Title THERMODYNAMIC PROPERTIES AND
Transcription
Title THERMODYNAMIC PROPERTIES AND
Title Author(s) THERMODYNAMIC PROPERTIES AND PHASE TRANSITIONS OF SOLID HYDROGEN HALIDES AND THEIR DEUTERIUM ANALOGS Inaba, Akira Citation Issue Date Text Version ETD URL http://hdl.handle.net/11094/27733 DOI Rights Osaka University 丁HERMODYNAMIC PROPERTIIES AND PHASE TRANSItt10NS OF SOLID HYDROGttN HALIDES AND ttHEIR DEUTERIUM ANALOCS A Thesis Submitted. to Osaka University in Partial Fulfilment of the Requirements for the, Degree of Doctor of Science by AKIRA INABA [■ 976] Doctoral Committee: Professor Hideaki Chihara, Chairman Professor Sy0z6 seki Professor RY6iti KiriYama Associate Professor Nobuo ,7'/sc01931 Nakamura ACKNOWLEDGMENTS in this thesis have been carried out und.er the direction of Professor Hideaki Chihara. hi" sincere gratitude The author would 1i-ke'to "*pr""s to Professor Chihara for his pat,ient guidance and kind encouragement. Thanks are also due to Associate The works d.escribed Professor Nobuo Nakamura for his valuable suggestions and discussions. The author would like to express his gratit,ud.e to Dr. Tooru Atake for assistance in experiments. The author also wishes to thank P.rofessor Sy0z6 Seki and Associate Professor Hiroshi Suga and the members of both the Professor Chihara's and Seki's laboratories forb,heir encouragement and fruitful discussions, Fina1ly, the author expresses thanks to his wife Kiyoko anrl their daughter Kazuko for their encouragement ,ユ CONTENTS CHAPTER R CHAPTER .......... 2. Experimental ..... 2-L. Materials ......'.........o.......o..r......c " o....... !.. 2-2. Calorimgter .. ..................... o. 2-3. Temperature scales ............. 2-4. Heat capacity measurements ................... 2-5. Vapor pressurg measuremgnts .. o.... o.......... o... o. o... '..... o. 2-6. Dilatometry ................ o........ '.... o.. Refergnces to chapter 2 ........... 49 50 54 57 58 60 2 6 3 7 [iil 45 3. Thermodynamic Properties of HCI and DC1 ............ ..... 3-1. Heat capacj.ty .. o............. 3-2. Vapor pressure .......... 44 ■ 6 CHAPTER 1 ...,.............. 1. IntrOduCtOry RemarkS ..... 2 :.... 1-1. Introduction ..... .....,.. 4 l-2. Review of previous works r.......r. .. - -. -. -. o 4 l-2-L. Diffraction studies .......... L-2-2. Infrared and Raman spectral studies '. .... ?. 2.3 ..... . 27 I-2-3. Resonance studies .......... ..... 32 L-2-4. Dielectric measurements ... '. 1-2-5.Theoretica1worksonphasetransitions 38 1-3. Purpose of the present investigation ......... 40 References to chapter I .... o..... 3-3. Enthalpy of fusion and transition 3-4. 120 K transition in HCl ,. o.. 3-5. Thermod,ynamic functions' ........... References to chapter 3 .....:.... Appendix 3A. t4easured. heat capacities Appendix 38. Measured heat capacities CHAPTER CHAPTER 79 ..... ..... 91 o ...... r...... 94 of HCl ' 95 of DCI .. r '. L02 4. Thermodynamic Properties of HBr and DBr ......c . ..... .......... 4-L. Heat capacity 4-2. Vapor pressure .o........................ . 4-3. Enthalpy of fusion . . o o...... o.. o...... ............. 4-4. Transitions in solids . 4-5. Thermod.ynamic functions .o.........o... ....... References to chapter 4 .. ....... o..... Appendix 4A. Measured. heat capacities of HBr Appendix 48. Measured heat capacities of DBr ..... L08 109 L20 L26 131 140 145 L46 L57 168 5. Thermodynamic Properties of III and DI 169 o..... o............ 5-1. Heat capacity ............. ..... . L79 o. 5-2. Vapor pressure ................. . 183 5-3. Enthalpy of fusion o......'............. a e 188 5-4. Transition in solids .. o..... o.. o.......... ...... L96 5-5. Thermod.ynamic functions..o.. 20L ....... .......... References to chapter 5 Appendix 5A. Measured heat capacities of HI ..... . 242 Append.ix 58. Measured heat capacities of DI ..... . 2L2 [i■ il CHAPTER 6. Properties and Phase Transitions --.; fina[ysis and Discussion Thermodynamic . . . . . . . . r . . 2L9 220 6-1. Ggneral remarks ........... ....- o. ............ ....... 22L 6-2. Low temperature region :.... . 22L ..... 6-2-L. Zero point properties . 229 6-2-2. The estimation of (Cp-Cv) correction 6-2-3. Librational contribution to 234 o................ heat capacity 6-2-4. The temperature dependence of 0o(T) ....... 237 . 246 6-2-5. Onset of orientational disord.er o.... . 252 6-3. High ternperature region ..... r 255 6-4. fransition temperature region .............. 6-4-1. Extraction of anomal-ous part of Cp a,│,,tFan,ili° n… ……………………00250 工工エーII Phase transition 6-4-2. The 6-4・ 3. The thermodynamic properties of 。..。 ●。o o o o● 00● .... the transitions ..... o.... roooe 6-4-4. Local ord.er in phase I ..... 6-5. Mechanism of the phase transitions ....o 5-5-1. The d,isordering process ................a.. 6-5-2. Phase transitions and molecular [iv] 0 262 d 265 273 278 278 ABSTRACT In the introductory chapter, a review j.s given on the earlier works for solid hydrogen halides; with a special emphasis on their structures, molecular motions, molecular interactions, and phase transitions. of heat capacity and vapor pressure of, hydrogen halides. A calibration of the platinum and the germanium resistance thermometers used will also be d.escribed. In chapters 3 to 5, the thermodynamic properties Chapter 2 is devoted to measurements obtained are presented. Discussions are given on the "120 K transition" of single crystal IICI and features of the other phase transitions. In the last chapter, analyses of thermodynamic properties are made primarily in order to elucidate the mechanism of phase transitions. Both the heat capacity and, the entropy of transitions extracted suggested. the orientational ord,er-disorder type of mechanism. Our discussions will extend to understanding of the successive phase transitions in terms of molecular interactions. [V] CHAPTER ■ Introductory Remarks [■ ] 1-1. Introduction ■ A hydrogen halide or deuterium. halide molecule will be treated as a quasi-sphere, though it is a diatomic mo1ecule, with a protuberance corresponding to the position of the proton or deuteron. In fact, all the solids in phase I are plastic according to definition by Timmermurrjl) on the other hand, the molecular d.ipole and the quadrupole moment are significant in molecules HCl, HBr, ana urJ2) The former decreases in this ord,er and the latter in a reverse order. When being deuterated, the moment of inerLia of each molecule is approximately doubled. In solid., moreover, the existence of hydrogen bonds plays an important role in its properties. Therefore, systematic stud.ies of a series of hyd.rogen halides and deuterium halides will make clear the interactions in solid, the molecular motion, and the mechanism of transitions. Phase transitions in solid. hydrogen halides and deuterium halides were discovered by calorimetric stud.ies in 1920's and 1947, respectively. Their transition and triple point temperatures are shown in t,able 1-1. Each temperature values are given from present results as will be described below. A mile-stone in the hisLory of investigations may [2] TABLE I-1. Transi,tion and triple point temperatures in hydrogen halides. (in the unit of K) 98.67 工 ■59305 ■iq. DC■ 工エエ ■04.63 エ ■58。 4■ ■土q. エ ■86。 50 ■iq. HC■ 工工工 工1 ■■7e00 HBr III 89。 53 工工 ■■3.60 DBr IIエ 93。 67 工工 ■■9。 96 工 ■85。 64 ■■q. HI 70.23 工I ■25。 60 工 222。 50 ■■q. 77.48 工工 ■28。 24 エ 221。 5■ 1土 q. D工 III 工工工 be set in the year of L967. At this turning point, neutron d.iffraction stud.ies were for the first time conducted by SAndor and his coworkers when the positions of d.euterons were determined. In L969, subsequently, ferroelectricity of HCI and HBr in phase his coworkers. These investigations promoted the studies on the phase transition mechanism from a microscopic point of view. A review will be given below on the previous III was d.iscovered. by Hoshino and investigations. [3] ■-2: Review of prё vious works ■-2-■ X― , DiffractiOn studies ray studies before 1967 The ear■ iest diffraction studies were carried out b, simon et a■ . atta Natta∫ 3-9)・ The x_rよ y deteiminatiO., of the struCture Of hydrogen ha■ ide crysta■ s werel not ёntirely satisfaCtOry′ the different observers did n6t agree among themse■ ves and moreover some resu■ ts werё not in accord "ith the correspOnding tteasurements using ) Thus′ Natta fOund a cubic the po■ ar■ zlAし m■ cloも cOle`子 工工 Whereas structure for HBr in phase Optica■ ■y anisotropic. (ii)fOr HBr and Hェ To sum up thё resu■ ts obtainedF ёubic (1)phage tt has the the materia■ is face centered structureF ′ phaSe 工■ has probab■ y the tetragOna■ face centered structure with c/a 1 l but the deformation re■ ative to phase tt iS not ■arge, (i■ i)phaSe ェェエ has a 60mp■ ioited structtre which′ probab■ y apprOx■mateS to tetragonal face Centered ratio c/a > ■attide with the axia■ ■。 x=ray attd neutron studies by Sandor and his coworkeFs The c■ こtructura■ ana■ yses by X― ray ue to the re■ iab■ e ■ocation diffraCtion gave no Of the hydrOgen atoⅢ S・ 平9re ana■ yses shou■ d be made by ,ettrOn diffr● Ctio, studie`′ because they can a■ [4] rminё `o dltё the poSitionS Of hydFOgen (thOugh practica■ ■y deuteron). The fO■ ■Owing structures were determined from X― ray and neutron p。 3) diffraction by Sindor and his CO"orkと rs`8・ ■ "der lPhase IIII The low temperature forms in HCI and HBr and their deuterium analogs are isomorphous. Lattice: Orthorhombic, B-face-centered, with lattice parameters as shown in table L-2. space group' zvr- Bb2.,m. "\?, Number of formula units per unit ceIl z 4. Atomic positions: All atoms in x, y, 0, with x = a, y = 0 for the halog€trr and, as in table L-2 for D The origin used for this description is not the conventional one given in the International Tables for X-ray Crystallography; instead, it is chosen on a mirror p1ane, midway between two b-glide planes. In the y direction, where the choice is arbitrary, it has been taken so as to make the y parameter of the halogen atom zero The structure is as shown in figure L-1. All atoms lie at special positions on mirror planes. Taken by themselves the halogen atoms form an all-face-centered array, but the D atoms do not conform to this. [5] Lattice Parameters (in 10-10 m) and atomic Position parameters of HCl, DCl, and DBr in phase III. TABLE I-2. a 77。 4K 84 K 92。 4 92e4 K K a a DCl t t HC■ a a DBr t t ︻0︺ DC■ b C 825 5.053 5。 373 5。 5.44 5.6■ 4 6.■ 20 5.082 5.4■ 0 5.826 5.069 5.399 5.829 XD yD 08■ 0.■ 70 neutron 0.075 0.■ 79 stud.y 0。 X-ray study PHASE IH c蟹 ―Bb21 m 1-1. Arrangement of the molecules in the unit cell of the ordered orthorhombic phase III of HCl, IIBr, and their deuterium FIGURE analogs. [7] Each D is attached to one halogen, its donor, ■ and, points towards another halogen, the acceptor of its Cl-D...CI or Br-D...Br bond. The halogen atoms are thus bonded in zLg-zag chains, with an angle of about 90o between bond.s, the chains extending parallel to the y d.irection, with the y components of the Cl-D or Br-D vectors all pointing in the same sense. The similar array of infinite zLg-zag chains of hfd.rogen bonds are also realized in hyd.rogen gtuoriaeil4) The structure can be seen to be po1ar. Each molecule is a dipole; since their y components are a1l paralIel, the crystal has a net dipole moment or spontaneous polarization. The structure as a whole can be reversed by an electric field, and the material is therefore ferroelectric. There are three possible ways in which the structure might reverse direction (i.e. .switchi-tg). (i) Each molecule could change direction by 1800; this means that the D atoms move from positions marked by small open circles in figure 1-2 (a) to positions marked. by (ii) Each molecule couLd change crossed circles. d.irection by 90o, movi-ng its D atoms fronn the small open circles to the crossed circles of figure 1-2 (b). (iii) Each D atom could. jrunp to a new position in its bonds, again moving from the small open circles to [81 F x VAV 〆ヽ〆 (C) (b) (a) │ ―― A A― A― (d) L-2. Structures of hyd.rogen halides. Large open circles represent halogen atoms, and small circles H or D, actual or average positions. Atoms shown with heavy tine are at height 0, and those with thin lines at height t/2. (a) , (b) , and (c) Effect of switching the d,irection of the morecule through 180o fIip, 90" fIip, and, jumping processes, respectively; the small crossed circles represent the new position of H or D. (d) and (e) Relation of the reversed chain at height 0 to the chain in the origrinal direction at height r/2i corresponding to (a) and, (b) and (c) respectively. FIGURE 手 (e) [9] the crossed circles of figure 1-2 (c); it is thus indistinguishable from (ii) in. its results. In no case do the halogen atoms move, yet in (i) the position of the chain has altered by a distance @/2 + b/2', , as shown in figure 1-2 (d), while in (ii) and (iii) it has remai-ned unaltered, as shown in figure 1-2(e). It is not known for certain which mechanism actualLy occurs in ferroelectric reversal, but all three posibilities are relevant when we consider what happens at the transition. As for DI, in contrast to DC1 and DBr, phase III was found to be ordered monoclinic, space group A C:. zn - C2/c, with 15 molecules in the unit cell. The molecules form hydrogen bonded. squares stacked along the monoclinic c-axis, the directions of the bonds alternating in successive layers. HI in phase III is not ferroelectric IPhase II] The structure of phase II, which is missing in HC1 and DCl, are isomorphous for HBr, HI, and their deuterated analogs. It i.s still orthorhombic, with a unit, ceIl very nearly the same as in phase III, containing 4 molecules, but it,s space group is now 1Q o;; - Bbcm. The structure is shown in figure L-2(a), 争 [■ 0] PHASE H Dll- FIGURE ■n ■-3。 Bbcm Arrangement of the molecules phase II of HBr′ ana■ ogs. ´ [■ ■] H工 ′ and their deuterium 4 8 “ 〓 0 ぃ\Q m︰ > 嘱\ ∞ 0く L-4. Temperature dependence of the three edglengths of the orthorhombic unit cel1, of the unit cell volume and of the density of deuterium bromide in the III-II transition region. FIGURE ■ 0 A=0。 ■ nm ψ [■ 2] if we allow smalL open and crossed circles both to represent statisticaL half atoms. Each molecule has two equilibrium orientations; one is the same as in the ordered phase, the other gpposite to it. The atomic position parameters, and the bond lengths are almost exact,ly the same as in the low temperature form The temperature dependence of the three celI parameters over the III-II transition region of DBr was studied The results are shown by X-ray powder diffraction. in figure L-4 together with the temperature dependence of the unit ce1l volume and density. They suggest that III-II transition is gradual. In phase III' the thermal expansion along a has the greatest anomalous increase, giving a large positive peak at the transj-tion; that along c decreases, giving a fairly large negative peak, while that along b has a small but fairly sharp increase, Above the transition they all have constant valuest o- = ob = 4 x I0 -a- K-1-' 0,c = -2 x 1o-4 K-1. lPhase Il I' is the sane for all the halides. It is cubic with space group oi _ Fm3m (see figure 1-5). A detailed neutron d.iffraction study of polycrystalline DCl at.111.5 K The high temperature form, phase 子 [■ 3] ■ PHASE ● o; FttGURE ■-5. of a■ ■ - Fm3m The structure of phase the halides. [■ 4] conclusively that the molecules were not roLating, but that the average structure had its D atoms distributed equally over twelve sites with position parameters very close to those in phase III. In phase I, the disordered models of 4-r 6-, and' 8fold., and random orientation or free rotation model are all excluded. The ceIl parameters of HCI and showed DCI in phase I are shown in table 1-3. It shows that ● n 1-3. Lattice parameter (in 10-1-" m) and atomic position parameters of HCI and DCI. TABLE XD DC■ ■■■.5 ■■8。 5 ■■8。 5 K K K DC■ t t a a HC■ at 5.47 5。 482 5。 475 [■ 5] 0。 ■51 yD 0。 ■5■ neutron stud.y X-ray study ゛ ●・ the unit ceII of DCl is significantly smallerThis can be interpreted as the difference of the effect of librational molecular motion. The thermal amplitudes are consid.erably greater. In fact, D-Cl bond length in phase r (1.l7 ;.), which is calculated from the positional parameters of the atoms, is considerably less than that of phase III . (L.ZS .i,). The intermediate phase Ir of HBr was not investigated by Sd.ndor. Natta claimed that the phase I' of HBr was a face-centered cubic phase. Recent X-ray study by /'r (\ simont"/ also reported it to be cubic. studies by Hoshino Single crystal diffraction and his coworkers lHcll In 1969, some evidences for the existence of a new phase I' of HCI between 98 and 120 K were discovered from the single crystal X-ray and neutron diffraition experiments by Hoshino et al{16-18) tn" structure of phase I' was explained by a synthetic twin relation of the orthorhombic lattice with the (101) plane as the twin bound.ary. Possible average structure has the space group ,iL - Bbmm or Dt P2L2L2L as shown in figures 1-6 (a) and (b) , the former being the as represented in f igures 1-2 (b) and'/or (c) . [■ 6] same )・・ ■ .= t."、 .._ .^´ ‐ ■ ‐ :‐ │ :二 ^■ ‐ 1_■ ^_ Ⅲ… ‐暉 出 綽 ‐ 越 一 ‐ ‐ 議 ‐ 語 ■ヽ 3‐ ‐ 押 ニ ー 議 凛 ぶ ■ ‐ 一 ■ 豪 辞 一 ゛ 旗 ● D 1) (之 ■7 2h Bblrm φ b b FIGURE ■-6。 b P: 二P217.7i Two for the phaSe possib■ e aVerage ■' of HC■ [■ 7] . strucfures 一 ― … … … … … … 尋 .■ .,メ ‐ ■r However, neither structure can explain the observed intensity structure structure phase r t . ● of reflections. As far as the static models are concerned, there are no posible mod.els to explain the observed data in the The dynamical structure models were thus some considered. ● φ ln the phase Ir the molecules may also form linear zig-zag chains as in the ferroelectric phase. As such chains are formed. at an instant, however, they are d.estroyed at the next instant to form the chains stretching in d.if ferent d.irections. The average life time of the chain should be much longer than the neutron passage time (ttO-13 s). Moreover, it was assumed that the change of the direction of the chain corresponds to the movement of the twin boundary by means of the 90o flip of HCI molecules. The mechanism of the movement of the twin boundary is shown in figure L-7. The difference of the phase I and the phase f is described by the difference of the length of the hyd.rogen bonded zlg-zag chains and, the flipping rate of molecules. [DC■ ] Neutron diffraction measurettents oF DC■ a s■ ng■ e crysta■ revea■ ed (・ 9-子 2)using that Such an anoma■ ous [■ 8] ` c パ﹂ 6 L*, fO- "O t'?t' 'tg !?:` \ Oτ ∝ 気ひOo B6d \ く 析 ? ,,c9. ]--7. The mechani"sm of the movement of the twin boundary by means of the 90o f 1ip. FIGURE 1o = (n/LBo) rad lrsl 4,゛ ● t,ransition as observed in the higher temperature cubic phase of HCI did not occur. However' disk-like d.iffuse scatLering was recently found in DCl I below L42 K at positions incommensurate with the cubic ceIl, though it was not always observed and seemed to depend on.the sample preparation. Sing1e crystals grown in quartz containers sometimes show anomalous behavior such as the transition observed at l-20 K in HCI. These are explained thus to result from the influence of external forces such as stress exerted by the container wa1l on the crystal. Further, an investigation of the phase transitions in both materials by neutron scattering turned out to be unsuccessfuL largely due to the experimental difficulties encountered. in the growth of single crystals, their cooling down and their passage through the transition without fracture of the crystal. on the other side, the rotational vibration (i.e. libration) of DCI molecule was investigated. by analysing anisotropic temperature factors of deuterium in the powder neutron diffraction measurement by SAndor and al?\ Farrow.'