical distance from the top of the tower to the rider. Then if we knew the height of the tower we could subtract from it the vertical distance calculated previously. This will leave the height of the rider from the ground. 2 53 5 61. , x 12 63. 300° 65. sin 28° , 5.6 5 13 69. (7, 2) 71. (5, 4) 73. 15.1 75. 32.9° 77. 39.6° Pages 729–732 cos 0, tan undefined, csc 1, 25. 45° 1 3 10 3 67. sin x° , 23 5 sec undefined, cot 0 10 10 r ' ' , tan 3, csc , cot cos Lesson 13-4 1. Sometimes; only when A is acute, a b sin A or a b and when A is obtuse, a b. C 3. Gabe said there is not 8m 15 m enough information to 64° A B do this problem. That is not correct. By using the Law of Sines, he can find ∠B. Therefore, he can find ∠C. ∠C 180° (64° m∠B). Once ∠C is found, A 12 ba sin C will yield the area of the triangle. 5. 6.4 cm2 7. B 80°, a 32.0, b 32.6 9. no solution 11. one; B 24°, C 101°, c 12.0 13. 5.5 m 15. 19.5 yd2 17. 62.4 cm2 19. 14.6 mi2 21. C 73°, a 55.6, b 48.2 23. B 46°, C 69°, c 5.1 25. A 40°, B 65°, b 2.8 27. A 20°, a 22.1, c 39.8 29. one; B 36°, C 45°, c 1.8 31. no 33. one; B 18°, C 101°, c 25.8 35. two; B 85°, C 15°, c 2.4; B 95°, C 5°, c 0.8 37. two; B 65°, C 68°, c 84.9; B 115°, C 18°, c 28.3 39. 7.5 mi from Ranger B, 10.9 mi from Ranger A 41. 107 mph 43. Answers should include the following. • If the height of the triangle is not given, but the measure of two sides and their included angle are given, then the formula for the area of a triangle using the sine function should be used. • You might use this formula to find the area of a triangular piece of land, since it might be easier to measure two sides and use surveying equipment to measure the included angle than to measure the perpendicular distance from one vertex to its opposite side. 1 45. 0.2, 0, 0.2, 0, 0.2, 0, and • The area of ABC is ah. 2 C 0.2; or about 11.5°, 0°, 11.5°, 0°, 11.5°, 0°, and 11.5° 4 5 4 3 5 4 b 5 3 47. sin , tan , csc , sec , 2 h 2 , tan , csc 3, cot 49. cos 2 3 4 2 , cot 22 sec 3 R74 Selected Answers 310 51. sin 10 a A c B h sin B c or h c sin B 1 2 1 2 • Area ah or Area a(c sin B) 45. B 78°, a 50.1, c 56.1 17 6 7 6 55 221 51. , 53. 55. 5.6 Pages 735–738 3 47. 49. 660°, 60° 57. 39.4° Lesson 13-5 1. Mateo; the angle given is not between the two sides; therefore the Law of Sines should be used. 3. Sample answer: 2 ; cos 2 different points. 5. sin 4 5 3 5 1 2 7. 8 17 15 17 9. 2 s 11. sin ; cos 13. sin ; cos 3 ; cos 1 17. 1 19. 1 15. sin 2 1 3 23. 25. 1 4 2 y x x y 2 27. 33 29. 6 31. 2 21. 1 1 440 33. s 2 1 3 , 1, 3 , (1, 0), 1, 3 , 1, 3 35. , 15 37. 39. 41. 3 9 13 5. sines; B 70°, a 9.6, b 14 7. cosines; A 23°, B 67°, C 90° 9. 94.3° 11. cosines; A 48°, B 63°, C 70° 13. sines; B 102°, C 44°, b 21.0 15. A 80°, a 10.9, c 5.4 17. cosines; A 30°, B 110°, C 40° 19. sines; C 77°, b 31.7, c 31.6 21. no 23. cosines; A 52°, C 109°, b 21.0 25. cosines; A 24°, B 125°, C 31° 27. sines; B 49°, C 91°, c 9.3 29. about 100.1° 31. 4.4 cm, 9.0 cm 33. 91.6° 35. Answers should include the following. • The Law of Cosines can be used when you know all three sides of a triangle or when you know two sides and the included angle. It can even be used with two sides and the nonincluded angle. This set of conditions leaves a quadratic equation to be solved. It may have one, two, or no solution just like the SSA case with the Law of Sines. • Given the latitude of a point on the surface of Earth, you can use the radius of the Earth and the orbiting height of a satellite in geosynchronous orbit to create a triangle. This triangle will have two known sides and the measure of the included angle. Find the third side using the Law of Cosines and then use the Law of Sines to determine the angles of the triangle. Subtract 90 degrees from the angle with its vertex on Earth’s surface to find the angle at which to aim the receiver dish. 37. A 39. Sample answer: 100.2° 41. one; B 46°, 5 6 Pages 749–751 Lesson 13-7 1. Restricted domains are denoted with a capital letter. 3. They are inverses of each other. 5. Arccos 0.5 7. 0° 9. 3.14 11. 0.75 13. 0.58 15. Arcsin 17. y Arccos x 19. Arccos y 45° 21. 60° 23. 45° 25. 45° 27. 2.09 29. 0.52 31. 0.5 33. 0.60 35. 0.8 39. 0.5 37. 0.5 41. 0.71 43. 0.96 45. 60° south of west 47. No; with this point on the terminal side of the throwing angle , the measure of is found by solving the equation 17 18 17 18 tan . Thus tan1 or about 43.4°, which is greater than the 40° requirement. 49. 31° 51. Suppose P(x1, y1) and Q(x2, y2) lie on the line y mx b. Then y y x2 x1 2 1 . The tangent of the angle the line makes with m opp adj y y x2 x1 2 1 . Thus the positive x-axis is equal to the ratio or tan m. y Q (x 2, y 2) P (x 1, y 1) y2 y1 x2 x1 O x y mx b 53. 37° 55. 51. 540°, 180° 53. , Practice Quiz 2 3 13 213 ; tan 3; 1. sin ; cos 2 43. sine: D {all reals}, R {1 Selected Answers 19 6 y3 26 210 , tan , csc , sec , 10 15 cos 47. {xx 0.6931} 49. 405°, 315° 2 y 1}; cosine: D {all reals}, R {1 y 1} 45. A 47. cosines; c 12.4, B 59°, A 76° 49. 27.0 in2 51. 6800 53. 5000 55. 250 57. does not exist 59. 8 5 61. 2x 9 63. 2y 7 65. 110° 67. 80° 69. 89° 12 5 12 C 79°, c 9.6 43. sin , cos , tan , 13 13 5 5 13 13 6 csc , sec , cot 45. sin , 12 12 5 15 cot 2 x 0 1 2 2 2 3 2 y 2 2 2 2 Page 738 2 3 1 1 2 2 2 2 2 2 1 2 2 ; sec ; cot 2 3. 27.7 m2 13 13 csc 57. From a right triangle perspective, if an acute angle has 5. cosines; c 15.9, C 59°, B 43° has that same value as its cosine. This can be verified by looking at a right triangle. Therefore, the sum of the angle whose sine is x and the angle whose cosine is x should be . 3 Pages 742–745 Lesson 13-6 1. The terminal side of the angle in standard position must intersect the unit circle at P(x, y). 3. Sample answer: The graphs have the same shape, but cross the x-axis at 2 a given sine, say x, then the complementary angle 59. 1 61. sines; B 69°, C 81°, c 6.1 or B 111°, C 39°, c 3.9 63. 46, 39 65. 11, 109 2 Selected Answers R75 Pages 752–756 Chapter 13 Study Guide and Review 1. false, coterminal 3. true 5. true 7. false, an angle that has its terminal side on an axis where x or y is equal to zero 9. false, terminal 11. B 65°, a 2.5, b 5.4 13. A 7°, a 0.7, c 5.6 15. A 76°, B 14°, b 1.0, 7 6 c 4.1 17. 19. 720° 21. 320°, 400° 4 8 15 15 8 25. sin , cos , tan 1 , 5 17 4 17 17 17 15 csc , sec , cot 27. 3 8 15 8 23. ; 23 29. 31. two; B 53°, C 87°, c 12.4; B 127°, y 5 4 3 2 1 O 1 2 3 4 5 y 4 sin 2 90˚ 180˚ 270˚ 360˚ C 13°, c 3.0 33. no 35. one; A 51°, a 70.2, c 89.7 37. sines; C 105°, a 28.3, c 38.6 39. cosines; A 34°, B 81°, c 6.4 41. cosines; B 26°, 43. 45. 1 2 C 125°, a 8.3 2 47. 3 49. 1.05 y 51. 0 2 1.5 1 0.5 Chapter 14 Trigonometric Graphs and Identities Page 761 Chapter 14 Getting Started 1 2 2 3 1. 3. 0 5. 7. 9. 11. 1 2 2 2 2 1 defined 15. 17. 5x(3x 1) 19. prime 2 21. (2x 1)(x 2) Pages 766–768 23. 8, 3 25. 8, 5 13. not y 2 sin O 90˚ 180˚ 270˚ 7. amplitude : does not exist; period: 180° or y O 90˚ 180˚ 270˚ 9. amplitude: 4; period: 180° or R76 Selected Answers 60˚ 90˚ 120˚ 150˚ y 1 sec 3 2 15. amplitude: 3; period: 360° or 2 y 5 4 3 2 1 270˚ 180˚ 90˚ 2 3 4 5 y 3 sin O 90˚ 180˚ 270˚ 17. amplitude: does not exist; period: 360° or 2 y 5 4 3 2 1 2 1.5 1 0.5 270˚ 180˚ 90˚ 1 1 1.5 y tan 4 2 30˚ 13. 12 months; Sample answer: The pattern in the population will repeat itself every 12 months. y 270˚ 180˚ 90˚ 2 3 4 5 60˚ 30˚ 1 1.5 2 3 2 Lesson 14-1 5 4 3 2 1 O 27. 4, 1. Sample answer: Amplitude is half the difference between the maximum and minimum values of a graph; y tan has no maximum or minimum value. 3. Jamile; The amplitude is 3 and the period is 3 . 5. amplitude: 2; period: 360° or 2 Selected Answers 2 3 11. amplitude: does not exist; period: 120° or O 270˚180˚90˚ 2 y 2 csc 3 4 5 90˚ 180˚ 270˚ 1 5 19. amplitude: ; period: 360° or 2 27. amplitude: 6; period: 540° or 3 y 1 0.8 0.6 0.4 0.2 270˚ 180˚ 90˚ 0.4 0.6 0.8 1 y y O 1 sin 5 90˚ 180˚ 270˚ 2 3 y 6 sin 10 8 6 4 2 270˚ 180˚ 90˚ 4 6 8 10 O 90˚ 180˚ 270˚ 29. amplitude: does not exist; period: 720° or 4 y 2 21. amplitude: 1; period 90° or y 5 4 3 2 1 270˚ 180˚ 90˚ 2 3 4 5 10 8 6 4 2 y sin 4 O 90˚ 180˚ 270˚ O 540˚360˚180˚ 4 1 y 3 csc 6 2 8 10 180˚ 360˚ 540˚ 31. amplitude: does not exist; period: 180° or y 10 8 6 4 2 2 3 23. amplitude: does not exist; period: 120° or y y sec 3 5 4 3 2 1 30˚ 60˚ 90˚ 180˚ 270˚ 33. y 5 4 3 2 1 25. amplitude: does not exist; period: 540° or 3 y 135˚ 90˚ 45˚ 2 3 4 5 10 8 6 4 2 810˚ 540˚270˚ 4 6 1 y 4 tan 8 3 10 O 270˚ 540˚ 810˚ y O 3 sin 4 5 45˚ 90˚ 135˚ 3 5 y sin 4 1 10 35. 7 37. Sample answer: The amplitudes are the same. As the frequency increases, the period decreases. 5 39. y 2 sin t Selected Answers R77 Selected Answers O 60˚ 30˚ 2 3 4 5 O 270˚180˚ 90˚ 4 6 2y tan 8 10 13 2 43. A 45. 90° 47. 45° 49. 51. 41. about 1.9 ft 2 53. 16 9. 5; y 5; no amplitude; 360° y y 15 13 11 9 7 5 3 1 8 4 10 8 6 4 2 y x2 y 3x 2 O 4 8 O 270˚180˚90˚ 4 6 8 y sec 5 10 x 3 5 90˚ 180˚ 270˚ 11. 0.25; y 0.25; 1; 360° 55. y y 15 13 11 9 7 5 3 2 y 2(x 1) 1 8 4 1.5 1 0.5 y 2x 2 O 90˚ 0.5 O 4 8 1.5 13. 6; no amplitude; 60°; 45° Lesson 14-2 y y 1 45˚ Selected Answers 5 4 3 2 1 O 270˚180˚ 90˚ 2 3 y tan ( 60˚) 4 5 90˚ 180˚ 270˚ 2 3 3 2 ) O 1 2 2 3 4 R78 Selected Answers O 2 3 4 5 6 7 8 9 10 11 45˚ y 2 cot (3 135˚) 6 6 15. 2; ; 4 ; 3 y 4 3 2 1 7. no amplitude; 2 ; ( 360˚ 1 1. vertical shift: 15; amplitude: 3; period: 180°; phase shift: 45° 3. Sample answer: y sin ( 45°) 5. no amplitude; 180°; 60° y sec 3 270˚ 180˚ x 3 5 Pages 774–776 y sin 0.25 y 1 O 3 2 1 2 3 2 2 3 2 3 2 [ 1( y 3 cos 2 6 )] 2 2 27. 5; y 5; 1; 360° 17. h 4 cos t or h 4 cos 90°t y 2 1 19. 1; 360°; 90° y 5 4 3 2 1 y cos ( 90˚) O 270˚ 180˚ 90˚ 2 3 4 5 90˚ 180˚ 270˚ 1 2 90˚ 180˚ 270˚ y cos 5 1 1 2 2 29. ; y ; ; 360° 4 21. 1; 2 ; y y 5 4 3 2 1 3 2 O 270˚ 180˚ 90˚ 2 3 4 5 6 7 8 ( y sin 4 5 4 3 2 1 ) O 2 2 2 1 O 270˚ 180˚ 90˚ 2 3 4 5 3 2 3 4 5 1 y 2 sin 2 90˚ 180˚ 270˚ 31. 23. no amplitude; 180°; 22.5° y 18 16 14 12 10 8 6 4 2 y 5 4 3 2 1 45˚ 90˚ 135˚ 1 y 4 tan ( 22.5˚) 3 4 2 4 O 4 2 3 4 ) 4 translation units left and 5 units up 25. 1; y 1; 1; 360° 33. 1; 2; 120°; 45° y y 5 4 3 2 1 O 270˚ 180˚ 90˚ 2 3 y sin 1 4 5 90˚ 180˚ 270˚ 5 4 3 2 1 O 270˚ 180˚ 90˚ 2 3 4 5 y 2 sin [3( 45˚)] 1 90˚ 180˚ 270˚ Selected Answers R79 Selected Answers O 135˚ 90˚ 45˚ 2 3 4 5 ( y 5 tan 4 35. 3.5; does not exist; 720°; 60° y 8 6 4 2 O 270˚180˚90˚ 4 6 8 10 12 90˚ 180˚ 270˚ [1 ( )] y 3 csc 2 60˚ 3.5 49. Sample answer: You can use changes in amplitude and period along with vertical and horizontal shifts to show an animal population’s starting point and display changes to that population over a period of time. Answers should include the following information. • The equation shows a rabbit population that begins at 1200, increases to a maximum of 1450 then decreases to a minimum of 950 over a period of 4 years. • Relative to y a cos bx, y a cos bx k would have a vertical shift of k units, while y a cos [b(x h)] has a horizontal shift of h units. 51. D 53. amplitude: 1; period: 720° or 4 y 1 37. 1; ; 180°; 75° 4 5 4 3 2 1 y 5 4 3 2 1 1 y 4 cos (2 150˚) 1 O 270˚ 180˚ 90˚ 2 3 4 5 90˚ 180˚ 270˚ 270˚ 180˚ 90˚ 2 3 4 5 55. 0.75 57. 0.83 y sin O 2 90˚ 180˚ 270˚ 59. 35 3y2 10y 5 2(y 5)(y 3) 4 65. 67. 1 39. 3; 2; ; 61. 0.66 1 2 69. 5a 13 (a 2)(a 3) 3 71. 73. 1 3 63. y 8 7 6 5 4 3 2 1 Selected Answers 3 2 [( )] Pages 779 –781 Lesson 14-3 1. Sample answer: The sine function is negative in the third and fourth quadrants. Therefore, the terminal side of the angle must lie in one of those two quadrants. O y 3 2 sin 2 4 2 2 2 3 2 3. Sample answer: Simplifying a trigonometric expression means writing the expression as a numerical value or in terms of a single trigonometric function, if possible. 