*-' A similar analysj-s was developped by Hoshino and his coworkers(19'21) using single crystal diffraction data. Both results are shown in figure 1-8. The mean angular displacements in and out of the (001) も [201 800 く ″ L卜 )、 0 0 0 0 6 4 ︵ ぃ0づ︶ ∩く∽〓 N Tc r′ m◆ p・ 1f ;n) \ PHASE 40 v III 80 PHASE I 120 160 T/K 1-8. Temperature variation of mean square angular displacements due to the molecular libration of DCI. FIGURE キ [2■ ] plane are represented in the figure. .03ot> which represents the molecular motion preventing the development of zlg-zag chains in the plane (see figure 1) 9) increases rapidly above 123. K, whereas .Qirrt shows no appreciable change with temperature. The temperature variation of .O?rrt and .Q3rrtt correspond.s to that of the probability for 90o and 600 flip motion of the o TJ 1-9. Twelve-fold. d.isordered. structure in the phase I of DCl. In the phase III, the deuterium atom of the cenLral molecule stays at the site I and the central molecule is connected with both left and right hand side molecules so that coplanar FIGURE zLg-zag chain format j-on is made. l22J =5LH“ 議濃饉盛餞藻L二 い漱 │ ― ・ ・ ・ 轟 ―・‐ ――‐ 一 轟 ― molecule, respecti'reIy. The molecular motion was also discussed from the NMR and NQR experiments as will be reviewed below. ● I-2-2. Infrared and Raman spectral studies A completely unambiguous determination of the crystal structure by spectral study is out of the question but certain features of the structure can be obtained. fn fact, before the neutron diffraction studies of deuterium halides by SAndor et al., many workers investigated Q3-26') for the positions of the hydrogen atoms. rg obseru"d.(27 ) trr" infrared spectra of HC1, HBr, and HI in phase III and concluded that tfre hcf and HBr crystals are built of zLg-zag hydrogen-bonded chains. Savoie and Anderson '(281 the infrared and Raman spectra of HCI, remeasureo' DCI, HBr, and DBr and suggested. the zig'zag chain to be nonplanar, which is in contrast to planar one j29) study by rto "t "f indicated that the crystal structure of HCI, DCI' HBr, and DBr in phase III is c)u - Pn2ra with four molecules in a unit cell, and the nonplanarity of the chain is d.etermined by S{ndor et al. Raman so smal1 that it is not sensitively reflected to the spectra of lattice vibration region. `年 [23] ・ :■ r暉 摯鴛螢彙壼識■・r,,' correlation diagram for the proposed crystal structure (Bb2rm) is shown in figure 1-10. It predicts five infrared active lattice modes: three librational The modes (A.′ B.′ and B2)'nd tWO OptiCa■ transitions (A, and B, ) . Their mod.es of the two molecules in a IL primitive unit cell are shown in figure 1-11. Raman study by lto et a1. also indicated two (1) Rotational characteristic features in phase III: lattice vibrations have high frequencies in spite of Molecule Sitё Factor c OV Cs c2u 11 (T2),■ A2 ξttt FICURE s6■ id ■‐10. phasё Correlation diagram for ITI. [24] Translational Rotational modes mode s ヽ ごず 一 ヽ Aぅ 、 、 ` 、 一 一 、 ン 一 一 ヽ ﹂ ヽ ヽ ヽ tも ● A. ,■ ∼ ` こ チ :イ す ピ ヽ )ヽ ト ‐ Bi ∼ ヽ二 ‐ IB. ヽ ノ :` オ B2 :、 k〕 `fD― Translational and rotational lattice vibration of the two molecules in a primitive unit ce■ ■ of hydrogen halide. FttGURE ■―■■. , [25] the weakness of the hyd,rogen bond. (2) The intensity of the intermolecular vibrations is about 10 times These were explained stronger than that of libration. ?N\ by Hanamura'-"' as the effecLs of charge transfer - (31) on Raman scattering. Carlson and. Friedrich, measured' the absolute absorption intensities of the infrared active l-attice modes of HCI and HBr. It gave evidence that the molecular d.ipole moments are less than their gas-phase value as theoret.ically pred.icted by Hanamura. The infrared and Raman spectral bandshapes of internal vibration bands contain information about molecular orientation and translational diffusion. Raman study by wang et a1{32'33) ind.icated that HCl molecules undergo rapid reorientation in cubic phase at temperatures higher than L2O K, and satellite peaks develop between 120 and 98.4 K suggesting the evolution of a lower symmetry structure other than the cubic. There is one thing bothering. Infrared spectral stud.ies by Hiebert and Hornig(34'35) that ",rgg""ted there are two adciitional phase transitions at about 25 and 10 K in phase III of Hf. However, present calorimetric me.asurement showed no anomaly at both temperatures as will be mentioned below. T ■ チ [26] I-2-3. Resonance studies <h The ""CI quadrupole spectra of HCl and DCI in phase rrr were examined by Marram and n"gr"-(36) Activation energies for both compounds were 2.70 1 0-05 kcal *ol-lt in good agreement with values'obtained from dielectric relaxation measurements by swenson and cot"(37) (2.6 kcal mot-l) . The d.ata were d.iscussed in terms of of mo1ecule. On the other hand' the protot Tlp measurements by Genin et .rj38) g"rr" the different activation energy of 1-4 kcal mol-I. The data were interpreted as due to 90o flip motions of the HCI molecules in solid III which, however, are strongly attenuated in that they occur with The fraction nonequal site occupation probabilities. some angular mot,ion ● of the time that a molecule spends in the 90o posiLions was found to be about 0.01 near the III-I transition. Activation energy of 2.7 or 2.6 kcal mol-l was i-nterpreted by o'neitty(39) to be a 1800 flip motion of the molecule which occurs concurrently with the 90o flip processes. A single librational frequency was determined' by okuma et a1{40) as a function of temperature from 35ct and 37ct NQR frequencies for HCI and DCI in phase +1kca1mol*= 4。 ■840 k」 mo■ [27] ・ . ● III, the quasiharmonic treatment being used for calculation. It does not fully account for Lhe temperature dependence probably because of the effect of intermolecular hyd.rogen bonds. Another interpretation was given by o'Reilly(39) by means of an attenuated 90o flip process of the molecule mentioned. above. A mechanism for the ferroelectric phase transition in solid III of HCI is specified which j-nvolves the 90o as well as 1800 flips of moLecules. In solid I of each hydrogen halide, two types of molecular motion have been detected: (1) a rapid. rotational reorientation and (2) translational diffusion of the molecules. From the second. moment of the proton and chlorine magnetic resonance, the structure of the high temperature phase was proposed as being a hindered' rotational one. An activation energy of 0.7 kcal mol-l for rotation was derived by Okuma et al. The selfdiffusion of molecules below the melting point causes narrowing of proton resonance line above 130 K' with an activation energy of 5.6 kcal moI-I. The activation energies obtained. by different techniques and workers are summarized. in table L-4 together with the proposed processes. 128] ◆ ● ﹁ 一 一ト . ーーし ︱︰IL FI111,﹂ , , L-4. Activation energies obtained by NMR and NQR methods' The values for deuterium compounds are shown in parentheses' TABLE -1 mol-t substances E^/kcaL o. methods workers Processes lPhase IIII [NO] HcI2.70+0.05?EMarramandRagle''some.angular -' ] T, -I of "tc1 Q964) (2.70 + 0.05) Genin et al' TrO of H L.4 (1968 HBr (1.2) (1970) Hcl (0.8) (0.7) molecule" "rotation" ) line width of 79g' Kabada et al. tPhase motion of 6 " "g0o defect motion" Il Tt of 35ct and D Powles and Rhodes (1967) "reorientation" line width of 35cl okuma et aI' (1968) "rotation" ◆ ● IABLE I-4. Continued. mol-l substances E^r/kcat a.' HC■ 0。 worl<ers methods 9 T■ p °f H } Genin el a■ Tl of D (0。 85】 (■ T. of H 4.4 [ωO] 5。 6 ■ine width Of H T■ ρ °f H 966) (■ 。09〕 Tl of D . 。 Gen■ n et a■ (■ (6.6) T. Of H (5.5) line width of H 6.2 T.p of H 968) Norr■ s et al. 〕 (■ 968)¶ Genin et a■ "diffusion“ "diffusion" 968) Cenin et a■ , . (■ 968) HBr t'rotation" 968) Okuma et a■ (■ (3.9】 . Krynicki et a■ (■ Processes “diffusion" "rotation" "diffuslon" . "diffusttont: (1968) も ` TABLE ■-4。 ● Continued. r mo1-1 substances E^/kcaL a' (0.97) HI methods ----r-^--lvorkers Genin et a■ e T. Of D [ωP] (■ 6。 ■ (■ Kabada′ P・ K., 0'Rei■ ■y′ D. E. ¶ Norris′ M。 0.: Strange′ J。 早., 」. “rOtation31 968) Genin et a■ . ::diffusion" T.ρ Of H 5 processes Chern. Physe P,W■ es′ 」 ・ G。 KryniCk土 ′ K. 」. Phys, C ■968′ ■′422, 445。 968) ■970′ 52′ 2403, , Rhodes, M。 , MarSden′ K.F ● ´ L-2-4. Dielectric measurements Dielectric constant and loss measurements before .L957 t (42-44) and which were mainly carried out by Powres cole and his coworkersjrz '45'49) t"t" summarized by Cole and HavrifiariaT) Stat.ic d.ielectric constants in logarithmic scale of hydrogen and deuterium halides are plotted against t,emperature in figure I-12. The activation energies from dielectric experiments are shown in table 1-5. Ferroelectricity of HCI and HBr in phase III was discovered by Hoshino et aI. in 1967 j50) srrb""quent measurement of spontaneous poralization from pyroelectric current measurement in HCI by Kobayashi et showed. that, the maximum value of the "ri51) polarizatj-on is 3.64 pc cm-2, which can be compared calculated by using the dipole moment with 6.4 uC "^-2 of HCl gas molecule. It was concluded that the d.ipole moment of, HCl in crystal must be reduced to half the value of free molecule. Sinilar measurement for HI was not carried out by Hoshino et al. because of They imagi.ned from the experimental restrictions. close resemblance of the nature of the thermal and the dielectric properties to those of HBr that HI is also ferroelectric in phase III. However, recent studies of Hr by cichanowski tnd cole (49) gave no [32] T/K FIGURE L.Iz. Temperature dependence of static di-electric constants of hydrogen deuterium halides " 133l and _1.^嶋 _螢 ヵ山二_出 こぉ曇融純押盤■巌猿轟二ここ1 1-5. Activation energies obtained from dielectric relaxation. The values for deuterium compounds are shown in parentheses TABLE nu/kcai mol-I substances [PhaSe III] HC■ 2.6 HBr 2。 ● ″ 7 ■.6 (1。 5) (3。 6) 2.2 H工 (2.2) IPhaSe ttI] HBr (■ HI .5) 3。 6 (3.1) [34] .r a!.*rh -.*d ! *ar; j;dr*rl.i!, f-t4&,ltdFj'j;^:* indication of ferroelectricity. As far as that goes, solid HI is not isostructural to HCl and HBr in phase III as mentioned above. a L-2-5. Theoretical works on phase Lransitions rn 1947, Tisza originally sugge"t"d (52) that the lower IrI-II transition is due to the onset of disorder in the d.ipolar direction while the molecular axes remain para1le1. The upper II-I transition is then due to a d.isord.ering of the molecular axes. It is further suggested that III-II transition is controlled by dipolar forces and the II-I transition by dispersion forces. Powles developed (53) these idea qualitatively and semiquantitatively. However, it was somewhat the paucity of accurate measurements and of the theoretical work available on the intermolecular forces in these materials. Among them, the lack of neutron diffraction study was fatal. In fact, the entropy of transitions was explained. from the supposed structures, which are not identical to those of SAndor et al. rn Lg54, Krieger and James treated(54) the phase transitions in hydrogen halides in terms of successive rotati-onal or orientational transitions. . This model consists of an arrav of classical rotators with hampered both by ● [35] _,^“ =`丼 ェ ____=,_ニ ニ導出縁韓轟撫黙轟訟ふ=ヨしI___蘊 ‐● nextneighbor coupling, the potential energy of coupling being S Oij) E(O ij)= APl(cos Oij)+ BP2(C° (■ ) where 0.r-l. is the anqle between the molecular axes of ● symmetry. The model shows a single second-order transition, a single first-order transition, two f irst-order transitions, or a second.-order transitj-on ` transition as temperature rises. The modification of this modeL was developed /cq\ by Kobayashi et aI.'""' in terms of a two-dimensional rotational transrtion modeL with'two sublattices of A and B. The potential energy is assumed to have follorved by a first-order the forrn (BB) K i φ j) + S(φ (h)'° 4 3 一 V=」 co,2∞ 温鋤 │― %)(7) where J and K represent the dipolar and quadrupolar (or van der Waals) interactions, respectively. /q6\ In 1970, Hanamura indicated\rv' that many properties of molecules in molecuLar crystal-s of hydrogen halides can be shown theoretically to deviate from those of free molecules. The model proposed is that of zLg-zag chain formation by a charge-transfer process of the fi electron to the o* antibonding state of the neighboring も [36] molecule. The strong Raman scattering due to intermolecular vibrations as observed by Ito et aI. can be explained.. The succeeditg p"p.t(57) showed how essential the hyd.rogen bonding effects are in phase transitions and how successive phase transitions and ferroelectricity are induced by the intermolecular interactions, i.e. dipole interactions, quadrupolar interactions, and hydrogen bonding forces. A thermodynamical explanation for the entropies of the lower transitions of HCI, HBr' DCl, and DBr were attempted by a"torr(58) assuming that the change in librational frequencies at, the transitionsThis assumption, however, is not realisLic as shown in the Raman sLud.y by rto et al . Qg) Anot'her analysis will be requj-red. ■ [37] *,-.t'.**.;*Itu.ilsu:& t出 法〉 講 1-3. Purpose of the present investigation t As reviewed above, ever since the structures of hydrogen halides were determined by neutron diffraction ● studies, the phase transitionq were described as those of orientational order-disorder type in connection with Lhe molecular interactions. Nevertheless, previous thermodlmamical considerations are not sufficient tc elucidate the mechanism of the phase transitions. One of the reasons may be found. in the lack of the data with high accuracy and precision. Since the earlier measurement of heat capacity, what is worse still, did not extend below 15 K, the heat capacity associated wj-th transition could not be satisfactorily elucidated. A quantitative estimate of the disorder present in the crystal- should be mad,e from the anomalous part of heat capacity and entropy. The analysis of thermodynamic results therefore needs reexamination particularly now that. the conflicting conclusions have been reached from neutron diffraction experiments for the existence of n'L20 K transition" in HCI. One of the aims of this investigation is, therefore, to improve the heat capacity data in terms of precision and of the shape of anomalies in the transition regj-ons over the previous works. Through the thermodynamical ● [38] analyses of the data obtained, our ultimate object is to try to understand. the mechanism of transitions in hydrogen halides. ● ●・ ● [39] phase …′,デ 墨ミ擦もふ =. `゛ REFERENCES tO CHAPTER ■. ● 」. Timmerman′ ■ Jo Physe Chem, So■ id` 2. Stogryn′ Do E., Stogryn′ A. P. MO■ ■■′ 37■ ● 。 Phys. ■. ■966′ . 3. Simon′ F., Simon′ Co Z. Phys. 4。 Natta′ G. Nature 5。 Ruhemann′ 389, ■96■ ′ ■8′ B。 ■932′ ■93■ ′ ■27′ ■924′ 2■ ′ ■68。 ■68, 235。 , Simon′ F. Z. Phys. Chem. B ■93■ ′ ■5′ ■5′ 398。 6. Natta′ G. Gazze Chime lta■ : ■933′ 63′ 425。 7. Kruis′ A., Kaishew′ R. Z. Physo Chem. B ■938′ 4■ ′ 427。 8. Sindor′ E.: Farrow′ R. F. C, Nature ■967′ 2■ 3′ ■7■ 。 9. Sindor′ ■967′ 2■ 5′ ■265。 E。 , FarroW′ R. Fe Co Nature 10. Sindor′ E.′ 」ohnson′ M. Wo Nature ■968′ 2■ 7′ ■■。 sandOr′ E。 , 」ohnson′ Mo W. Nature ■969′ ■2. Sindor′ E。 223′ 730。 , Farrow″ R. F. C◆ Disc. Faraday SOc: ■969′ 48′ ■3. 54■ 。 │ 78. SandOr′ E., C■ arke′ 」: H. Acta Crysto A ■972′ 28′ S■ 88。 ■4. Atoj i, M。 , Lipscomb′ W. N. Acta Cryst。 ■956′ 7′ ■73。 15。 Simon′ A. Z. Naturforsch。 ■6。 Shimaoka′ 」. ■7. K。 ■970′ 25b′ ■489. , Niimura′ N。 , Motё gi′ H., Hoshino′ S. Phys. Soc. Japan ■969′ 27′ ■078。 Hoshino′ S., Shimaoka′ K., N■ imura′ Maruyama′ N. 」. Physo Soc. Japan ■89. [40] N。 , Motegi′ H.′ ■970′ 28 Supp■ .′ *#+jffqsxic-j,'M:k;*-*&!-!e*L&^."i]+-*.*+";*-r*.*,,n':riJ{;t$,@i*6{3dnfu*3u@ ` 18. Niimura, N.; Shimaoka, K.i Motegj-, H.i Hoshino, S. J. Phys. Soc. Japan L972,.32, 1019 Lg. Niimura, N. i Fujii , Y. i Motegi t H. i Hoshino, S. Acta Cryst. A L972, 28, 5.192. 20. Fujii, Y.i Hoshinor S.i Motegi, H. Tech. Report, rssP, A, L972, 538. 2L. Niimura, N.; Fujii, Y. i Motegi, H. i Hoshino, S. J. Phys. Soc. Japan L973, 35, 842. 22. Press, W.i Cox, D. E.; Axe, J. D.; Shirane, G., Harada, J.; fujiit Y.i Hoshino, S. Tech. Report, BNL, l.g75 23. Callihan, D.; Salant, E. O. J. Chem. Phys. 1934, 2, 3L7. 24. Hettner, G. Ann. Phys. 1938, 32, LAL. 25. Lee, E.; Sutherland., G. B. B. M.i Wu, C. K. Proc. Roy. Soc. (London) A 1940, L76, 4g3. 26. Friedrich, H. B.; Person, W. B. J. Chem. phys. 1963, 39, 811 27. Hornig, D. F.; Osberg, W. E. J. Chem. Phys. 1955, 23, 662. 28. Savoie, R.; Anderson, A. J. Chem. Phys. L966r 44, 548. 29. Ito, M.; Suzuki, M.; Yokoyama, T. J. Chem. Phys, Lg6g, 5o , 2g4g. 30. Hanamura, E. J. Chem. Phys. [4■ ] 1969, 52, 797. ″ ‐ヽ ‐ 一 轟 動 … … … 1燕経 ふ 一 … (…‐ ― 3■ 。 Car■ son′ … H. B. R. E。 , Friedrich′ 」。 Chem. 32. Wang′ Co HoF F■ eury′ P. A. 53′ Che平 `‐ Phys: Phys。 Wang′ C. H., Wright′ R. Bo Mo■ 。 Phys. 34。 Hiebert′ G. L。 , Horn■ g′ 90 F・ 」 ・ 27′ 36。 ■974′ 27′ Chemo Phys. 345。 ■957′ ■762。 35. Hiebert′ G. L。 , Hornig′ ● ■970′ 2243. 33。 26′ ● 」. 2794. ■97■ ′ 54′ ` ⅢⅢⅢⅢⅢⅢ 豪 辞結Ⅲ ・ ・ … F. 0。 」。 Chem. Phys. ■957′ ■2■ 6. Marram″ E. P:F Rag■ e′ J. L. 」b Chem. Phys. ■964′ e′ Ro H. 」e Chemo Phys。 ■954′ 4■ ′ 3546. 37。 SwensOn, Ro W., Co■ 22′ 38。 284. Genin′ D. Tsang′ 」., T. 」. 0'Re■ ■■y′ D. E。 , Peterson′ E. I.F Chem. Phys。 ■968′ 48′ 4525. 39。 01Rei■ ■y′ D. E. 」. Chem. Phys. 1970′ 52′ 2396◆ 40。 Okuma′ H.′ Nakamura′ N。 , Chihara′ H. 」. Physo soc。 」apan ■968′ 24′ 4■ 452: . Pow■ es′ 」. G。 , Rhodes′ M. Phys. Lette ■967′ 24A′ 523。 42. Pow■ es′ 」. G. Nature 43. Pow■ es′ 」. Ge Compt. rend. 44. Pow■ es′ 」. G. J. Phys. Raditm 45。 ■950′ Brown′ N. L。 , Co■ e′ R. H. 2■ ′ ■920. [42] ■65′ 686。 ■950′ 」. 230′ 836。 ■952′ ■3, ■2■ Chem. Phys。 . ■953′ : 46。 J Havri■ iak′ s., co■ e′ R. H. 23′ 」. Chem. Phys. ■955′ 2455。 47. Co■ e′ R. H.′ Havri■ iak′ S. 」ro Disco Faraday Soc. ■957′ 23′ 31。 48。 Groenewegen′ Po P。 , Co■ e′ R. H, ■069. ■967′ 46′ 」. Chё mo Phys. │ 49. cichanowski′ S. W., co■ e′ R. H. 」. Chemo Phys. 1973′ 59′ 2420。 ● 50。 Hoshino′ Se, Shimaoka′ Lett。 φ 5■ ` Koゃ ■967′ ■9′ 52。 54。 」.F Physo soc. │ ■365。 ■947′ 72′ ■6■ G. Trans. Faraday soc. Krieger′ T. 22′ 55。 」. 」. , Kawada′ S. M。 Tisza′ L. Phys. Rev。 53. Pow■ es′ , Niimura′ N. Physe Rev. ■286. ayaShi′ T., Ida′ 」apan ■969′ 27′ K。 . 430. ■952′ 48′ James′ Ho M. Jo Cheme Physe ■954′ 796. Kobayashi′ K. K.F Hanamura′ E., Shishido′ F. Phys. Lett。 ■969′ 28A′ 7■ 8。 56. Hanamura′ E. 」. Chem. Phys. 57. Hanamura′ E. 」。 PhySI ‐ 797. ■970′ 52′ Soc. Japan ■970′ 28 Supp■ .′ 192。 58。 Aston′ 」. G= J. Chemo Thermodynamics [43] ■969′ ■′ 24■ 。 CHAPTER 2 Experimental 「 [44] 1ヽ ■キ ,I総 喜 1■ ■ ・ ・ ,マ 2-L. Materials HCI and DCI HCl in steel bomb with a claimed purity of 99.0 mo1 per cent was purchased from Matheson Co., Inc. After being drj-ed in liquid, state over phosphorus pentoxide, it was distilled three times in vacuo. Solid HCI with redish pink color was not observed, which had. been described by Giauque and wiefejl) The final purity was 99.980 mo1 per cent as determined by the fractional melting method during the calorimetry in the last series of the measurements. Probable impurities are Hrr CL2r and POC13, the last one being one of the prod'ucts of the reaction of gaseous HCl with PZOS. The presence of H, should affect the heat capacity of HCI at about 14 K as seen j-n the resurts of ctusius12) who estimated the amounts of H, from excess heat capacity. However' present results showed no such ind.ication (see below). Total amounts of specimen used for the calorimetric measurements were determined to be (0.2025g + O-0002) mol by p-v-T measurements using a calibrated volume of the external gas-handting system. Non-ideality of HCI gas was corrected for by the Berthelot equation with the critical pressure of 8.26 MPa and. the critical temperature of 324.7 KJ3) *n" uncertainty in sample amounts arising from that of the critical constants is 145l ‐出に 線出碑軸 …轟 紳 ““ 轟 ■ヽ Ⅲ ― ・・‐ 串 ・ ・ … “ 優 ` …… ^… i轟 議 枠 …… Ⅲ … … Ⅲ … … '鶴 豪饗議中卜ⅢⅢら 4■ │ ‐Ⅲ 轟 ゛ "二 … … … ― "・ not more than 0.01 Per cent. DC1 gas was prepared by the reaction: SiC・ 4 + 2D2° Si° 2 + 4DC■ (2-■ ) Conrnercial SiC14 and, DrO (Cna) with an isotopic purity of gg.84 per cent were separately outgassed. and sicln was transferred upon DZO. The reaction proceeded slowly ● ● ln 24 hr. The DCl thus prepared was stored in the gaseous state and subsequent purification procedures were the same as those for Hcl. T'he purity was gg.g7 6 mo1 per cent. Amounts of specimen used were (0.21066 t 0.0002) mol, the critical constants employed being 8.26 MPa and 323.5 KJ4) HBr and DBr HBr (Matheson Co., IItc., claimed purity 99.8 mol per cent) was dried in liquid state'over phosphorus pentoxide and distilled three times in vacuo' The final purity was 99.987 mol per cent as determined' by the fractional melting method. Total amounts of specimen used for the calorimetric measurements were determined by P-V-T measurements to be (0.19333 I 0.0002) and (0.20466 I 0.0002) mo1 for Samples I and II, respectively. Non-iddality of'HBr gas was corrected for by the Berthelot equation witfr the critical pressure [46] `,― い ■ II`、_・ ェ 二 ,為 ― ユ ・‐熟■t・ ヽ融 紳 ■::鶴線 た ・ i・ i・ ● ■ ● ・″ ““ =■ =■ =工 ■■ ■IⅢ _・ 年■“ゞ│● なふ― →│● ‐や″ ■ ●あ■■ 絲卿 中 「 ・ … … … .