5 4 5 3 17. 19. 4 21. 23. 29. 2 33. 1 5. 7. 2 9. tan2 41. 5 4 3 2 1 3 2 2 1 y y 3 2 cos 1 y 3 2 cos ( ) I sin R E 2 . O 2 R80 Selected Answers 3 2 43. c 45. 300; 14.5 yr 47. h 9 6 sin (t 1.5) 9 4 35. csc2 7 1 2 13. 15. 5 25. cot 27. cos 37. about 11.5° I tan cos E I 2R 2 43. P I R . 1 tan2 2 ft 39. about 9.4° 2 3 4 5 The graphs are identical. 31. cot2 3 4 11. csc 41. No; R2 simplifies to 45. Sample answer: You can use equations to find the height and the horizontal distance of a baseball after it has been hit. The equations involve using the initial angle the ball makes with the ground with the sine function. Answers should include the following information. • Both equations are quadratic in nature with a leading negative coefficient. Thus, both are inverted parabolas which model the path of a baseball. • model rockets, hitting a golf ball, kicking a rock 47. A 49. 12; y 12; no amplitude; 180° 5. tan2 cos2 1 cos2 sin2 cos2 sin2 cos2 y 20 sin2 sin2 15 7. 10 5 O 270˚ 180˚ 90˚ 5 y tan 12 90˚ 180˚ 270˚ 2 3 y y cos 3 O 135˚ 90˚ 45˚ 2 3 4 5 45˚ 90˚ 135˚ cos2 sin2 1 11 13. 1 sec2 sin2 sec2 5 4 3 2 1 y O 3 1 sin 4 2 90˚ 180˚ 270˚ 1 cos sin tan cos sec sin tan Multiply by the LCD, cos . sin tan sin tan csc2 2 cot csc cot2 cos2 sin 1 1 cos sin sin sin 1 2 cos cos2 sin2 sin2 sin2 2 1 2 cos cos sin2 2 2 2 Selected Answers Lesson 14-4 1. sin tan sec cos sin tan 1 cos 1 cos 1 cos 1 cos 1 cos 1 cos 1 cos 1 cos 1 cos 1 cos (1 cos )(1 cos ) 1 cos (1 cos )(1 cos ) 1 cos 1 cos 1 cos 1 cos 1 cos cot csc 17. cot csc sin tan 1 cos sin sin cot csc sin sin 2 sin tan 1 tan2 sec2 sec2 sec2 (1 cos )(1 cos ) 1 cos 1 cos2 1 cos 3 5 3. 5. 1 cos 1 cos2 cos cos 1 cos2 cos sin2 cos sin sin cos 1 cos sin2 sec2 1 2 15. (csc cot )2 y sin tan 11. cos2 tan2 cos2 1 sin2 cos 55. Symmetric () 57. Multiplication () Pages 784–785 1 sin2 tan2 cos2 cos2 1 cos2 2 Page 781 Practice Quiz 1 3 1. , 720° or 4 4 5 tan2 tan2 tan2 5 4 3 2 1 270˚ 180˚ 90˚ 2 3 4 5 1 cos2 1 sin2 tan sec 1 9. sec 1 tan tan sec 1 sec 1 sec 1 sec 1 tan sec 1 tan (sec 1) tan sec2 1 sec 1 tan (sec 1) tan tan2 sec 1 sec 1 tan tan 51. amplitude: 1; period: 120° or 53. 93 1 tan2 tan2 csc sec2 tan2 csc2 Subtract. 1 cos2 sin2 Factor. sin tan cos 3. Sample answer: sin2 1 cos2 ; it is not an identity because sin2 1 cos2 . cos cos 1 sin cot csc sin cos sin cos cos 1 sin cot csc sin (cos 1) cos cos cos 1 sin (cos 1) sin 1 cos cot csc sin sin cot csc cot csc cot csc Selected Answers R81 sin sec cot cos sin 19. 37. 1 cos sin cot sin cos 1 sin2 sin cos sin cos 1 sin2 sin cos cos2 sin cos cos sin cot cot [360, 360] scl: 90 by [5, 5] scl: 1 cot is not cot 39. cot cot 1 sin sin 1 sin sin 1 sin sin 1 sin sin 1 sin sin 1 sin sin 1 sin sin cot2 csc 1 cot2 csc 1 csc 1 csc 1 cot2 (csc 1) csc2 1 2 cot (csc 1) cot2 21. [360, 360] scl: 90 by [5, 5] scl: 1 may be 41. csc 1 1 sin sin sin 1 sin sin [360, 360] scl: 90 by [5, 5] scl: 1 1 1 23. 1 sec2 csc2 may be 5 43. cos2 sin2 1 193 45. 11 25. Selected Answers 27. y 5 4 3 2 1 1 tan4 2 sec2 sec4 (1 tan2 )(1 tan2 ) sec2 (2 sec2 ) [1 (sec2 1)](sec2 ) (2 sec2 )(sec2 ) (2 sec2 )(sec2 ) (2 sec2 )(sec2 ) sin 1 cos 1 cos sin sin 1 cos 1 cos 1 cos sin 1 cos 1 cos2 sin sin (1 cos ) 1 cos sin2 sin sin (1 cos ) 1 cos sin sin 1 cos 1 cos tan sin cos 29. csc2 sin2 v2 sin2 cos y 5 4 3 2 1 3 2 v2 sin2 R82 Selected Answers O 2 ) 3 2 3 4 5 cos2 1 2 g 2 ( y 3 cos 2 2 2 2 2 g 33. Sample answer: Consider a right triangle ABC with right angle at C. If an angle, say A, has a sine of x, then angle B must have a cosine of x. Since A and B are both in a right triangle and neither is the right angle, their sum must be . 35. D 2 11 cos 90˚ 180˚ 270˚ 49. 3; 2 ; 1 v2 cos2 31. 2 sec2 1 2g 2 tan2 y cos ( 30˚) O 270˚ 180˚ 90˚ 2 3 4 5 sin 1 sin cos 1 cos sin2 v2 47. 1: 360°; 30° 6 51. 6 22 53. Pages 788–790 Lesson 14-5 1. sin ( ) sin sin sin cos cos sin ≠ sin sin sec2 csc 1 1 2 2 2 sin tan sin cos2 sin2 sin2 sin2 tan2 sin2 cos2 sin2 tan2 sin2 2 3. Sometimes; sample answer: The cosine 6 2 function can equal 1. 5. 1 9. 2 11. 3 7. 2 sin cos cos sin cos 2 2 sin cos sin2 tan2 sin2 tan2 sin · 0 cos · 1 cos cos cos 2 6 6 2 17. 5 3 13. 15. 1 53 2 2 6 2 2 6 19. 21. 23. 25. 2 6 2 27. 53. 2 29. cos (90° ) cos 90° cos sin 90° sin 0 1 sin sin 31. sin (90° ) cos sin 90° cos cos 90° sin cos 1 · cos 0 · sin cos cos 0 cos cos cos 33. cos ( ) cos cos cos sin sin cos 1 · cos 0 · sin cos cos cos 35. sin ( ) sin sin cos [cos sin ] sin 0 · cos [1 · sin ] sin 0 [sin ] sin sin sin 3 6 37. sin cos 3 3 6 55. 4 2 2 1 1 sin sin 2 2 sin 2 5 5 3 3 4 5 3 63. 56 5 6 69. 71. 65. about 228 mi 5 67. 2 Pages 794 –797 Lesson 14-6 5 2 x 2 between 90° and 135°. Use the half-angle formula for cosine knowing that the value is negative. 3. Sample answer: The identity used for cos 2 depends on whether you know the value of sin , cos or both values. 1 30 37 1 6 45 5. , , , 7. , , 9 6 6 8 8 8 27 27 , 4 4 6 2 8 2 3 9. 2 11. cos2 2x 4 sin2 x cos2 x 1 cos2 2x sin2 2x 1 11 26 120 119 526 13. , , , 169 16 9 26 26 42 7 6 3 15. , , , 9 9 3 3 8 23 8 355 55 55 17. , , , 32 32 4 4 21 17 15 42 7 18 12 35 2 , 19. , , , 21. , , 18 6 6 9 6 18 9 2 18 12 45 1 6 3 2 30 23. , , , 25. 6 sin 6 9 9 6 2 2 2 2 2 27. 29. sin 31. cos x sin x 2 sin x cos x 2 sin2 x cos cos cos sin sin cos ( ) 1 cos ( ) cos ( ) 41. Destructive; the resulting graph has a smaller amplitude than the two initial graphs. 43. 0.4179 E 45. 0.5564 E 47. Sample answer: To determine communication interference, you need to determine the sine or cosine of the sum or difference of two angles. Answers should include the following information. • Interference occurs when waves pass through the same space at the same time. When the combined waves have a greater amplitude, constructive interference results and when the combined waves have a smaller amplitude, destructive interference results. 49. C sec2 51. sin2 tan2 (1 cos2 ) 2 csc 2 sin 2x 2 cot x sin2 x 33. 35. 2 sin x cos x 2 sin x cos x sin4 x cos4 x 2 sin2 x 1 (sin2 x cos2 x)( sin2 x cos2 x) 2 sin2 x 1 (sin2 x cos2 x) 1 2 sin2 x 1 2 [sin x (1 sin2 x)] 1 2 sin2 x 1 sin2 x 1 sin2 x 2 sin2 x 1 2 sin2 x 1 2 sin2 x 1 x 2 1 cos x 1 cos x tan2 x sin2 2 1 cos x 1 cos x cos2 x 2 1 cos x 2 2 1 cos x 1 cos x 1 cos x 1 cos x 1 cos x 1 cos x Selected Answers R83 Selected Answers 2 cos 1 cos cos cos cos cos ( ) 1 1 cos cos cos csc csc csc 4 3 4 57. 2 sec 59. sin , cos , tan , 1. Sample answer: If x is in the third quadrant, then is 1 cos cos cos ( ) 1 1 sin csc 6 2 73. 2 1 tan tan sec sec cos csc 5 4 39. cos ( ) sin csc csc , sec , cot 61. 360 sin cos cos sin cos cos sin sin 1 1 3 3 sin cos cos sin sec tan 1 sin cos cos 1 cos cos sin 1 sin 1 4 37. 46.3° 39. 2 3 2 41. tan 3 2 43. The maxima occur 3 2 y at x and . The minima occur at x 0, and 2 . 45. The graph of f(x) crosses the x-axis at the points specified in Exercise 43. 47. Sample answer: The sound waves associated with music can be modeled using trigonometric functions. Answers should include the following information. • In moving from one harmonic to the next, the number of vibrations that appear as sine waves increase by 1. • The period of the function as you move from the nth harmonic to the (n 1)th harmonic decreases from 2 2 to . n1 n 6 2 49. B 51. 4 1 3 53. 55. 2 4 3.5 3 2.5 2 1.5 1 0.5 O 1 1 3 cos sin cos (cos cot ) cos sin cot cos 5 2 Pages 805–808 5 4 3 2 1 1 cos sin tan cos tan tan sin (cos 1) cos sin cos sin sin tan cos sin sin cos sin tan cos cos y 5 4 3 2 1 0 (1 sin ) sin Selected Answers sin sin 2 3 7. 9. 2 1 1. Sample answer: If sec 0 then 0. Since no cos 1 value of makes 0, there are no solutions. cos 3. Sample answer: sin 2 5. 135°, 225° 7. 6 9. 0 k 11. 60° k 360°, 300° k 360° 5 13. 2k , 2k , 2k or 30° k 360°, 6 6 2 150° k 360°, 90° k 360° 15. 60°, 300° 17. 210°, 330° 5 3 7 11 5 6 6 2 6 6 3 3 2 4 5 25. 2k , 2k 27. 2k , 2k 3 3 3 3 19. , , 21. , 23. 2k , 2k 29. 45° k 180° 31. 270° k 360° 33. 0° k 180°, 60° k 180° 3 35. 0 2k , 2k , 2k or 0° 2 2 k 360°, 90° k 360°, 270° k 360° 37. 0 k or 0° 3 5 3 k 180° 39. 0 2k , 2k , 2k , or 0° k 360°, 352 tan 60° k 360°, 300° k 360° 41. S or S 352 cot R84 Selected Answers 90˚ 180˚ 270˚ 11. amplitude: 1; period: 720° or 4π 3 2 3 3 cos cos sin sin sin 2 2 cos sin Lesson 14-7 1 cos 2 270˚ 180˚ 90˚ 2 3 4 5 sin tan sin tan Pages 802–804 y O sin tan 2 Study Guide and Review 1 9. amplitude: ; period: 360° or 2π 2 y Practice Quiz 2 sin tan 3 Chapter 14 1. h 3. d 5. e 7. g 1. sin sec tan 5. 10 25 25 10 3 53. 55. b 11.0, c 12.2, 2 3 33 511 , 7, , 51. 18 6 6 63. , 2 2 Page 797 t 1 2 3 4 5 6 7 8 9 m C 78 cos (cos cot ) cos2 cot cos cos (cos cot ) cos (cos cot ) 3. 3 y 2 2 sin (t ) 10 310 24 7 45. (4.964, 0.598) 47. D 49. , , , 2 57. cos (cos cot ) cot cos (sin 1) 59. 102.5 or about 316 times greater 61. 1, 1 1 65. 0, 3 2 43. y sin ( t) 270˚ 180˚ 90˚ 2 3 4 5 1 2 y sin O 90˚ 180˚ 270˚ 13. amplitude: does not exist; period: 540° or 3π y y 1 2 csc 5 2 3 4 3 2 1 O 360˚ 270˚ 180˚ 90˚1 2 3 4 5 90˚ 180˚ 270˚ 360˚ sin csc cot 25. 1 2 15. 1, , 180°, 60° 1 cos cos sin 1 sin sin 1 cos sin 1 csc 1 cos sin 1 cos 1 cos sin sin 1 cos 1 cos 2 1 c os sin sin (1 cos ) 1 cos sin2 sin sin (1 cos ) 1 cos sin sin 1 cos 1 cos y 5 4 3 2 1 1 y 2 sin [2( 60˚)] 1 O 270˚ 180˚ 90˚ 2 3 4 5 90˚ 180˚ 270˚ 27. sec (sec cos ) tan2 1 1 cos tan2 cos cos 1 1 tan2 cos2 π 4 17. 1, does not exist, 4π, sec2 1 tan2 y tan2 tan2 10 8 6 4 2 6 2 29. [1 ( sin (30 ) cos (60 ) sin 30° cos cos 30° sin cos 60° cos sin 60° sin )] 1 2 3 1 3 sin 1 cos 3 sin cos 2 2 37. cos cos (π ) cos cos π cos sin π sin cos 1 cos 0 sin cos cos 120 119 526 , 26 39. , , 169 169 4 19. 3 21. sin2 6 2 33. 35. O 3 2 4 6 8 10 y 3 sec 2 4 2 6 31. 23. sec 43. 0° π 5π 45. 2kπ, 2kπ 6 6 120 119 26 526 , 41. , , 169 169 Selected Answers Selected Answers R85 Photo Credits Photo Credits About the Cover: Alexander Calder (1898–1976) was one of America’s most acclaimed sculptors. Renowned for his invention of the mobile, or movable sculpture, Calder also created sculptures called stabiles, or immovable sculptures. The cover photograph illustrates his Grand Stabile Rouge, located in Paris. One of Calder’s last great public works, this sculpture is reminiscent of another of his stabiles, Flamingo, in Chicago. Both stabiles feature large red arches that resemble parabolas. Cover Vanni Archive/CORBIS; x D & K Tapparel/Getty Images; xi Telegraph Colour Library/Getty Images; xii DEX Images Inc./CORBIS Stock Market; xiii AFP/CORBIS; xiv CORBIS; xix Jenny Hager/ImageState; xv Brownie Harris/CORBIS Stock Market; xvi Ray F. Hillstrom Jr.; xvii Kunio Owaki/CORBIS Stock Market; xviii Jane Burton/ Bruce Coleman; xx Food & Drug Administration/SPL/Photo Researchers; xxi R. Ian Lloyd/Masterfile; xxii Getty Images; 2 David De Lossy/Getty Images; 2–3 Bryan Peterson/Getty Images; 4 Johnny Stockshooter/International Stock; 4–5 Orion/International Stock; 6 Mark Harmel/Getty Images; 14 Amy C. Etra/PhotoEdit; 16 Archivo Iconografico, S.A./CORBIS; 19 Aaron Haupt; 20 SuperStock; 23 Michael Newman/PhotoEdit; 26 Pictor; 28 Robert Yager/Getty Images; 31 E.L. Shay; 38 Lawrence Migdale; 40 Index Stock/Ewing Galloway; 43 PhotoDisc; 44 Rudi Von Briel/PhotoEdit; 54–55 Jack Dykinga/Getty Images; 56 William J. Weber; 61 Bettmann/CORBIS; 64 D & K Tapparel/Getty Images; 67 Lynn M. Stone; 72 (l)SuperStock, (r)Richard T. Nowitz/CORBIS; 80 VCG/Getty Images; 82 John Evans; 85 Matt Meadows; 94 David Ball/CORBIS Stock Market; 99 Getty Images; 108 PhotoDisc; 108–109 NASA/TSADO/Tom Stack & Assotes; 111 Dave Starrett/Masterfile; 114 Telegraph Colour Library/Getty Images; 121 Will Hart/PhotoEdit; 124 NASA; 126 Doug Martin; 129 AFP/CORBIS; 131 Caroline Penn/CORBIS; 138 S. Carmona/CORBIS; 140 M. Angelo/CORBIS; 143 Andy Lyons/Allsport; 152 CORBIS; 152–153 William Sallaz/DUOMO; 157 Bettman/CORBIS; 161 Tui De Roy/Bruce Coleman, Inc.; 165 PhotoDisc; 169 Andy Lyons STF/Allsport; 172 Mark Tomalty/Masterfile; 175 Mark Richards/PhotoEdit; 180 Michael Denora/Getty Images; 187 Jonathan Blair/CORBIS; 190 FDR Library; 193 DEX Images Inc./CORBIS Stock Market; 195 Jose Luis Pelaez Inc./CORBIS Stock Market; 197 Volker Steger/SPL/Photo Researchers; 203 Ken Eward/Science Source/Photo Researchers; 218 www.comstock.com; 218–219 Rafael Marcia/Photo Researchers; 220–221 Carl Purcell/Words and Pictures/PictureQuest; 225 AFP/CORBIS; 227 K.G. Murti/Visuals Unlimited; 229 David Umberger/Purdue University Photo; 243 Steve Rayer/CORBIS; 249 Roger Ressmeyer/CORBIS; 255 Roy Ooms/Masterfile; 259 AFP/CORBIS; 262 Victoria & Albert Museum, London/Art Resource, NY; 267 Lori Adamski Peek/Getty Images; 274 Kaluzny/Thatcher/Getty Images; 284 Allsport Concepts/Getty Images; 284–285 Ed Pritchard/Getty Images; 291 Aidan O’Rourke; 292 Getty Images; 298 SuperStock; 304 Matthew McVay/Stock Boston; 306 DUOMO/CORBIS; 311 CORBIS; 313 Jeff Kaufman/ Getty Images; 318 Bruce Hands/Getty Images; 327 NASA; 329 Nick Wilson/Allsport; 331 Todd Rosenberg/Allsport; 334 Aaron Haupt; 344–345 Guy Grenier/Masterfile; 346 Brownie Harris/CORBIS Stock Market; 351 Martha Swope/Timepix; 355 VCG/Getty Images; 357 Michael Newman/PhotoEdit; 363 Gregg Mancuso/Stock Boston; 365 Boden/Ledingham/Masterfile; 372 National Library of Medicine/Mark Marten/Photo Researchers; 376 VCG/Getty Images; 381 Bob Krist/CORBIS; 383 Ed Bock/CORBIS Stock Market; 388 SuperStock; 392 Matt Meadows; 394 SuperStock; 395 Raymond Gehman/CORBIS; 396 Frank Rossotto/ R86 Photo Credits Stocktreck/CORBIS Stock Market; 398 Getty Images; 408 Michael S. Yamashita/CORBIS; 408–409 Jose Fuste Raga/eStock Photo; 410 Photographers Library LTD/eStock Photo; 410–411 James Hackett/eStock Photo; 424 James Rooney; 426 SuperStock; 432 Matt Meadows; 435 Ray F. Hillstrom Jr.; 439 James P. Blair/CORBIS; 443 CORBIS; 446 Bob Krist/Getty Images; 459 (l)Space Telescope Science Institute/NASA/SPL/Photo Researchers, (r)Michael Newman/PhotoEdit; 470–471 David Fleetham/Getty Images; 477 AFP/CORBIS; 483 Pascal Rondeau/ Allsport; 487 Aaron Haupt; 489 Bettmann/CORBIS; 494 JPL/TSADO/Tom Stack & Associates; 496 Geoff Butler; 497 Lynn M. Stone/Bruce Coleman, Inc.; 499 Picture Press/CORBIS; 503 Kunio Owaki/CORBIS Stock Market; 505 (b)Phil Schermeister/CORBIS, (t)Bruce Ayres/Getty Images; 507 Reuters NewMedia Inc./CORBIS; 511 Keith Wood/Getty Images; 520–521 Michael S. Yamashita/ CORBIS; 522 Aaron Haupt; 525 Ariel Skelley/CORBIS Stock Market; 529 Jeff Zaruba/CORBIS Stock Market; 536 (l)Mark Jones/Minden Pictures, (r)Jane Burton/Bruce Coleman, Inc.; 537 David Weintraub/Photo Researchers; 542 SuperStock; 545 Bettman/CORBIS; 558 Jim Craigmyle/Masterfile; 561 Richard T. Nowitz/Photo Researchers; 564 Karl Weatherly/CORBIS; 574 Amanda Kaye; 574–575 Bryan Barr; 576–577 Christine Osborne/CORBIS; 579 SuperStock; 583 Michele Wigginton; 584 Michelle Bridwell/PhotoEdit; 595 Hank Morgan/Photo Researchers; 599 IN THE BLEACHERS ©1997 Steve Moore. Reprinted with permission of Universal Press Syndicate. All rights reserved; 603 Jenny Hager/ImageState; 609 Jeff Greenberg/Visuals Unlimited; 612 SPL/Photo Researchers; 630 Steve Liss/Timepix; 630–631 Greg Mathieson/Timepix; 632 D.F. Harris; 635 ©1979 United Feature Syndicate, Inc.; 636 (l)Mitch Kezar/Getty Images, (r)Jim Erickson/CORBIS Stock Market; 638 Mark C. Burnett/Photo Researchers; 642 Matt Meadows; 644 CORBIS; 648 Food & Drug Administration/SPL/Photo Researchers; 651 Chris Trotman/DUOMO; 656 Charles Gupton/CORBIS Stock Market; 660 The Born Loser reprinted by permission of Newspaper Enterprise Association, Inc.; 662 Bob Daemmrich/Stock Boston; 667 Greg Fiume/ New Sport/CORBIS; 668 SuperStock; 671 AFP/CORBIS; 675 Will & Deni McIntyre/Photo Researchers; 677 Gregg Forwerck/SportsChrome USA; 679 Steve Chenn/CORBIS; 683 Aaron Haupt; 685 HMS Images/Getty Images; 686 Aaron Haupt; 696 Photofest; 696–697 Ed and Chris Kumler; 698–699 Bill Ross/CORBIS; 705 John P. Kelly/ Getty Images; 707 SuperStock; 709 L. Clarke/CORBIS; 713 Ray Juno/CORBIS Stock Market; 716 Aaron Haupt; 717 courtesy Skycoaster of Florida; 721 Reuters NewMedia Inc./CORBIS; 723 Otto Greule/Allsport; 729 Peter Miller/Photo Researchers; 731 SuperStock; 735 Roy Ooms/Masterfile; 737 John T. Carbone/Photonica; 744 R. Ian Lloyd/Masterfile; 746 Doug Plummer/ Photonica; 748 SuperStock; 750 Steven E. Sutton/DUOMO; 760–761 Boden/Ledingham/Masterfile; 766 Larry Hamill; 773 Ben Edwards/Getty Images; 780 James Schot/Martha’s Vineyard Preservation Trust; 789 Cosmo Condina/Getty Images; 795 SuperStock; 799 SuperStock; 803 (l)Getty Images, (r)Frank Wiewandt/Image Finders. Index A Absolute value functions, 90, 91, 92, 104, 115, 247, 272, 370, 499, 502, 503, 515, 599, 831, 848 Absolute value inequalities, 40–46, 86, 829 graphing, 97, 335 multi-step, 42 solving, 50 Addition Associative Property, 15, 162, 166, 828 Commutative Property, 15, 162 complex numbers, 270, 272 Distributive Property, 221 functions, 383, 403 matrices, 160 polynomials, 229, 277 probabilities, 658–663, 689–690 properties, 25 radicals, 252, 253 rational expressions, 480, 514 signs for, 46 solving inequality, 34 Addition Property of Equality, 21 Addition Property of Inequality, 33 Additive identity, 15, 32, 162, 828 Additive inverses, 13, 15, 16, 18, 153, 828 Algebra Activity Adding Radicals, 252 Area Diagrams, 651 Arithmetic Sequences, 580 Completing the Square, 308 Conic Sections, 453–454 Distributive Property, 13 Factoring Trinomials, 240 Fractals, 611 Graphing Equations in Three Variables, 136–137 Head versus Height, 83 Inverses of Functions, 392 Investigating Ellipses, 432 Investigating Exponential Functions, 522 Investigating Polygons and Patterns, 19 Investigating Regular Polygons using Trigonometry, 716 Locating Foci, 437 Midpoint and Distance Formulas in Three Dimensions, 417–418 Multiplying Binomials, 230 Parabolas, 421 Rational Functions, 487 Simulations, 681 Special Sequences, 607 Testing Hypotheses, 686 Algebraic expressions, 828 evaluating, 7, 8, 9, 18, 27, 30, 53, 109 fraction bar, 7 simplifying, 14, 15, 16, 27, 48, 53, 62 verbal expressions, 20, 24, 115 Algebra tiles. See also Modeling binomials, 230 complete the square, 308 modeling binomials, 230 polynomials, 240 Algorithms, division, 233–234 Alternative hypothesis, 686 Alternative method, 580, 590, 652 Alternative representations, 726 Amortization, 605 schedule, 605 Amplitude, 763, 764, 765, 766, 767, 771, 774, 775, 776, 781, 785, 805, 806, 859 “And” compound inequalities, 40 Angles, 709–716, 734, 753 coterminal, 711, 738 depression, 705 elevation, 705 finding, 721 general, 754 inclination, 779 measurement, 709, 711, 712, 745, 748, 753 quadrantal, 718 reference, 718–719, 722, 776 trigonometric function of general, 717–724 vertex, 192 vertices, 113, 192 Angles formulas differences, 786–790, 807 sum, 786–790, 807 Angular velocity, 714 Antinodes, 791 Apothem, 716 Applications. See also CrossCurriculum Connections; More About acidity, 550 activities, 510 advertising, 459, 668 aeronautics, 732 aerospace, 425, 429, 587 aerospace engineering, 266 agriculture, 565, 863, 865, 871 airports, 122 altitude, 557 amusement parks, 380 ancient cultures, 72 animal control, 528 animals, 319, 827 archery, 298 architecture, 497, 503, 749 art, 490, 865, 872 astronomy, 226, 238, 262, 310, 438, 439, 440, 445–447, 459, 478, 498, 550, 712, 862, 869 auto maintenance, 517 automobiles, 380 automotive engineering, 255 auto safety, 489 aviation, 450, 706, 737, 790, 795, 869 babysitting, 39 baking, 16, 127 ballooning, 341 band boosters, 15 banking, 9, 538, 608 baseball, 88, 333, 722, 779, 827 basketball, 17, 95, 143, 490, 874 boating, 298, 768 bowling, 25 bridge construction, 705 bridges, 424 building design, 550 bulbs, 745 business, 26, 79, 80, 89, 97, 158, 165, 174, 181, 194, 237, 256, 334, 352, 565, 570, 670 cable cars, 874 cable TV, 356 caffeine, 560 camera supplies, 174 card games, 642, 649 car expenses, 26 carousels, 723 car rental, 51 cars, 679, 713 car sales, 38 cartography, 637 charity, 823 Index R87 Index Absolute value equations, 28, 53 graphing, 299 solving, 28–32, 39, 49 Index child’s play, 602 clocks, 602, 617 clubs, 872 coffee, 31 coins, 571 communications, 423, 559, 767, 789, 869, 874 community service, 299 computers, 563, 582 construction, 266, 292, 586, 643, 821, 862, 865, 867 contest, 46 cooking, 142 crafts, 863, 865 cryptography, 199, 200 cycling, 510 deliveries, 36 dentistry, 227 design, 363, 627, 868 diet, 549 dining, 143 dining out, 157 diving, 304, 327 drama, 98 driving, 827 earthquake, 797 earthquakes, 458, 545, 547, 871 ecology, 79, 207 economics, 66, 114, 261, 564, 610, 684 education, 328, 648, 660, 667, 863, 864, 866, 870, 873 elections, 655 electricity, 18, 122, 273, 274, 483, 517 electronics, 389, 780 employment, 357, 863, 868 energy, 869 engineering, 369 entertainment, 73, 237, 399, 581, 598, 635, 713 e-sales, 231 exercise, 121, 707, 864 extreme spots, 296 family, 26 farming, 134 figure skating, 638 finance, 61, 85, 173, 388 financial planning, 405 firefighting, 398 fish, 248 flagpoles, 821 flooring, 44 food, 30, 632, 674 football, 318, 668 footprints, 180 forestry, 731 fountains, 326, 750 framing, 311 fund-raising, 67, 173, 334 furniture, 275 games, 193, 616, 825, 872 R88 Index gardening, 607, 802 gardens, 484 genealogy, 648 genetics, 648 golf, 809, 822, 823 government, 61, 88, 641 gymnastics, 180 health, 45, 84, 95, 267, 425, 452, 503, 597, 824, 863, 873 highway safety, 319 hobbies, 62 hockey, 84 home security, 636 hotels, 157 housing, 81, 82, 121 hurricanes, 126 insurance, 94 interior design, 193, 438 Internet, 80 intramurals, 616 inventory, 121 investing, 192 investments, 140 kennel, 312 landscaping, 180, 243, 334, 412, 430, 597 laughter, 497 law enforcement, 254, 298, 335, 866 lawn care, 327 life expectancy, 865 light, 803 lighting, 780 loans, 609 lotteries, 642, 648 mail, 45, 503 manufacturing, 31, 132, 147, 149, 424, 674, 868, 870 marriage, 440, 824 measurement, 863 media, 684 medicine, 10, 84, 237, 376, 488, 544, 563, 592 meteorology, 675 mirrors, 459 models, 867 money, 10, 27, 529, 551, 824, 826 movies, 641 movie screens, 310 music, 775 navigation, 507, 723, 732 newspapers, 291 noise ordinance, 537 nuclear power, 426 number games, 394 nursing, 9 nutrition, 94 oceanography, 201, 249 optics, 248, 750 ownership, 564 packaging, 26, 134, 363 pagers, 448 paleontology, 561, 563 paper, 144 parking, 93 parties, 620 part-time jobs, 37, 126 passwords, 635 personal finance, 231, 369 pets, 341 photography, 244, 304, 431, 447, 451, 657, 819, 870 photos, 113 physics, 767 pilot training, 206 pool, 363 population, 227, 529, 558, 562, 570, 862, 863, 864, 866, 868, 871 population growth, 388, 563 pricing, 193 produce, 172 production, 133 puzzles, 620 quality control, 673 radio, 430, 731 radioactivity, 587 real estate, 415, 563 recreation, 88, 105, 165, 604, 627 retail, 377 retail sales, 215 rides, 867, 874, 875 rockets, 458, 875 roller coasters, 398 rumors, 558 running, 188 safety, 84, 868 salaries, 591 sales, 