ヽ … … … … … l.“ ・ Ⅲ ・ , , ・ of 8.56 ltpa(5) and the critical temperature of 363.1 16\ K. to' The correction amounted to 0.8 per cent of the total amounts. DBr gas for Sample I was purchased from Stohler Isotope Chemicals. rts stated isotopic purity was 99 per centDBr for Samp1e II was prepared in the d'ark by the ' reaction: PBr3 + 3D2° D3P° 二 十 3DBr (2-2) a stated isotopic purity of 99.84. per cent. For both samples, purificaLion proced.ures were the same as those for HBr and the purity was DzO (Cna1 used had 99.g27 mo1 per cent. Amounts of specimen used were (0.09653 t 0.0002) and (0-20535 + 0.0002) mol for samples I and II respectiVely, the constants employed being 8.56 Mpa and 362.0 Kj4) rrr" gases contaminated stopcock gnease (silicone) of the external gas-handling system. Htt and DI HI (Matheson Co., Inc., claimed purity 98.0 mol per cent) was dried. in the liquid state over phosphorus pentoxide and distilled three times in vacuo. The final purity was 99.97 u mol per cent as determined by the fractional (intermittent) melting method. [47] 1 0'm― ● Tota■ amounts of Specimen used fOr the ca■ or■ metric study were determ■ ned by P¨ V“ T measurements tO be ● (0。 ■8904 上 0・ 0002)mol. Non― ユdea■ ity of HI gas was corrected for by the Berthe■ ot equation w■ th the cr■ tica■ 8.40 MPa and the cr■ tica■ pressure o「 線 temperature of 424。 ■K∫ 6) Dtt gas was prepared in the dark by the reaction= P + 5r + 4D2O ---t ● D3PO4 + (2-3) 5DI (CEA)used lad a stated isotopic Purity of 99.84 per cent. Purュ ficatiOn procё dures Were the same as D2° those f6r HI and the purity was199.994 1no■ per cent. Amounts of Specimё n used were (0.2■ 908 0002)mo■ ± 0・ ′ the critica■ constants emp■ oyed being 8。 40 MPa and 42■ 8 K`4) The gas:│: considerab■ y contaminated 。 stopcock grease (si■ iCone)of the externa■ gas― hand■ i,g system. t● [48] ri,t,M..口 、.人 `ttだ 二 碑 "轟 ,メ ■ 楊 二 1轟1幕 1● L.… ∼■瀬 れ 靖 噺 風‐ 減 議 呼 よ =Ⅲ 二 ‐ 赫 こ が ‐ 榊 品品 ‐ 躊 ■ 鳥ⅢⅢⅢⅢ “ … “… Ⅲヽ Ⅲ ●6゛ 鳳 哺 _Ⅲ 串 Ⅲ Ⅲ 申 Ⅲ ・ ・ … ヾ■ ∼ ■議れ‐ⅢⅢ赫‐‐‐ ““ ・ ‐ ,ハ ‐ 4-“ ■ ■ ■ “ 2-2. Calorimeter The cryostat and adiabatic calorimeter (gold) designed for condensed. substances have been described previorr"fy!7) A measuring circuitry including the automatic adiabatic control system was the same as reported earlierjT) except for the use of ar.rtomatic data acquisition system for temperature measurements below 5 K. Both before and after the whole series of measurements of HX and DX, the ` ● heat capacity of the empty vessel was measured. below 300 K. The two independent measurements gave consistent results, indicating that no permanent reaction such as corrosion of the calorimeter had taken p1ace. ● [49] ` 2-3. Temperature scales The calorimeter is equipped with two thermometers, a plat.inum resistance thermometer (Mod'el 8L64, Leeds & Northrup Co.) to use above L4 K and' a germanium resistance thermometer (cn-fOOO, CryoCal Inc.) to use bel0w 14 K. We shall now describe their calibrations. Platinum thermometer ヽ ● This thermometer was originally calibrated in 1966 by the U. S. National Bureau of Standards based on the IPTS-48 and NBS-55 temperature scales. The scale was then converted to the rPTS-68i8) In order to check for the aging effect during the eight years, recalibratj-on was carried out in Lg74(9) against the triple, boiling, and sublimation points t-H2, N€, N2, 02, and CO, and also their vapor pressure scales. However, fixed points of n-H, and CO, could not be realized because of ortho-para conversion phenomenon and insufficient heat lreatment, respectively. The results shown in figure 2'L suggest, that the platinum scale showed increases of 2n,3 mK in I year's time between 14 and 90 K. However, it was ascertaj-ned that the slope of the scale did not change appreciably to such an extent as to affect the heat capacity values. ● [50] ■ 6 ● 15 人→ 人 Y T齢■ ○ ■70 5 ○ 唖 ゛ ち 亀一 ■ 魃△ △ 0 5 XE \ Ъ ピ ー [uP] K 10 ③ ○ ° Oo 0 ― 10 ― 15 0 20 40 60 8o loo 戸/K 2-L. Calibration of the platinum Lhermometer based on 1PTS-68 against triple (l) and boiling (I) points and vapor pressure thermometers. A, n-Hr; A, Ne; o, N2t ot oZ. FIGURE Germanium thermomeler 4 ` The germanium scale was fixed by t'he 1958 -He vapor A --He gas thermometr j-c pressure scale below 4.2 K and the temperature scale beLween 4.2 and 15 KJ9) The following function *." o="U for fitting the calibration point,s by the method of least squares. ・ .0 Og・ 01・ T(■ -4) (2-4) ill Ai・ The sca■ e cou■ d be determined to within +5 mK as shOwn in figure 2-2。 HoweVer′ T5ё sca■ e was found to be ■ower by ab9ut O.2 peF Cent at 4.2 K than therlnodynamttc temperature sca■ e. This disContinu■ ty is with the one reported at the ■Oth agreement meeting 6f the comit6 Consu■ tatif de Thermomё trie (CCT)he■ 0) ● he ■ 974∫ ・ ュn d in Paris in May resu■ ting error in heat capacity did not exceed O.5 per cent′ Which iS much sma■ ■er than 5 per cent in this ternperature r9giOn as w■ [52] ■■ be seen be■ ow. 一 一 い 2 O 気場\睫 o 06 06 0。 [いい] ︶d ご 〇 一 ゆ ○ ι?Io 0 ― ― l。 o o _o_o_o _5.o 0 O │ 二2 0‐ 2146810121416 戸/K _ 4,2-2. Calibration of the germanium thermometer based on TU, and -He gas thermometer scales. The deviations f::om the scale obtai-ned by the method of least squares are plotted. Two curves show the deviation of + 5 mK. FIGURE 2-4. Heat capacitY measurements The heat capacities of HCl and DCl were measured between 2 and 164 K. The temperature increments were about 0.3 K at the lowest temperatures and about I K at IO K. These were increaseCi to about 2.5 K at higher temperatures, except in the vicinity of transtitions of HCl and DCl and near 120 K in HCl. Where vapor pressure the temperature of the filling tube was so adjusted that the calorimeter was the coldest in order to prevent distillation of the specimen out of the calorimeter. Thus, the top of the adiabatic shield was made slightly warmer (up to 0.3 K) than the calorimeter vessel. The resulting t,emperature drift' due to heat leakage was taken into account in calculating the heat capacity. This correction did. not usually was significant, exceed about 0.2 per cent of total heaL capacity No helium gas was j.ntroduced into the calorimeter vessel for heat exchange. Equilibration times after heating were a few seconds at the lowest temperatures, 3 min at 20 K, and 10 min at 80 K. About 80 K, except for the transition regionsr'the sample vapor helped to improve the equilibration time. The calorimeter vessel contributed about 60 per cent of the total heat capacity at all temperatures covered. The heat capacities of HBr and DBr were measured ■ [54] between 2 and ■90 Ko about O.2 K at the ■O at K. The temperature incrё ments Were ■oWest temperatures and ab9ut ■ K These were incrdased to about 2.5 K at higher temperatures′ except in t,e v■ C■ n■ ty of trans■ tions` Above 140 K′ Where vapor pressures were significant′ the fi■ ■ing tube ano a■ sO the t6p of the adiabatic warmer than the calorimё ter shie■ d were made s■ ight■ y vesse■ in order to prevent disti■ ■ationo No he■ ium gas was introduced into the vesse■ for heat The ca■ orimeter vesSe■ ёxchange. contributed not more than about 60 per cent Of the t。 la■ heat Capacity for HBr and DBr (Samp■ e (Samp■ e ェ)′ 工工)at a■ ■ temperatures cOveredo For DBr the contribution increased up to abOut 75 per cent. The heat capaCitiesi of Htt and DI were measured between 2 and 225 K. about O。 3 K at the at ■O K. The temperature incrernents were ■owest Thё Se were temperatures and about ■ncreased ■ K to about 2.5 K at highё r temperatures′ except in the vicinity of trans■ liё nsO Above 150 K where vapor pressures were significant′ the fi■ ■ing tube and a■ soithe tOp Of the adiabatic shie■ d were made s■ ight■ y warmer than the calorimetё r vessel in order tb prevent diSti■ ■ati。 五。 No he■ ium gas was ュntroduced into the vesse■ for heat exchangec The calorimeter vesse■ contributed abOut 20 per cent [55] ‐ to the total heat capacity at the lowest temperatures. ft increased up to 60 per cent above 50 K except in the vicinity of transitions. ● [56] む 2-5. Vapor Pressure measurements The vapor pressures of, the solid in phase I and the liquid were measured in conjunction with the heat capacity measurements. A quartz Bourdon gage (Texas rnstruments rnc., Moder 144-0i) was used for pressure measurements. The gage was calibrated' against a mercury manometer: The ratio of pressure value to gage reading was a smooth function of the pressure to within 0.1 per cent up to 105 kPa. The mean density of mercury at the temperature in a barometric column supported by the pressure being measured. is given by reference 8. The gravitational acceleration at our laboratory was taken to be 9.79695 m s'2, whj-ch had been corrected. for latitude and altitude from the value of g.79703?5 * "-2 at Osaka International Airport. The precision of pressure measurements is $ Pa but the accuracy is probably somewhat less than this because of undetectable d.rift of nulI point. [57] ■ 2-6. Dilatometry After measurements of heat capacity and. vapor pressure for Sample II of HBr were concluded', an attempt was made to determine the thermal expansion of solid HBr by using helium gas as the dilatometric sensor between 65 and L2O K. The vo'lumes of the specimen and the empty vessel were about 6 and 44 cm3, respectively' The latter volume was separately measured as a function of temperature after driving the specimen out of the vessel. The equilibrium temperature and helium pressure were measured at about 5 K intervals. To obtain the maximum sensitivity, helium gas pressure was adjusted to about, 100 kPa, some helium gas being wit'hdrawn each time it tends to exceed the working range of the Bourdon gage. Expansion of the helium gas and of the vessel was subtracted from the measured. pressure increment to compute the change of the specimen. Since the precision of pressure measurement was 10 parts per million at 100 kPa, the smallest detectable expansivity q is given bY cr-AT'(v/v) = 10 parts per. million, (2-5) where AT is the temperature increment, v the volume of specimen, and V Lhe volume of helium gas. In the present experiment, detectable limit. of cr, is estimated t5Bl ● to be 1.3 x t0-5 K-1. Since the expansivity of an average molecular crystal is of the order of 10-4 K-l, determination of the expansivity to two significant figures was anticipated. by this experimental technique. In fact, the volume changes "t afrt"" transitions of HBr were observed. Quantitatively, however, expansivities obtained were systematically amaller than those estimated from densities by the X-ray diffraction method. The data obtained, therefore, will not be presented'. origins of error are adsorption or desorption of the helium gds, undetectable drift of null point of the Bourdon gage, and inaccuracy of virial coefficients of helium. Supposed 0 [59] REFERENCES to CHAPTER 2 ウ ■. Giauque′ wo F。 , Wiebe′ R. 」. Ame Cheme Soc。 50′ ■0■ ■929′ 3′ 4■ 。 3. Gambi■ ■′ W. R. Chem. Eng. ■959′ 66′ 4. Kopper′ =. Zo Physe 9hern・ A ■936′ 5。 DroZdowski′ A ■9■ 3′ 6. Woo■ sey′ 亀 . K. Z. Phys. Chem. B 2. C■ usius′ 7. Atake′ T。 '■ 928′ E。 , Pietrzak′ 」 ` Bu■ ■57. 175′ 469.: ■。 Acade Crac. 239. G。 」. Am. Cheme soc. ■937. 59′ , Chihara′ H. Bu■ ■. Cheln. Soc. ■577. 」apan ■974′ 47′ 2■ 26. 8。 The lnternationa■ Telnperature Sca■ e of Metro■ Ogia 9。 ■oo chihara′ ■969′ 5′ H。 , 工naba′ ■968。 35. A. Teion Kogaku Mitsui′ K. Keiryo Kanri [601 ■975′ ■975′ 24′ 36。 ■0′ 84。 う CHAPTER 3 Thermodynamic Properties o HCI and DCl 6 t 611 of ` 3-1. Heat capacitY The experimental results without curvature corrections are listed in chr6nological order j-n appendices 3A and B for HCl and DCl, respectively. smoolhed values of the heat capacity of the solids are given in table 3-1. Strictly speaking, what was measured was the heat capacity under the saturated vapor pressure, which is Cs" However, the difference between C= and Cn is negligibly smal1 because t'he pressures are low j"n the measured temperature range. Above 130 K, corrections for the vaporization of HCl commonly denoted bY iミ or DCl, which occurred during the heat capacity measurements' were significant (about 0.1 per cent at 130 K). Quantities relevant for these corrections were evaluated as follows. The vapor volume in the calorimeter vessel Was calculated by using L.46g and -- (1) at 107 K and 1.4S g cm-?J for the density of HCI\-/ at the triple point' respectively, and the liquid' density oy xanaa.(2) Eensity of solid. an6 liquid nc1 was assumed to be larger by 3 per cent than that of HCl on the basis of the X-ray diffraction data at ,r \ 118.5 Kt5/ and the molecular weight. The heat capacity (4) oscopic a.t* /2) R in the temperature rangie where the values were required.. The total corrections amounted is close to (7 ` [62] 、 バ■ =せ ====■ ■==■ ■=■ _==二 0二 ユニ ● 1■ ■ ==燎 :“ =潔 ='4 capacity of -solid at rounded va■ ues of temperatures" TABLE 3二 ■. The heat T 一K C 」k,■ m。 ■ '│ HC■ ││ 'DC■ 0053 2 O.0052 O。 3 0.0■ 79 0。 0■ 4 0.043 0。 044 5 0。 088 0。 090 6 0。 ■6■ 0.■ 67. 8 01429 0。 439 920 0。 944 80 ■0 0。 ■2 ■1647 ■。678 15 3.■ 0■ 3.■ 33 20 5.980 6:0■ 14 25 8。 870 8。 956. 30 ■■.54 ■■.72 35 ■3:89 ■4.24 40 ■5。 94 ■6.54 45 ■7.77 ■8.65 50 ■9。 43 20`163 55 20.98 22.5■ ‐ 60 22.46 24`3■ [63] ‐ HCl and DC■ TABLE 3-■ . Continued。 T C 一K ゛ p … 」K「 lmo■ =聾 ∴ HC■ DC■ 65 23.88 26.03 70 25.27 27.68 75 26。 80 28.■ 6 30.93 85 29:75 32.62 90 3■ .59 34`45 95 34.20 36.49 99 38.86 .45 44174 69 29。 30 ■00 39。 ■■0 4■ 120 42.93 46e■ ■ ■30 44.43 47.50 ■40 46.04 48.94 ■50 48。 00 50.80 ■53 48.84 52.00 [64] to at most about 3 per cent of the total input energy. The results for HCI and DCl are shown in figures 3-1 and 3-2, respecLively. Both solid HCI and DCI have A d'iscussion of one isothermal phase transition. other "transition" at 120 K in solid HCl will be given below. The measured heat capacities of solid HCI and DCl ´ are campared with earlier results in figures 3-3 and 3-4, respectively. The results are plotted as differences from a smooth curve correspondi-ng to the values given in table 3-1. The deviation of the present results from t.he smooth curve, which indicates the precision, is {.5 per cent at the lowest temperatures, which decreases to less than +0.5 per cent at 10 K' +0.1 per cent above 20 K, and *0.2 per cent at higher temperatures. Giauque and Wiebe's results tor tiCl(5) are systematically lower than the present results by about I per cent below 80 K, but the differences are within the combined limits of error. Results of ctusius(6) are similar to those Both results, however, were of Eucken and x.t*ttj7) fairly scattered and different from ours. Four results agree well at about 20 and 90 K, which approximately correspont to the temperatures of liquid hydrogen and liquid air. Below 15 K, the results to be compared with ours are onlv those of C1usius. Their results are in [65] r 戸/K 0 50 ‐ 100 150 200 60 15 X 、゛ 3 TちE一 , 0 0 4 [QO] X っ、 ゛ 3 TちE 一 J 5 20 「 0 0 10 20 30 万/K FIGURE 3-]二 Heat capacity of HC■ e 0 ご 戸/K 15 60 ■oE TYっ\ ゛ HeOt CapaCity of DCl. FIGURE 3-2。 I 万/K 0 30 ‐ 20 10 0 0 1 5 0 0 4 2 J 七 f 立 つ\゛ ・ [ぬく] 「 O 200 150 100 50 0 を ` 10 ▲ ▲ ▲ V▽ ▽ 0 △ ▽ ▽ ▽ ”・ T oo 凝 [6∞] ⊂OO﹂ ①Q\、/N 一 5 ° T%十 十・▽ 拳 V▽ t年 ▼ ▽▲ ▲ △ ▽ ▽ ▽ ▽選 +l■ 々 ▲ ▽ ▽ ぬ ▽ V 々 ▽ ▽ ▽ ▲ ▲ マ 十 ▽ f +f '+ + 1 tt △ 十 ▲ 十 ▽ ℃ -5 fP。 0。 ▲ △ 0 ― 10 0 50 100 150 戸/K FIGURE 3-3. reSultSF △/peF A comparison of heat capacity resu■ ts for so■ id HC■ . o′ present 5)A′ ▽′ C■ usius∫ ,)+′ Giauque and Wiebさ ∫ Euckさ n and Karwat17) C,nt=[CP(° is given in tab■ ,S.)TCP(SInoO,h)]X・ e 3二 ■. 09/に p(SIn。 。 th)]′ Where CP(slnoOth) ◆´ ゛ ● │○ ず 。 fo P ﹄藍 τ o o 0 ● 0 -5 ● 0。 0 O い [00] 樫 ①o 3 Q \ 甕 5 8 ●0 ・ 0 ・ ● ∫ ・ : : 0 ° ● 0 ● 。 ● 0 ● 0 . ● ● 。 。 。 ● . 0 ● ● ● 0 ―10 0 50 100 150 戸 /K FIGURE 3-4. A comparison 9f heat capacity resu■ ts f9r SO■ id DC■ . o′ present resu■ ts, o′ C■ usius and Wo■ f`8) △/per C,lt=に p・ bS.),9p(SInooth)]X■ is gュ ven ュn tab■ e 3-■ . 00/1Cp(SInooth)]′ 摯 ere cp(slnooth) 争 excess of our smoothed heat capacities by more than 20 per cent, which canlt be ploLted in figure 3-3. It was explained. to come from 0'25 mol per cent of H, as an impurityj6) Heat capacities of DCl have'been measured above 15 K fR) by Clusius and Wolf .\"' A comparison of their results with present results shows agreement in absolute value only at. about 20 K. At other temperatures, however, they are systematically lower than oot"l A more sensitive comparison in the lower temperature region can be made by use of equivalent Debye temperature Oo, whose temperature dependence for 3Ne degrees of freedom is shown in figures 3-5 and 3-6 ■ for HCl and DCl, respectively. The Debye temperature curves for HCl and DCI are almost superimposable below about 25 K although the former is consistently higher by a factor of 1.008, Above 25 K the DCl curve declines more rapid1y. じ ft is probably significant to note that Clusius gave, compared with ours, Larger values in the case of HC1 and smaller values in the case of DCI. t ● [70] , ″ 奪 :50 ぴ” O O :40 O Y \ヾ 劇P] [ 130 ▽ 十 △ V VA △ + ▽ ▲ JV ▽ ▽ △ ▽ ▽ + ▽ 120 △ ▽ ▽ ▽ ▽ ▽ ▲ ▽ l10 戸/K FIGURE 3■ 5. The Dё bye characteristic‐ temperature Of HC■ dё rivё d from the measured heat capac■ ties′ assum■ ng 3N degrees of freedom. o′ present resu■ ts, 7) 5)▲ 6)+′ li c・ usius∫ diatque and Wiebe∫ ′Eicken and Karwat∫ 薔 ρ も 150 p。 0 ∂6 Q 140 0 0参o qN] [ X\ Ы 130 0 鬱 籍 e e e e e e 120 e ‖ 0 戸 /K 6" characteristic temperature of DCI derived from the measured. heat capacities, assuming 3N degrees of freedom. o, present results; o, clusius ana wolrjS) FIGURE 3- The Debye 3-2. Vapor pressure of the solid HCl and Dcl are tabulated in the second column of tables 3-2 and 3-3, respectively. The results were fitted to the Antoine equation as follows by the method of least squares; Measured vapor pressures HC■ ■o,10(P/Pa) = ■9■ ■。3■ (K/T)+9・ ■875+0.0043■ 3(T/K) DC■ ◆ (3-■ ) ■og.0(P/Pa) = ―■079.74(K/T)十 ■■。5304-0.003896(T/K) (3-2) Deviations from equations 3-1 and 3-2 are included in tables 3-2 and 3-3, respectively. Fitting of the results was also mad.e to equations of the form A(K/T)+P ■ og.0(P/Pa)= ― (3-3) The resulting coefficients A and. B are given in table 3-4, vrhere they are compared with values reported by others. A comparison with earlier results of solicl HCl is shown plotted in figure 3-7 as differences from equation 3-1. The difference probably arises not only from the vapor pressure value but also from the temperature scale used. Therefore, a comparison of triple point pressure should be also referred to. rn fact, Giauque and Wiebe's pressot"=(5) are systematically higher than ours below the triple point, ■ [73] TABLE 3-2. VapOr pressures of HC■ P P■ P(ё q。 kPa… K . 3-■ ) kpa so■ id ■3■ 。983 O.7■ 3 0.002 459 0.976 -0。 