77, 99, 868 satellites, 869 savings, 556, 557 school, 634 schools, 26, 37, 51, 74, 98, 135, 206, 615, 641, 661, 662, 668, 674, 823, 825 school shopping, 17 school trip, 26 scrapbooks, 166 sculpting, 376 shadows, 819 shopping, 39, 62, 98, 125, 149, 387, 685 skiing, 120 skycoasting, 723 skydiving, 281 slope, 744 soft drinks, 827 sound, 535, 542, 545 space, 563 space exploration, 124 speed limits, 45, 873 speed skating, 663 sports, 164, 171, 248, 255, 358, 425, 451, 678, 872 Arcsine function, 747 Area circles, 9, 415, 502 diagrams, 651 hexagons, 707 parallelograms, 477 polygons, 187 rectangles, 255, 334 trapezoids, 8, 67, 865 triangles, 32, 184, 185, 186, 187, 231, 281, 866 Area tiles. See Algebra tiles; Modeling Arithmetic expressions, simplifying, 6 Arithmetic means, 580, 582, 590, 592, 622, 623, 851 Arithmetic operations, 383–384 Arithmetic sequences, 578–582, 579, 583, 622–623, 768, 851 modeling, 580 nth term, 579, 591, 851 Arithmetic series, 583–587, 620, 623, 851 sum, 583, 584, 586, 592 Assessment Practice Chapter Test, 51, 105, 149, 215, 281, 341, 405, 467, 517, 571, 627, 693, 757, 809 Practice Quiz, 18, 74, 95, 122, 135, 174, 194, 238, 256, 328, 364, 382, 431, 448, 484, 498, 538, 559, 592, 617, 650, 670, 715, 738, 781, 797 Prerequisite Skills, 5, 10, 18, 27, 32, 39, 55, 62, 67, 74, 80, 86, 95, 109, 115, 122, 127, 135, 153, 158, 166, 174, 181, 188, 194, 201, 221, 228, 232, 238, 244, 249, 256, 262, 267, 285, 293, 299, 305, 312, 319, 328, 345, 352, 358, 364, 370, 377, 382, 389, 394, 411, 416, 425, 431, 440, 448, 452, 471, 478, 484, 490, 498, 504, 521, 530, 538, 546, 551, 559, 577, 582, 587, 592, 598, 604, 610, 617, 631, 637, 643, 657, 663, 670, 675, 680, 699, 708, 715, 724, 732, 738, 745, 761, 768, 776, 781, 785, 790, 797, 814–827 Standardized Test Practice, 10, 17, 23, 24, 27, 31, 39, 46, 51, 67, 74, 76, 78, 80, 86, 95, 99, 105, 115, 117, 120, 122, 127, 134, 144, 149, 158, 166, 173, 176, 179, 181, 187, 194, 201, 207, 215, 228, 232, 236, 238, 243, 244, 249, 255, 267, 281, 292, 299, 302, 303, 305, 312, 319, 327, 335, 341, 352, 358, 364, 370, 374, 375, 377, 382, 389, 394, 399, 405, 413, 414, 416, 425, 431, 439, 447, 452, 459, 467, 473, 476, 478, 484, 490, 498, 503, 511, 517, 530, 537, 546, 559, 562, 563, 564, 582, 587, 588, 591, 592, 598, 603, 610, 616, 621, 627, 634, 636, 642, 649, 657, 662, 669, 675, 685, 693, 706, 708, 724, 732, 737, 745, 757, 768, 776, 781, 784, 785, 790, 796, 804, 809 Extended Response, 53, 107, 151, 217, 343, 407, 469, 519, 551, 573, 621, 629, 695, 714, 759, 811 Grid In, 680, 751 Multiple Choice, 52, 106, 150, 216, 342, 406, 468, 518, 572, 628, 633, 694, 702, 758, 783, 810 Open Ended, See Extended Response Short Response/Grid In, 53, 107, 151, 217, 343, 407, 469, 519, 573, 629, 695, 759, 811 Test-Taking Tips, 23, 52, 76, 106, 117, 151, 176, 217, 234, 282, 302, 342, 407, 468, 473, 519, 562, 572, 588, 628, 633, 695, 702, 758, 783, 811 See also Preparing for Standardized Tests Associative Property Addition, 15, 162, 166, 828 Multiplication, 15, 171 Asymptotes, 491, 530 determining, 471 hyperbola, 846, 848 vertical, 617, 763 Augmented matrices, 208 Axis conjugate, 442 minor, 434 symmetry, 287–288, 290, 291, 299, 339, 839 transverse, 442 B Bar graphs, 824 Base e equations, 555, 569 Base e inequalities, 556 Base e logarithms, 554–559 inverse property, 555 Base formula, 548, 549 Bias, 682 Biased sample, 682 Binomials, 229, 366, 368, 382 expansions, 631, 676 experiments, 676–681, 677, 691–692 Binomial Theorem, 612–617, 625–626 factorial form, 614 Bivariate data, 81 Boundary, 96 Bounded region, 129–130 Box-and-whisker plots, 631, 826–827 Break-even point analysis, 110, 111 C Calculator. See Graphing calcuator; Graphing Calculator Investigation Career Choices archaeologist, 187 atmospheric scientist, 126 chemist, 511 Index R89 Index stamps, 144 state fair, 37 statistics, 511 structural design, 446 surveying, 707, 737, 819, 874 surveys, 873 swimming, 495 taxes, 67, 386 telecommunications, 497 telephones, 80 television, 83, 875 temperature, 388 tennis, 298 test grades, 38 theatre, 84 thinking, 564 tides, 775, 875 tourism, 292 toys, 586 transportation, 88, 93, 228, 487, 636 travel, 69, 73, 113, 143, 249, 415, 707, 750, 862, 870 tunnels, 467 utilities, 656 vending, 674 water, 451 water supply, 496 weather, 60, 72, 156, 597, 823, 862, 867, 868, 871, 874, 875 weekly pay, 103 White House, 439 woodworking, 416, 730 work, 16, 496, 509 world cultures, 586 world records, 536 writing, 649 Index cost analyst, 237 designer, 363 electrical engineering, 274 finance, 85 forester, 446 interior design, 193 landscape architect, 334 paleontologist, 561 physician, 685 real estate agent, 609 sound technician, 542 surveyor, 707 travel agent, 496 veterinary medicine, 131 Cartesian coordinate plane, 56 Center circles, 426, 845 ellipses, 434 Central tendency measures of, 664, 822–823 Change of Base Formula, 548, 569 Checking solutions, 13, 22, 24, 25, 29, 30, 31, 34, 39, 46, 49, 51, 62, 110, 115, 117, 197, 207, 263, 264, 294, 302, 309, 314, 315, 325, 361, 362, 367, 379, 481, 506, 509, 516, 526, 527, 528, 530, 533, 534, 535, 536, 538, 542, 543, 544, 546, 548, 551, 555, 559, 580, 604, 621, 643, 657, 801, 849, 850 Circles, 426–431, 450, 451, 460, 463, 467, 565, 617 area, 9, 415, 502 center, 426, 845 circumference, 496, 710 connecting points, 352 eccentricity, 440 equations, 426, 846 graphing, 428, 429 radius, 845 sectors, 713 unit, 710, 740, 742, 743 Circular functions, 739–745, 756, 761 Circular permutation, 642 Circumference, 496, 710 Closure Property, 18 Coefficients, 222, 448 integral, 376 leading, 379 least, 389 Column matrix, 155, 156 Combinations, 638–643, 640, 641, 650, 688, 715 Combined variation, 497 Common difference, 578 R90 Index Common logarithms, 547–553, 559, 617 Common Misconception, 7, 12, 29, 118, 130, 289, 308, 523, 659, 703, 782. See also Find the Error Common ratio, 588, 603 Communication, 633 compare and contrast, 178, 673, 742 copy, 60 decide, 71, 242, 273, 590 define, 297, 706, 712, 774 describe, 8, 156, 163, 185, 192, 317, 350, 362, 397, 445, 535, 619, 683, 749, 779, 784, 788 determine, 8, 24, 171, 226, 247, 254, 273, 310, 332, 386, 393, 445, 476, 495, 641, 722, 729, 788 disprove, 14 draw, 660 evaluate, 92 examine, 332 explain, 14, 30, 37, 65, 78, 98, 112, 142, 156, 171, 185, 198, 236, 247, 260, 265, 297, 310, 317, 325, 350, 356, 362, 375, 380, 393, 397, 414, 450, 476, 549, 563, 580, 586, 596, 602, 619, 634, 673, 678, 722, 736, 749, 766, 779, 784, 794, 802 graph, 458 identify, 78, 231–232, 290, 414, 423, 437, 527, 615, 774 list, 615, 634 make, 119 name, 65, 544, 549, 557, 712 show, 185, 265, 641 sketch, 458 state, 78, 125, 290, 356, 368, 375, 509, 608, 742 tell, 125, 350, 802 verify, 647 write, 30, 37, 43, 98, 163, 178, 192, 198, 205, 303, 325, 368, 428, 450, 563, 608, 647, 654 Commutative Property Addition, 15, 162 Multiplication, 15, 32, 166, 170, 828 multiplication, 272–273 subtraction, 270, 272 Complex roots, 315 Composition, functions, 384–386, 530, 532 Compound event, 658 Compound inequalities, 40–46, 50 and, 40 or, 41 Concept Summary, 47, 48, 49, 57, 69, 92, 100, 101, 102, 103, 104, 112, 146, 162, 171, 177, 178, 209, 210, 211, 212, 213, 214, 239, 246, 251, 260, 265, 276, 277, 278, 279, 280, 317, 323, 336, 337, 338, 339, 340, 349, 371, 400, 401, 402, 403, 404, 422, 449, 450, 461, 462, 463, 464, 465, 466, 499, 513, 514, 515, 516, 566, 567, 568, 569, 570, 622, 623, 624, 625, 626, 634, 664, 687, 688, 689, 690, 691, 692, 735, 747, 752, 753, 754, 755, 756, 772, 805, 806, 807, 808 Conditional probability, 653 Cones, surface areas, 22, 266 Congruent angles, 817 Conic sections, 419, 449–452, 453–454, 465–466, 869 Conjectures, 19, 32, 83, 119, 240, 252, 432, 437, 489, 522, 558, 585, 607, 681, 686, 716 Conjugate axis, 442 Conjugates, 253 Conjunctions, 42 Constant functions, 90, 92, 115, 370, 499, 502, 515, 831 Constants, 104, 222, 530 variation, 492 Constraints, 129 Constructed Response, See Preparing for Standardized Tests Continuous functions, 62, 524 Comparison quantitative, 117, 120 real numbers, 5, 814 Continuously compounded interest, 556 Completing the square, 306–312, 328, 338, 352, 411, 490, 587, 840 Continuous probability distribution, 671 Complex conjugates, 273, 374–375 Convergent series, 599, 622 Complex fractions, 475, 481 Coordinate matrix, 175 Complex numbers, 270–275, 280, 370 addition, 270, 272 division, 272–273 Coordinate plane, 110 Coordinates, finding, 721 3 3 matrices, 182, 183 2 2 matrices, 182 value, 185, 194 Cross products, 181 Corollary, 372 Cube root equation, 264 Corresponding elements, 156 Cubes, volumes, 615 Deviation, mean, 669 Cosecant function, 701 Curve Fitting, 300, 359, 539 Cosine function, 701, 706, 707, 740, 747, 767, 770, 771 definition, 739 value, 747 Cylinders, surface areas, 25, 862 Diagonals, 19, 182, 183, 184, 201, 642 in decagon, 776 evaluating determinants, 186, 835 Cotangent function, 701 Coterminal angles, 711, 712, 738 Counterexamples, 14, 16, 32, 92, 185, 242, 580, 619, 620, 621, 643, 666, 706, 794, 853 Counting Principle, 632–637, 644, 687–688 Cramer’s Rule, 189–194, 207, 213, 724, 835 solving systems of equations, 670 three variables, 191 two variables, 189 D Dashed boundary, 96–97 Data analyzing, 522, 681, 716 box-and-whisker plots, 631, 826–827 collecting, 522, 681, 716 distribution, 672 graphs of polynomial functions, 353, 357 modeling real-world, 359 organizing, 154, 159 scatter plots, 81–86, 87, 95, 99, 103, 598, 831 skew, 856 stem-and-leaf plots, 667, 825 Critical Thinking, 10, 17, 27, 31, 38, 45, 62, 66, 73, 80, 85, 94, 99, 114, 121, 127, 133, 143, 157, 166, 172, 173, 181, 187, 193, 200, 207, 227, 232, 237, 243, 249, 255, 262, 267, 275, 292, 298, 304, 311, 319, 327, 334, 357, 364, 369, 376, 377, 380, 389, 394, 398, 416, 425, 430, 439, 446, 452, 459, 477, 483, 489, 497, 503, 511, 529, 537, 545, 546, 550, 558, 582, 587, 592, 598, 603, 610, 616, 621, 635, 642, 649, 656, 662, 669, 675, 679, 685, 708, 714, 723, 732, 737, 744, 750, 767, 776, 780, 785, 789, 796, 804 Decay exponential, 524, 525, 528, 560–565, 561, 567, 570, 849 rate of, 560 Cross-Curriculum Connections. See also Applications; More About anthropology, 563 biology, 62, 227, 262, 350, 497, 529, 545, 564, 570, 621, 744, 767, 872 chemistry, 203, 205, 206, 312, 460, 496, 511, 570 geography, 58, 85, 187, 415, 451, 647, 796, 825 geology, 67, 581, 708, 757 history, 489 literature, 656, 724 physical science, 779 physics, 66, 237, 267, 292, 318, 370, 393, 510, 546, 557, 604, 743, 751, 774, 784, 788, 789, 796, 802, 866, 867, 870, 874 physiology, 357, 672 science, 80, 83 spelling, 656 zoology, 775 Denominators monomials, 480 polynomials, 475, 480 Decimals, 838, 850 approximations for irrational numbers, 247 repeating, 601, 602, 603, 852 Degrees, 222, 724, 753, 757, 802, 803 converting radian measures between, 711 measurement, 711 polynomials, 229, 346, 350, 400, 837, 842 Dependent events, 633–634, 635, 653, 654, 655, 687, 689, 854, 855 Dependent variable, 59 Depressed polynomial, 366 Depression, angle of, 705 Descartes, René, 372 Descartes’ Rule of Signs, 372–373, 379 Determinants, 182–188, 212 evaluating using diagonals, 835 using expansion by minors, 835 finding value, 186, 835 second-order, 182 third-order, 182, 183 Differences rewriting as sums, 221 squares, 816 Dilations, 175, 176, 177 Dimensional analysis, 225, 708 Dimensions, 155 Directrix, 419 Direct substitution, 366, 368 Direct variation, 492–493, 495, 496, 499, 502, 515, 559, 650, 848 Discrete function, 62 Discrete probability distributions, 671 Discriminant, 328 quadratic formula, 313–319, 339 Disjunctions, 42 Distance Formulas, 413–414, 415, 416, 417–418, 425, 441, 461–462, 467 Distributions continuous probability, 671 discrete probability, 671 normal, 671–675, 680 probability, 646 skewed, 671 Distributive Property, 12, 13, 14, 15, 17, 32, 162, 166 Addition, 221 Multiplication, 170, 171, 228, 828 Divisibility, 619 Division algorithm, 233–234 complex numbers, 272–273 functions, 384, 403 polynomials, 233, 277, 364, 365–366 properties of equality, 21 rational expressions, 474, 513 simplifying expressions, 223 solving inequality, 35 synthetic, 345, 745, 837 Division Property of Equality, 21 Division Property of Inequality, 34 Domain, 56, 57, 58, 61, 93, 94, 95, 99, 100, 101, 104, 181, 397, 398, 416, 523, 527, 528, 530, 830, 831, 844, 849 range, 67 Index R91 Index Coordinate system, 56 Double-angle formulas, 791–798, 808 Double root, 302 Doubling time, 558 Index E Eccentricity, 440, 452 Elements, 155 Elements, 155 corresponding, 156 Elevation, angle of, 705 Elimination, 146, 149, 153, 504 simplifying rational expressions, 473 solving systems of equations, 118–119, 120, 122, 135, 166, 832 Ellipses, 432, 433–440, 450, 451, 452, 460, 464, 467, 565, 617 center, 846 equations, 433–435, 643 graphing, 435–437 major axes, 846 minor axes, 846 writing equations, 846 Empty set, 29 End behavior, 349 matrix, 202–203, 358, 370, 834, 836 solving, 205, 834, 836 writing, 202–203, 836 midline, 771, 774, 775, 781 multi-step, 22, 201 for nth term, 579, 589 one-step, 21 parabolas, 419–420 polynomial, 360–364, 401, 837 prediction, 81–82, 83, 84, 95, 99, 598 quadratic, 604 radical, 263–269, 280, 362 rational roots, 306, 505–509, 516 regression, 87 rounding, 776 solving, 20–27, 25, 48–49, 153, 157, 174, 535, 536, 538, 544, 546, 549, 550, 557, 558, 559, 565, 568, 569, 570, 577, 582, 604, 621, 637, 643, 657, 708, 747, 768, 828, 829, 839, 849, 850, 862 involving matrices, 155–156, 202 with inverses, 746 using Properties of Logarithms, 543 with rational numbers, 471 trigonometric, 799–804, 808 two-variable matrix, 202 Endpoints, 418 Equilateral triangles, 869 Energy, 530 Equivalent exponential equations, 565, 850 Enrichment. See Critical Thinking; Extending the Lesson Equal matrices, 209 Equate complex numbers, 271 Equations, 23. See also Quadratic equations; Systems of equations absolute value, 28–32, 39, 49, 299 circles, 426 complex solutions, 309 cube root, 264 ellipses, 433–435 equivalent exponential, 565, 850 exponential, 526, 548, 570 solving, with logarithms, 548 writing equivalent, 570 forms, 75–80 graphing, 471 hyperbolas, 441–443 imaginary solutions, 271 irrational roots, 307 linear, 63–67, 75–80, 86, 101, 102, 109, 189, 191, 452, 830 logarithmic, 533, 543, 546, 551, 565, 570, 850 R92 Index Equivalent expressions, 555 Error, 692 measurement, 704, 738 sampling, 682–686, 714 Error Analysis. See Find The Error; Common Misconceptions Estimating, 225, 296 Events, 632 compound, 658 dependent, 633–634, 634, 635, 653, 654, 655, 687, 689, 854, 855 inclusive, 659, 660, 661, 670, 689, 690, 855 independent, 632–633, 634, 651, 652, 654, 687, 689, 854, 855 multiple, 640 mutually exclusive, 658–659, 661, 670, 689, 690, 855 odds, 854 Excluded values, 472 Exclusive events, mutually, 658–659, 661, 670, 689, 690, 855 Expansion by minors, 182, 183, 186, 201 evaluating determinants, 186, 835 Expansions, binomials, 631, 676 Expected value, 681 Experimental probability, 649 Exponential decay, 524, 525, 528, 560–565, 561, 567, 570, 849 Exponential equations, 526 solving, with logarithms, 548 writing equivalent, 570 Exponential form, 257, 532, 535, 536, 568, 849 Exponential functions, 520, 566–567 graphing, 523 property of equality, 526 property of inequality, 527 solving, 526 writing, 525, 528 Exponential growth, 524, 525, 528, 560–565, 562, 567, 570, 849 Exponential inequalities, solving, 527 with logarithms, 548 Exponential relations, 871 Exponents inverse property, 533 irrational, 526 negative, 222 radical, 279 rational, 257–262, 361–362, 838 Expressions, 47–48, 53, 779. See also Algebraic expressions; Arithmetic expressions; Radical expressions; Rational expressions; Verbal expressions evaluating, 158, 201, 394, 535, 536, 546, 557, 558, 568, 570, 577, 582, 610, 615, 617, 631, 637, 641, 643, 650, 779, 780, 790, 828, 829, 838, 853, 854 simplifying, 223–224, 528, 538, 546, 604, 637, 776, 778, 779, 780, 790, 828, 838, 847 Extended Response, 364. See also Preparing for Standardized Tests Extending the Lesson, 18, 32, 62, 80, 86, 275, 299, 335, 416, 440, 447, 452, 636, 642, 649, 669, 738 Extraneous solutions, 263–264, 534 Extra Practice, 828–861 F Factorial, 613, 614, 637 Factors, polynomials, 366 Factor Theorem, 365–370, 402 Failure, 644 probability, 644 45°-45°-90° triangles, 699, 703, 707 Fourth term, 589 Fractals, 611 Fraction bar, 7 Fractions complex, 475, 481 repeating decimals, 601, 602, 603, 852 Free Response, See Preparing for Standardized Tests Families of graphs, 70 absolute value graphs, 91 parabolas, 320–321 Function notation, 59 Feasible region, 129, 134, 833 Function values, 348, 604 Fibonacci sequence, 606, 609, 610 Functions, 57, 100–102, 830 absolute value, 91, 92, 115, 370, 499, 502, 503, 515, 831, 848 addition, 383, 403 circular, 739–745,756, 761 classes, 499–504, 515 composition, 384–386, 521 constant, 370, 831 division, 384, 403 equations, 58–62 exponential, 523–530 graphing, 577, 768, 863 inverse, 390–394, 404, 405, 521, 617, 699, 749 inverse trigonometric, 746–751, 756 iterating, 608 multiplication, 384, 403 operations, 383–389, 403 periodic, 741 piecewise, 89–95, 104, 370, 831 step, 89–95, 370, 831 subtraction, 383, 403 zero, 376 Field, 12 Figures congruent, 817–819 similar, 817–819 translating, 175 Find the Error, 24, 43, 60, 71, 119, 142, 185, 205, 226, 236, 303, 310, 325, 380, 386, 423, 428, 481, 509, 535, 544, 557, 590, 602, 654, 660, 730, 735, 766. See also Common Misconceptions Finite graph, 636 Focus ellipse, 432 parabola, 419 FOIL Method, 230, 240 Foldables™ Study Organizers, 5, 53, 55, 109, 153, 221, 285, 345, 411, 471, 521, 577, 631, 699, 761 Forms of equations, 75–80 Formulas, 6–10, 25, 47–48, 122 angles, 786–790 area, 184 base, 548, 549 change of base, 548, 569 differences, 786–787, 790 distance, 413–414, 415, 416, 417–418, 425, 441, 461–462, 467 double-angle, 791, 808 half-angle, 791–798, 792, 793, 794, 795, 797, 808, 861 midpoint, 412, 414, 416, 417–418, 461–462, 467 quadratic, 313–319, 339, 345, 370, 460, 841 Fundamental Counting Principle, 633, 644, 687 Fundamental Theorem of Algebra, 344, 371–372 G General angles, 717, 754 Geometric means, 590, 591, 598, 623, 852 Geometric sequences, 588–593, 594, 623–624, 852 limits, 593 nth term, 589, 852 sums, 852 terms, 594 Geometric series, 594–598, 617, 620, 624, 781 infinite, 599–605, 624–625, 745, 852 sum, 595, 597, 610 Geometry, 186 areas circles, 9, 415, 502 hexagons, 707 parallelograms, 477 polygons, 187 rectangles, 255, 334 trapezoids, 8, 67, 865 triangles, 32, 185, 186, 187, 231, 281, 866 arrays of numbers, 582 circumferences of circles, 496 degrees in convex polygon, 79 diagonals in decagons, 776 dimensions of inscribed rectangle, 292 equilateral triangles, 869 exact coordinates, 744 factoring, 243 height of parallelogram, 477 isosceles triangles, 869 leg of right triangle, 243 matrix multiplication, 200 measures of diagonals, 737 midpoint, 414 ordered pairs, 390 perimeters octagons, 26 quadrilaterals, 415, 482 rectangles, 255 right triangles, 382 squares, 603 triangles, 592 perpendicular lines, 73 slope of a line, 481 squares, 609 surface areas cones, 22, 266 cylinders, 25, 862 pyramids, 27 rectangular prisms, 18 spheres, 862 triangular numbers, 609 vertices angles, 113, 192 parallelograms, 121, 192 triangles, 113, 415 volumes cubes, 615 rectangles, 866 rectangular prism, 367 rectangular solid, 379, 380 width rectangle, 242 rectangular prism, 363 Index R93 Index Factoring, 367, 460 polynomials, 239–241, 358, 377, 815–816, 837 solving quadratic equations by, 301–305, 338, 840 solving system of equations, 643 recursive, 606, 607, 608 summation, 618 sums, 596, 600, 786–787, 790 Golden ratio, 311 Golden rectangle, 311 Index Graph functions, 285 Graphing absolute value equations, 299 absolute value inequalities, 335 circles, 428, 429 ellipses, 435–437 exponential function, 523 horizontal translations, 770 hyperbola, 846 inequalities, 657, 680, 832, 841, 844 linear inequalities, 329 linear relations and functions, 863 parabolas, 420–423 polynomial functions, 348–349, 353–358, 401 polynomial model, 355 quadratic equations, 294–299, 337 quadratic functions, 286–293, 336–337 quadratic inequalities, 329–333, 340 rational functions, 514, 848 square root functions, 395–396, 404 square root inequalities, 397–399, 404 systems of equations, 110–115, 194, 832 systems of inequalities, 123–127, 135, 484, 833, 847 table of values, 352, 356, 364 transformations, 772 trigonometric functions, 762–768, 772 vertical translation, 771 Graphing calculator, 39, 431, 444, 455, 456, 460, 585, 613 addition of trigonometric inverses, 751 approximating value, 247, 248 binomial distribution, 680 check factoring, 244 family of graphs, 74 families of graphs, 530 intersect feature, 115 inverse functions, 201 inverse matrices, 207 logic menu, 46 matrix function, 188 maxima, 293, 358 minima, 293, 358 shade command, 99 sum of each arithmetic series, 587 sum of geometric series, 598 verifying trigonometric identities, 785 Zero function, 296, 307 R94 Index Graphing Calculator Investigation augmented matrices, 208 factoring polynomials, 241 families of absolute value graphs, 91 families of exponential functions, 524 families of parabolas, 320–321 graphing rational functions, 491 horizontal translations, 769 limits, 593 lines of regression, 87–88 lines with same slope, 70 matrix operations, 163 maximum and minimum points, 355–356 modeling real-world data, 300, 359, 539–540 one-variable statistics, 666 order of operations, 7 point discontinuity, 491 quadratic systems, 457 sine and cosine on unit circle, 740 solving exponential and logarithmic equations and inequalities, 552–553 solving inequalities, 36 solving radical equations and inequalities, 268–269 solving rational equations by graphing, 512 solving trigonometric equations, 798 square root functions, 396 sums of series, 585 systems of linear inequalities, 128 systems of three equations in three variables, 205 Graphing functions, 577 Graph relations, 56–62 Graphs bar, 824 finite, 636 line, 824 Greatest common factor, 239, 302 Greatest integer function, 89, 104, 499, 503, 515, 517, 530 Grid In, 530, 708. See also Assessment Gridded Response, See Preparing for Standardized Tests H Half-angle formulas, 791–798, 792, 793, 794, 795, 797, 808, 861 Harmonics, 791 Hexagons, area, 707 Histogram, 669, 671 relative-frequency, 646, 647 Homework Help, 15, 24, 31, 37, 44, 60, 66, 72, 78, 84, 93, 98, 113, 120, 126, 132, 142, 156, 164, 172, 179, 186, 192, 199, 206, 226, 231, 237, 243, 248, 254, 261, 266, 274, 291, 304, 310, 318, 326, 333, 350, 356, 368, 375, 380, 387, 393, 398, 414, 424, 429, 458, 476, 482, 489, 496, 502, 510, 528, 536, 544, 550, 557, 563, 581, 586, 591, 597, 602, 609, 615, 620, 635, 641, 648, 655, 661, 667, 674, 678, 684, 706, 713, 722, 730, 736, 743, 749, 767, 775, 780, 784, 789, 795, 803 Horizontal lines, 65, 70 Horizontal line test, 392 Horizontal translations, 769–770 graphing, 770 Hyperbolas, 441–448, 450, 451, 