00■ ■37.■ 8■ ■.366 -0。 002 873 ■.88■ -0。 005 ■42.540 2.562 -0.002 ■45。 ■77 3。 442 0。 003 147.787 4.564 0。 008 ■50.366 5。 969 0.006 ■52.9■ 4 7.724 0.007 ■55.392 9.862 0.0■ 9 ■55.432 9.877 ‐0。 005 ■56.6■ 8 ■■。080 0。 005 ■57.402 ■■.908 -0。 024 ■57.794 ■2.364 -0.0■ 8 ■34。 ● ■39。 Liqu■ 0 ■60.600 ■5。 744 ■6■ 。040 ■6.283 ■62.9■ 3 ■8。 ■65.205 22.543 909 [74] Vapor pressures of DCl. TABLE 3… 3 PttP(ё O: 3‐ 2) kPa K kPa sO■ id 892 134.086 O。 ■36.802 ■。285 O.0■ 2 ■39:485 ■。786 0.023 ■42。 ■25 2。 ■44.738 3.■ 95 -0。 0■ 6 ■47.3■ 4 4。 2■ 2 -0.025 ■49.856 5.492 -0。 022 ■52.355 7。 08■ 0。 003 ■53.052 7.584 0。 008 ■54.876 8。 98■ -0。 044 155:2■ 4 9。 36■ ‐o1043 156.782 ■0。 764 -0。 020 ■57.029 ■■.089 0。 057 395 Liquid ■59.542 ■3.832 ■59.808 ■4。 ■6■ 。797` ■64.039 ' 058 ■6.63■ ■9.855 4 [75] -0。 0■ ■ -0。 002 TABLE ● 3-4. CoefficienLs A and B for the vapor pressure equation: 1oq" -LU., (P/Pa) = -A (K/T) +B B A HCl Present work ● Giauque anc wiebe (1928)a Karwat (1924)b 4424 ■002.241 ■0。 1011.46 10 26.gs 10.5068 10.6023 DCl 996.94 Present work a From reference 5" b From reference 9. ゛ [76] ■0.3929 心´ ● ○.2 omx\ ミ く 0。 │ [﹃﹃] 一〇.│ 130 140 150 160 戸/K A compar■ s9n Of Vapor pressure resu■ ts for so■ id Hc■・ 0′ present ■ ■ 9)O′ 5) )△ ′ at∫ 三 ebe∫ ▲ resu■ tsF +′ Giauque aha 轟 Henning and Heng■ ein∫ ´kaを 書 2) Stock`・ △P = P(ObS。 )― P(SmOOth) ′ where P(smOoth)iS given by equation 3-■ 。 FIGURE 3-7. whereas the■ r pressure at the trip■ e po■ nt iS b As a WhO■ (see tab■ e 3-6)。 Hc■ e′ ■Ower present resu■ ts fOr so■ id are ■n aoreement W■ th th6se of Giauque and Wiebe and Karwat∫ 9) As fOr so■ id DC■ ′the other measurement reported ■ ewiζ near the trip■ e point is on■ ■50 which is about Pa one ■arger 'than by ours. et a■ ・0) .∫ ISotope effect Of vapor pressure of the so■ ids may be represented by ● the fo■ ■OW■ ng eqiation ■ed from the type of equation 3-3. も ■ og.0(Pic./PDC■ )〒 5。 30(K/T)+0。 0495 Lewis et a■ e gave fattr■ y different ■00.0(PHc./PDC■ )= (3-4) ёquation3 57。 7(K/T)+00387 (3-5) Their resu■ ts on so■ id DC■ COnsist of 6n■ y four measured points above PHC■ ■52 = PDC■ at K and equatiOn 3-5 shows that ■49 K′ whereas our experimenta■ indicate that PHc.│> Pbc■ aOOVe ■30 K. : や , [78] resu■ ts ● 3-3. Enthalpy of fusion and transition The heats of fusion and. transition were measured in the usual way of starting the heat input at a temperature somewhat below the melting or.the transition temperature and terminatin$ the input when the temperature had risen somewhat above. A correction for the /Cnat was applied. The results for fusion are given in table 3-5' other measurements are also included for the sake of comparison. In the series XIV both for HCl and for DCI, the fusion was done in stages and measurements of the equilibrium temperatures and pressures were determined likewise. The results are given in table 3-6' The triple points of pure HC1 and DC1, given as (159.052 + 0.005) and (158.410 + 0.005) K, respectively, were estimated from a plot of the equilibrium temperature against the reciprocal of the fraction melted' From this plot, amounts of a liquid-soluble solidj_nsoluble impurity were aLso estimated. The triple poind pressure of DCl calculated. from the smoothed vapor pressure is not in good agreement with the measured Vapor pressures. In ej-ther event, however, Clusius and wolfrs result is l0wer than ours. The results far isothermal phase transitions are given in table 3-7. The enthalpy of DCl obtained by clusius and wolf is about 3 per cent smaller than ours. Entropies of the [791 TABLE 3-5. The entha■ py of fusion of HC■ and DC■ 。 ` Seri es T. T2 no" K K 菫(Tう )― 早(T三 ). △ 平f Jm。 ■ 」m。 ■ I 2■ 8■ .0 ■970。 9 2■ 33。 6 ■970。 0 Average ■970。 5 ■ HC■ 157。 402 XIVa ■57。 794 一 ¨ XIII 16■ 。040 ■60。 620 b Giauque and Wiebe (1928 ) ■99■ .6 Eucken and Karwat (1g24)e 2■ ■0。 8 DC■ ■56.782 XIVa 157.029 ︼ ¨ XIII 159.808 2■ 28.■ ■944。 6 ■59.542 2097。 6 1945。 3 Average ■945。 0 Clusius and. Wolf ' ` [801 (L947f ■979。 9 tュ : ● ..、 _こ .`│´ ‐ =ヽ _● … ⅢⅢ ` 麟 取 `■ …… │ .出 ●ヽ一 ■`^^‐ ``_、 _ニ TABLE ーー‐ "― ‐ `ヽ ‐ ● │‐ ‐´‐● ― `‐ “ ¨ ふ… ・ ・ _`る ● ― ´ ‐●^“ ●¨ ‐ ●― “ "″ ― ● ‐― ― ヽヽ.“ ^:^^..ヽ _・ ‐.′・ .` ` `て ル _● ,'ャ ・ … '‐_"_5■ ― ス‐ ― 轟 _■ ● ^■ 3-5. Continued. ` a b c d rn this series, the fusion was done in stages' From reference 5. From reference 7. From reference B. ヽ [8■ ] ― -4‐ ,A● ―・ ―・ ヤ 軍 =● :"■ バ 黒 ■│.1・ ■ ■、 `, TABLE 3■ 6. The trip■ e point 6f HC■ and DC■ Fraction │ T P HC■ 344 158。 988 ■3.82 0.6■ 9 ■59.0■ 9 ■3.87 0。 0。 ● 757 895 (1 " 000) 0" T- (pure HCI) h Rossini et al" (i952)* liil-osavljevie (1949) c clusius (1941-)d 159.022 159 " ■3.89 028 159 .030+o 13.90 .oo2 13 . B99a 159 .052+0.005 158.94 34 158.9 159 " L3 .7gL 13.81-2+0.001 13.83 Eucken and Karwat (LgzAJf 159. Karr.^rat (:szug 159 [82] . 34 13 .7 9 =:J11■ TABLE 3-6. │三 =,■ ,1■ ■ 1■ 空 ■埜宝 =`摯 Ⅲ― ・す■1■ 1,生 ■1■ 1■ 豊」■■ =酔・ 1… ` い ″Ⅲ ⅢⅢ中 輛 ‐ ・● 切 ‐ 1, ・‐ ・ 撃 'Ⅲ …ⅢⅢ Ⅲヽ ∼ ・ 聖… ・ "'■ … ^ヽ Contttnued。 Fraction P K metrted kPa DC■ 0.330 ■53.325 l_2 0.598 ■58.365 12 "60 0.8■ 3 ■58。 377 L2.59 ■58.380 12.59 0。 948 (1.000) ■58。 383+0。 002 Tr (pure Dcl) ■58.4■ 0+0.005 Clusius and Wolf (194?)h ■58.44 Lewis a b c q e f g h i et al. (1934) i .50 L2.4784 ■2.■ 7 ■58。 2 The value obtained from srnooLhed vapor pressure equation. Fron referenee 13 From reference 14. From reference 6. From reference 5Frorn ref eren ce 7. From reference 9. From reference 8. Frcm reference 10. [83] iri,<+&!i4,u,rr..,,:1rr'!,allii$rrrr..,rl\:ia,r:'i'it,,),,j TABLE 3-7: r l: ,1:.:l The entha■ py of transュ tiOn of Hc■ and DC■ Series T. T2 K K H(TJ)LH(T三 ) … …… … 」mo■ '│ 。 ギ (手 90)― H(97) ・ 」mo■ HC■ a 工工 97.3■ 3 100.233 ■295`5 ■297.4 IIIa 97.062 ■00.584 ■3■ 7.2 ■296.2 IV 97.3■ 0 ■00。 330 ■298。 7 ■297.■ V 97.089 10■ .353 1347.3 ■296。 4 Average ■296.8+0.6 ● Ttr K Present wcrk Giauque and. Eucken Wiebe (1928ib and Kanuat (Lg24)c 」mo■ 98.67+0。 01 ■■86. 98.36+0。 05 ■■90. 98.75 ■229. Ross■ n■ et aI. (1952)d 98.38 C■ us■ us (1929) e 98.9 [84〕 △Htr ・ TABLE 3-7。 Continued。 Series T. TL no" K K H(Tダ IH(T■ … H(■ 06)一 H(■ 03) ) … 」mo■ _1 」moir■ DC■ ■03.309 ■06.475 ■500。 4 ■5■ 4。 0 工工工 ■03.■ 53 ■05。 784 ■500。 0 ■5■ 4。 3 IVa ■02.574 ■06.378 ■547。 5 ■5■ 3.5 V ■03.530 ■05.920 ■489.5 ■5■ 4.6 Average ■5■ 4。 工工 a ● β △Htr Ttr 」mo■ Present work ■04.63+0。 0■ ■386. Clusius and ?.Iolf $s47)f ■05.03 ■339. a rn this series, the transition was I-\ c A u e *t Frorn ref erence 5. From reference 7. From reference 13. From reference 6. From reference B. 185] 0+0.6 done ユn ・ stages " ■atent heat part of transitions Werё determined tO be(■ 2。 02+0.O■ )and(■ 312540:O■ )」 for HC■ and DC■ ′ respective■ ● [86] y. K ・ mo■ ― ■ や ″ 3-4. 120 K transition in HC1 The heat capacity measurements of HC1 near 120 K consistofthreeseries.Intheserieslandlll, the temperature increments were about 1 Kt so as not to overlook any small heaL anonaly' These were increased to about 2-5 K in the series XIII' In an attempt to determine the heat capacity of single crystal HCI' the data (series I) shown by filled circles in figure 3-10 were obtained after the following heat treatment; the sample was solidified at 159 K in 100 min, maintained' at L57 K for 4 htf and cooled down to ll3 K at a rate of -0.03 K min-l, where the measurements of heat capacities were conrmenced upwards' The open circles (series III and xIII) in figure 3-8 are considered to correspond to the heat capacity of polycrystalline sample because the sample was once cooled. down below 98 K. The heat capacity curve is smooth and continuous throughout the temperature range between 98 K and the triple point and there is no anomaly at or near LzO K. The supposedly single crystal also gives essentially the same heat capacity as the polycrystalline specimen. Both showed good agreement with the results by Giauque and wiebe within the combined limits of error. If we overlooked a small heat anomaly at L2O K, its corresponding entropy would amount to [87] 一・ ● 52 4 4 ∞∞] [ % f ○ 2 % 4 Ⅱ ■oEL っ\ ゛ 8 ・、 40 100 120 140 160 戸/K ё ′ sing■ e in the parae■ ectric phase. crysta■ ′ present reSultS, 0′ pO■ ycrysta■ line samp■ e′ present resu■ ts, キ′Giauque and Wiさ be`5) FttGURE 3=8, Heat cOpacity oF solid Hc■ ・ ■.二 島鵡働 _Ⅲ ⅢⅢ ¨ ‐■■‐ ‐ ‐ 出― f議 ″ ・‐ ・● =鳳 ・ ・ ― ・・ … │ lt■ 0_ しK=■ m。 ■l 五 さ re may be at 120 K′ ' 壼 O aふb■ ify Whatever anoma■ y さ b■ Ot 6F‐ di士 :││litii・ い 11 at most: a `二ёapacity is shown in figure 3-9. l One may thus safe■ y conc■ ude that the l'transition" at ■20 K′ ■f any′ be seen by the heat capac■ ty measurements. ■ 0 [89] cantt ● ″ 贅 [00] 誕 \ミ く\゛ 超 J︰ LO 0.6 0。 4 。 0。 θ 00 2 TO.2 0 0 0 0 100 120 140 戸 /K 3- g. The differential o, polycrystalline sample FIGURE heat capacity. o, single crystal; 160 functions The thermodynamic functions of'HCl and DC1 were calculated from the smoothed heat capacity values and other d'ata described above. The contribution of the heat capacities below the lowest temperature was estimated by a smooth extraporation, which was negligibly smalt. The results 3-5. ` Q ThermodYnamic are given in tables 3-B and 3-9 for HCI and DCl' respectively. The entropy of liquid HC1 at triple point was calculated to be 7 6.79 J K-1 mol-l, which is in good agreement with 76.57 J K-l mol-I obtained by Giauque and wieb.j5) The entropy of liquid Dcl at the triple point, hovrever, was 81.02 J K-l *o1-1 in contrast with 79.36 J K-l mol-l by clusius and worrj8) This discrepancy arises from the difference in the results of the heat capacity and"transition enthalpy measurements as shown above [9■ ] TABLE 3-8. Thermodynamic functions of HCl. T 一 K so(r)-so'(0) {ir?(r):Ho(0I}yr -Ico(r)-Ho Q)}/r -1 JK-t-mol.: JK -1 MOl. -1 」K・ mo■・ so■ id ■0 0.274 O。 2■ 2 0。 062 20 2.296 ■。7■ 2 0。 584 30 5.793 4。 079 ■.7■ 4 40 9.745 6.520 3.225 ● 50 ■3.69 60 ■7.50 ■0.80 6.705 70 2■ .18 ■2.67 8。 80 24。 74 ■4.42 ■0.32 90 28.24 ■6.■ 2 ■2.■ 2 100 43.88 29.82 ■4。 ■■0 47.76 30。 8■ ■6.95 ■20 5■ .43 3■ 。76 ■9。 ■30 54.93 32.68 22.25 ■40 58.28 33。 58 24.70 ■50 6■ .52 34。 47 27.05 ■59.0 64.40 8。 764 35.36 4。 925 5■ 2 06 67 29。 04 29。 04 Liquid ■59。 0 76.79 47.75 [92] '..,..,,..pjj TABLE 3-9. Thermodynamic functions of so K (r) -so (o) {.no. (r).:go (o) -t .... ..Ji(.-tamo]--1l JK-timoI..:.... DC1. }/r rtco (r) .-Ho (o) } /T jK ・ 轟6■ ・ ・ so■ id 064 ■0 0.28■ O。 2■ 20 2.329 ■。735 0.594 30 5◆ 866 4.■ 29 ■。737 40 9.9■ 9 7 0。 6。 648 3。 9。 046 5。 0■ 4 27■ ││ 50 ■4.06 60 ■8.■ 5 ■■.29 70 22.■ 5 ■3。 80 26。 06 ■5.38 ■0。 90 29。 90 ■7.29 ■2.6■ ■00 33.75 ■9.22 ■4。 ■■0 5■ .05 33.95 ■71■ 0‐ ■20 55.00 130 1 58。 ■40 62.3■ 36。 70 25。 6■ ■50 65.75 37.58 28.■ 7 ■58。 4 68.74 38.49 30。 74 34。 39 90 35。 8■ 6。 863 8.763 68 53 20。 ■0 22。 93 25 Liquid ■58.4 8■ .02 50.77 Ⅲ [93] 30.25 ■二 ■│● ■ │■ .、 ■.,、 _、・、 │■ … … 認 縣 動 轟 凛 =Ⅲ _^、 ヽ ― … ・― 一 ―■. .^… … …^`_一 ― ‐… ・ ヽ一‐‐― ● “`∼ 一 ‐4-― ‐ ″ ¨… Ⅲ●■_.L__、 ■、1._… ´ │■ ・ ‐ ● ● ‐ ′ ● _● ●● ・・・・ ・ ‐‐ ・'´ ‐″,ぉ ■ "、 た、__‐ .“ =… … ^‐・ REFERENCES tO CHAPTER 3 C. Z. Phys. ■. simon′ F., Vo Simson′ 2。 Kanda′ E. Bu■ ■. cheme Soc: ■924′ 2■ ′ ■68. 」apan ■937′ 3. Sindor′ E., Farrow′ R. F. Co Nature ■2′ 473. ■7■ 。 ■967′ 2■ 3′ 4. P■ y■ er′ E. K。 , Tidwe■ ■′ E. D. Z. E■ ectrocheln。 ■960′ 64′ 7■ 7. 5。 Giauquё ′ W. F., Wiebe′ R. 50′ 6。 │ 」. Ame Chern: Soc. ■0■ 。 C■ usius′ K. Z. Phys. Chemo B ■929′ 3′ 4■ Clusius′ K。 , WO■ f′ . ■924′ 7. EuCken′ A., Karwat′ Eo Z. Phys. Chem。 8。 ■928′ ■■2′ ■947′ 2a′ G. Zo Naturforsch. 467。 495. 9. Karwat′ コ. Z: Physe Cheme ■924′ ■■2′ 486。 ■0: LeWiS′ G. N。 , MaCDona■ d′ R= T。 , Schutz′ Po W。 Jo Ame Chelno Soё 。 ■934′ 56′ 495。 ■■. Heng■ ein′ F. A. Z. PhySe ‐ ■923′ ■8′ 64. 226. ■2. Henning′ ■3. Rossini′ F. D., Wagman′ D. D., EvanS, W. H., Levine′ s。 ■46 F。 , StOCk′ A. Z. Phys。 1192■ ′ 4′ , 」affё ′ 工. NBS Cirё . ■952′ 500′ 549。 Mi■ OSav■ jeviё , D. M. G■ ashik Hem. DrOStVa BeOgrad ■949′ ■4′ ■3. [94] . ■ ・ J′ ´ ■●与 ・ ‐ 」= '・ ‐ “ ,ヽ Fヽ =・ ´´ ● ャ■ ■ ユニ メ冨 出饉出』 燿 ‐ 魔ェ 」 =二 ===ニ =屁 ===“ =蔵 =よ ==■ ― 磁認濃嵩議 .■ =1:L総 `ム ぶれ `ぶ 墨L宦 五出 ユ蔵逸轟 =轟 (あ :誌 Appendix 3A. Measured heat capacities of HCl. 玲 T 一K T … 」K ・mo■・ 」K・ 3K mo■・ 52.358 20.■ 5 Ser■ es 工 53.3■ 8 20.44 067 42.05 54.282 20。 ■■5.065 42.20 55.250 2■ 。07 ■■6.059 42.38 56.223 2■ ■■7。 049 42.48 57.20■ 2■ 。64 ■■8。 035 42。 60 58:■ 77 2■ 。94 ■■9。 0■ 6 42.87 59.■ 50 22。 ■■9。 993 42.92 60.■ 29 22.44 ■20。 968 42.95 6■ ◆■■8 22.82 62。 ■■6 23◆ 05 34 ■■4。 , Cp ■2■ 。938 43。 ■5 76 .35 20 ■22.905 43.28 63:■ 27 23。 ■23.868 43.49 64。 ■49 23.68 ■24.829 43。 72 65.■ 85 23.92 273 24.22 67.4■ 5 24.54 572 24e86 69.734 25.23 904 25.53 ■25。 786 ■26.739 ■27。 688 43.83 66。 44。 00 44.07 68。 Ser■ es II 5■ .390 ■9。 70。 72.080 85 ヽ 195] 25。 86 遭■1餞 hヽ 義1● ^議" jg:*:iif:::;l.f::gji,!lii:iu:itil:.:.r;:;-"f-i:; ::rd.ffiif;rX-,;:ji;!il*#Gt4r::.:---iij:-:J-!:-;ir5-j^l*l Appendix 3A'. Continued. 0 T 一K T 一 K 」K ・mo■ 1 73.264 26.■ 7 ■0■ 457 26.53 ■02。 75.65■ 26.88 ■04.■ ■3 76.847 27.23 ■05。 74。 78。 044 27。 62 .426 608 770 ■07。 4■ 3 J K -1 INOJ- -1 40。 2■ 40。 38 40。 6■ 40。 88 4■ 。09 β 79.44■ 81。 035 27.98 28。 ■09。 4■ .24 45 82.074 28.77 83.652 29。 3■ 85.260 29。 86 80。 892 30。 39 8■ 86。 042 Ser■ es II工 78。 7■ 7 230 .720 27◆ 77 28.20 28。 66 88:535 3■ .■ 2 83。 90。 ■64 3■ ◆69 84.6■ 9 29。 38 86.237 30。 ■■ 384 33。 ■6 87.828 30.72 94.973 34.35 89。 395 3■ 。28 96.539 36。 ■2 90。 948 3■ 。96 97.677 4■ 9■ .780 93。 32。 92.529 .70 Transition ■00.575 078 40.■ 3 196] 29.■ 2 32。 65 64 93。 739 33.28 94。 549 33.80 Appendix 3A. Continued. や T T 一K 一K 95。 363 34.48 ■16。 JK-1*moI -1 42。 28 96。 ■72 35。 29 ■■7.490 42.50 96.8■ 8 36.04 ■■8。 5■ 7 42。 55 97.302 37.58 ■■9.538 42。 84 97.77■ 4■ .97 ■20.555 42.90 98じ ■73 75.■ 6 .568 43.■ 7 ■2■ Transition ■22.569 43。 21 ■00.2■ 3 39.97 ■23.552 43.49 ■0■ 40◆ 09 ■24.524 43.62 ■02.380 40.33 ■25.493 43.82 ■03.774 40。 49 ■26.456 44.00 62 40。 68 ■27.432 44`04 ■06.539 40.97 ■28.5■ 9 44。 ■08。 077 4■ .■ 4 ■09。 775 4■ 。4■ .■ 3■ ■05.■ ‐ 476 Cp 24 1い 11llll) Series fV ■■■.293 4■ .64 Transition, ■■2.505 4■ .82 Continuous Heating ■■3.528 4■ .84 ■■4.500 42。 03 ■■5.482 42。 29 197] ¨ tJ・ ,絋・像 に,.=,一れ =よ `よ I__■ ヽ一 ■“‐●● “ Append.ix 3A. Continued. ● T T Series 一K 一K 」K'・ mo■ Cち …■ V Transitionn mol・ 3.53■ 0。 0303 3.946 0。 0430 364 0.0605 4.765 0.082■ 4。 Continuous Heating 」K・ ● Ser■ es VI Ser■ es VIII 2.067 O.00548 2.■ 28 O。 2.351 0。 00858 2.440 0.0■ 00 2.658 0。 0■ 2.737 0。 0■ 36 80 32 00607 0■ 4 0。 0■ 88 3。 043 0。 0■ 3.4■ 2 0。 0270 3。 355 0。 825 0。 0360 3.668 0:0347 4.231 0.05■ 8 3.99■ 0。 0456 4.6■ 3 0。 343 0。 0586 4.732 0◆ 0784 3。 3。 Ser■ es 07■ 2 4。 0245 VII 2:■ 20 O.0060■ 2.428 0.00952 2.760 0。 0■ 3.■ 29 0。 Ser■ es IX 78 O。 046■ 39 4.564 0。 0653 02■ 3 4.997 0。 0827 4‐ [981 .■ 彙で 彙 ■11‐1摯 ●■lr」■壼当 ■■蟻ょ 」 ルV,it,=お ど ●ヽ メ '′ “ 1■ Appendix 3Ao _ 諄 ■_■ ヽ は ■■ ■■、 =´ “ ==● ・ ==・ '■ ===・ _ .^_.__… ■■■常 ^_■ 7,■■1■ ■■ Continued. φ T T 一K 一K ...c. ---:T----=T JK -mol : .t1 5.49■ 0.■ ■99 6.066 0◆ 6.700 0.2352 7.429 0。 3377 8.280 0。 4845 JK-1-mol -1 220 2.■ 94 ■4.339 2.75■ 13。 ■62■ Cp Ser■ es XI Ser■ es 6082 8。 884 O。 9。 630 0。 8■ ■0。 446 ■。0693 37 4.365 0。 0552 ■■.359 ■。3956 4.749 0。 0757 ■2.342 ■。7902 5.■ 88 0。 0959 ■3.355 2124■ 0.■ 403 ■4.396 2。 744 3。 278 73■ 5。 734 6.344 0。 7.0■ 0 0.27■ 0 ■6.■ 68 3。 7.665 0,3648 ■7.046 4。 2■ 8.265 0。 4787 ■7.96■ 4.763 902 5.3■ 6 ■948 i■ 5。 3■ ■ 0 0.6■ 94 ■8。 623 0.8070 ■9。 83■ ■0.367 ■。0433 ■■.■ 84 1.3359 ■2.■ 40 ■。7008 8。 9■ 9。 ser■ es ■4。 [99] 482 5。 ■ 864 XII 2。 846 = Appendix 3A. Continued. ` T T 一K 一K Cp JK-1:mol-'1- 'r JK- -moI -] ■5:478 3.368 36。 ■6.466 3.883 37.489 ■4。 453 38.6■ 5 ■5。 4■ 2 864 ■5.875 380 ■4。 50■ 964 ■7。 423 4。 ■8。 398 5.O■ 5 39。 ■9.378 5.6■ 9 4■ │■ 34 ■6。 20.382 6.■ 83 42.354 ■6。 8■ 5 .428 6.787 43.609 ■7。 257 492 7.4■ 0 44。 849 ■7。 729 23.543 8.054 46.■ 07 ■8.■ 42 47。 4■ ■ ■8。 363 ■ 2■ 22。 24。 592 8。 25。 650 9.235 48。 755 ■9.023 26.728 9.805 50。 343 ■9.542 808 ■0.388 28.872 ■0.942 29。 926 ■■。520 ■02.363 40.30 30。 975 ■2.037 ■05。 ■68 40.80 32.038 ■2.547 ■07。 625 4■ .■ 0 33.■ ■7 ■3.044 ■■0。 054 4■ 34.■ 98 ■3.525 ■■2◆ 608 4■ 。70 ■■5.283 42。 ■4 27。 35。 285 ■4。 628 583 Ser■ es X工 工工 009 [■ 001 .48 卓 :Ⅲ `潔 =織 摯 轟訥 熱 .… ■● 鳶 燻 、■___・ 4蠣 曲 議 餞 離 爆 識 ■ 彙 議 彙 霊 彙 彗 壼 轟 彙 蓋 轟 =議 Appendix 饉轟畿癬議数彙肇壼藤綸 =晏 彙‐彙議轟‐轟轟曇饉壷議彙議密事蟷 =姜 ■ 3A. Continued. 3 T T 一K 一K ■■7。 925 42。 ■20。 537 43.■ 0 mo■・ 63 Series XttV 37 ■23.■ 24 43。 ■25.687 43.87 ■28。 224 44.20 ■30。 738 44.6■ ■ 」K・ ■56.005 5■ 。35 206 56。 67 ■57。 Fus■ on ) ■33。 22■ 44。 95 ■35.820 45。 32 ■38.527 45。 86 .206 46.22 ■43.858 46.60 ■46。 482 47.20 ■49。 077 47.77 ■4■ ■5■ 。640 48。 ■54。 ■73 49.22 ■56.4■ 7 5■ ■6■ .756 58。 06 059 58.■ 5 ■64。 49 .25 Fus■ On′ Continuous Heating [■ 0■ ] 轟寮漱‐螢轟彙機彙競 =一 ・子 ■1■ 1“ =手 =│■ 、運鸞盪 ‐ 議二十■■‐‐■■Ⅲ=摯 ‐― ― ― =な _二 ● … Appendix 38. Measured heat capacities of DCl. ◆ T T 11… │ mo■ ■ JK「 聾 …… 一K 一K Cp Cp JI(-1 mOI -1 ` Ser■ es 76。 3■ ■ 29.76 25 20.8■ 77。 839 30.25 .560 2■ 。20 79。 393 30。 707 2■ 。63 52。 73 53.883 22。 09 55◆ ■■■ 22。 56 76.98■ 29.92 56.393 22.99 78:629 30。 57。 7■ 9 23。 50 80。 336 3■ 。03 59。 048 23。 97 82。 052 3■ :6■ 60。 365 24.47 83。 779 ‐ 323■ 9 697 24.92 85:489 32.82 63。 074 25。 37 87.223 33。 64。 486 25。 86 88。 994 34`■ 9 65。 9■ 0 26。 33 90.750 34.79 67.347 26.80 92。 68.82■ 27.26 94.267 36.■ 6 70。 32■ 27.79 96.032 36.92 7■ .8■ 9 28.27 97。 797 37.80 73.3■ 4 28`75 99.550 6■ 。 t::11111111) 29。 50.42■ 5■ 0 I 74.807 Ser■ es 工工 1■ 02] 507 35。 38。 47 42 48 62 … 、_,==■ コ γ ^ = =■ tt it_t, Appendix 3Bo Continued. ◆ ■02。 973 C 」K ・ mo■ 39。 4■ 一K .279 T T 一一 K ■0■ i_ p ・ 65 ■0■ `78 Transition, 40.60 ■03.65■ 46。 ■0 Transition ■06。 │ Ser■ es 工工工 .433 30`79 284 44。 22 ■07.283 44.38 ■08.278 44158 .38 ■09。 268 44。 68 83.■ 15 3■ 。95 ■■0。 256 44。 74 84.797 32。 8■ 3■ 45 ■■■。240 44.86 493 33.■ 2 ■12。 5■ 4 45。 06 88.■ 60 33.86 ■■4。 266 45◆ 34 Ser■ es IV 86。 0 737 39.74 =570 ■02。 627 Continuous Heatincr 79。 」K・ 轟o■・ 849 34。 37 9■ 。59■ 35。 09 93.348 35。 76 97.758 37.74 95。 ■20 36。 52 99。 600 38.70 37.28 ■00.99■ 39.33 03 ■02.048 40.■ 3 89。 96。 894 98.33■ 38。 99.422 38.50 ■03。 090 4■ ■00.502 39.09 ■03。 985 50:99 [■ 03] .53 、■■ :^ 1■ _ 1_ 11^.し ,, _■ .:、 ―ふ … 「 ■ _tt,二 ■ ■.こ 二審彙奮曇 _: Appendix 38. Continued. 0 T C T p 一K 一K 」K lmoir・ Transition φ ■05.982 44.3■ Series ■06.873 44.27 Transition, ■07.86■ 44。 Continuous Heating 48 ■08。 844 44.64 ■09。 824 44.64 V Ser■ es VI ■■0.898 44“ 94 ■。985 O。 005■ 6 ■■2.■ 60 45.03 2.254 0。 00786 ■■3。 6■ 0 45◆ ■■5。 244 20 569 0。 0■ ■■ 2.886 0。 0■ 63 2。 45.49 ■89 0.02■ 9 97 ′3.484 0:0286 3.787 0.0382 076 030446 ■■6.940 45。 73 ■■8.85■ 45。 ■20。 746 46。 2■ ■22。 629 46。 3。 38 4。 ■24.500 46.68 4:39■ 0.0584 359 47.0■ 4.764 0.0783 ■28.205 47。 2■ 5.■ 80 0.■ 055 037 47.42 ■26◆ ■30。 series VII 2。 ■ [■ 04] 05■ O。 00542 “ 宅 ‐ r Appendix 3B. Continued. 金 T 一K 一 T 一 K 2.322 0。 」K ・mo■ ・ 00840 Ser■ es IX 655 0。 0■ ■7 2.968 0。 0■ 7■ 3.280 0。 0228 4。 3.584 0。 0325 5.269 0.■ ■47 3.895 0。 0429 5。 720 0.■ 393 4.240 0。 0554 6。 242 0。 4.649 0。 0727 6.858 5.■ 34 0。 ■ 2。 O.0649 4。 5■ 4 886 0。 0853 ● Ser■ es 038 0.2526 ‐ 7.6■ ■ VIII ■942 0:3662 Ser■ es 2.096 O。 00580 f4.340 0。 0500 2.382 0。 00920 4.696 0。 07■ 6 2.695 0.O■ 32 3◆ 0■ 9 0◆ O■ 5。 ■00 1 0.097■ 78 5.520 0。 ■277 0。 ■650 3.33■ 0。 0247 5.996 3.635 0。 0306 6。 489 0.2■ 9■ 3.949 0。 0438 7。 036 0.2865 303 0。 057■ 7.7■ 3 4。 8.52■ [■ 05] 1 0。 3945 0。 554■ Appendix 38. Continued. ● T T 一K 一K iC p l… … 」K=lmo■ 「 9.393 ■0.287 ■■。236 0。 7575 ■9。 」K ・mo■ 565 ・ 5.763 ■。043■ .■ Ser■ es 。377■ XII ■2.232 ■。78■ 8 ■4。 26■ 2。 737 ■3.244 2.226 ■5。 ■65 3◆ 247 273 2.732 ■6.■ 2■ 3.764 ■7e■ 66 4e357 ■8。 ■93 4.968 ■4。 Ser■ es XI 393 0。 5069 ■9.■ 29 5。 508 9.■ 9■ 0。 7025 20。 062 6。 069 8。 003 0.9423 2■ ■0.885 ■。2448 2■ 。 ■■◆849 ■.6■ 6■ 22。 899 7.733 ■2.857 2.049 23。 872 / 8。 309 ■3.86■ 2.529 24.96■ 8。 934 ■4.806 3.053 26.■ 0■ 9。 585 ■0。 207 10。 995 743 3。 556 27.256 ■6.672 4。 079 28。 ■7。 60■ 565 ■5。 ■8。 6.694 .040 . 7。 ■98 408 ■0.846 4.608 29.565 ■■.473 5.■ 68 30。 734 ■2.■ 09 ` [1061 Appendix 38. Continued. ● T 一K 3■ .89■ 33。 043 34.230 35。 452 ■2。 705 ■3.274 ■3。 444 48。 23 ■38。 ■43 48.73 805 49。 ■3 ■43.43■ 49.38 ■35。 863 ■40。 ■4.459 36.677 ■5。 042 ■46.026 49。 87 37.9■ 3 ■5。 607 ■48.585 ‐50。 39。 ■62 ■6.■ 64 ■5■ 。■06 5■ 。04 40.429 ■6。 73■ ■53.6■ 5 52。 68 4■ 。720 ■7.288 ■55。 