452, 460, 464–465, 467, 565, 617, 670 equations, 441–443, 846 graphing, 443–444, 846 Hypothesis, 686 I Identify functions, 92 Identify matrices, 213 Identify properties, real numbers, 13 Identities, 12, 861 additive, 15, 32, 162, 828 multiplicative, 15, 199 Pythagorean, 777 quotient, 777 reciprocal, 777 trigonometric, 777, 785, 806 verifying, 784, 788, 794 Identity function, 90, 391–392, 499, 515 Identity matrices, 195 Grouping, 240 symbols, 6 Image, 175 Growth, exponential, 524, 525, 528, 560–565, 562, 567, 570, 849 rate of, 562 Imaginary zeros, 375, 402, 843 Imaginary unit, 270 Inclination, angle of, 779 Included angle, 734 Inclusive events, 659, 660, 661, 670, 689, 690, 855 Independent events, 632–633, 634, 651, 652, 654, 687, 689, 854, 855 Index of summation, 585 Indicated sum, 583 Indicated terms of expansion, 853 Indirect measurement, 705 Induction, mathematical, 618–621, 626 Inductive hypothesis, 618 Inequalities, 95, 122 absolute value, 829 graphing, 96–99, 104, 109, 115, 657, 680, 832, 841, 844 logarithmic functions property, 534 solving, 33–39, 39, 49–50, 62, 67, 74, 80, 352, 358, 521, 533, 534, 535, 536, 538, 546, 549, 550, 557, 558, 559, 565, 568, 569, 570, 604, 643, 829, 839, 849, 850, 862 writing, 36 Infinite geometric series, 599–605, 624–625, 745, 852 sigma notation, 601 sum, 600, 610 Infinity symbol, 601 Initial side, 709 Integers, 11, 32, 48 positive, 620, 853 Integral coefficients, 376, 389 Integral Zero Theorem, 378, 403 Intercept form, 80 Internal notation, 829 Interquartile range, 827 Internet Connections www.algebra2.com/careers, 26, 85, 121, 126, 187, 193, 237, 274, 334, 363, 446, 496, 511, 542, 561, 609, 685, 707 www.algebra2.com/chapter_test, 51, 105, 149, 215, 281, 341, 405, 467, 517, 571, 627, 693, 757, 809 www.algebra2.com/data_update, 10, 66, 143, 165, 255, 318, 357, 440, 477, 558, 598, 667, 723, 775 www.algebra2.com/extra_ examples, 7, 13, 21, 23, 29, 35, 41, 59, 65, 69, 77, 83, 91, 97, 111, 117, 125, 131, 139, 155, 161, 169, 177, 182, 183, 191, 197, 203, 223, Intersecting lines, 111 Intervals, 803, 808 notation, 35, 37, 40, 41, 51 Inverse Cosine, 747 Inverse functions, 390–394, 399, 404, 405, 521, 531, 617, 699, 749, 844, 859 Inverse matrices, 195, 196, 201, 205, 206, 207, 213, 214, 228, 312, 358, 637 Inverse property exponents, 533 logarithms, 533 Inverse relations, 390–394, 399, 404, 405, 844 Inverses, 195, 836 additive, 13, 15, 16, 18, 153, 828 multiplicative, 13, 14, 15, 16, 32, 153, 199, 828 verifying, 196 Inverse Sine, 747 Inverse Tangent, 747 Inverse trigonometric functions, 746–751, 756 Inverse variation, 493–495, 496, 500, 515, 517, 559, 848 Irrational numbers, 11, 32 Irrational roots, 315 Isometry, 175 Isosceles triangles, 869 Iteration, 608, 853 J Joint variation, 492–493, 496, 515, 559, 848 K Key Concept, 6, 11, 12, 21, 28, 33, 34, 40, 41, 42, 57, 64, 68, 70, 75, 76, 130, 138, 160, 161, 162, 168, 182, 183, 184, 189, 191, 195, 196, 222, 223, 224, 230, 245, 250, 251, 257, 258, 271, 287, 288, 295, 301, 306, 307, 313, 316, 346, 347, 354, 360, 365, 374, 378, 383, 384, 390, 391, 412, 413, 420, 426, 434, 435, 442, 443, 474, 485, 492, 493, 494, 524, 526, 532, 533, 534, 541, 542, 543, 548, 579, 583, 589, 595, 600, 613, 614, 618, 633, 638, 639, 640, 644, 645, 652, 653, 658, 660, 665, 672, 677, 682, 701, 703, 711, 717, 718, 719, 725, 726, 727, 733, 739, 741, 747, 764, 770, 771, 777, 787, 791, 793 Keystrokes. See Graphing Calculator; Graphing Calculator Investigations; Internet Connections L Law of Cosines, 733–738, 755, 858 Law of Large Numbers, 682 Law of Sines, 725–732, 726, 736, 754–755, 858 Index R95 Index Independent variable, 59 229, 235, 241, 247, 251, 259, 265, 271, 289, 295, 303, 307, 315, 323, 331, 347, 355, 361, 379, 385, 391, 397, 413, 421, 427, 435, 443, 449, 457, 473, 481, 487, 493, 501, 507, 525, 533, 543, 549, 555, 561, 579, 585, 589, 595, 601, 607, 613, 619, 633, 639, 645, 653, 659, 665, 673, 677, 683, 685, 703, 711, 719, 727, 735, 741, 747, 765, 771, 779, 783, 787, 793, 801 www.algebra2.com/other_ calculator_keystrokes, 86, 128, 208, 268, 320, 359, 491, 512, 539, 552, 593, 798 www.algebra2.com/self_check_ quiz, 9, 15, 17, 31, 37, 45, 61, 73, 79, 85, 93, 99, 113, 121, 133, 143, 157, 165, 173, 179, 187, 193, 199, 207, 227, 231, 243, 249, 255, 261, 267, 275, 291, 297, 305, 311, 319, 327, 333, 351, 357, 363, 369, 375, 379, 381, 387, 393, 399, 415, 425, 429, 439, 445, 451, 459, 477, 483, 489, 497, 503, 511, 529, 537, 545, 551, 557, 563, 581, 587, 591, 597, 603, 609, 615, 621, 635, 641, 649, 655, 661, 667, 675, 679, 707, 713, 723, 731, 737, 743, 749, 767, 775, 781, 785, 789, 795, 803 www.algebra2.com/standardized_ test, 53, 107, 151, 217, 283, 343, 407, 469, 519, 573, 629, 695, 759, 811 www.algebra2.com/usa_today, 69 www.algebra2.com/vocabulary_ review, 47–50, 145, 209, 276, 400, 461, 513, 566, 622, 687, 752, 805 www.algebra2.com/webquest, 3, 27, 84, 120, 192, 207, 219, 227, 328, 369, 399, 409, 429, 504, 529, 565, 575, 616, 635, 697, 708, 775, 804 Leading coefficient, 346, 350, 379 Leaf, 667 Index Least common denominator (LCD), 505–506, 516 Least common multiple (LCM) monomials, 479 polynomials, 479, 480, 482, 504, 847 Like radical expressions, 252 Like terms, 229 Limits, 593 Linear correlation coefficient, 87 Linear equations, 63–67, 86, 101, 830 graphing, 109 identifying, 63 solving systems, 452 standard form, 64 systems of three, 191 systems of two, 189 writing, 75–80, 102 Logarithmic inequalities, solving, 546 Matrix multiplication, Associative Property, 171 Logarithmic relations, 871 Matrix operations, 163 combination, 163 properties, 162 Logarithmic to exponential form, 532 Logarithmic to exponential inequality, 533 Linear permutations, 638 Linear programming, 129–135, 147 Linear-quadratic system, 455–456 Linear relations, graphing, 863 Line graphs, 824 Line of best fit, 87 Line of fit, 81–86 Lines horizontal, 65 intersecting, 111 parallel, 70, 77–78, 101, 112 perpendicular, 70–71, 77–78, 101 slope, 68–74, 80, 82, 101–102, 201, 643, 830, 831 vertical, 65 Line segment, midpoint, 845 Loans, amortization, 605 Location Principle, 353, 354 Logarithmic equations, 551, 850 solving, 533, 534, 543, 546 writing, 565, 570 Logarithmic expressions, evaluating, 532 Logarithmic form, 532, 535, 536, 568, 849 Logarithmic functions, 531–540, 532 R96 Index Maximum points, 354–356, 358, 364 Logarithms, 520, 531–540 base b, 532 base e, 554–559 common, 547–553, 569, 617 functions, 567 inverse property, 533 natural, 554–559, 569 power property, 543 properties, 541–546, 568 using, 548 Maximum values, 129, 158, 288–289, 290, 291, 293, 337, 377, 663, 839 Logical reasoning. See Critical Thinking Measurement angles, 709, 711, 712, 713, 745, 748, 753 conversions, 390, 394 tendency, 664 variation, 665 Lower quartile, 826 Linear function, 64, 830 Linear inequalities, graphing, 96, 329, 411 Matrix products, 167 M Major axis, 434 Mapping, 57 Margin of error, 683 Margin of sampling error, 682, 684 Mathematical induction, 618–621, 620, 626 Matrices, 152–217, 865 addition, 160 column, 155, 156 coordinate, 175 determinants of 3 3, 183 dimensions, 155, 156, 166, 834 equal, 209 identity, 195–201, 213 inverse, 195–201, 205, 206, 207, 213, 214, 358, 637, 836 modeling real-world data, 161 multiplication, 167–174, 210, 211 different dimensions, 169 scalar, 162 square, 168 operations, 160–166, 210, 834 organizing data, 154 reflection, 177 rotation, 178 row, 155, 156 solving systems of equations, 155–156, 202–208, 214 square, 155, 156, 198 subtraction, 161 transformations, 175–181, 211 translation, 175, 176 zero, 155, 156 Mean deviation, 669 Mean, 663, 664, 667, 668, 669, 822–823, 855 arithmetic, 580, 582, 590, 592, 622, 623, 851 geometric, 590, 591, 598, 623, 852 Measures of central tendency, 664, 822–823 Median, 82, 663, 664, 667, 668, 669, 822–823, 855 Median-fit line, 86 Midline, 771 Midpoint, 414 formula, 412, 414, 416, 417–418, 461–462, 467 line segments, 845 Minimum points, 354–356, 358, 364 Minimum values, 129, 158, 288–289, 290, 291, 293, 337, 377, 663, 839 Minor axis, 434 Mixed Problem Solving, 862–875 Mixed Review. See Review Mode, 663, 664, 667, 668, 822–823, 855 Modeling absolute value, 28 algebra tiles, 308 area diagrams, 651 arithmetic sequences, 580 circular functions, 739 complex numbers, 272 conic sections, 453–454 data, 159 distance formula, 413 distributive property, 13 ellipses, 432 Monomials, 222–228, 276–277 denominators, 480 division, 233, 521, 538 least common multiple, 479 multiplication, 521, 538 More About aerospace, 327, 398 amusement parks, 255, 780 animals, 161 architecture, 291, 503 area codes, 636 astronomy, 225, 459 aviation, 603 ballooning, 731 baseball, 723 basketball, 143, 477, 667 betta fish, 44 bicycling, 483 bridges, 318 building, 243 card games, 642 child care, 38 child development, 357 computers, 529 construction, 579 cryptography, 197 dinosaurs, 737 drawbridges, 748 driving, 713 earthquakes, 537 elections, 190 emergency medicine, 735 Empire State Building, 298 energy, 355 engineering, 311 entrance tests, 648 farming, 525 finance, 99 fireworks, 10 food, 380 food service, 14 football, 331 forestry, 304 genealogy, 595 genetics, 232 guitar, 744 health, 267, 675, 683, 773 home improvement, 23 Internet, 679 investments, 140 job hunting, 43 lighthouses, 729 magnets, 483 math history, 16 meteorology, 31 military, 64 money, 558 movies, 157 museums, 435 music, 111, 262 navigation, 443 nutrition, 94 oceanography, 766 Olympics, 564 optics, 795 Pascal’s triangle, 612 population, 114 radio, 584 railroads, 26 recycling, 662 René Descartes, 372 robotics, 721 satellite TV, 422 shopping, 388, 668 skiing, 705 space, 494 space exploration, 124, 376 space science, 249 spelling, 656 sports, 61, 677 star light, 545 submarines, 396 technology, 180 temperature, 394 theater, 351 tourism, 292 track and field, 169, 750 tunnels, 507 veterinary medicine, 131 waves, 803 weather, 165 weight lifting, 259 White House, 439 world cultures, 661 Multiple Choice. See Assessment Multiple events, 640 Multiple Representations, 11, 12, 21, 28, 40, 42, 57, 68, 71, 75, 160, 161, 162, 168, 182, 195, 223, 245, 250, 251, 257, 258, 271, 287, 295, 301, 307, 346, 347, 378, 390, 391, 412, 413, 474, 485, 526, 527, 532, 533, 534, 541, 543, 548, 633, 634, 658, 660, 725, 764 Multiplication, 781, 828 Associative Property, 15, 171 Commutative Property, 15, 32, 166, 170, 828 complex numbers, 272–273 Distributive Property, 170, 171, 228, 828 functions, 384, 403 matrices, 167–174, 168, 210, 211 polynomials, 230, 277 probabilities, 651–657, 689 pure imaginary numbers, 270, 272 radicals, 252 rational expressions, 474, 513 scalar, 162, 163, 211 scientific notation, 225 simplifying expressions, 222–223 Multiplication Property of Equality, 21 Multiplication Property of Inequality, 34, 35 Multiplicative identities, 15, 199 Multiplicative inverses, 13, 14, 15, 16, 32, 153, 199, 828 Multi-step equations, solving, 22, 201 Multi-step inequality, solving, 35 Mutually exclusive events, 658–659, 661, 670, 689, 690, 855 N Natural base, e, 554 Natural base exponential function, 554 Natural base expressions, evaluating, 554 Natural logarithmic equations, solving, 556 Natural logarithmic expressions, evaluating, 555 Natural logarithmic function, 554 Natural logarithmic inequalities, solving, 556 Natural logarithms, 554–559, 569 inverse property, 555 Natural numbers, 11, 17, 32, 48 Negative angle, 709, 712 Index R97 Index fractals, 611 irrational numbers, 252 location principle, 354 midpoint formula, 412 parabolas, 421 parallel lines, 70 perpendicular line, 71 point discontinuity, 485–487 polynomials, 240 quadratic equations, 295 quadratic functions, 287 radicals, 252 Real-World Data, 103 real-world data, 81–86, 300, 359, 539–540 slope-intercept form, 75 solving inequalities, 36 special sequences, 607 vertical asymptotes, 485–487 vertical line test, 57 Negative base, 258 Negative exponents, 222 Negative measure, 713, 732, 754 Index Negative numbers, square roots of, 270 Negative zeros, 373, 375, 402, 843 Nodes, 791 Normal distribution, 671–675, 672, 680, 685, 691 Notation function, 59 internal, 829 intervals, 35, 37, 40, 41, 51 scientific, 225, 226, 227, 836 set-builder, 34, 37, 51, 829 sigma, 585, 595, 601, 602 standard, 225 nth root, 245, 246 nth term arithmetic sequences, 579, 591, 851 geometric sequences, 852 Null hypothesis, 686 Number line, 44, 46 Numbers classification, 221 complex, 270–275, 280, 370 irrational, 11, 32 natural, 11, 17, 32, 48 pure imaginary, 270, 272 rational, 5, 11, 32, 48, 471 real, 5, 11–18, 32, 48, 245–249, 278, 814 triangular, 609 whole, 11, 18, 48 Number theory, 15, 295, 297, 298, 304, 510, 866, 872, 873 Numerators, polynomials, 475 O data update, 10, 66, 143, 165, 255, 318, 357, 440, 477, 558, 598, 667, 723, 775 Open Ended, 8, 14, 24, 30, 37, 43, 60, 65, 71, 78, 83, 92, 98, 112, 119, 125, 132, 142, 156, 171, 178, 185, 192, 198, 205, 226, 231, 236, 242, 247, 254, 260, 265, 273, 290, 297, 303, 317, 325, 332, 350, 356, 362, 368, 375, 380, 382, 386, 393, 397, 414, 423, 428, 437, 445, 450, 458, 476, 481, 488, 495, 501, 509, 527, 535, 544, 549, 557, 563, 580, 586, 590, 596, 602, 608, 615, 634, 647, 654, 660, 666, 673, 678, 683, 706, 712, 722, 729, 736, 742, 749, 766, 774, 779, 784, 788, 794, 802 Perpendicular lines, 70–71, 77–78, 101 Piecewise functions, 90–91, 92, 104, 115, 370, 831 Operations arithmetic, 383–384 functions, 383–389, 403 radicals, 252 Or compound inequalities, 41 Ordered array, 154 Ordered pairs, 56, 78, 83, 84, 153, 387–388, 522, 831, 844 Ordered triples, 136, 139, 833 Ordering real numbers, 814 Order of operations, 6–7 Outcomes, 632, 854 Outliers, 83, 827 P Parabolas, 419–425, 450, 451, 460, 462–463, 467, 565, 617, 637 equations, 419–420, 841, 845, 846 graphing, 420–423 Parallel lines, 70, 77–78, 101, 112 Parent graph, 70 Odds, 644, 645–646, 647, 648, 663, 854 Partial sum, 599 One-step equations, solving, 21 Pascal’s triangle, 612, 613, 625–626, 872 R98 Index Permutations, 638–643, 650, 688, 715 circular, 642 linear, 638 repetition, 639 Open sentences, 20 Octants, 136 Online Research, See also Internet Connections career choices, 121, 187, 193, 237, 274, 334, 363, 446, 496, 511, 542, 561, 609, 685, 707 Periodic functions, 741, 742, 743, 762 Phase shift, 769, 770, 774, 785, 806, 859 Octagons, perimeter, 26 One-to-one functions, 57, 392, 524 Period, 741, 762, 764, 765, 767, 771, 774, 775, 781, 785, 805, 806, 859 Open Response, See Preparing for Standardized Tests Parallelograms, 192 area, 477 vertices, 121, 192 Oblique triangle, 735 quadrilaterals, 415, 482 rectangles, 255 right triangles, 382 squares, 603 triangles, 592 Patterns, 352 Perfect square trinomials, 310, 816, 840 Perimeter octagons, 26 Plots box-and-whisker, 631, 826–827 stem-and-leaf, 667, 825 Point discontinuity, 485–487 Point-slope form, 76, 78, 102 Polygonal region, vertices, 124–125, 126 Polygons area, 187 finding areas, 187 Polynomial equations simplifying, 837 solving using quadratic techniques, 360–364, 401 Polynomial functions, 344–407, 400, 868 end behavior, 349 evaluating, 347 even-degree, 349, 357 graphing, 348–349, 353–358, 401 odd-degree, 349, 357 zero, 371 Polynomials, 229–232, 866 addition, 229, 277 degrees, 229, 346, 350, 400, 837, 842 denominators, 475, 480 depressed, 366 division, 233, 277, 364, 365–366 factoring, 239–241, 278, 358, 366, 377, 761, 815–816, 837 least common multiple, 479, 480, 482, 504, 847 multiplication, 230, 277, 285 numerator, 475 one variable, 346, 350 operations, 382 simplifying, 244 subtraction, 229, 277 Positive angle, 709, 712 Positive integers, 620, 853 Positive zeros, 373, 375, 402, 843 Power function, 347, 853 Power Property of Logarithms, 543 Powers, 5, 222 expanding, 615, 617, 621 simplifying expressions, 224 Practice Chapter Test. See Assessment Practice Quiz. See Assessment Prediction equations, 81–82, 83, 84, 95, 99, 598 Preimage, 175 Preparing for Standardized Tests, 877–892 Constructed Response, 884 Free Response, 884 Grid In, 880 Gridded Response, 880–883 Multiple Choice, 878, 879 Open Response, 884 Selected Response, 884–887 Student-Produced Questions, 884 Student-Produced Response, 880 Test Taking Tips, 877, 879, 883, 887, 891 Prerequisite Skills. See also Assessment bar and line graphs, 824 box-and-whisker plots, 826–827 comparing and ordering real numbers, 814 congruent and similar figures, 817–819 factoring polynomials, 815–816 Getting Ready for the Next Lesson, 10, 18, 27, 32, 39, 62, 67, 74, 80, 86, 95, 115, 122, 127, 135, 158, 166, 174, 181, 188, 194, 201, 228, 232, 238, 244, 249, 256, 262, 267, 293, 299, 305, 312, 319, 328, 352, 358, 364, 370, 377, 382, 389, 394, 416, 425, 431, 440, 448, 452, 478, 484, 490, 498, 504, 530, 538, 546, 551, 559, 582, 587, 592, 598, 604, 610, 617, 637, 643, 657, 663, 670, 675, 680, 708, 715, 724, 732, 738, 745, 768, 776, 781, 785, 790, 797 Getting Started, 5, 53, 55, 109, 153, 221, 285, 345, 411, 471, 521, Prime, 239, 242 Principal root, 246 Principal values, 746 Probability, 644–650, 655, 660, 663, 670, 688–689, 708, 732, 768, 785, 854, 855, 856, 873 addition, 658–663, 689–690 combinations, 645 conditional, 653 distribution, 646 events, 647, 648 dependent, 633–634, 634, 635, 653, 654, 655, 687, 689, 854, 855 inclusive, 659, 660, 661, 670, 689, 690, 855 independent, 632–633, 634, 651, 652, 654, 687, 689, 854, 855 mutually exclusive, 658–659, 661, 670, 689, 690, 855 experimental, 649 failure, 644 multiplication, 651–657, 689 odds, 644, 645–646, 647, 648, 663, 854 simple, 631 success, 644 theoretical, 649 Problem solving, 854 distributive property, 14 inverses, 197 matrix equation, 203 mixed, 862–875 right triangles, 703 translations, 773 Product of powers, 223 Product Property, 542 Logarithms, 541–542 Radicals, 250 Proof, 618–621, 626 Properties of Equality, 21, 23, 566, 781 Logarithmic Functions, 567 Properties of Inequality, 566 Logarithmic Functions, 567 Properties of Logarithms, solving equations using, 543 Properties of Powers, 224, 226, 526 Proportional sides, 817 Proportions, 181 solving, 471, 490 Pure imaginary numbers, 270 multiplication, 270, 272 Pyramid, surface area, 27 Pythagoras, 16 Pythagorean identities, 777, 779 Pythagorean Theorem, 699, 720, 820–821 Q Quadrantal angle, 718 Quadrants, 56, 720 Quadratic equations, 328, 604, 841 solving, 761 by completing the square, 306–312, 328, 338, 352, 411, 490, 587, 840 by factoring, 301–305, 338, 840 by graphing, 294–299, 337, 345, 352 for variables, 389 Quadratic form, 360, 363, 370, 842 Quadratic Formula, 345, 370, 460, 841 discriminant, 313–319, 339 Quadratic functions, 286, 499, 502, 503, 515, 839, 848, 867 graphing, 286–293, 322–328, 336–337, 339–340 Quadratic identities, 375 Quadratic inequalities, 839, 867 graphing, 329–333, 340 solving, 329–333, 340 Quadratic-quadratic system, 456–457 Quadratic solutions, 271 Quadratic systems, solving, 455–460, 466 Quadratic techniques, 401 solving polynomial equations using, 360–364 Quadrilaterals, perimeter, 415, 482 Quartile, 826 lower, 826 upper, 826 Properties of Matrix Multiplication, 171 Quotient identities, 777 Properties of Order, 33 Quotient of Powers, 223 Index R99 Index Positive measure, 713, 732, 754 577, 631, 699, 761 mean, median, and mode, 822–823 Pythagorean Theorem, 820–821 stem-and-leaf plots, 825 Quotient Property logarithms, 542 radicals, 251 Index Quotients, 328, 364 simplifying, 242, 251 trinomials, 242 R Radian measure, 710, 711, 713 conversion, 711 Radians, 710, 713, 724, 749, 753, 757, 802, 803, 808, 857 measuring, 711, 712 Radical equations, 263–269, 280 solving, 263, 362 Radical exponents, 279 Radical expressions, 250–256, 255, 279, 285 Radical form, 257, 838 Radical inequalities, solving, 264–265 Radicals addition, 252, 253 approximating, 247 multiplication, 252 simplifying, 245 subtraction, 253 Radius, 426 Random, 645 Random sample, 682, 856 Random variable, 646 Range, 56, 57, 58, 61, 93, 94, 95, 99, 101, 104, 181, 397, 398, 416, 523, 527, 528, 530, 663, 823, 830, 831, 844, 849 Rate of change, 69, 560 Rate of decay, 560 Rate of growth, 562 Rate problem, 507 Ratio common, 588, 603 finding term given, 589 Rational equations, 505–509 solving, 505–509, 516 Rational exponents, 257–262, 838 solving equations, 361–362 Rational expressions, 472, 870 addition, 480, 514 R100 Index division, 474, 513 multiplication, 474, 513 simplifying, 472–475 subtraction, 480, 514 Rational functions, 500, 502, 504, 515 graphing, 485–490, 514, 848 Rational inequalities, solving, 505–509, 508–509, 516 Rationalizing denominators, 251, 253, 715 Rational numbers, 11, 32, 48 operations, 5 solving equations, 471 Rational zeros, 379, 381, 394, 403, 675, 843 Rational Zero Theorem, 378–382, 403 Reading and Writing, 5, 53, 109, 153, 221, 285, 345, 411, 471, 521, 577, 631, 699, 761 Reading Math, 11, 12, 56, 59, 71, 82, 154, 175, 182, 229, 252, 270, 271, 272, 273, 306, 313, 316, 323, 442, 449, 606, 619, 633, 638, 644, 646, 665, 669, 709, 711, 718, 740, 786, 788 Real numbers, 11–18, 32 comparing and ordering, 5, 814 Identify Properties, 13 properties, 48 roots, 245–249, 278 Real-world applications. See Applications; More About Real-world data, modeling, 81–86, 103 Reciprocal identities, 777 Rectangles area, 255, 334 golden, 311 perimeter, 255 volumes, 866 width, 242 Reflection matrices, 177 Reflexive Property of Equality, 21 Regression equation, 87 Regression line, 87 Relations, 56, 100–102 Relative-frequency histogram, 646, 647 Relative maximum, 354, 356, 842 Relative minimum, 354, 356, 842 Remainder Theorem, 365–370, 402 Repeating decimals, as fractions, 601, 602, 603, 852 Repetition, permutation, 639 Replacement sets, 377 Research, 85, 133, 200, 227, 311, 398, 415, 497, 529, 545, 592, 636. See also Online Research Residuals, 540 Review Lesson-by-Lesson, 47–50, 100 –104, 145–148, 209–214, 276 –280, 336 –340, 400 –404, 461–466, 513, 566 –570, 622– 626, 687– 692, 752–756, 805– 808 Mixed Review, 18, 27, 32, 46, 62, 67, 74, 80, 86, 95, 99, 115, 122, 127, 135, 144, 158, 166, 174, 181, 188, 194, 201, 207, 228, 232, 238, 244, 249, 256, 262, 267, 275, 293, 299, 305, 312, 319, 328, 335, 352, 358, 364, 370, 377, 382, 389, 394, 399, 416, 425, 431, 440, 447, 452, 460, 478, 484, 490, 498, 504, 511, 530, 538, 546, 551, 559, 565, 582, 587, 592, 598, 604, 610, 617, 621, 637, 643, 650, 657, 663, 670, 675, 680, 685, 708, 714, 724, 732, 738, 745, 751, 768, 776, 781, 785, 790, 797, 804 Rectangular prisms surface areas, 18 volumes, 367 width, 363 Right triangles, 700, 704 perimeter, 382 Rectangular solid, volumes, 379, 380 Roots, 296, 371–377, 376, 840, 843 complex, 315 double, 302 irrational, 315 nth, 245, 246 principal, 246 real number, 245–249, 278 square, 245, 249, 362, 530, 650 Recursion, 606–611, 625 Recursive formula, 606, 607, 608 Reference angles, 718–719, 722, 776 finding trigonometric value, 720 Reflection, 177 Right triangle trigonometry, 701–708, 752 Rotation matrices, 178 Rotations, 177, 178 Rounding, 358, 549, 550, 565, 569, 663, 704, 706, 714, 724, 730, 731, 732, 736, 738, 745, 748, 749, 751, 