829 55.2■ 042 ■7。 837 44.397 ■8。 406 45.789 ■8。 975 47.223 ■9.535 48.654・ 20.■ 2 ■54.■ 50.■ 45 20.64 ■56:■ 2■ 43。 47 Fus■ on′ Conti■ uou, Heating Ser■ es XttV 33 53。 54 60。 2■ Fus■ on Ser■ es XttII ■27.8■ 3 47.■ 8 ■30。 337 47.54 ■32。 842 47。 9■ ■60。 670 ■62.9■ 8 ● [■ 07] 6■ `■ ■ 6■ 。05 ● CHAPTER 4 Thermodyham■ c Properties Of 童Br and DBr ● l■ 08] ‐ ` 4-L. Heat capacitY The measured. heat, capacity values are presented as Cp in appendices 4A and B for HBr and DBr, respectively. Curvature corrections were not applied, but may be computed from the values since each series is results of continuous measurements. The smoothed values at rounded temperatures are given in table 4-1. Above 140 K, corrections arising from vaporization ■ of HBr or DBr were significant. Relevant quantities for such corrections were evaluated as follows' The density of solid HBr in phase I was obtained from the X-ray aata(I) at 120, 130, and 140 K, and' the t2') liquid density from Strunk and Wingate.' Densities of DBr were assumed to be identical to those of HBr. The heat capacity in the gaseous phase is (7/2)R in the temperature range required'. The results for HBr and DBr are plotted in figures 4-1 and 4-2, respectively. Solid HBr has three transitions with a tail extending down to lower temperatures. In contrast, solid DBr has two gradual transitions. such an isotope effect is not seen in other hydrogen halid,es. The measured heat capacities of solid HBr and DBr are compared, with earlier results in figures 4-3 and 4-4, respectively. The results are plotted as ` [■ 09] TABLE 4-■ . ` The heat capacity Of oo■ id HBr and DBr at rounded va■ ues of temperatures. T 一K Cpy . DBr HBr こ ・ ―‐ ■^^=.― ■ 」K mO■ O.0■ 56 2 O.O■ 5■ 3 0。 4 0.■ 4■ 5. 0。 6 0。 8 ■.374 ■:337 ■0 2.634 2.634 ■2 4。 262 4.■ 98 ■5 6。 846 6◆ 20 ■0。 90 ■0:90 25 ■4.20 ■4.34 30 ■6。 75 ■7。 ■2 35 ■8.79 ■9.46 40 20。 47 2■ 。56 45 22。 00 23。 43 50 23.46 25。 28 55 24。 98 27。 ■4 60 26。 7■ 29。 2■ 0.055 055 ` 0。 ■38 296 0。 292 537 0。 533 [■ 101 792 TABLE 4-■ . Continued. ● T 一K (む ヽ .TK-ImoI HBr DBr 65 28。 68 3■ 。38 70 3■ 。■0 33.8■ 75 34。 33 36。 80 39。 28 40.94 85 49。 80 47。 25 62。 55 90 80 95 4■ 。57 46e72 ■00 43.67 47684 ■■0 50。 50 53.56 ■20 45。 09 ■30 45。 24 ■40 45。 8■ 49。 ■50 46.65 50.56 ■60 47.69 5■ ■70 48。 94 53。 ■2 ■80 50。 62 57.67 49.■ 6 [■ ■■l 77 .58 ● 戸 /K 100 0 100 50 200 150 25 80 20 ● ││ __ 15 10 ● 20 5 0 0 5 FIGURE 4-■ . 10 戸 /K ′ Heat capacity [■ ■2] 0 15′ ёf HBr. 20 ゛ T3E TYつ\ 0 0 6 4 ■o ∫立っ\゛ ..● n 戸/K 0 F 0 O 50 100 150 200 25 80 20 ● ● 10 ■ 20 5 0 0 い 5 FttGURE 4=2。 10 ア /K 0 15 20 Heat capaむ ity of pЁ r. 31 [■ ■ 1 ゛ TbE TYつ \ 0 0 6 4 ゛ E T3 TYつ \ 15 ● 々 ″ 15 ▲ ハ AA 10 ▲ ▲ ▲ ▲ ▲ ▲ 0 会 0 5 O ▲ ▲ OJ戯Y︶o 十 十十 ▲ 十 _ ti^十 11+十 +1+ 十 OT■ *l nJrr ♯ 十 ヽ -5 ▲ ▲ + 十▲ ()8_ 0 ▲ ▲ 今 ∠ ▲ ▲ ▲ + ― 。 報 [PPか] ΦQ\ く too ﹂ ▲ 二10 =15 L O 50 100 150 200 戸 /K FIGURE 4-3。 resi■ tζ 0イ ′+′ A compar■ son of heat capac■ ty resu■ ts for solid HBr. 3)▲ Giauque ana Wiさ bё ∫ : Eucken and Karttat`4) p9rC,nt=[CP"'S・ g■ ven )「 CP(SInOOt,)]│・ in tab■ e 4-■ 。 '9/rp(Sm?oth)]:Where cP(slnoOth)iS o′ present ● 15 [PH u] & \く t8 ﹂ 5 ● O l. .. . . ・: 0● .。 r . :・ °Ч 「 番 :10. ● _ ^ : ^ ・。 1・・ .・ =・ -5 ―10 ―15 100 200 150 戸 /K FIG▼ RE 4-4。 A compar■ son of heat capac■ ty results for so■ id DBre resuitsF .′ c■ usius and wo■ f∫ 5) ) CP(Totり │:`;:I:in::[1:C:1:IS・ ]文 ・ 09/に p(SmOOtり ]′ where o′ present CP(smooth)iS │ differences from a smooth curve corresponding to the values given in table 4-1. The scatter of our measured points of solid HBr is 15 per cent at the lowest temperatures, 10.5 per cent at 10 K, +0.1 per cent K, and +0.2 per cent at higher temperaLures, Near the transitions, it increased up to l-1 per cent because of small temperature increments. since the amounts of DBr in sample I are small, the scatter is somewhat larger than that of HBr. For both HBr and DBr, two samples gave id'entical results within the extent of scatter except for two poinLs at about 2.5 K in the series X of HBr sample I, which showed larger values by some tens of per cent than the smooth heat capacity. They obviously come from Poor manual control of adiabatic condition at the lowest temperature. Giauque and. wiebers results for HBr are in agreement with the present results within the combined ljmits of error. Eucken and Karwat's and clusius and wolfrs results indicated the similar sltstematic deviations as reported for HCI and DCI, respectivel-y A more sensitive comparison in the lower Lemperature region is mad.e by use of equivalent Debye temperature above 20 ° Wh° Se temp,rature dependence for 3N degrees of D′ freed.om is shown in figures 4-5 and 4-6 for HBr and DBr, respectivelY う [■ ■6] 100 0 0 中H劇] [ x ヽ ぬ0 90 十 ▲▲ ▲ 今▲ 80 ▲ ▲ 70 30 戸/K The Debye characteristic temperature of HBr der■ ved fFom the measured heat capacitieS′ assuming 3N oegreeS Of freedom。 0′ present 4) re6u■ ts, +′ Giauqte and "iebe∫ 3)▲ ′ Eucken and Karwat∫ Fェ GUttE 4-5。 ● L ■ 0 roo [PP∞ ] y \ oS : :.3 o ooo 90 ● 80 ● ● 70 T/K 4'6. The Debye characteristic temperature of DBr derived from the measured heat capacities, assuming 3N degrees of freedom. o, present results; o, Clusius ana woftjS) FIGURE r4whEr!t+-!?"isiar+!*!rF&'.@.. . .t'r4ek6iia@-*, . The Debye temperature curves for HBr and DBr are almost superimposable below about 2O K although the former is slightly l-ower near 8 and 12 K. Above 22 K the DBr curve declines more rapidly. ● [1■ 9] ‐ヽ ● ‐ ヽヽ ●‐■^● ―‐ ´ "■ “_● ● … “ 1 草 、、■、,●秦 ゛■ ・● ・ ・― ● ・“‐… ― ,■ "… … "摯 ●.―・0い 0"‐ ● …Ⅲ ―・ ・● ― ● ・ t・ ・ ■9ⅢⅢ,■■■ “ " . ヽ │ = … ‐ "… ・ ` 4-2. Vapor pressure of the solid and liquid HBr (Sample I) and DBr (Sample Ir) are listed in tables 4-2 and 4-3, respect5.vely. The results were f itted to the following equations by the method of least squaresi Measured vapor pressures HBr 1og10 @/Pa) = -520.L4 DBr (K/T') +3.92"19+0.01814 6 (T/K) t":t:;:lrl ,.,,r, +6.8e45+0. o0e8 s3 (r/Kt (4-1) (4-2) Deviations from equations 4-1 and 4-2 are included in tables 4-2 and 4-3, respectively. A comparison with the resul-ts reported others is given in table 4-4The differences are appreciable: Mcrntosh and Steele's result"(6) for example, 3t L77 Kt show a pressure higher than ours by 9 kPa, Henglein's t""rrlt"(7) a pressure lower by 70 Pa. The results of Bates et a1., which consist of only 3 points for both solids, indicate no isotope effect in contrast to present resultsThe equations 4-L and, 4-2 ind.icate that a plot of log P against t-l has such a slope that increases at higher temperatures. One of possibilities that might give such an effect would be decomposition of hydrogen bromide,to rel-ease some hydrogen in the vapor phase. However, there were no ind.icatiOns of decomposition [■ 201 fABLE 4-2. Vapor pressures of IIBr. P"P(eq. 4-■ ) kPa kPa K So■ id 023 506 ■.6■ 9 ■53。 0■ 8 2。 0■ 9 -0。 00■ ■55。 5■ 2 2。 52■ -0。 02■ ■58。 0■ 7 3。 ■54 -0。 034 ■60.507 3。 943 -0。 036 ■62.976 4.915 ■50。 0。 -0.025 004 423 6。 ■04 0。 ■65。 432 6。 ■22 0。 0■ 7 ■67。 865 7。 558 0.052 ■70。 304 9。 250 0。 045 ■72。 72■ ■■.300 0。 064 ■75。 ■43 ■3.76■ 0◆ 077 ■77.518 ■6.5■ 3 二0。 046 ■79。 866 20.002 10。 054 ■79。 869 20。 0■ 2 0◆ 059 .907 23.352 -0。 057 ■65。 ■8■ ■83。 9■ 9 27。 304 -0。 059 ■84.262 28。 ■40 0。 043 ■85。 595 30.975 -0。 ■5■ ■85。 605 3■ .079 -0.07■ [■ 21] TABLE 4■ 2` Continued。 始 P P-P kPa l Liqtid・ り ■87.360 34。 500 ■87.449 34`906 ■89:27■ 38。 865 ■89。 363 39.342 ■89。 375 39。 380 ■9■ .24■ 44.244 0フ [■ 22] ・ (eq. 4-1) ‐ kPa ■よ ■ 凛 i‐ ハ ‐ 二 凛 一 TABLE 4-3. Vapor Pressures of DBr. 贅 P-P kPa kPa K (eq. 4-2) So■ id ■56。 ● 027 2。 494 0。 007 ■58.498 3。 ■5‐ 3 =0。 00■ ■60.949 3.959 -0。 0■ 0 ■63.383 4.946 ‐0。 0■ 5 ■65。 844 6`■ 78 -0。 007 ■68。 326 7。 695 0。 007 ■70.828 9。 556 0。 027 ■73.347 ■■。798 0。 025 879 ■4。 5■ 8 0。 02■ ■78:437 ■7。 74■ ■8■ 。037 2■ .9■ 4 0。 049 300 26。 0■ 2 -0。 037 ● ■75。 ■83。 Liquid ■86。 88■ 33。 439 中 [■ 23] -0.07■ 1` ■^‐ ` ` ´ ご -1. ・ 凛凛‐ 「 ニー ´ : …│ ■・ : │ ‐ TABLE 4-4。 Coefficiё nts A land B for the ,apor pressure equation3 ● ・ 1 1´ .│ A(K/T)十 B °g■ 0(P/Pa)= ¨ │‐ ‐‐ A B HBr ■035。 ■2 Present work 1103 et al. (L935)a 1138.6 Hengrein (1923)b 807 Mcrntosh and Steele (1906)c Bates ● ■0。 0556 L0.434 10.63L 8.92 DBr Present work Bates a b c et al. (1935)a From reference 8. From referen ce 7.- From reference 6-. Ⅲ [■ 24] 2457 1069:80 ■0。 ■103 ■0.43■ 1 1 in the temperature drift of heat capacitl'determinations nor in the purity determination at the triple point which was conducted aft,er alL the vapor pressure - ● measurements had been concluded- o -a ウ 1125] LJ ● ‐ 嗜 4-3. Enthalpy of fusion The results for fusion experiments are given in table 4-5. A correction for the .fCndT was applied to compute the enthalpy of fusion AH, from cumulative enthalpy H(T2)-tt(Tf ). t'leasurements by other workers are also included for the sake of comparison. The mean values of the enthalpy of fusion of HBr and DBr obtained \^/ere (2398.7 + 1.0) and (2369 + 4\ J mol-l, respectively. The rather J-arge uncertainty in DBr comes from smallness of amount of specimen used' as Samp1e I. The triple points of pure HBr and DBr, given as (I86.500 + 0.004) and (185.64 + 0.01-) K respectively, were estimated from a plot of the equilibrium temperature against the reciprocal of the fraction melt,ed (see table 4-6). Although the melting was broader in DBr because of larger amount of impurities, this plot was approximately linear. 今 [■ 26] The entha■ py Of fusiOn of HBr and DBr. TABLE 4-5。 ` Sample Series T. T2 no. K K H(T2) H(T.) 」mo■ ― △Hf Jmo■・ HBr 工 I I エ XXIII ■85.595 - ■87.360 2502。 ■ 2398。 9 XXIVA ■85.605 - ■87.449 2505。 4 2397。 7 rva ■86。 099 - ■88.478 2538.4 2399。 4 ● Average ● 2398。 Giauque and, Wiebe (le28) b 2406 Eucken and Karwat $s24\c 2594 7 + DBr エ I I I XIIIA ■82。 593 ■86。 762 26■ 6。 0 2369 XIV ■82。 790 ■86。 585 2590:4 2365 rxa ■83.300 ■86.88■ 2579。 9 2372 Average CLusius and Wotf (1947)d [■ 27] 2369 +4 2403 ■。0 TABLE 4-5。 Continued。 a In this series, the fusion b From'reference 3. c From reference 4. d From reference 5. 0 1■ 28] was done in stages. TABLE 4-6. The trip■ e point of HBr O,o Dpre Fraction Samp1e kPa melted HBr 186.415 L86.453 L86.467 : 18 6.47 6 18 6.482 186.484' + 0.002 0.134 0.319 0.504 r ● 0.588 ' a.874 (L. o0o) 0。 245 ェ■ 1 1 1 ■86.440 1 03464 ■86。 462 111 0.684 ■86:477 ・ 0.902 ‐ ■86.483 000) 1(■ 。 . 32-79 32-88 32.98 33.03 33.10 33 - 3La 1 ‐ ■861484=三 90002 L86.500 ! 0-004 Tg (pure Hgr) Giauque and, wiebe (1928)b 186.24 ! 0.05 (Lgz[c clusius and wol,f (1947)d Eucken and Karwat [■ 291 187.0 33.L TABLE 4-6e Continued. ● Fraction Sample kPa melted DBr 25■ ■85.269 0.376 ■85.4■ 4 0.495 ■85。 O。 エ 0.609 ■85.49■ ‐ 0。 735 ■85.505 0。 89■ ■85。 528 (■ II 450 1 ■85.548 ± 。000) 0。 005 300 ■85。 343 30。 ■6 0e56■ ■85:474 30。 9 ■85.527 30.96 0。 0。 8■ (■ 73 ■851548 + 0:ё 05 1 30:9■ .000) 185.64 ! Tf (pure DBr) cLusius and wolf (1947)d L85.62 0-01 30-9 a The va■ ue obta■ ned from smoothed vapor pressure b From reference 3。 ・ C From reference 4。 d From lと ference 5。 │ [■ 30] a ‐ ‐ ■ │ ёquatione ● 4-4. Transitions in solids Details of thermal behavior of a phase transition by the enthalpy change through the transition region. Figure 4-7. refers to the transition between phase III and II and figure 4-8 to that between may be manifested II and I incLuding phase Ir of HBr. The different series of results were normalized on the high temperature side of transitions. The transition temperatures were then determined from the point at which the rate .of change of enthalpy with temperature is a maximum. In the lower transition of HBr or DBr, the time to reach equilibrium after heating r^tas off became an hour or more. At each such point, the rate of change of temperature with time was followed for 40 min, the results fitted to a first-order rate 1aw, and the equilibrium temperature (T-) obtained by extraporation. The temperatures plotted were determined' in this way. In HBr, the time required to come within. 0.001 K of Too v/as about 40 min. Transitions were found to be continuous. The upSrer two transitions of HBr obviously differ from each other in equilibration time. On the low temperature side of the transition at 113-60 K it requires a very long timet In fact, the time required, phase t [■ 3■ ] S ▲ ハ 26 2 2 2 4 ・ Krミ ︸ Orミ ︲︵ T3E っX \ 一︵ Pωヽ中 [ 2。 0 L8 86 88 ‐ 90 92 94 96 π /K Entha■ py change ■n the reg■On phase II工 → phase ttl of HBr and DBr。 The different series of measurements are ■orma■ ized on the high temperature Side Of transitions. HBr Samp■ e 工8 [0, (工 ), Δ′ (XIII)]. HBr Samp■ e 工工8 FttGURE 4-7。 ▽′ (II). DBr Sample 工8 [● ′ (VI), ▲′ (VII)]. 4.8 ● 44 0 4 Oyミ L︵ kyミ ︸ 一\ ︷^ TちE っ , 3.6 3.2 │10 H4 ´ H8 122 ‐ I FIGURE 4-8` Entha■ py change in the reg■ 9n Phase 平 phaSe = =.→ of HBr and DBro The different ser■ es of mё asurements are 1 ● 万 /K nbrma■ ized on the high tempeFature side.of transitions. HBr Samp■ e 工= [o′ (X工 V), △′ (XV)′ ▽′ (XVI)]. 軍Br samp■ e ==: 口 ' (=I■ ): DBr Samp■ e エ = [● ′ (vIエ )′ 工 [133] ▲, (lX)]` │ ウ ёstimatё d ecomes O.Oo■ K was unti■ T― T∞ 5 hr frOm the observation during an hour ■■7100 to 20 min in the transition at Ke to be about ■n contrast i ‐ The uppeF trans■ tion of DBr ■S a discontinuous one with a ta■ ■ │ ‐ │ to ■ower The ca■ orimetric studies telnperature sideo ‐ ‐ of the trans■ tions are′ bowever′ cOmplicated by the occurrencさ of hysterё sisl?)becouse thё geometFy of l ca■ orimeter vesse■ and the methOd 6fl heating ■nevitab■ y cause non― uniform heating Of the Specェ mё ,: Thё refOrer ● therO is some ambiguity ュn ‐ ‐ the brder or type Of tr● ns■ │■ 9ni │ t6 be specified‐ by the eXperimenta■ reSu■ ts。 The entha■ py cha■geS Ofl lhe tFanS■ tions measured are ‐ shown in tab■ es 4-7 and 4-8 fbr I11-ll and II― I tranSitiOns, rё SpeCtiVe■ y・ Of HBF′ △Htr C° u■ d b9 unambiO● of its sharpnesso ‐ In the transition at l■ 7100 K Ous■ y est■ mated oeCau,01 lt iS 415 per Centisma■ ■er tha, │ │・ the va■ ue of Ciatquё and wiebぎ 6 [■ 34] 3) ●‐ │ │‐ │ ‐ ‐│ "-:.,...--. --*.-.'-rr4lhq"\.'th. 4-7. The enthalpy of transitions between phase III and II of HBr and DBr including the "normal" part of TABLE ● heat capacity. samp■ e SerieS上 no. 上 K K 弩 ざ 嬰 1型 牲 写 事 里 HBr r r rr rr ra 88.266 90.702 399.0 xrrra 88.506 90.308 365.2 88 .955 90.089 315.9 r 88.7L4 gr,'.lgL 367.3 rra Ave=,ge 373.2 373.5 372.L 372.0 372.7 主 008 Ttr Present w6rk GiauquO and Wiebe (■ 928)b Euckei and Karwat (■ 924)C ド リ 、 1■ 35] 89。 ,3 ± 0。 0■ ‐ 89。 2 ‐90 ‐ TABLE 4-7。 Continued. ● T2 11(T2) -H (rt) .7T-T TK .fmol Series T, Sample + no. K H (9a.5) -H (92'.5, JmoI DBT r r r r O. vra 92.450 94.760 402.7 vrra 92.678 94.387 363.5 vrrr 91.823- - 94 .265 42g .7 rx 90.821 - 94.405 511.0 Averlge 3g5.7 384.9 384.2 385.4 385。 ■ ± 0.9 'FE,r Present . 93.6'1 + 0.0L work A Clusius and WoIf (1947)* a rn this series, the transition b From reference c d From ref,erence 4. From reference 3 5 [136] was d,one 93.5 in stages. 4-8. The enthalpy of transitions between phase II and I of HBr and DBr incLuding the t'normal" part of heat capacity. TABLE ´ ● 坤 p・ e Series no. f T Jm。 T. I T2 K HBr (エ・エ I XXI simple '9ri'S '(Tう 工) )`耳 (T.) H(1■ 1)IH(■ ■3) moi=・ ・ .― │ ■■3。 ■43 ‐ ■■8。 ■65 :」 : 855`■ 855`4 ■ no.― T2 _T・ K:I T‐ HBr (II-I| t` 1lilD r r r r rr H(T2)=H(Ti) H(■ ■5.5)THll113) Jm6■ 」mO■ ll =・ ) xrva L12.508 1L5.344 404.9 xva 113.L85 )ffrr 113.152 115.289 366.7 xx LL2.g67 115.366 380.1 rrra 113.041 - LL5.725 395.7 AverOge 385.9 386.I 385.4 386. O 385。 7 上 0・ 4 Ttr Present work ‐ ■■3.60 壼 Giauquё and wiebO (■ 9'8)PI [137] ■ 13。 4 + 0。 0■ TABLE 4-8` Samp■ e Continued。 Series no. T. T2 T ず K H(T2)二 H`Tl),(l18),H(■ 1'05) 」・ m。 .― ‐ 品■ 「11 HBr (I r -I) ● f r r r r rr xrva 115.344 ].Ll.466 453.7 xvra 115.704 - 1L7.g23 455.3 xvrrr 116.710 I17.491 390.3 xrx LL6.273 LL7.745 4L5.6 rrra l:-s .725 - LL7.733 445.5 469.6 469.4 469.5 46g.g 469 .3 Average ' 469.3 k‐ ││‐ Present work ■■7100 +‐ o.o■ Ciauque and Wiebe (11う 0)b ■■6:8 [■ 381 0・ 5 △ Hti Ttr │● 上 温 il■ 343 ‐ ‐ 359 ‐ TABLE 4-8。 Sample Continued。 Series T2 T■ no. T K DBr ●′ ● H(T2) H(・ 」 moi― ・ .) H(■ 2■ )― H(■ ■8) Jmo■ │ ・ I) (II― I VITIA ■■7。 I rxa ■■83062 - ■2■ I x ■18:058 - ■20。 I XI ■■7.926 = ■20:735 484 = 930 898。 7 868。 7 .409 886.8 870`■ 865。 ■ 870.7 860。 5 869。 0 ■20。 956 Average 869。 6■ ■.ユ Ttr Present work c■ u三 │`│' ts ュ ■■9.96 and‐ w。 ■ = (1124'C (11111) + 0`0■ ■20:26 , In this series′ the transition was conl in Steges。 b irom reference 3. C Frorn reference 5。 ■ [139] ● ● 4-5. Thermodynamic functions The thermodynamic functions of HBr and DBr were ca1cu1ated.Thecontributionoftheheatcapacities below 2 K was evaluated by a smooth extrapora.tion The results are given in tables 4-9 and 4-10 for HBr and DBr, respectiveJ-y. The entropy of liquid HBr and DBr at the triple points was calculated to be 95.88 and 101.78 J K-l mol-l, which are slightly different from 96.46 J K-l mol-l by Giauque and wiebe and 100.17 J K-l mol-I by Clusius and wolf' respectively. 鍮 一 ヽ [140] ■‐‐一 … …■一‐―一 ^∵ … ハ “ … :.・ TABLE ¨ ‐T=‐ …■ ` 4-9. Thermodynamic functions of,HBr. ● T 一K so (r) -so (o) JK・ mo■・ {no (r) -Ho ( o, JK-1*mo1 -'l t n -teo (r) -Ho rcl 二 」K■ ・ mo■・ So■ id ゆ O.653 857 ■0 0。 20 5:080 0。 204 3。 736 ■3344 ■79 3.524 07 6。 30 ■0。 70 7。 40 ■6。 07 ■0。 50 20.96 ■2.45 60 25。 52 ■4.54 ■0。 98 70 29.93 ■6.58 ■3。 35 80 34。 54・ ■8。 83 ■5。 7■ 9■ 44。 05 25。 59 ■8.46 ■00 48。 02 27.06 20.96 ■■0 52。 46 28.841 23.62 ■■5 57.02 ■20 62。 ■30 65◆ ■40 ■50 002 8e5■ 0 07 24。 95 02 35.62 26。 40 64 36。 32。 35 29629 69。 0■ 37.00 32.0■ 72。 20 37.62 34◆ 58 ■60 75。 25 38。 2■ 37。 04 ■70 78.■ 8 38.8■ 39:37 ` [■ 4■ 1 t /r ' ^.い 、 、 Continued. TABLE 4-9。 ● T S° (T)― S° (0) i{H° (T)― H° (0)〕 /T 二{G° (i)― H° 」K・ mo■・ JK・ ■80 8■ .02 39。 4■ 4■ .6■ ■86.5 83。 02 40。 0■ 43。 0■ K . ■86。 5 JK・ mo■・ Liquid ・ 95。 88 mo■・ ‐ ● ` [■ 421 52.87 43。 (o)}/T 0■ TABLE 4-10. Thermodynamic functions of DBr. 6 T 一K so (r) -so (o) JK-'t-mol-1- {uo (r) -no ( o) JK-1.-mo1 -'l }/r -teo (r) -Ho rc\ I/r 'l JK-'t*mo1- - So■ id 200 ■0 0.843 O。 643 0。 20 5.209 3。 7■ 5 ■。495 2■ 6 3.674 27 6。 ■79 ■2.90 8。 763 30 ■0。 89 7。 40 ■6.44 ■0。 50 2■ 60 26。 70 3■ 。44 ■7.59 ■3。 80 36.37 20:O■ ■6136 90 42.07 23。 ■9 ■8。 .66 60 ■5。 28 ■■。32 86 88 ■00 50。 83 29。 ■5 2■ 。68 ■■0 55.63 3■ 。08 24.55 ■2■ 66。 9■ 39.26 27365 ■30 70.43 39。 94 30。 49 ■40 74。 09 40。 62 33。 48 ■50 77。 55 4■ 。25 36`30 ■60 80。 84 4■ 。86 38。 ■70 84。 0■ 42.48 4■ 1■ 431 98 .53 1, TABLE 4-■ 0. Continued。 ひ r so K (r) -so 」K ・mo■ (0) ' tno (r) -no (o) r/T -{co (r) -no (o',1/t JK-1-mol_-I _-1 JK-'r-mol ・ ■80 87.■ 5 43。 ■7 43.99 ■85。 5 89。 0■ 43.72 45.29 Lttquユ d ■85。 5 ■0■ 。78 ‐ 56。 49 [144] ‐1 1 ‐ 45.29 ` ■ヤ `` REFERENCES tO CHAPTER 4 ` ■e silnon′ 」. 2。 ■489, A. Zo NaturfoFSChe B.■ 970, 25′ App■ 。 Cryst。 ■974, 4′ ■38。 Strunk′ W, G。 , Wingate′ Wo H。 ■954′ 76′ 3: Giauque′ W・ 」. Amふ Chern= Soc. ■025。 F., Wiebe′ R。 0. Ame Cherne Soce ■928′ 50′ 2■ 93。 4. Eucken′ A.F Karwat′ E. Zo Physe Chem。 5。 C■ usius′ K.F Wo■ 6. MOIntoSh′ 55′ D。 f′ G. Zo NaturfOrsche Bate′ Jo R., Ha■ ford′ ■935′ 3′ ■923′ 」。0。 ■8′ 495. ′ │ 64. , Anderson′ Lo C. J. 53■ . See for examp■ e′ Co■ we■ ■′J・ H・ F Gi■ ■′ Eo Morrison′ 」。A. Jo Chem, phys。 ■963′ 嗜 [■ 467. ■906′ `″ ■37。 Chemo Physe 9。 ■947′ 2a′ , Stee■ e′ B. D. Z. Physe Chem. 7. Henglein′ Fo Ao Z. Phys. 8。 ■924, ■■2′ 45] K。 139′ , 635` │ ‐ Appendix 4Ao Measured heat capacities oF HBr. 一K T 一K T ― cp JK-'t-noL -1 ■03。 9■ 3 45。 73 Samp■ e エ ー ■05e■ 06 46.50 Ser■ es エ ■06。 286 47。 40 84。 ■73 46。 70 85.428 50。 92 86。 62■ 56:80 ■■.232 3。 633 87.733 66。 23 ■■。753 3。 99■ 88:726 86.40 12.444 4。 639 357.7 ■3。 ■53 5.226 ■67。 7■ ■3.820 5。 840 323 ・ {11111}卜 89。 350 90。 ■08 9■ 。357 56 ■4。 446 6。 40.92 ■5。 048 6.9■ ■ 4■ .■ ■ ■5.627 7.394 245 4■ 。68 ■6e■ 9■ 7。 886 96。 5■ 7 42。 ■7 ■6.758 8。 356 97.778 42。 7■ ■7。 333 8。 8■ 9 027 43。 ■8 ■7.9■ 8 9.326 ■00.266 43.74 ■8。 543 9.785 ■0■ 。493 44。 43 ■9.208 ■0`293 709 45。 07 92。 ヽ ■ Series II 663 93.96■ 95。 99。 ■02。 40。 い [■ 46] Appendix 4A. Continued. ● T二 K T 一K Ser■ es エエエ ■■。792 ■2。 ●・ ■ 607 11111111) 251884 078 ‐ 26。 4.765 680 JKllmo■・ ■4。 265 ■4.69■ ■5。 ■■■ ■3.373 5。 433 27.475 ■5.526 077 6。 002‐ 28.270 ■5.9■ 9 ■4.724 6。 589 29。 065 ■6.3■ 2 ■5.329 7.■ 50 29。 868 '■ 6.702 ■5.9■ 4 7.622 30。 677 ■7:04■ ■4。 ■6。 485 8。 ■28 3■ 。493 ■7。 4■ 3 ■7。 046 8。 597 32。 320 ■7.723 ■7。 602 9。 052 33。 ■57 ■8。 9.527 34.008 ■884■ 3 ■8。 ■88 `1〕 4。 099 25。 Cp 873 070 735 ■8。 825 ■0。 ■9。 504 ■0.535 35`756 ■9。 068 20。 2■ 0 ■■。067 36.657 ■9。 2■ 。006 ■■.62■ 37.582 ■9.673 2■ .859 22.69■ 23。 506 24.307 028 34。 ■8。 365 212 38。 532 20。 ■2。 770 39。 480 20。 30 ■3:3■ ■ 40。 403 20.6■ ■3。 790 4■ 1328 20。 88 ■2。 主、 [■ 47] 00 Appendix 4A. Continuod, い T 一K T 一K ●「 t -p iIK-l -mo1 -1 42.257 2■ .■ 5 4。 43。 ■9■ 2■ 644 5:007 0`2888 44.■ 29 2■ .72 5。 546 0.4■ 8■ 451075 22。 03 6:0■ 6 0.5294 46.027 22。 30 6:494 0。 362 0。 ■904 6882 989 22.57 47.96■ 22185 48。 943 23。 ■6 6.005 ‐ 0152■ 5 49。 936 23.44 6.4■ 6 ■ 0=6587 50.942 23:78 6`93■ │ 0。 5■ 。960 24。 7.494 1 ■:■ 06 8:068 .││ ■.43■ 8。 6481 . ■:739 9。 269 1‐ 2.■ 36 9。 963 11 .2.6■ 5 46。 Ser■ es Vエ 06 SerieO 工V 2.569 060338■ serieg v 3。 229 ′4。 044 63■ 0。 03652 ■■:768 2。 954 0。 05■ 8■ ■3.0■ 2 3。 269 0。 07354 0。 ■099 .704 (0・ l■ 48] 8545 10.783 2。 3。 │ 53■ 04 │二 `キ ヽr,ヽ 炒響 ・ .・ r 鶴率ヽヽ、後 Appendix 4A. Continued. い T 一K T 一K i CI‐ 」Kl・ mo■ ll Ser■ eS Vエ エ ウ ‐ Cp ■ ■ttll品 ■ 5.936 0。 5226 6887 7.499 ■。■13 6.552 0。 8。 ■38 ■。449 7.■ 52 0:9679 81‐ 788 ■.832 9。 483 2。 ■0。 265 2.839 ■:722 ■■.■ 8■ 3.555 1.995 0。 0■ 5■ 9 ■2。 208 4.402 2.254 0。 02564 ■3。 345 5.42■ 2.502 0。 05462 2.7■ 0 , 0:05842 2:999111 0`05765 280 Ser■ es Ser■ es V工 II 1 3:856 O.■ ■96 3。 276 0:■ 764 3.859 1 4。 4.694 0。 24■ 8 5:■ 38 0。 3■ 77 5:56■ 0。 4■ 453111 Serュ es 28 4。 340 4.633 0。 0■ 0。 08328 0:■ 349 X工 │ 0.■ 95■ 0。 235■ SOries IX 4。 978 5.392 O.2963 0。 Ser■ es XII 3798 5■ う 1■ 49] .066 056 23:72 サ “ : :Ⅲ ● ` : .。 Ⅲ l ■ ´…… …・ … ………… ・ ,`… Appendix 4A. ャ Continuё d. い T 一K T 一K ●「 り _Cp 泳 ■ m■ ■ 5■ .6■ 2 23.92 71.520 3■ 。93 52.393 24。 ■7 72。 440 32.54 53.356 24。 5■ 73。 348 33。 54。 4■ 6 24.77 74。 244 33.75 25。 ■■ 75。 ■28 34.42 55。 457 08 56.480 25。 46 761000 35。 ■6 57。 484 25。 80 76。 86■ 35.86 58。 505 26.■ 4 77:7■ ■ 36.7■ 59。 542 26。 60.563 6■ .602 53 78。 548 37。 58 26.93 79。 374 38。 65 27。 37 80。 ■87 39。 5■ 989 40。 681 660 27.76 80。 63.702 28● ■8 8■ 64。 728 28.57 82.55■ 43。 43 65。 739 29。 0■ 83.3■ 2 44。 66.736 29.44 67。 7■ 8 29。 92 68。 689 30。 35 83。 6■ 7 45。 69。 645 30。 97 84。 ■87 47.27 70。 589 4■ 3■ 。 747 48。 93 62。 .777 42。 03 99 Series XIII 84。 [150] 50 Ⅲ 出二 ■1 ■ ‐ ) │ ′ キ │││││・ シ .'1: . =1 ‐ i l l ‐ 11 '1 Appendix 4Ao ●11 ` . 1 1= tti lt` ':u .1 1 , i l_ :│.,11 11 : `' ■ ■1 ,lt . l , ‐ 1・ Continued. ◆ T 一K T 一K ″ 85。 297 50。 9■ 96。 750 42。 37 85。 835 53.■ 3 97。 800 42。 57 86。 360 55。 56 98。 9■ 7 86。 864 58。 97 ■00.438 43。 93 87.35■ 62。 88 1 ■02。 ■■8 44。 84 87。 829 67。 59 ■03:578 45。 60 88。 285 74。 60 ■05。 0■ 3 46.52 43.27 88。 7■ 3 84:47 ■06。 598 47。 64 89。 ■04 ■01.62 ■08。 327 48。 96 249。 9 ■■0:024 50.54 ■■■.686 52。 89。 386 Transition 244.7 89。 734 90。 069 58。 5■ 90。 587 40.90 9■ 。■43 40。 85 .697 40。 77 248 .40。 9■ 92。 ■■3.009 729 .41.。 ■3■ 。09 Transュ tion ■■4。 575 ■■6。 ■24 59。 68 1 57.38 Transュ tion 98 Ser■ es X工 V 95。 46 88 [■ 5■ 1 ■■7。 228 352。 3 ■■8。 324 45。 02 ■20。 036 45。 ■6 1 .「 1 . │ . 1 1: `■ . Appendix 4A. Continued. l● Series ● ・ T 一K T 一K 」K.‐ mol . XV ″・ ■■0。 346 50。 ■■0.987 5■ .42 ■ ■■■。622 52。 35 1‐ ■■2。 25■ 53。 ■6 ■■2.1875 54.■ 6 375 ■33。 4■ 65 :JK `mё ユ = TFanSition ' ■■7.■ 37 1 223.6 ■■7=595 1‐ 45:02 ■■8.250 11 44。 98 ´■ ■■3。 . い . Iransition ■14。 040 エエ■工. 80.23 56。 78 207 52。 97 ■■51824 53.59 435 55`29 ■■6。 1■ 9.557 1 45.29 Ser■ es xVII ■■4.596 ■■5。 ■18。 905 11 45。 ■0 TFansitiOn′ continuou,I Hea11,g Series XVIII Ir-I Transition, Continuous Heating Ser■ es WI ■14.■ 28 49.33 ■■4。 764 50:75 It-I Transition, ■■5.392 52.■ 8 Continuous Heating ■■6:00■ 53.73 ■■6.59■ 59。 Series XIX 63 [■ 52] Appendix 4A. Continued。 ● T 一K ﹂ T 一K Series 92 ■4■ .66■ 45。 II-Ir Transition, ■44。 ■9■ 46。 ■7 Continuous Ileating ■46.7■ 7 46。 ■49。 24■ 46.65 .762 46.75 「 ● XX Series XXI ■5■ 35 II-I Transition, ■54.265 47。 Continuous Heatilg ■56:765 47.3■ ■59。 262 ・ 47。 04 53 Ser■ es XX=エ ■6■ 。74■ 47.93 ■■8。 908 45。 ■4 ■64.■ 99 48。 ■5 ■20。 364 45。 09 ■66。 648 48。 48 ■2■ 。956 45。 07 ■69。 084 48。 74 682 45。 ■7 ■7■ 。5■ 2 49。 ■7 ■25。 58■ 45。 ■7 ■73。 920 49。 5■ ■27.752 45.■ 8 ■76.330 50.00 ■30。 084 45.2■ ■78:692 50◆ ■32。 402 45。 ■23。 ■34.703 05 34 Series XxIIエ 45。 4■ ■36。 990 45。 ■39。 264 45.72 68 ■80。 888 ■82。 9■ 3 [■ 531 50.84 5■ .4■ Appendix 4e. Continued. T 一K T 一K ■84。 758 55`08 Fus■ on′ C6ntinuous Heating 58。 50 ■88.3■ 6 ● r 87。 497 63.50 88。 005 69.62 88。 483 78。 ■■ 88。 926 9■ 。57 89。 29■ ■28.95 Transュ tion Series XXIV ■84。 89:667 59。 74 933 Fus■ on 89.972 74。 20 495 4■ 。02 .086 40。 84 676 40.89 ■88.406 59。 53 90。 308 59。 93 9■ ■90。 336。 2 9■ 。 ― Samp■ e 工エ ー Series I Iエ エーエエ Ser■ es IIエ ■■0。 400 Transition′ Continuous Heati,g 50。 93 ■■■。0■ ■ 5■ 。23 ■1■ 。6■ 8 52.34 seriё g ェェ ■12。 2■ 8 52。 65 850 53.30 ■■2.779 53。 88 86.417 55。 90 . ■■3。 30■ 54。 50 86.966 58。 77 85。 Transition な [■ 541 Appendix 4Ae T 一K ■■3。 ● Contintё de cP- - ・ 訳 l・ mOrl 645 T K… f∵ l・ .・ Series V 353。 9 ■■3:94■ 75。 44 ■。835 0。 0■ ■ ■■4。 4■ 9 54。 60 ■。849 0。 0■ 2■ 0 ■■4:940 5■ 679 2.002 0。 01489 ■■5。 1464 52。 57 2.2■ 0 0。 02099 │ ■■5。 985 53」 75 2。 448 1■ 6。 499 55.79 2。 757 ■■6=861 - Transition ■■7.4■ 6 ■■8。 224。 5 048 44。 96 20 0.02880 . 3.■ 22 0。 3.48■ 0.09060 3.9■ 6 0。 0632■ ■320 44`94 series Ser■ es 0104■ 87 工V V工 l.842 1 0。 0■ ■ ・ 0。 0■ 40 `630 49。 35 2.045 ■75。 ■0■ 49。 48 2.282 1 0.02334 538 50。 27 2。 5■ ■ 0。 03■ 29 ■7■ ■78。 605 ■8■ 。634 5■ 。03 2.803 0。 043■ 4 566 62。 2■ 3。 ■58 0。 06532 3。 522 0。 09309 ■84。 Fus■ on 3.880 ● [■ 55] 1 1 0.■ 273 Appendix 4A. ConLinued. ● K 4。 l .=ト 」K・ 嵐o■・ 263 0。 ■726 Series vIエ ● ‐ 42 ■1824 0。 0■ ■ ■。 988 0。 0■ 5」 6 2:202 0102■ 20 2.542 0103232 : Seriё s vエ エエ 3。 902 4.293 4.652 1 4.969 0。 ■274 0。 ■705 0.2276 . ‐ ‐ 0。 2833■ 5。 292 0.3435 5。 637 0。 4228 5.980 0:5208 6.374 0。 6429 6.879 0.8756 7.456 ■。■05 ‐ │ . 0 [■ 56] App*endrx 48. Measured heat_lanacities of DBr. ● T 一K T 一K serュ es エエ ― ● Samp■ e エ ー ■.884 1 0.0■ 267 Ser■ es エ 2:053 0。 0■ 767 2.278 0。 023■ ■.887 367 090 0。 0■ 763 2。 542 0。 0345 2。 3■ 0 0。 0256 2。 788 0。 0434 2.595 1 0。 0348 3.038 899 0。 047■ 3。 292 0。 076■ 3.209 0。 0648 3。 533 0。 0992 3。 492 0。 08■ 8 3.782 0。 ■■78 3。 760 0。 ■047 4。 045 0。 ■50■ 4。 027 0。 ■308 41295 0。 ■8■ 6 4。 282 ・ 0.■ 654 4。 544 0.2064 4.840 0。 283 4。 814 0.259 5。 ■45 0。 336 5.105 0.3■ 0 5.432 0。 388 5.8■ 6 0。 485 ■.90■ 0。 0■ 484 6.257 0。 626 2.■ ■9 0。 0■ 950 2.36■ 0。 2。 QI 0。 0■ 2。 4。 56■ 0.0559 0.2■ 28 ser■ es エエエ [■ 57] 0255 f蹴 1■ ギ .11 サ ・1` 一 ‐ 一守∵ 48. Appendix … ………………… ……………… Continued,. ● 一K _ ・ 2.608 0。 0373 9..74■ 2.453 2.870 0。 0484 ■0。 722 3.■ 87 3.■ 54 0。 0680 ■■。735 3.96■ 3.428 0。 0838 . 707 3。 ゆ 」K ・ Ino■ T T 一K ● Cp 3.984 Ser■ es V 0.■ 094 0。 ■4■ 5 5。 82■ 0。 464 6`287 0.603 225 6.797 0。 0。 27■ 7。 484 ■。072 ■52 0。 347 8。 329 ■.5■ ■ 5.525 0。 4■ 9 9.247 0.430 ■0。 226 4。 256 0.■ 861 4。 530 0。 4.827 5。 5。 58■ Ser■ es 工V 2し 1 1 783 093 2.797 ■■.233 3。 56■ ■2。 3■ 9 4。 458 346 5。 263 6。 077 677 O。 420 ■3。 6.■ 02 0。 536 ■4:23■ 6.578 0.697 ■5。 ■03 7。 ■ 42 0.942 ■5。 7.883 ■。274 ■6.895 8。 4■ 7 786 ■。787 ■7。 853 9`249 5。 8。 ●´ [■ 58] 985 ‐ 6.865 7。 65■ Appendix 4Be C6ntinued. Ⅲ T 一K T 一K Cp 」K ユ mo■ ・ 「 ■8.886 ■0。 008 66。 ■30 3■ 20。 02■ ■0。 884 67:■ 67 32。 43 68.202 32。 87 69.232 33。 30 Series VI ● ` .96 49。 947 25`28 70.262 33.97 50。 975 25.83 7■ 。303 34.50 356 35。 ■2 5■ 。992 26。 03 72● 002 26.32 731422 35。 85 54.005 26.75 74.500 36。 49 000 27.09 75.595 37.20 53。 55。 55.985 27。 54 76.703 138。 56.972 27.99 77.8■ 9 138`85 964 28。 3■ 78。 927 40。 0■ 57。 ‐40。 09 96 58.96■ 28。 78 80。 02■ 59.96■ 29。 26 8■ .■ 02 42.■ 2 60.967 29669 82。 ■66 43.27 6■ 。984 30。 08 83.2■ 0 44.53 63。 0■ 0 30。 56 84。 239 45。 89 64。 046 3■ 。00 85.236 47.95 65。 089 3■ 。 35 86。 ■84 49。 ■ [■ 591 63 AppendiX 4Be Continued` も T T 一K 一K 5■ 。 87.863 553 88。 り 62 87.070 78。 357 39.36 53。 7■ 79。 456 40。 56e■ 0 80.538 4■ 。45 。608 42.67 82.662 43.77 ‐ 89。 ■92 58。 89。 8■ 8 6■ 90.43■ 65。 ■■ 831702 : 45。 ■6 69.■ 4 84.720 46.85 9■ .6■ 3 761■ 9‐ 85。 70■ 48.55 92。 ■75 84.42 86.636 50。 4■ 95 87。 5■ 3 │152.24 55.■ 7 9■ .029 92。 706 67 40 .66 98。 8■ ‐ 93。 ■86 ■3■ 。■2 88。 294 93.5■ 6 433:0 88。 974 TranSition 94。 ■■7 ■97。 0 94。 45■ 57。 95。 089 Ser■ es 54 46。 73 35 896542 160。 ■6 90。 098 1 63=40 90。 702 1 67105 .293 7■ 。73 91.864 1 78.92 92。 4■ ■ ‐ 89:26 9■ VII 157。 76.■ 39 37.45 92.923 ■08.3■ 77.246 38。 44 93.354 ■82.74 [■ 601 Appendix 49. Continued. ● 」K・ mo■・ ■08.707 793 ■■0。 404.6 ■08。 58 94。 777 47:65 95。 609 46。 69 series vIII 075 52◆ 6■ 53。 69 ■■■。440 54.78 803 55.83 ■■2。 ′ ● ■■4.■ 62 57。 46 ■■5.504 59。 32 ■■6● 825 6■ .■ 4 Transition′ ■■8。 ■23 66。 continuous Heating ■■9:050 324。 6 Iエ エ"エ エ 74 Transュ tion 94:763 47.84 95。 79■ 46.72 ■20。 96。 887 46.95 ■2■ 。44■ 49。 98。 054 47。 4■ ■22.635 49。 ■5 99。 297 47。 65 ■00。 596 48。 08 ' lL口 111111) JK-1*mol -'l Transュ tion 94。 ■43 ● Cp 一K 一K 93。 T T Cp 432 80.39 89 series lx ■0■ 。923 48。 6■ エエI― II 280 49.2■ Continuous Heati,g ■03。 TFansition′ ■04.645 50。 03 95.062 46。 93 997 50。 99 96。 280 47。 02 5■ 。79 97。 439 47.04 ■05。 ■07.348 心 116■ ] Appendix 48. Continued.. ● T T 99。 ●・ 976 一K 一K 98.678 47。 36 48。 28 ■02。 62■ 48。 80 962 49。 52 ■05.302 50。 44 ■06。 654 092 49e■ ■ 47.77 ■0■ 。289 ■03。 ■22。 Series X II-I Transition, い Continuous Heating 5■ .27 Series xI ■08。 0■ 4 52。 05 II― 工 373 53。 08 Continuou, Heating ■09。 ■■0。 7■ 9 Trans■ tion′ 53。 97 ■2■ 。482 49。 00 064 55。 22 ■22.969 48。 92 ■■3。 4■ 5 56◆ 99 ■24.573 48。 90 1 ■■4.76■ 58。 39 ■26.29■ 48。 98 ■■2。 ■■6。 094 59.68 ■28.■ ■9 49。 ■■7。 408 6■ 。90 ■30.058 49。 ■8 ■■8。 446 72◆ 82 ■3■ 。983 49。 ■5 ■■9。 035 26■ .5 ■33.898 49。 40 ■35。 799 49。 50 ■37。 709 49。 62 Transit,ion 120。 ■53 120.896 2■ 6.6 ■39.696 49。 48 [■ 62] 04 49.73 Appendix 4B. Continued. T e724 24。 49。 9■ 492 7■ 」K‐ ・ mo■ ■4.04 ■43.734 50。 00 25.538 ■45.823 50。 28 26。 594 ■5.27 50.36 27。 626 ■5。 84 28。 619 ■6。 39 29。 579 ■6.90 ■47。 ● 一K T 一K ■4■ Cp 985 ■50:■ 34 50。 50 ・ も ser■ es Xエ エ ■4。 66 30。 5■ ■ ■7。 37 ■■.547 3.836 3■ 。439 ■7:82 ■2.506 4.642 32。 385 ■8。 27 529 5。 523 33。 372 ■8.74 ■4.578 6。 504 34。 432 ■9.22 586 7。 343 35:542 ■6.559 8。 ■95 36。 633 20.■ 7 ■7。 492 8。 979 37.690 20.53 ■8。 459 9.768 38。 7■ 8 2■ ■9。 475 ■0。 529 39.73■ 2■ 。39 20。 565 ■■。34■ 40`738 2■ .8■ 08 4■ 。743 22.22 ■2.72 42.74■ 22。 53 749 22。 97 ■3。 ■5。 2■ .605 22。 532 23:48■ ■2。 ■3。 37 43。 [■ 63] ■9。 68 103 みppendix 4B. cOntinued. ● T T 一K 一K -p iIK-1*mol,-1- 779 23.35 45.832 23.76 46。 9■ ■ 24。 2■ Series XIV 24.6■ Fusion, 44。 48。 0‐ ■8 49:■ 90 25。 ■87.638 02 62.60 Continuous Heating tl Series ■52.399 ‐ Samp■ e XIエ エ 50。 80 II ― ‐ series I 004 5■ 。■0 48。 438‐ ■57.6■ 9 5■ :■ 5 50。 ■76 ■60.266 5■ .60 ■62.920 5■ `93 ■65:553 52.26 ■68。 ■89 52。 67 57:272 826 53。 63 58.9■ 3 11 28■ 75 ■55。 ■70。 25。 34‐ 039 1 . 26。 05 53:839 1 1 26。 73 27。 40 28。 08 52。 55。 58■ ││‐ 54`09 60.5■ 0 ■76.■ 03 55。 ■0 62.067 736 56.62 63。 .324 63.85 ■8■ Fus■ on [■ 64] 24:66 1 ■733464 ■78。 ‐ 738 _ 1 ‐ 29:42 30。 09 30。 8■ … みppё ndiX 4B, cOntinued. 0 T 一K T ¨K Ser■ es II JK・ mol l 36892 0。 O。 0■ ■ 97 4.2■ 7 0:■ 620 10。 0■ 796 4.569 0:2■ 56 0268 4.958 0.287■ 2`819 0:043■ . 5:378 0。 3.■ 48 0。 06■ 0 3.42■ 0。 0825 ■.880 こ Cp 2。 ■22 2。 428 3.7■ 3 0。 ‐ Sё ries 0e■ ■■8 ■。879 ■208 3822 工V O。 0■ 320 4。 056 0.■ 534 2。 4。 40■ 0:■ 9■ 8 2,4■ 5 0.0295 4。 833 0。 2787 2.7■ 7 0:0390 ■29 3。 0■ Ser■ es エエエ 4 '0。 0■ 903 1 31327 .0。 0548 10107291 ■。888 0。 0■ 274 3.65■ 2.■ 26 0。 0■ 885 3.983 10:■ 3■ 8 2:40■ 0。 0276 343 01■ 774 2。 707 0。 0400 3。 004 0。 0529 3.297 3。 590 4。 Ser■ es 0.0727 0。 0949 65] V 4.7■ 0 O.2274 86 10。 3■ 74 5。 ■ [ユ 0.■ 000 │ ‐ '― ― Appendix 十 ^■― ・今‐ ‐ ― ・― 午 ■ ‐r― ― ',11=― ・ 4。 45■ 48. Continued. a T T 一K 一K 5。 708 0。 4307 12。 6。 270 0。 5978 ■3.278 6。 870 0。 8■ 8■ 306 5`327 Ser■ es Vエ エエ ‐ Ser■ es V工 ● 4。 870 5.356 0。 2528 8。 ■25 ■。40■ 0 8。 844 ■.85■ 8 9.546 0.3488 2。 308 880 0。 4906 ■0。 269 2.825 6.436 0。 6629 ■■。043 3.440 7.032 0。 8947 ■■。88■ 1 4e■ 29 7.725 1。 2■ 29 12。 8■ 2 4.934 ■3。 8■ 6 1 5。 5。 745 Ser■ es Vエ エ Ser■ es 7。 4■ 7 ■60609 8。 048 ■.3795 ■57:262 8。 664 ■.73■ 2 96297 工X 5■ .25 ■59。 723 5■ .47 2e■ 48 ■62。 ■66 5■ 。79 957 2。 6■ 4 ■64。 6■ 3 52。 3■ ■0.655 3.■ 47 ■67.085 52.60 ■■。428 3。 752 ■69.577 52198 9。 t [■ 66] ■ 出 “∴ 4・ ‐1.・ I Appendix 48. Continued. ヽ い l ・ ● i ■72。 087 53.67 ■74。 613 54.32 ■77。 ■58 56.34 ■79,737 57.■ 0 ■823■ 69 64。 00 い Fusion ■88。 ■79 62.15 ■ い [■ 67] ● CHAPTER 5 Therlnodynamic Properties of ● HI and DI り ( [■ 68] ● ● ● 5-1. Heat capacity The measured heat capacity values are chronologically presented as Cn in appendices 5A and B for HI and DI, respectively. Curvature corrections were not applied. The smooLhed values at rounded temperatures are given in table 5-1. Above l-50 K, corections arising from vaporization of HI or DI were significant. Relevant quantiti-es for such corrections were evaluated as follows. The d.ensity of sol-id HI in phase I was obtained by interpolation of the X-ray data at 125 K(1) and at triple poirrt!2) The liquid density vras taken from Mclntosh and steetei3) Densities of DI were taken to be id.entical to those of HI. The heat capacity in the gaseous phase is (7/2lR in the temperature range where the values was required. The results for HI and DI are plotted in figures 5-I and. 5-2, respectively. The measured heat capacities are compared with earlier resul.ts in figures 5-3 and 5-4 for HI and DI, respectively, in terms of the differences from a smooth curve corresponding to the val-ues given in table 5-1. The scatter of our measured points is 13 per cent at the lowest temperatures, decreasing to +0.5 per cent at L0 K and to 10.1 per cent above 20 K. It increased, howeverr up to +0.2 and +I per cent at higher temperatures and near the transitions, respectively. ` '1■ 691 TABLE 5-■ 。 The heat capacity of solid. HI and. DI at rounded values of temperatures. ` T 一K H工 ● D工 0282 0。 0267 0。 094 2 0。 3 0.■ 00 4 0。 5 0.559 0.545 6 ■。023 0.996 8 2。 447 2.4■ 4 ■0 4。 358 4。 ■2 6。 496 6.50■ ‐ ■5 9。 649 9● 20 ■3。 97 ■4e■ 3 25 ■7。 08 ■7e37 30 ■9.40 ■9。 9■ 35 2■ 。38 22.24 40 23。 30 24.68 45 25.44 26e77 50 27。 55 3■ 。28 32.33 60 36。 ■■ 36。 / 0.25■ │ 26■ 365 i 98 29。 [170] 74■ 35 03 ‐ TABLE 5-■ . Continued. T 一K InOIア l DI HI 65 44.83 70 40。 95 48。 68 75 36。 34 80 37。 26 43。 85 85 38。 63 43。 92 90 40.24 45.■ 6 95 4■ 。89 46。 75 ■00 43。 78 48.60 ■■0 48。 74 53。 04 ■20 56.65 59。 96 ■30 44。 ■40 45.03 48。 ■50 45。 4■ 48.25 ■60 45。 84 48。 2■ ■70 46。 32 48。 39 ■80 46:86 48。 67 ■90 47.52 49。 30 200 48.2■ 50.09 2■ 0 49。 23 50`69 217 50。 47 5■ 。21 48.66 94 [■ 71] 37 へ ゛ E Tち TY つ\ 0 5 0 0 6 4 ゛ Tち E TY つ \ [PЧN﹄ of HI. Heat capacitY FIGURE 5-■ . lo 5 ●﹁ ● 費 戸/K T/K ● 今 /K 戸 E 戸 /K C ■ oE Tyつ \ 。 O .5 ゛ TY つ \ 0 0 6 4 Tち [P呵ω] Heat capacity of DI. FIGURE 5-2. 1o 5 0 ● ● ● 15 10 ︻HЧ卜] ①Q \︵ИN ⊂00 ﹂ 一 5 0 十 十 十 T十 十 -5 ― 10 ― 15 0 50 100 戸 /K 150 200 0′ present A compar■ son of heat Capac■ ty results for solid HI・ 4)▲ u■ ts, +′ Giauquё and Wiebe∫ rさ ζ ′Eucken and Karwat15) Δ/P'r C'五 t = [9p(° bSO)IC`lSm° °th)]挙 10, / [C`〈 S口 。9th)]' Wlere c3(SmO° th)iS ` given in tab■ ё 5-■ 。 FiCURE 5-3。 C ヽ 15 10 ● θ ● 0 ● ・ t o o -o OV 0● [P劇い] C00 ﹂ OQ \、ИN 一 5 ・・ もi「 ● 。。 ● 。 00 ° ● ● .● ● -5 ● ―10 =15 0 50 100 150 200 戸 /K FIGURE 5-4. A comparison of heat capacity results for solid DI. o, present results; o, Clusius ana wotfi6) A/per cent = [Cn(obs.)-"n(smooth)7 x LOO / [Cn(smooth)], where Cn(smooth) is given in table 5-1. for HI are in good agreement with the present resul-ts within the combined limits of error. Some of their points near 175 K showed a broad hrsnp probably due to distilLation heat effects. Eucken and Karwat ' = t'S) and CJ-usius and wolf,s(6) resurts are strongry scattered. and deviate from ours as reported for other hydrogen halid'es' A comparison in the lower temperature region is made by use of equivalent Debye temperature OO, whose temperature dependence for 3N degrees of freedom is shown in figures 5-5 and 5-6 for HI and DI, respectively. The Debye temperature curves for HI and DI agreed onLy between L0 and 15 K: The latter is consistently higher Giauque and Wiebe's resuLts ウ づ beLow L0 K and decLines more rapid.Ly above 15 K' ξ 1■ 76] ■● 0 ● ■ Xヽ ご Hq﹃] [ 70 T/K The Debye characteristic temperature of HI derived from the measured heat capacities, assuming 3N degrees of freedom. o, present results i *, Giauque and Wieb"J ) FIGURE 5-5. ● ・ ・ ′ 70 ′ ● ● ︻一ヾ∞﹄ X\ 口 0 ● ● ● ● 戸/K FIGURE 5-6. The Debye characteristic temperature of DI derived the measured heat capacities, assuming results; o, Clusius anA wotfi6) 3N degrees of freedom. froIII 。′ present 5-2. Vapor pressure of the soLid and liquid HI and DI are listed in tables 5-2 and 5-3, respectively. The resuLts f:or soLids were plotted as 1-og P against -l in figure 5-'7 . Measurements by other worlcers are T-r also incLuded for the sake of comparison. Our results for both solids and Mclntosh and SteeLe's result"(7) for HI indicate that the sLope decreases at lower (8) temperatures. fn contrast, Henglein' s t""ol-t" for HI, which consist onl-y of three points, are approxi-rnately colinear in this pLot. One of possibilities that might give such an effect would be existence of permanent gas, which is supposed. to be hydrogen as one of d.ecomposing products. Estimated. amounts of permanent gas are 900 and 410 Pa at 180 K for HI and DI, resPectively. However. no corrections for the pressure values obtained were made. There were no indications of d.ecomposition in the temperature drift of heat capacity determinations nor in the purity determination at the tripLe point which was conducted after all the vapor pressure measurements had been Measured vapor pressures ◆ concLuded. I■ 79] TABLE 5-2. Vapor pressures of HI. ● kPa kPa Liquid So■ id ● ■803905 4。 ■80 223.505 53。 ■52 ■83。 5■ 5 4。 822 224。 ■88 55。 ■45 ■86。 097 5。 6■ 5 ■88。 670 6。 559 .220 7。 688 ■9■ ■93。 82■ 9.05■ 665 ■96。 399 ■0。 ■98。 972 ■2.556 20■ 。566 ■4.796 459 204。 205 ■7。 206。 825 20。 53■ 209。 432 24.076 2■ 2.009 28.■ 26 565 32。 722 217.085 37。 892 2■ 4。 2■ 7。 746 39.5■ ■ 2■ 9.86■ 44。 370 220.2■ 8 45。 384 [■ 80] TABLE 5-3. Vapor pressures of Df. ● kPa kPa Liquid So■ id ■78。 ■8■ 969 3836 ■84。 6■ 5 769 5■ 。475 4.233 223。 960 54。 ■68 ■90。 ■29 6。 300 ■92。 864 7。 665 ■95。 578 9。 288 ■98。 278 ■■.2■ 8 200。 954 ■3。 203。 672 ■6.■ 85 206。 366 ■9。 479 228 209.039 22`776 2■ ■。757 27.039 4.452 3■ :932 379 38.329 2■ 9.974 45.28■ 269 45.380 2■ 7。 220。 220。 94■ 5■ 。278 222。 5。 2■ 222.705 472 3。 382 ■87。 ● 2.838 47。 038 1■ 8■」 572 ● ヽ ヽ 0 4,5 △ も 3 . 0 . ▽ │ 名 0 p. . 4.O 0 ▼ ▲● o征\L ︶02 ︵ ● ● O ● ° ● o OO '\O a 3.5 4.5 5。 0 5。 5 losK/T 5-7. Vapor pressure of solid. HI and DI. Hr: o, present results; A, Mcrntosh and steere;(7) v, ttengt"in.(8) Dr: ., present results. FIGURE I 182I ● ● 5-3. Enthalpy of fusion The resuLts of fusion experiments are given in table 5-4. to compute the A correction for the /Cpd.T was .applied enthal-py of fusion AH, from cumulative enthalpy H(T^)-H(T, ). Measurements Uy otfr"t workers are aLso zt included for the sake of comparison. The mean values of the enthalpy of fusion of HI and DI obtained were 2855.3 and 284L.2,1 mol-l, respectively. The triple points of Pure HI and DI, (222.497 + 0.005) and (22L.511 + 0.005) K respectiveLy, were estimated from a plot of the equiJ-ibrium temperature against the reciprocal of the fraction meLted, (see tabLe 5-5). │● [■ 83] TABLE 5-4. The enthalpy of fusion of HI and DI. 2 T T ● Series T. no. K H(T2) H(T■ ) Jmo■ ・ │ △ Hf 」mo■ ■ HI 219.861 220.2L8 一 一 xxr xxrra 505 305■ 。0 2856。 0 224e■ 88 3072.4 2854.6 Average 2855。 3 223。 ` Giauque and l0iebe (r929) b 287■ :5+2.■ Eucken and Karwat (Ls24rc 3038。 D工 220.269 zLg.974 一 ¨ )$rrr xrxa 222。 769 2999。 8 2842.5 222。 705 30■ ■。6 2839。 9 Average 284■ :2 Clusius and Wolf (1947)d 1184] 2863。 ■ TABLE 5-4. a b c d' Continued: rn this series, the fusion was done in stages' From reference 4. From reference 5. From reference 6. ● 1185] ‐ ・ TABLE 5-5. … 螂帯 ― い● 4‐ 4ヽ 帖 The tr■ ― .