753, 756, 821, 823, 855, 858, 859 S Sample bias, 682 random, 682, 856 unbiased, 682 Similar figures, 817–819 Standard notation, 225 Simple event, 658 Standard position, 709 Simple probability, 631 Statistics, 664–670, 690, 873 Simplify Powers of i, 270, 272 Stem, 667 Simulations, 681 Stem-and-leaf plots, 667, 825 Sin1, 747 Step functions, 89–90, 92, 115, 158, 370, 831 Sample space, 632 Sine function, 701, 706, 707, 747, 767, 770, 771 definition, 739 finding, 740 value, 747 Sampling, 692 Skewed distributions, 671 Sampling error, 682–686, 714 margin, 682, 684 Slope-intercept form, 75, 78, 79, 86, 102, 188, 637, 831 Scalar multiplication, 162, 163, 211 Associative Property, 171 Slope of line, 68–74, 80, 82, 101–102, 201, 643, 830, 831 Scatter plots, 81–86, 87, 95, 99, 103, 598, 831 Solid boundary, 97 Scientific notation, 225, 226, 227, 836 Solution set, 37, 41, 44, 46, 95, 829 Secant, 701, 708 Special angles, 703 Second-order determinant, 182 Special functions, 89–95, 104 Sector, 713 Special sequences, 606–611 Selected Response, See Preparing for Standardized Tests Special values, 533 Sequences, 578, 872 arithmetic, 578–582, 583, 622–623, 768, 851 Fibonacci, 606, 609, 610 geometric, 588–593, 623–624, 852 Spreadsheet Investigation amortizing loans, 605 organizing data, 159 special right triangles, 700 Series, 583, 872 arithmetic, 583–587, 623, 851 geometric, 594–598, 624, 781 infinite geometric, 599–605, 624–625 Set-builder notation, 34, 37, 51, 829 Sets, 18, 828 empty, 29 replacement, 377 solution, 37, 41, 44, 46, 95, 829 Short Response, 546, 559, 564, 724, 732, 745. See also Assessment and Preparing for Standardized Tests Sides, 734 initial, 709 proportional, 817 terminal, 709 Sigma notation, 585, 595, 601, 602 Standardized Test Practice. See Assessment Solution, 20, 801 Spheres, surface areas, 862 Square matrix, 155, 156, 198 Square root, 245, 249, 362, 530, 650 approximate, 247 negative numbers, 270 Square root functions, 395–396, 398, 399, 404, 500, 502, 503, 515, 848 Square root inequalities, 397–399, 404 graphing, 404 Square Root Property, 250–251, 306, 310, 313, 790 Squares, perimeter, 603 Standard deviation, 665, 666, 667, 669, 670, 675, 685, 690, 855 Standard form, 64, 101, 122, 422, 424, 428, 449, 460, 478, 830, 845, 846 Student-Produced Questions, See Preparing for Standardized Tests Student-Produced Response, See Preparing for Standardized Tests Study Organizer. See Foldables™ Study Organizers Study Tips absolute value, 90, 599 absolute value inequalities, 42 additive identity, 162 A is acute, 728 algebra tiles, 240 alternative method, 77, 264, 474, 580, 590, 652, 728, 734 alternative representations, 726 amplitude and period, 764 angle measure, 748 area formula, 184 checking solutions, 110, 265, 481, 543 choosing a committee, 659 choosing the independent variable, 81 choosing the sign, 793 coefficient, 116 combinations, 640 combining functions, 386 common factors, 480 common misconception, 7, 12, 29, 118, 130, 289, 308, 523, 659, 703, 782 conditional probability, 653 continuously compounded interest, 556 coterminal angles, 712 deck of cards, 640 depressed polynomial, 366 Descartes’ Rule of Signs, 379 element, 155 elimination, 139 equations with ln, 556 equations with roots, 303 error in measurement, 704 exponential growth and decay, 524 expressing solutions as multiples, 800 extraneous solutions, 506, 534 Index R101 Index Row matrix, 155, 156 evaluating sum, 585, 595 infinite series, 601 Index factor first, 475 factoring, 367 finding zeros, 374 focus of parabola, 419 formula for sum, 600 graphing calculators, 225, 247, 436, 444, 456, 525, 585, 613 graphing polynomial functions, 353 graphing quadratic inequalities, 457 graphing rational functions, 486 graphs of piecewise functions, 92 greatest integer function, 89 horizontal lines, 70 identity matrix, 204 indicated sum, 583 inequality phrases, 36 interval notation, 40, 41 inverse functions, 392 Law of Large Numbers, 682 location of roots, 296 look back, 91, 97, 123, 189, 204, 273, 329, 361, 365, 371, 420, 485, 508, 524, 526, 531, 532, 608, 634, 664, 676, 720, 747, 762, 771, 772 matrix operations, 163 memorize trigonometric ratios, 702 message, 198 midpoints, 412 missing steps, 614 multiplication and division properties of equality, 22 multiplying matrices, 168 negative base, 258 normal distribution, 672 number of zeros, 349 outliers, 83 one real solution, 295 parallel lines, 112 permutations, 640 power function, 347 properties of equality, 21 properties of Inequality, 33 quadratic formula, 314 quadratic solutions, 271 radian measure, 710 rate of change, 560 rationalizing denominator, 251 reading math, 11, 12, 34, 35, 56, 59, 71, 82, 124, 129, 154, 175, 182, 229, 246, 252, 270, 271, 272, 273, 294, 306, 313, 316, 323, 354, 372, 384, 391, 442, 449, 606, 619, 638, 644, 646, 665, 669, 701, 709, 711, 718, 740, 786, 788 sequences, 578 sides and angles, 734 sigma notation, 585 simplified expressions, 224 skewed distributions, 671 R102 Index slope, 68 slope-intercept form, 75 solutions to inequalities, 35 solving quadratic inequalities algebraically, 332 solving quadratic inequalities by graphing, 330 special values, 533 step 1, 618 substitution, 361 symmetry, 288 technology, 547 terms of geometric sequences, 594 using the discriminant, 316 using logarithms, 548 using quadratic formula, 315 verifying a graph, 770 verifying inverses, 196 vertical and horizontal lines, 65 vertical line test, 58 vertical method, 230 vertices of ellipses, 434 zero at origin, 372 zero product property, 302 Substitution, 21, 146, 149, 153, 504, 781, 828 direct, 366, 368 solving systems of equations, 116, 119, 120, 122, 135, 166, 832 synthetic, 365–366, 368, 369, 377, 402, 715, 751, 843 Substitution Property of Equality, 25 Subtraction complex numbers, 270, 272 functions, 383, 403 matrices, 161 polynomials, 229, 277 radicals, 253 rational expressions, 480, 514 solving inequality, 34 Subtraction Property of Equality, 21 Subtraction Property of Inequality, 33 Success, 644 probability, 644 Sum and difference formulas, 786–787 Summation formula, 618 Sums, 657, 787 arithmetic series, 583, 584, 586, 587, 592, 598 geometric series, 595, 596, 597, 610 infinite geometric series, 602, 610 partial, 599 rewriting differences, 221 series, 585, 663 sigma notation, 585, 595 two cubes, 361 Surface area cones, 22, 266 cylinders, 25, 862 pyramids, 27 rectangular prisms, 18 spheres, 862 Symbols, infinity, 601 Symmetric Property of Equality, 21, 25, 46, 781 Symmetry, 288, 767 Synthetic division, 234–236, 345, 745, 837 Synthetic substitution, 365–366, 368, 369, 372–373, 377, 402, 551, 715, 751, 843 Systems of equations, 110, 158, 864 consistent, 111, 112, 113, 122, 293 Cramer’s Rule in solving, 835 dependent, 111, 112, 113, 122, 293 inconsistent, 111, 112, 113, 122, 293 independent, 111, 112, 113, 122, 293 solving, 166, 188, 203, 657, 724 algebraically, 116–122, 146 elimination, 153, 832 graphing, 110–115, 122, 145, 146, 147, 148, 194, 832 matrices, 205, 206, 214 substitution, 832 three variables, 138–144, 148 Systems of inequalities, 663 solving, graphing, 123–127, 135, 144, 147, 158, 484, 833, 847 Systems of quadratic inequalities, 457 Systems of three linear equations, 191 Systems of two linear equations, 189 T Table of values, 286, 288, 290, 291, 299, 352, 356, 364, 839 Tangent, 706, 707 Tangent function, 427, 701, 747, 770, 771 Tangent ratio, 708 Terminal side, 709 Terms, 229, 578, 615 finding, 578, 579, 588, 589 like, 229 series, 596 Testing hypotheses, 686 Test preparation. See Assessment Theoretical probability, 649 Third-order determinant, 182, 183 30°-60°-90° triangles, 699, 703, 707 3 3 matrices, determinants, 183 Towers of Hanoi game, 607 Transformations, 175 graphing, 772 matrices, 175–181, 211 verifying, 783 Verbal expressions, 828 algebraic expressions, 20, 24, 115 Trigonometric identities, 777, 785, 806 basic, 777 verifying, 782–785, 785, 807 Vertex form, 322–328, 335 Trigonometric inverses, addition, 751 Trigonometric values, 703, 720, 761 finding, 702, 748, 777 Trigonometry, 701, 875 right triangle, 701–708, 752 Trinomials, 229, 310 perfect square, 816, 840 quotient of two, 242 2 2 matrices, determinants, 182 Two-variable matrix equation, 202 Transitive, 21, 46, 828 Transitive Property of Equality, 25 Translation matrix, 175, 176 Translations, 175 horizontal, 769–770 trigonometric graphs, 769–776 vertical, 771–772 Transverse axis, 442 Trapezoid, area, 8, 67, 865 Triangle Inequality Theorem, 45 Triangles area, 32, 184, 185, 186, 187, 231, 281, 725, 866 equilateral, 869 45°-45°-90°, 699, 703, 707 isosceles, 869 Pascal’s, 612, 625–626, 872 perimeter, 592 right, 382, 700, 704 30°-60°-90°, 699, 703, 707 vertices, 113, 415 Trichotomy Property, 33 Trigonometric identities, 875 Trigonometric equations, 799, 802 solving, 799–804, 800, 801, 808 Trigonometric functions, 698–759, 701, 717, 722, 723, 732, 738, 754, 761, 790, 796, 857, 874 evaluating, 717, 741, 742, 778 general angles, 717–724 graphing, 762–768, 765, 772, 805 inverse, 746–751 solving equations, 724, 732 using, 766 variations, 764 U Unbiased sample, 682 Vertex matrix, 175 Vertical asymptotes, 485–487, 617, 763 Vertical lines, 65 Vertical Line Test, 57, 58 Vertical shift, 771, 774, 775, 781, 806, 859 Vertical translations, 771–772 Vertices, 129, 287–288, 290, 291, 299, 339, 636 angles, 113, 192 coordinates, 846 exact coordinates, 744 parallelograms, 121, 192 polygonal region, 124–125, 126 triangles, 113, 415 Uniform distribution, 646 Volumes cubes, 615 rectangular prism, 367, 866 rectangular solid, 379, 380 Union, 41 Von Koch snowflake, 611 Unbounded region, 130 Unit circle, 710, 739, 742, 743 W Univariate data, 664 Upper quartile, 826 USA TODAY, Snapshots, 3, 69, 84, 135, 206, 219, 228, 328, 368, 409, 448, 492, 535, 565, 575, 604, 697, 715, 797 V Values maximum, 158, 663 minimum, 158, 663 Variables, 7, 25 dependent, 59 functional values, 348 independent, 59 random, 646 solving for, 22, 109, 389 systems of equations, 138–144, 148 Variance, 665, 666, 667, 669, 670, 675, 690 Variations direct, 496, 559, 650, 848 inverse, 496, 559, 848 joint, 496, 559, 848 Velocity, angular, 714 WebQuest, 3, 27, 120, 192, 207, 219, 227, 328, 369, 399, 409, 430, 504, 529, 565, 575, 616, 635, 685, 697, 708, 775, 804 Whole numbers, 11, 18, 48 Work problem, 507 Writing in Math, 10, 17, 27, 31, 38, 45, 62, 67, 73, 80, 86, 94, 99, 114, 121, 127, 134, 144, 158, 166, 173, 181, 187, 193, 200, 207, 227, 232, 238, 243, 255, 262, 267, 275, 292, 299, 305, 312, 319, 327, 334, 352, 357, 364, 370, 377, 382, 389, 394, 399, 416, 425, 430, 439, 447, 452, 459, 477, 484, 490, 498, 503, 530, 537, 546, 551, 559, 564, 582, 587, 592, 598, 603, 610, 616, 621, 636, 642, 649, 657, 662, 675, 679, 685, 708, 714, 724, 732, 737, 744, 751, 768, 776, 781, 785, 790, 796, 804 X x-coordinate, 68, 290, 299, 348, 354, 356, 401, 839, 842 x-intercept, 65, 66, 70, 74, 101, 174, 330, 830 Venn diagram, 12, 271 Index R103 Index Test-taking tips. See Assessment Trigonometric graphs, 875 translations, 769–776, 806 Y y-coordinate, 68 y-intercept, 65, 66, 70, 74, 78, 82, Index 101, 174, 287–288, 291, 299, 530, 830, 831 Z Zero matrix, 155, 156 Zero Product Property, 301, 302, 305, 361, 362 solving equations, 797 Zeros, 294, 371–377, 604 function, 294, 348, 349, 354 imaginary, 375, 402, 843 negative, 373, 375, 402 negative real, 843 origin, 372 positive, 373, 375, 402 positive real, 843 rational, 379, 381, 394, 403, 675, 843 synthetic substitution, 373–374 R104 Index