‐ 漱 .゛ 舛トヤ‐ 黎 ヽ` ■ ■●■ 、■■ ■■,it中 ‐ ●‐‐ "¨ ■ "t● Ⅲ ・ `,■ 1 ■中 ■ Ⅲ 組 中 ■ 中 綺 囃 関 線 轟 轟 蜘 爆 轟 mぃ 最 醸 ple point oF HI and DI. Fraction melted kPa K HI 0。 222.359 250 0.427 222。 400 50。 5■ 605 222。 4■ 9/ 50。 0。 746 222.433 50.7■ (■ 222。 .000) 444 50。 222。 449+0。 59 74 002 497+06005 Tf (pure Hr) 222。 Giauque and Wiebe (]-g2gra 222。 3■ +O。 Eucken and Karwat (Lgzlrb 220e et aI. 46 0。 0.890 Bates 50。 05 50.5 (1935)c MiraveLles and MoLes (1925)d ● 1186] 52。 44 "織 轟 ■ ,Ⅲ I TABLE 5-5。 Continued. 骨 Fraction T me■ ted kPa K ′ DI ● ` 0。 237 22■ .472 0。 498 22■ .488 48.6■ 0。 676 22■ 。494 49。 ■0 0.854 22■ 49。 0.945 22■ 。508 (■ 。 000) Tf (pure DI) .50■ 48。 3■ 04 49.■ 0 221.,O■ 主00002 221.511+0-005 clusius and woLf (1947)e 22L.23 a b c d e 1 From reference 4. From reference 5. reference 9. From reference 10. From reference 6 " From ● [187] 48.O ■ t 5-4. Transition in solids The thermal behavior of two phase transitions of both solids can be visuaLized through enthalpy change in the transition region. Figure 5-8 refers to the transition between phase III and II and figure 5-9 to that between phase II and I. The d,ifferent series of results $rere normal-ized. on the high temperature side of t,ransitions. The transition temperatures vtere then determined from the point at which the rate of change of enthalpy with temperature is maximum. No isothermal heat absorption was detected at the lower transition of HI and DI. Furthermore, the time to reach equiLibrium after heating was off was about 10 min, which is approximateLy normal- equiLibration tirne in this temperature region. These facts sugigest that III-II transition of HI and DI is of the second or higher ord.er. At the upper transition of HI and Dr, a consid.erabLy Longer equilibration time was required; thus the cooLing drift at L00 min after heating was about -0.002 r min-l, which is Large compared with that at the III-I transition of HCL and DCl, II-I' transition of IIBr, of II-I transition of DBr. Therefore, the II-I transition of HI and. of DI, through it appears diffuse in figures 5-1 and 5-2,. is of the first ord.er with a Latent heat at the ● 1■ 88] t ● 合 2.2 20 8 6 ・ ・ [P∞0い Eっ x\ ︷ 〇ざミよLrミ ︸ ︵ ■o / / ノ / 14 66 68 70 72 74 76 78 80 ア/K FIGURE 5-8。 Entha■ py change in the regiOn phase III → phase II of Htt and DI. The different series of measurements are noニ ュa■ ized on the high temperature side of transitionse H工 8 0′ (XIV), △′ (XV)F‐ ▽′ ・(XVI). DI: ●′ (I), ▲′ (III). :ι t も cID 打1 /︲ ▲ ︱卜 ゴ ´ 一 ″ 才 A/・ 5.5 “ ― ▲ ´ 一 0 5 5 4 ○ざミ ︲︵ Kざミ ︺ T5E つx\ ︷︵ [Hり0] 410 122 124 126 128 130 万 /K FIGURE 5-9。 Entha■ py change in the reg■ on phase II → phase tt of HI and DI. The differё nt series of measurements are noこ llla■ ized on the high temperature Side oF transitions. H18 0′ (=■ ), △′ (III). D18. ● ′│(V), ▲′ (VI), transition point. The enthalpy change at the transitions measured are shown'in tables 5-6 and 5-7 for III-II and II-I transitions, respectiveLy. As for the "transitions" at.I0 and 25 K, which were ind.icated by spectral- studies r rlo anomalies in heat capacity were observed, as shown in figures 5-1 and'/ox ` 5-5; ● ゛ 1■ 9■ ] 5-6. The enthalpy of III-II transition of HI and DI including the "normal'! part of heat capacity. TABLE ゛ TSeries TI '-2 no.KKJmolJmol H(To)-II(T1 -'.-z',-',-L' ) H(7f)-H(68) HI o xrva xva xvra )ffrr )ffrrr 082 68.108 68.390 67.gg2 65.831 68. 71.030 7L-. 040 70.954 70.678 70.985 26L.8 260.1 . ' 239.5 252.L 377 .6 - 265.L 264.8 264.8 264.8 265.2 Averege 26409±003 Ttt Present work 70。 23+0。 (1929)bEucken and Karwat (Lgzlrc 70.1 Giauque and wiebe [■ 92] ´ 72.' 02 TABLE 5-6。 Continued。 Saries Tl T2 H(T2) H(T.) no. K K 」mO■ 7・ Jmo■ H(78)― H(75) ・ JmO■ DI ● ra rr rrr" )(v 75.205 25.063 75.L34 74.6g7 7g.206 77.956 79.673 78.249 350.5 302.5 345.9 329.0 3Lg.2 318.9 3L9.5' 3L9.7 Averagё 3■ 9。 3± 0.4 Ttr Present work c■ isius 77:48+0。 02 and Woi= (■ 947)d a rn this series, the transition b From reference 4. c From reference 5. d From reference 6. 彎 [193] 77.3 was done in stages. TABLE 5-7. DI inC■ uding the T T . Series ttnormaL'! T2 740 IIA ■23。 IIIA ■24.■ 36 xrx ■23。 ■62 xx ■22。 575 H(■ 27)― H(■ 24) H(T2) H(T.)′ K no. う transition of HI and part of heat capacity. The enthalpy of II-I Jmo■・ 」mo■・ 959。 ■ 945.0 ■27.303 954。 0 948e7 ■26.993 ■000.6 947。 3 858 ■026。 8 946`4 Average 946。 9+■ .9 ■26。 ■26。 957 Ttr Present work ■25:60+0。 0■ Giauque and Wiebe (Le2e) b ■25:6 Eucken and Karwat iJszlrc t [■ 94] ■24。 1 q;'=*a .\,fu -i,q .\ lR! i TABLE Series n。 5-7. Continued. . T rv vo vra )(Vr T. T2 T‐ L26.773 L26.892 L27.540 L27.236 H(T2) =(T■ Jm。 ) H(■ 30)― H(■ 27) Jmo■ ■ '・ DI: L29.43L L027.5 129.903 1041.5 129.838 gg2.O L29.433 996.6 ・ 1039.5 1038.5 1038.7 1040.8 ■ Average ■o39。 4+■ 。4 Ttr work CLusius and wolf (Lg47')d' Present a rn this series, the transition b From reference 4. c From reference 5. d From reference 6. ` [■ 95] L23.24+0.01 L28.28 Iilas done in stages. 5-5. Thermodynamic functions ち The thermodynamic functions む and WoIf of HI and DI \^/ere calculated by using a smooth extrapolation for the contribution of the heat capacities beLow 2 K. The results are given in tables 5-8 and 5-9 for HI and DI, respectiveJ-yThe entropy of liquid HI and DI at the tripJ-e points was calculated to be LLL.Sl- and 1l-8.89 J K-l mol-l, which are slightly different from LL2.7g J t<-1 moL-l by Giauque and Wiebe and, !L7.5L J r-1 moL-t O" Clusius , respectiveS-Y. ` [■ 96] TABLE 5-8. Thermodynamic functions of HI. 争 T 一K so (r) -so (o) JK-1*mol--'l- {so (r) -Ho (o 」K ・ Ino■ I ・ t /r -{eo (r) -Ho rc) t /r .-'t JK *mol -'l So■ id ● ■0 ■。528 20 7。 70■ ■.■ 54 0。 374 3 2。 388 ■88 5。 307 8。 387 5。 3■ 30 ■4.50 9。 40 20.62 ■2。 23 50 26.29 ■4。 89 60 32。 0■ ■7166 ■4。 35 70 4■ .80 23。 8■ ■7。 99 80 45。 09 20。 57 90 50.2■ 26.60 23.6■ r ● ′ 66 25。 ■■.40 ■00 54。 62 28。 ■3 26.49 ■■0 59。 01 29。 77 29.25 ■20 63.54 3■ 。63 31。 9■ ■30 74.08 39。 36 34。 ■40 77。 4■ 39。 75 37:66 ■50 80.53 40。 12 40。 4■ ■60 83。 47 40.46 43.0■ ■70 86。 26 40。 ■80 88。 92 4■ 。■■ 79 1197] 45。 72 47 47.8■ TABLE 5-8. Continued. ゆ r so(r)-so(o) {no(r)-Ho rc')}/T -{eo(T)-Ho rc')}/r 」K・ mo■ K l JK ・ mo■・ I JK・ mo■・ 04 ■9o 9■ .47 4■ 。43 50。 200 93。 92 4■ 。75 52。 ■7 2■ 0 96.30 42。 08 54◆ 22 98.68 42.03 56。 65 222。 5 Liquid 222.5 ■■■。5■ 54。 86 1198] 56165 TABLE 5-9. Thermodynamic functions of DI. ● T 一K so (r) -so (o) JK-l -mol-t- {no (r) -no (o) JK=・ mo■ },/r ―■ -{eo (r) -Ho rc) } /T JK-1-mol -'l So■ id ■0 ■。508 20 7。 722 ■。■47 0● 36■ 345 2.377 9。 3■ 2 5:325 5。 30 ■4.64 40 2■ :00 ■2.54 50 26.96 ■5.40 ■■。57 60 32。 86 ■8.24 ■4.62 70 39。 22 2■ 。55 ■7。 67 80 48。 35 27。 48 20。 87 90 53.54 29。 32 24.22 ■00 58647 3■ 。07 27.40 ■10 63。 30 32`86 30。 ■20 68.■ 8 ■30 79。 ■40 8。 458 44 80 33`38 94 43.59 36.35 83。 53 43。 94 39。 59 150 86。 86 44。 23 42。 63 ■60 89。 97 44.48 45。 49 ■70 92.90 44。 70 48。 20 ■80 95。 67 44。 92 50。 75 34。 ● [199] ・ ヽ ´ 、 デ _Ⅲ ,` Ⅲ ■ ′ ‐ 1・ ' │ TABLE 5-9. Continued. ● r so(r)-so(o) {no(r)-noto) }/r -{eo(r)-Ho (0,}/T ; ".-E- ffiF ■90 98。 32 45.■ 3 53e■ 9 200 ■00。 87 45。 36 55。 5■ 2■ 0 ■03。 33 45。 60 57。 22■ 。5 ■06.06 45.88 73 60.■ 8 Liquid 22■ 。5 ■■8。 89 58。 7■ ● [2001 60。 ■8 REFERENCES to CHAPTER 5 ● ■. Ruhemann′ B., Silnon′ Fo Z. Phys. Chem. ■93■ , B■ 5′ 406。 ` Am. SOC。 ■933′ Mclntosh, D。 , Steele′ B. D. Z. Physo Cheme ■906′ 2. Smyth′ C. P.′ Hitchcock′ C= S. 55′ 3。 55′ 4。 」. ■835. ‐ ■45。 Ciauque′ W. F., Wiebe′ R. 」. Am. Chemo Soc。 ■929′ 5■ ′ ■44■ 。 5。 Eucken′ A.F Karwat′ Eo Z. Ph,se Chem。 ■924′ 1112′ │ . 467。 6. C■usius′ K., Wo■ f′ G. Z, Naturforsch。 7。 Mclntosh′ DoF Stee■ e′ B. 0. Z. Phys. CheFIt. 55′ ■906′ ■37。 8. Heng■ ein′ Fo A. Z◆ Phys。 9。 ■947′ 2a′ ■923′ ■8′ 64。 Batё S′ 」. R., Ha■ fё rd′ o. C.: Anderson′ L` c. 」. chem. Phys。 1935′ 3′ 4■ 5。 ■Oc Mirave■ ■es′ R.F MO■ es′ 5■ 8。 [20■ ] Eo Anne Espane ■925, 23′ 495. _o暁aも 、‐ ` 11 ‐ ` Appendix 5A: Measured heat capacities of HI. T T I 5■ 。57 ■■5。 3■ 7 52。 38 862 42.08 ■■6。 26■ 53。 07 96。 96■ 42.60 ■■7。 ■98 53。 92 050 42.93 95。 98。 ■ 一K 一K Ser■ es ■■4.364 99.■ 30 43。 Ser■ es II 53 ■00.202 43.85 ■0■ 。266 44。 ■■3。 ■27 25 , 50。 ■5 097 1 50.87 ■■5.060 5■ 。76 52:25 ■14。 ■02。 320 4438■ ■03。 366 45。 34 ■16.0■ 4 1 ■04.403 45。 74 ■■6。 959 ■05.435 46.29 ■■7。 895 ■06。 460 46。 8■ ■■8.823 ■07。 476 47.33 ■■9。 740: : 56.45 ■08。 484 47。 73 ■20。 647 ■09。 484 48。 48 ■2■ ■■0。 476 49。 02 ■22。 ■■■。46■ 53。 ■ 42 54。 ■■ ・ 55。 ‐ 57。 29 49 .545 58.67 430 60.57 49.48 ■23.304 6■ 。62 ■■2。 438 50。 40 ■24。 ■67 64。 06 ■■3。 404 50。 83 ■25。 0■ 4 66。 06 ウ [202] Appendix 5A. Continued. ● T T 一K 一K Transition ■25。 933 ■26。 ■74 ●「 ◆ ■2も :634 ■27。 442 ■28。 4■ 5 488.46 360。 07 ■07.95 、■■9。 275 ■20。 ■82 」K・ mo■・ ■27。 789 45。 ■0 ■28。 759 45。 ■3 ■29:727 44。 95 750 44。 94 ■30。 99 ■3■ 。8■ 2 44.90 44.98 ■33.063 44。 ■34.503 44.90 ■36。 ■30 44.95 ■37.942 44。 96 844 45。 03 45。 Ser■ es III ■■8。 08■ Cp 54.86 56。 05 ■39。 57.■ 6 ■4■ .740 88 45。 ■■ .079 58。 43 ■43.629 451■ 5 ■2■ 。966 59。 63 ■45。 5■ 2 45。 ■2■ ■22。 843 6■ 。26 ■23.707 62。 ■24.558 64.63 ■25`337 90。 ■47。 98 ■49。 26■ 99 Ser■ es Transition ■26。 ■40 ■26。 849 52 ロ [203] 45.3■ 45。 38 IV 705 5。 1■ 。 078 5.508 ■■。6■ 9 6。 10。 ■56.■ 6 53。 389 23 070 077 ^F´ │= Appendix 5A. Continued. ● JK-1*moL-14 ■2.269 6.765 ■2.962 7。 ■3。 682 ■4。 cp 一K 一K ● T T ●′ "p JK-1-mol -1 764 ■8.424 53■ 28.596 ■8679■ 8。 295 29。 435 ■9e■ 53 426 9。 068 30。 283 ■9.53■ ■5.■ 59 9。 8■ 6 Ser■ es V 27。 870 ■0.5■ 9 ■6.570 ■■。■5■ ■0。 78■ ■7。 264 ■■。794 ■■.260 ■7。 958 ■2。 385 ■■.894 6。 367 ■8ら 656 ■2.927 ■2.6■ ■ 7。 ■54 ■9.362 ■3.493 13.322 7。 907 654 ■5。 │ : 5e■ 70 5.697 20。 080 ■4。 025 ■4.066 8。 20。 898 ■4.60■ ■4.8■ 5 96470 .800 ■5。 ■98 ■5。 532 1 ■0.■ 78 2■ 22。 684 ■5。 756 ■6。 234 ■0。 8■ 4 23。 555 ■6。 274 ■66928 ■■.505 24.4■ 7 ■6。 736 ■7.6■ 8 ■2。 276 ■7。 225 ■8。 3■ 0 ■2.668 25。 26。 ■■5 26。 937 075 ■7。 65■ ■9。 009 ■3。 227 030 ■9。 730 ■3。 779 ■8。 [204] 0.ナ ‐ ‐ Appendix 5A. Continued. ● T T 一K 一K 201549 ■4。 343 30.747 2■ 。437 ■4。 959 3■ 22。 323 ■5.54■ Cp 」K ・ mo■ ■9.695 .897 33。 20。 ■9 056 20。 60 ■6。 066 34:228 2■ 。09 072 ■6。 570 35。 4■ 4 2■ 24。 9■ 0 17。 042 36.700 22.03 729 ■7.465 38。 ■56 22。 26。 53■ ■7:853 39.708 23。 ■9 27.337 ■8.208 4■ 。 340 23。 84 43.00■ 24。 52 44.688 25。 29 2312■ ■ 24。 25。 Ser■ es VI 2■ .■ 53 ■4。 745 46。 22。 ■86 ■5。 426 48.3■ 8 23。 ■95 ■6。 074 50。 24.■ 88 ■6。 645 25.■ 69 ■7。 ■47 26。 ■66 ■7.665 20。 27。 277 ■8.■ 76 2■ 。 28。 452 ■8。 29。 60■ ―■ 496 .54 58 26。 ■3 27。 05 064 28.00 Ser■ es VII 764 ■4。 469 672 ■5。 096 723 22。 688 :: ■5:727 ■9.224 23.684 1 ■6.354 1205』 Appendix 5A. Continued. T T 一K 一K Cp 」K ・ rno■ ●´ 24。 667 ■6。 900 52。 865 29。 76 25。 683 ■7。 409 54。 497 30。 94 26。 7■ 7 ■7。 936 752 ■8。 409 27。 28.8■ 5 ・ Ser■ es VIエ エ ● ・ ■8.879 ■。855 1 0。 437 2.■ 0■ │ 0:033■ ■ 02■ 86 079 ■9。 3■ 。 356 ■9.959 32.476 20。 33.608 20.84 2。 873 1 0。 752 2■ 。29 3。 ■■8 0`■ ■49 353 30。 34。 2。 347 : 2.597 39 35.946 21。 75 3。 37。 23■ 22。 24 3.637 1 38.6■ 8 22。 77 3。 40。 ■24 23.35 4■ 。775 24.02 0。 04620 0.06■ 23 ‐ 963 08798 0.■ 43■ Oe■ 90■ ・ Ser■ es 0。 25■ 8 IX 670 24。 83 ■。897 45。 68■ 25。 76 2。 22■ 47.595 26。 69 2。 539 0.05954 422 27。 66 2。 888 0。 08827 5■ .■ 76 28。 69 3。 300‐ il 0。 ■359 43。 49。 ヽ [206] O.02422 ´ 0.04099 Appendix 5A. Continued. T T 一K 一K 3`752 0.2■ ■2 ser■ es Xエ エ series X ●′ ● 3。 0.2079 753 1 ■。876 0。 02379 4.334 ■49 0。 03552 4。 888 0。 2.430 0.05■ 58 5。 364 1 0.6959 795 0.08000 5.857. 0。 ■1265 2。 2。 0,33拿 0 5074 9358 31240 0。 ■282 6.4■ 5 1‐ 3:7■ 2 0。 2035 6。 942 1 ■。62■ 4.222 0。 3■ 76 7。 479 11 2:O■ 0 4.727 0。 4664 8。 053 2.494 0.6480 8。 668 ‐ 9.33■ : │‐ 5。 208 5.726 0。 8967 Ser■ es Xエ 2603 3.999 0。 4.420 0137■ 9 4。 865 0。 3。 05■ 3.686 ■0。 050 4。 407 10。 8271: 5。 249 ■■。657 . 6.■ 44 ser■ es XttII 5■ 97 5.309 0.6993 5.305, 5.800 0.93■ 9 5。 ◆ [207] 885 O:6696 0.9489 #ie {r:r:{.!i&'/n Appendユ x 5Ac Continued。 む T T 一K 一K ● 」K ・ mo■ ・ 6e467 ■.284 63。 3■ 2 4■ 037 ■。676 64.447 43。 56 7。 ′ Cp 。■8 7.629 2。 ■34 65。 545 46。 53 8.269 2。 690 66.598 50.29 8。 98■ 3.350 67.597 55。 57 9。 794 4。 ■5■ 68。 53■ 63.99 10。 7■ 5 5.■ 33 69.368 8■ .77 ■■.7■ 3 6e■ 97 69。 977 ■83.44 ■2。 75■ 713■ 3 70.6■ 4 7■ .79 7■ 。593 37。 7■ 72。 72■ 36。 4■ Ser■ es XIV .259 28。 72 73.85■ 1 772 29。 66 74。 973 54.237 30。 68 76。 083 1 5■ 52。 55。 673 571038 58。 373 3■ .78 36.26 36。 35 77.■ 84 36.49 36。 59 33.00 34。 Ser■ es 28 xV 59.666 35.70 54.984 3■ .26 60。 9■ 9 37.39 56。 366 32.36 62。 ■36 39e■ ■ 57。 707 . 33。 64 ` 1208] … ″ =・ ° Ⅲ… ′ ‐. … Ⅲ Appendix 5A. ・ 1 ・ Continuё d◆ ● T T 一K 一K 59.007 60。 \ 70。 362 36。 50 70。 779 43.60 7■ 。3■ 4 38。 ■2 62.396 39。 35 993 40。 54 63.58■ 41.42 64.■ 57 42。 722 65.277 65。 マ● 95 38。 1■ 64。 820 」K ・ Ino■ 34。 6■ 。494 62。 ■ 269 Cp Ser■ es 90 44.04 45。 ■09。 XVI 65.486 46。 24 66。 ■■8‐ 48。 66。 52 66 850 5■ 3■ 。3■ 67.856 57。 47 47.25 68。 780 67。 32 05 69。 507 87。 06 66.352 49。 66。 87■ 5■ 。38 70:021 67。 376 53.96 70。 577 70。 88 67。 867 57.07 7■ 。687 37。 57 68.339 61.45 73.2■ ■ 36。 28 686789 67。 ■■ 74。 670 36。 30 69。 2■ 3 75。 79 75。 930 36。 46 69。 599 90。 32. 77。 ■08 36。 67 69。 927 ■24。 00 78。 274 36。 79 79。 538 37。 23 706■ 39 344:2 ` 1209] 2■ 0。 0 ・ sd.r drrffii Appendix 5A. Continued. り T T ● │ 37.49 82.255 37。 83.608 38。 ■4 960 38.63 84。 ● 898 一K 一K 80。 84 86.4■ 5 39。 06 956 39。 60 87。 89.47■ 40.05 90.96■ 40。 55 430 40。 98 92。 Series XIX II-I Transition, 93`880 4■ 。52 95。 3■ 0 42。 Continuous Heating Series XX II-I Transition, Continuous Heating Seriё s XXエ 255 ‐ 45。 40 ■52.297 . 45。 54 ■50。 06 154。 Series )ffII 4961=│ 45654 ■56.833 45。 70 Transition, ■59.222 45。 78 Continuous Heating ■6■ 。654 45。 96 164。 ■22 ・ 46。 02 III-II Series XVIII III-II Transition, ■66。 ■69。 ■69‐ 46。 Continuous Heating ■7■ 。750 46.37 ■74。 [2■ 0] 628 370 46。 ■5 46。 33 56 Appendix 5A, Continued。 T T 002 46.65 ■79。 627 46.8■ ■82,2■ 0 46.98 806 47。 ■5 ■84。 ↑ ■ 一K 一K 177。 ■87.384 47。 34 945 47。 52 ■92.520 47。 70 ■95。 ■■0 47.93 ■89。 ■97。 686 48。 200。 269 48.24 202。 886 48。 208.■ 29 48。 2■ 3.287 2■ 99 49.33 49。 70 5.825 50:26 473 50.87 2■ 8。 Fus■ on 39 48.70 72■ 218.982 06 205.5■ 5 2■ 0。 Series xx工 エエ Fus■ on′ Continuous Heating [21■ ] 50。 87 =,■ `0■・ ■● Appendix 58. Measured heat capacities of DI. T T 一K 一K cp JK-1*mol-1* Ser■ es エ 79.848 43。 92 949 43。 57 80。 6■ 。 37.53 62.972 38。 643243 40.■ ■ III-II 484 4■ 。49 Continuous Heating 66.690 42.97 672 65。 Series II 82 Transition, 865 44。 84 69。 0■ 2 46。 77 72.673 55。 79 70。 ■26 49。 00 73.662 59。 90 7■ 。205 51。 37 74。 603 65。 ■8 72。 248 54。 46 75。 490 72.93 73。 254 58。 20 76.306 :l. 74.2■ 6 62。 88 77。 75。 ■29 69.40 77.473 980 79.44 78。 ■53 67。 75。 Ser■ es 005 1 58 ‐ 28■ │ .45 79.2■ 9 1 44。 42 43162 22■ 。■6 801426 77。 84■ 93.59 8■ 。74■ 752 45.24 83。 [2■ 21 ■20。 48 77。 28■ ヽ 66 50。 ■00。 78。 85。 1 76.738 19 III 046 ‐ │ 43。 56 43。 62 Appendix 5B. T T ? 一K 一K -p JK-1*mol-1* 339 43。 76 ■09。 292 52.7■ 85.6■ 9 44。 07 ■■0。 555 53。 ■0 86。 89■ 44。 38 ■■■。809 54.06 88。 ■52 44。 73 ■■3.055 54。 82 405 44。 94 ■■4.286 55。 62 90.646 45。 38 ■■5。 507 56。 28 .874 45。 72 ■■6。 72■ 57。 07 095 46。 ■3 ■■7.924 58。 08 94.307 46.50 84。 89。 9■ 93。 ヽ● Continued. series lv 95。 505 46。 95 96。 693 47。 40 ■■9。 97.869 47。 65 ■20.6■ 5 ■ 60。 99。 039 48。 24 ■2■ .769 ■00。 203 48.65 ■0■ .449 ■02。 782 ■22。 446 909 59。 37 83 . 62.00 1 63.45 1 25 ■24.033 65。 09 49.72 ■25。 ■43 66。 39 69。 09 49。 ■04。 ■06 50。 33 ■26.243 ■05.4■ 7 50。 83 工エーI ■06。 7■ 9 5■ 。46 ■08。 0■ ■ 52。 ■3 Trans■ tion′ Continuous Heating [213] Appendix 5B. Continued。 T T 一K 一K Ser■ es 928 53.35 ■24e357 64.92 ■■2。 ■90 54。 22 ■25.65■ 67.63 446 54。 9■ ■26。 9■ 6 ■■0。 ● 0 , ■■3。 ■■4。 69■ 55。 70。 6■ Transュ tion 77 922 56。 7■ ■30。 892 48。 62 ■■7。 ■35 57.49 ■32。 682 48。 57 257 48.54 ■■5。 335 58。 46 ■34。 ■■9.623 59。 65 ■35.932 ■20.993 6■ ■22.344 62.58 ■39.297 48。 39 ■23。 67■ 64。 28 ■4■ .035 48。 35 978 66。 06 ■26.260 68。 98 ■27.4■ 9 7■ 。95 ■■8。 ,● Seriё s VI V ■24。 .05 ■37。 48◆ 48 48.39 602 Sories VII Transition ■。920 O。 0246■ 2。 ■64 0。 03425 0。 0479■ 640 48。 65 2。 408 ■32.■ ■3 48。 58 2。 640 0。 06■ 93 ■33.584 48.53 2.879 1 0。 08■ 88 ■30。 ` [214] . :Ъ +‐ ´ '● Appendix 58. Continued. T T Ser■ es IX 3。 ■42 0:■ 090 3。 433 0.■ 474 ■。840 O。 02076 3.75■ 0.20■ 0 2。 066 0。 0296■ 093 0.2708 2。 334 1 1 0.0425■ 369■ 2。 583 0。 05862 0。 08■ 43 3:0165 0。 ■0■ 0 3.369 0。 ■374 0。 ■984 4。 4:464 ● 一K 一K JK-1*mol-14 4。 900 0。 014994 2ι 8■ series VIII ‐ 8 : ■。9■ 5 O。 02392 3:723 ‐│ ■62 0。 0332■ 4e■ ■0 1 2。 4■ 4 0。 047■ 9 4.490 1 2:660 0。 06467 4。 2。 2。 9■ 7 ■90 0`■ ■58 3。 485 0。 ‐ │ 3889 015■ 69 serios ■594 4。 583 ■■ ′0。 2■ 28 5108■ ■ 2973 5.539 ‐ 4。 ■72 0。 4。 567 0.4066 4.999 0。 0608668 3。 3.8■ 4 872 0:2769 0。 5`98■ 1 5589 12■ 5』 Oe3994 0。 5737 0。 7709 0:9862 6。 435::│‐ ■.2456 6。 922 11・ ■15683 ¨″ Appendix 58. Continued. T T 一K 一K cp JK-1-mol -l Cp JK ・ Ino■ ・ 7。 472 ■.9757 1■ 。240 5。 8。 107 23506 12。 ■20 6。 6■ 3 13.04■ 7。 688 579 Series XI 4.707 XIII ■■.025 5。 473 0.8247 ■■.988‐ 6。 495 6.■ 38 ■.0704 12。 925 7.485 9 ■.3649 ■3。 878 8。 7.■ 43 ■。7302 ■4.9■ 0 9.633 728 2.■ 84 166046 ■0`768 8.359 2.73■ 17。 226 ■■。854 9`029 3。 5。 ■86 5.669 6。 6■ 7。 Ⅲ● Ser■ es 0.439■ 9。 0。 ‐ 843 Ser■ es 6■ 29 375 ■8.380 4.■ 98 ■9。 X工 工 ■2。 563 852 587 . ■3。 82■ Ser■ es XIV ■55 2。 553 ■3.680 8。 8.978 3。 3■ 4 ■5.00■ 9.744 9。 698 4。 048 ■6.422 ■■。■23 ■0。 434 4。 829 17。 8。 [2■ 6] 772 ■2。 329 330 Appendix 58. Continued. 伊 T T ●● 一K 一K ● ■9。 093 13.438 45.4■ 4 20。 380 L4.405 46。 807 27:66 2■ .6■ 9 15.291 48.232 28.33 22.828 16.065 49。 667 29.20 24.O■ 9 16.818 5■ 。■53 30。 0■ 25。 20■ L7.486 52。 724 30.89 26。 420 L8.L27 54。 342 3■ 27。 722 L8.792 55。 953 32。 29。 078 L9.432 57。 557 34。 ■0 30。 45■ 20.L3 596■ 73 35。 32 3■ 。8■ 7 20.79 60。 769 36。 69 33`■ 63 2L.47 26。 98 .89 99 34。 527 22 35。 934 22.64 III― II TranSition′ 37.327 23.25 continuOus Heating 674 23.85 40。 0■ 3 24.44 4■ 。 364 25. 05 Series )ffI II-I Transition, 42。 7■ 9 25.67 Continuous Heating 063 26.3L 38。 44。 Ser■ es XV .0L も 1217] Appendix 58. Continued. T T ■42。 375 ■44.569 XVII 48。 30 48.33 998 48。 97 ■88。 755 49。 21 ■9■ 。496 49.48 ■94。 22■ / 49。 59 49。 85 900 48。 35 ■96。 ■49。 3■ 9 48。 32 ■99。 6■ 6 50.■ 2 ■5■ 。806 48。 25 202。 3■ 3 50:26 ■46。 ● ● 一K 一K Ser■ es ■85。 928 ■54。 306 48。 ■7 205。 0■ 9 50。 44 ■56。 792 48.■ 6 207。 702 ‐ 50。 53 ■59。 283 48.■ 6 2■ 0。 398 50。 67 50。 59 ■6■ 。979 48。 25 2■ 3。 ■05 ■6437■ 5 48。 25 2■ 5。 9■ ■67.290 48.33 ■69.878 48.40 172.479 48。 2■ 8。 094 48e57 ■77。 726 48.65 48.64 226 48.9■ ■83。 52.89 Setties XIX 458 62。 64 Fusュ on XVIII ■80.403 824 Continuous Heating 220。 Ser■ es 5■ 。24 Fus■ on′ 50 ■75。 6 223。 ` [2■ 8] 333 63.■ 8 .´ ´ ,‐ . ヽ ‐ ● ● CHAPTER 6 Properties and Phase Transitions Analysis and Disgussion Thermodynamic " け● ● 1219] 6-1. General- remarks In this chapter our object is to analyse the results of thermal measurements on soLid hydrogen halj-des and their deuterium analogs to see what can be Learned about their vitirational ptop"ities and mechanism of phase transitions. For instancer w€ should Like to know to what extent the phase transitions can be described in terms of successive orientationaL ● lt order-disorder model proposed by neutron scattering experiments. ALthough uncertainties in some of the auxiliary data required are so great, some conclusions about the mechanism of phase transitions in hydrogen halides can be drawn. Following analysis and discussion will consist of four parts: (1) vibrational contribution of heat capacity and onset of orientational disorder at low tenrperatures t Ql defect formation phenomenon just below triple point temperaturei (3) extraction of order-disorder heat capacity in transition temperature region; and (4) mechanism of the phase transitionsWe will start to discuss the vibrational properties of crystal lattice. [220] 6-2. Low temperature region 6-2-L. Zero point properties The characteristic temperature at 0 K rn actual examples of insulators, it is fourra(l) that the frequency distribution takes the form of a power series G(ν )= α,2 + 4 + βν 6 + .。 。 γν that converges asymptotica■ ■y at ■ow (6-■ ) frequenc■ es ν ■ess than abOut (υ max/25)′ "here νmax is the Debye cut-off frequency. The consequence is that the heat capacity at constant voLume becomes t * brS + cT7 + ... . cr, = "T- (6-2, is an equivalent series for the apparent characteristic temPerature There へ ● oD(E) = o0 tr - atforz - B(h-) ...1. (6-3) In this equation' OD (T) is the aPParent Debye characteristic temperature that corresponds to C., obtained from experimental data; O0 is i'ts limiting value at T + 0 K. One connection between equations 6-2 and 6-3 is provided bY %=(中 )VL [22■ ] (6-4) ・ a numerical estimate of 0O from heat capacity data, it is convenient to plot.either C.rT-?- or OD(T) ) against T-. If the first is used, the intercept of the curve gives the value of the coefficient a. Since the correction of (cp-cv) is negligibly smaLl at T < L5 K as wiLl be mentioned below, the experimental c*T-3 value is plotted against 12 in figure 6-1. p No attempt has been mad,e to estimate the coefficients b and, c because of great uncertainty. The temperature dependences of Debye temperatures derived from the measured heat capacities had been Those mean that the shown in previous sections. form of the lattice frequency spectrum resembles that of a Debye spectrum. This can be accounted for by the fact both the 2N librational and N intramolecular vibrations are well- separated from the remainder of the frequency spectrum. In fact, intramolecular contribution is negligibJ-e at the temperatures measured,. Furthermore LibrationaL contributions ban be neglected in the lowest temperature region T haLides. The Debye characteristic temperature at 0 K is thus determined by assuming 3N degrees of freedom (see table 6-1). It is worth comparing the OO of HCl, HBr, and HI with that of Ar(93.3 K), Kr(71.7 K) j5) and xe(64.0 x;(6) To obtain ● ^● r [222] 2/K2 20 60 80 0 20 40 60 80 50 50 45 45 40 40 ︲ oJ 口 ¨o 35 35 HI 28 6 2 26 4 2 24 2 2 22 。 2 20 旧 D Br H Br :8 9 o/ o 9 8 8 6 オ 20 40 60 移 80 0 7 ° 20 C ︰ D 7 C 〓 H へ ● r O だ ξ ヮ 40 60 80 ″2/K2 FIGURE 5-L. Graphs of Crrr-3 against [223] T2. 、 TちE 寸・Y つ寸︲〇一\ n︲K も 8 2 、も E Tち 寸︲Y つ守r〇 一\ n︲に ●′ 40 「 6-1. The coefficients (a) and the Debye characteristic temperatures at O X.(OO) determined by the plots of c.rr-3 against T2. TABLE Sub,t'n,es : HBr H1 ‐ ■8.6 + 0。 3 34。 6 +10。 3 DC■ 6.55 + 0。 ■4 DBr ■9:■ D工 牛● ■ 64 6。 48 + 0:■ 4 Hc■ ● a x 3218 + 0。 5 + 0.6 96 T ■44。 2 + ■0■ 65 ■.0 + 0.5 82。 5 + 0。 3 ■43:7.+ ■。0 ■00。 6 + Oc8 84。 0 + 0.5 respectivel-y, because of their comparable molecular weight. The rather heigher OO may come from the molecular multipole interactions and hydrogen bonding in hydrogen halides. I As for the discrepant behavior between HI and DIr &DY positive explanations can.not be put forward. 1224] The heat of sublimation at 0 K in the preceeding papers may be used to calculate the heats of sublimation of hydrogen halides at O K. The reLevant thermodynamic expression is The thermodynamic properties given Ausob(0 I(). = AHsub(r) fT "n(gas)dr rF +/6"n(solid)dr+4, (6-s) the last term A is that of gas imperfection. When'the critical constants Pn and Tn are given' the term A is represented by following equation. where s P R (-) A= -L28 Pr -T2 18r,? t#)To rr (6-6) of vaporization were not measured in the present investijation, the data used are those of Giauque and wier"(7) and clusius and wolf(8) for Since the heats み ● hydrogen halides and deuterium haLides, respectively. Unfortunatelyr rlo data for DCI are available. The resuLts obtained are summarized in table 6-2 and the values of rare gas solids are also included for the sake of comparison. It is found that the multipolar and hydrogen bonding interactions play an important role to determine the structure of hydrogen halides. 1225] . ■.. t. 一 一一 ・ ミ● 〓ヽ■一 ・ , , 卜 ● 6-2. CalcuLation of the heats of sublimation at 0 K' (in the unit of kJ mol-1*) TABLE HC■ Heat of sub■ imation at T = Tf . HBr HI △Hち .p。 16。 ■50 ■7。 6■ 5 ■9:765 .iquid [NNO] fusion 7■ o ■。 202 ■。 0.922 ■。97■ 2.399 2。 855 , DC■ :「 -4。 828 -5。 477 c:(gas) ′ cP(sO・ id). :「 at T = O K 5:62: 0。 △ _ Heat of sublimation 1 、 024 20。 85 711:' 0。 052 23.30 二 と 。 175 90,52 0.096 26。 52 DI I Ar Kr ………… ■7。 8■ 5 ■9.732 ■.945 Hs二 f)・ 1183421。 2■ 623。 542 -‐ △ 撃 1∫ DBr ■.304 ■.043 2。 369 2.84■ 2■ .48823.6■ 6 7.78610。 79■ -1.609 -5。 4o2 6。 「 416 =■ .74■ -21496 。 636 ■■ 64 ■ 6。 096 8:■ 6 0.■ 2.1■ ■ 0。 024 0。 052 0。 093 0。 042 0。 059 24。 25 27.43 7.72 ■■.■ 5 r*j -+j -c I ,r ,ll The static lattice engrgy It should be noted that there are one or more phase transitions in hydrogen halides. Static lattice energy of phase I, which wiLL.be reffered to EO(I), was derived by anal-ysis of the vapor pressure data in phase I, which were fitted to the formula .n (PT3/2)= (a/T)+ b` Thё (6-7) static lattice energy is re■ atedl:to a through aNk = Er = EO(I) - Ezrlib i WheFё =2′ iib iS lhe Zer? p01,t The sio38 6: giapA (6-8) ■ ibratiOna■ i・ 1 1 ln(PT3/2)aglingt 。 ‐ energy。 ives し l A smal■ correctil● E. a la■ ue Of 2■ .29 kJ mo■ l for Hc.。 to thi3 va■ ue must be madё fOr thё ёffeOt of defect fo■ .llati6h f 21.39 kJ Ino■ 111 which ■ eaas t● a revised va■ uと 。 │● E去 ‐ │ in the nё ighborho9a of thё triplё point′ ‐ .ib′ Whi,h lF IS'umed t° ′ 1‐ makё no difference between phagё s tt and 工エェ′catt bё appr。 文imate■ ソ ё予a■ uatё d kき from the ■ibrati6nal mO■ ・ , th,ref6re =。 「 (土 frequenciё s as 3。 64 5。 05 )is う kJ m。 ■ 71 for Ho■ . The results are surmarュ zed in tab■ ёf13 t,7'lh'F ‐ other hydrOge, ha■ ides。 1227] e● :‐ by l‐ : ‐ ‐ :十 11 ▼ NOxt′ we "■ ■■ evalu● te‐ the‐ Stitid lattiこ e enligジ Of phase =ェ ェ′10(平 II)' WhiCh isl gi● 1‐ ‐ ‐ ー ‐‐ ‐ ‐ │ 11 1 │ 6-3. Estimat,ion of static lattice energy of (in units.of kJ mol-l) phases.I and IrI. TABLE HBr HC■ E6 ∼ DC■ DBr D工 t 8i:tr3, i3.i3r r3?:t3', i!:?1, ,trtr:33, ,31:i3, Ez 3 . 643 3 .206 2.7 43 2 .542 2 .52L L.g4L , lib (rrr) 1,.349 0.949 0.772 L.344 0.941- 0.786 Ez ,trans 24.254 27.427 20.853 23.303 26.515 AH"ob(o K) 25.03 26.60 28.20 23.81 25.92 27.44 no(r) 25.85 27 .46 30.03 27 .72 30.L5 E0 (rrr) Eo E" (rrr) -no (r) ,tt.rr" t 0.82 0.86 (rrr) AHsob (0 X) *o HI o" 065 0. o4r 1.83 0. 029 ■。80 o. 2.70 039 o .o2g static lattice energies without correction for the defect formation are designated in Pseudo parentheses. P2el E0(rrr) = AH"oo(0 K) * Er,trans(rrr) * Er,lib. The translational zero point energy of phase III (6-9) may be approximateLy represented by foJ-J-owing equation. (6-■ 0) ∞ 一 8 = 0 k N 9 Ezrtrans (III) obtained, which shows l-ittle change on deuteration, is also incLuded in table 6-3. E0(III) is 25. g5 k,l mor-l for HCr. since the difference between E0 (III) and EO (I) may be outside the combined uncertainties, it should be ascribed to the difference E^U 十● of lattice energy between phases I and III. In fact, the value of 0.82 k,l mol--l for HCI is comparable to -t The E0(rrr)-Eo(r) for Hr the AHa, of 1.19 kJ mol--. is evidently larger than that for HCl and HBrThis result is consistent with that of neutron scattering experiments: HCL and HBr in phase III are isostructural but HI differs from the two, while all the halides in phase I are isostructural. HI in phase III apears to stabilized additionalJ.y by quadrupole interactions and/ox charge transfer interactions. 6-2-2。 lCs― The ёstimation of (CprCv)Correction C3)i COrrection / 千 [229] ヽ │■紺 ■t=ヽ 嚢無甲おヽ Strictly speakingr w€ measure the heat capacity (Cs) of the solid in equilibrium with its sat,urated, vapor. The heat capacity at constant pressure C^ p may be obtained using the foLLowing thermodynamic expression: ● Cs ―Cp = ―Tα V(OP/dT)s (6-■ ■) qoefficient and molar volume, respectively, and (dP/dT)s is the slope of the vapor-pressure curve of the sol-id. When numerical values for each hydrogen halid.e are substituted in the equation it is found that C"-Cp is quite small, being at most of the order of 0.01 per cent of C- at the triple point. We have therefore P neglected. this difference between Cn and C" and assumed thern to be equal throughout the data. analysis. where o and V are the thermal expansion (Cp-Cv) correction 欅 ● Since the volume can be related quite simply to the lattice parameters, theoretical caLculations are usually done at'a constant volume. To convert our results from Cn to Crrr we used the familiar expression: cp where X - c., = o2w/x , is the isothermal compresibility. thermaL expansion and compressibil.ity data 争 ・ [230] (6-■ 2) Unfortinatё ■y′ are‐ incOmpiete t O a t ● required. Thereforer it is necessary have recourse to the quasi-thermodynamic relation: temperatures Cp (6-■ 3) Cv =AC:T where a constant A is given by (6二 ■4) A 二 α V/xC: C' were calculated from equation 6-13. The numerical values of the constant A for HCL and HBr were computed at 130 and L5O K The differences between Cn and ● ′ respectively as follows. Stewart have determin"a(9) afr" isothermaL PV curves for solid HCl and HBr up to pressures of 2 x LO4 by the direct piston displacernent method. Compressibilities were calculated to be 3-50 x 10-5 ?' -'l^ ) -'t at 130 K and 3.65 x l0-qr cmo kg at 150 K cmt kg-t for HCl and HBr, respectively. No reLevant data for -1 lcg cm-o 春 ● HI and deuterium halides are available. The molar volumes have been measured by X-ray and neutron diffraction and volumometer techniques. AvailabLe data were represented in the preceeding experimental sections. The V and o at l-30 and L50 K for HCI and HBr ldere obtained by smoothing method. The constant A was:thus determined to be L.50 x.10-5 and L.Ag x L0-5 mol J-I for HCI and HBr, respectively. As for HIr therefromt [23■ 1 A = 1.5 x 10-5 mol J-l was assumed. Further, it assumed, that A is not affected by deuteration. ● was in table 6-4, and the contribution of (C^-C.,) correction at selected Y". temperatures is tabulated in table 6:5. In this estimation, we assumed that the constant A has the same value for The data used and constant A are shown any phase. ●「 ● TABLE 6-4. The data used for evaluating the constant A. ・ v χx■ 65 αx.04´ K 1 ・ し m3m01・ 烹 .m2kg ・ c T ● ● HC■ 130 3。 60a 6′ .42b HBr ■50 3。 65a ,6.■ 7・ HI 1‐ ′ 25.31■ 1 3■ 。71‐「 Ax■ 「 」 K Lm6■ lm6i,■ ユ m。 ■ 」 '■ 44。 4Jd i 46。 65d i:56 ■:49 (■ a From reference g. b From references 10-12. c From reference 12" d Present results. キ [232] 05 。5) TABLE 6-5. The (in the units contribution of, (Cp-Cv) cor:iection. of J x-l nol-l) T 一K ● ゛ ′ HBr HC■ 0.035 DC■ HI 0。 035 0.060 0。 ■6 0。 28 0.37 ■.■ 7 0。 53 0。 76 ■。■7 ■.67 ■。■5 2。 00 2。 3■ 3。 4■ 3.54 0。 0■ 40 0。 ■5 0。 25 0.33 60 0。 45 0。 64 80 0。 95 ■。84 ■00 2:40 2。 ■20 3:32 3664 ■40 4。 84 0。 88 2。 27 5:78 3。 83 5。 03 2。 38 4。 26 ■60 5.42 5。 ■80 6。 87 5。 200 45 4。 Dエ 0。 0■ ■ 059 20 ■ DBr 6。 47 5。 ■7 4.9■ 04 6。 34 5。 58 93 8。 92 6。 40 6.97 ■ ● iタ 1233] 7`53 6-2-3. Librational contribution to heat capacity The correlation diagram for the structure of phase III (Bb2rrn) shows that three librational modes of the four are infrared and./or Raman active and the fourth one is inactive. Librational frequencies of HCL, DCl' HBr, (13) and DBr in phase rrr were given by rto. et al. (from Raman study and calcuLation) and by Hornig and o"b"rg(14) (from infrared study). The'frequencies of HI were calculated by the following relation using ● those of HCI and HBr. も庁 = constant I is the moment of inertia given from reference 15. As for DI, usual mass effect of deuteration are assumed. Frequency vaLues used are summarized in table 66. rheir contribution to heat capacity' which is listed in tabLe 6-7, was calculated on the basis of Einstein 'l mod,el for f, N degrees of freedom for each of the four z. where 0● (6-■ 5) modes. タ [234] ^, Lr 1,. s. . ar TABLE 6-6. LibrationaL frequencies in'phase III. (in the units of ● Modes ● . cm-1^) HC■ HBr H工 A. 290 265 199 A2 2■ 4 2■ 2 B1 496 400 B2 2■ 8 ■95 ■77 370 ■7■ 0● ● [235] Dql 2o3 ■52 o28 ■67 DBr 194 ■53 343 ■5, DI 14■ ‐ ■25 1 262 ■2■ TABLE 6-7。 ● ■ibratiOn. К 0.0003 ■ T一 K ●′ 20 The contribution to heat capacity of (in the units of HBr 0。 0007 Hエ ,J 0。 005 0。 0■ 0。 23 0.33 0。 79 ■.05 60 ■。47 ■。86 3。 ■6 3。 80 3。 35 4。 0■ ■00 5。 25 6.■ 0 ■20 6。 93 ■40 8。 35 ■60 9。 54 200 .mo1-1) DBr IDC■ 40 ■80 x-l 3 0。 0■ 8 Dエ 06■ ■ ■。23 ヽ 2。 7■ 26 65 3。 96 6。 5.7■ 6.29 6。 56 8.96 7。 83 8.43 8。 6■ 17:89 9。 48 ■0。 9e36 ■0。 78 ■0。 54 ■■。49´ ■■。80 ■2。 58 ■3.20 ●● ● 1236] ■0。 86 22 ■2。 ■9 ■■。35 ■■。43 ■3.■ 4 30 ■2.35 ■3。 83 07 ■4。 34 ■2。 08 ■0。 ■3。 ■4.73 6-2-4. The temperature The comparison of Oo (T) ● o, .o dependence of 0o(T) It is often useful to describe the heat capacity of solids in terms of the Debye theoryr ES in this way we may exhibit clearl-y small differences in the type of temperature dependence of the heat capacity for different substances. What is done is to examine the temperature dependence of apparent Debye characteristic temperatures corresponding to the lattice heat capacities. Deviations of 0o from a constant value are interpreted as being the result of departures of the actual frequency spectrum from the assumed Debye spectrum. It has become clear from the theoretical work of Blackman and oth"t=(l5) that, if vibrations remain harmonic, 0D should be constant at very J-ow (r 6 OD,/100) and at very high (T i OD/z) temPeratures, and should often have a minimum value in between. Figure 6-2(a)'r,(f) are graphs of OD(T) as a function of temperature for hyd,rogen and deuterium hal-ides. In the calculation of the plotted points, (Cp-Cv). correction and librational contributions were subtracted. In each graph, broken line shows the extraporation by means of the Thirring expansion.'(17) The decrease in 0o(T) in the region T obserired for some simple crystals(18'19) and has been : ● [237] L 。 。 ﹁ れ鼈。 150 │・ 140 130 Y ●「 S I ° ° 。 6θ o::° も ° も ・ ° び 電 5。 o:。 。 °° °・ 。 ,。 。 iσ 3dび ')´ 120 \ ぬ 0 (a) 150 ・● . ′. 、 140 130 120 ″● (b) 0 10 20 30・ 40 50 戸 /K 6-2. The temperature dependence of 0D. Broken lines show the extrapolation by the Thirring expansion. (a) HCl; (b) DCl. FIGURE [2381 ・ 0 亀喝喰爵♂ぼぼ“゛ … 5観 ‐ 瓦「 =再 耳 Y\ 口 ヽ ●′ ● 20 ″● 30 万/K 6-2. The temperature dependence of OO." Broken l-ines show the extrapolation by the Thirring expansion. (c) HBr; (d) DBr" FIGURE 1239] ウ 90 80 70 0 9 ● S Yヽ 一 ●「 70 60 ● ● 0 10 20 '30 .40 50 万/K FIGURE 6-2. The temperature dependence of 0D. Broken Lines show the extrapolation by the Thirring expansion. (e) HI; (f) DI. [240] ascribed to the onset of anharmonicity in the lattice , .€s r moreover, the onset of phase transition begins to overJ-ap at this temperatuf,€. While the general shape of the OD(T) curve is rather simiLar for aLl- the halides, there are differences in detail. The curves of hydrogen and deuterium halides are compared on a reduced. basis using OO val.ues in figures 6-3 (a) and (b), respectively. Also shown for comparison are the curves for argon and krypton. An inspection of the figures reveals that the curves ' for HCl and DCl show a more pronounced minimum at T = 00イ ■ 9 in ,Ontrast tO f■ atten‐ off behavi6r in H工 ″ and D工 between T = 06/10 ald 06/4. 03(T)19urveS Thё ‐ of HC■ and HI obv■ 9us■ y change by deuteratio.61 We bO■ ieve that this ■sot6pe effectl ilta re● ュ o■ e a■ th6ugh 0● thё re are some uncertainty.│■ lhe‐ ■ェbratiOn l freq■ ency。 ■ :││ │111‐ │││ ‐ ‐‐ ‐ ■ │‐ l ‐ ‐ The determinal■ Oh 01 0∞ of lattice heat capacity converted into the form derived, by Thirrinn(t7) t " of the corresponding Debye characteristic temperature The high temperature expansion by ■ Domb 031〒 and Sa1t"t, (21) Ol[1-■ 器)2+B(等 )4_■ 1■ │116二 16' ・ 124■ ] │ ● │ │ │ │ │ │ │ │ l :。 0 9 0 。S \ 。ヽ LΓII 0。 8 0。 2 万/Q ● トト FIGURE 6-3. The temperature dependence of OD ° a reduced basis using each , HBri ?"""t , Kr. [242] , 00。 H工 , ' , (a)=― ―――ニー ′HC■ ニニ ・ ―・ -0-′ Ar′ )│“ ││■ ′ ヽ 、 `.4ツ ‐■● ヽヽ=‐ │` ″│ ● 9 0 oSヽ﹁も 0。 2 戸/′ Q ミ● FIGURE 6-3. The temperature dependence a reduced basis using each ′ DBr, ′ ・ ● ・・ o・ OO. (b) of 0O on DCl; ・―-0-二 ′ Ar, ・・・ ′D工 , 一―。一― ・ Kr。 : [243] -r ' t-t Of, against T-2, which is shown in figures 6A(a)ru(c), gives the vaLue of 0- from the extrapolation The plot of -) = 0. Eo T'z values obtained are summarized in table 6-8. In folLowing sections, the heat capacities corresponding to this extrapolation curves will be The Ooo used as the normal lattice TABLE 6-8. 0:aし ,・ ・ The O∞ Value,19btainё d from the p■ ots of St i「 2. │ HC]" HBr HI 0ノ 率 Part. ■32。 3 9■ .5 ‐ DC], DBT DI 7313 ■35.1 92.076:5 [244] .. i l, ざQ\智 N ● 5 。 8. 8. oく 巻 ヽ一 8 6 4 。 。 5 5 5. ゝЪ \智 0● 5.2 Graphs of ●′D9■ 。 (b)0′ HBr, 2 D ′ 0 ● FIGURE 6-4. ●0 0 [245] aga■ nst T DBr。 (c) -2 0′ (a)o′ HCl, HIF ● ′ DI` 6-2-5. of orientational disord,er The observed heat capacities in phase III can be ● Onset. represented by Cn(obs.) =CL*Ctib+ where C" ●「 0 0● (Cp-Cv) +AC (6-■ 7) is the lattice heat capacity corresponding to the Debye temperature evaluated by Thirring extrapolation. The terms of CrtO and (Cp-Cv) correction have been al-ready estirnated in the preceeding sections. Excess heat capacity AC, that is, the Low temperature tail of the transition, was then computed by equation 5L7 and iLlustrated in figure'6-5. The onset of transition and anharmonic effect in the Lattice vibration seem to appear at the same temperature. The temperature at which the transition begins to occur is found to be in the order of the transition temperature except for DBr. It is possible to estimate the energy required to reorient a molecule, from the low temperature tail of the transition. Assuming that the number of molecule (n) in the wrong orientation in ordered matrix is very small compared with the totaL number of the molecuLes Nr w€ n.rr. 〓 N n一 exP(S/k)exP(― ε/kT) い [246] (6-■ 8) ● │ L E ■ っ \ もく ● φ● 戸 /K FttGURE 6-5. The transュ tion。 ▽′ H工 ■ow temperatllre ta■ ■ of the ■owest 0′ HC■ , ● ′DC■ , △′ HBrF ▲′ DBr, F ▼′D工 . ● [247] where e AC is such an energy and the excess heat capacitlz is given △ C・ by 112 F71tt exp(S/k)exp(― c/kT) ・ (6-■ 9) A plot is made of tn(r2ac) vs. T-1 in figure 6-6. straight Lines are obtained at lower temperatures' the slope of which gives e summarized in tabLe 5-g. Good ● 6-9. The energy required to reorient a molecule estimated from the low temperature tail of the lowest transition" TABLE HC■ 'o C/k」 m。 ■ ・ 2。 6■ HBr HI DC■ DBr D工 ■。 90 2。 20 4。 04 ■.44 3.65 ` " t2481 ● 10 E oExっ\k O g 三 2 234 T4 / lO-2 K-l of ln(Ac 12) against r-1 for the J.ow temperature tail of the lowest transition" (a) o, HCl; A, HBr; V' HI. FrcuRE 6-6. Graphs J¨ t24e1 0 5E Xっヽ NL A く ︶I r︲ 10 , 2 ‐ 3 4 戸J/10・ 2K‐ !│ 0● F工 GURE 6-6. th6 ■ow Graphs of ■n(△ C T2)againSt T ・ lor temperature tai■ of the (b)o′ DC■ , △′ Dpr: ▽′D工 . ● [250] ■owё st transitione reflects the interaction energy with neighbors, it is r'itorth noting that the values for both bromides are smalLer than those for others. The magnitude of e corresponds to the difference in energy between a certain orientation specified by the space group and another one of twelve orientations. The d.eviation of the points at higher temperatures is due to rapid increase of the heat capacity in the transition region. It may be due to an increasingly larger interaction between ltrong orientations. Since the e ● 0● ● [25■ ] ● 6-3. High temPerature region The formation of vacancies in a solid near the meLting temperature can contribute to the heat capacity. In fact, the observed heat capacities show markes upward trends in the temperature region below their melting points. The excess heat capacity due to vacancy formation is 喝=(や ● (6-20) 'p n" is the number of vacancies and h" is their enthalpy of formation. The number ns is given by where ns = NA eXP(Ss/k)ettp(― hs/kT) (6-2■ ) is Avogadro constant and "" is the entropy of formation. Analogous analysis was already made in the case of orientationaL defect formation in section (6-2-5). The enthalpy of formation may therefore be obtained from the slope of a plot of 2 aga,inst T-1. Before applying equation 6-20, ' ln (AC'T-) the contribution from impurities, which may produce a pre-melting rise in the heat capacity' ltas subtracted where No 0● by ai*n = x 0 where R *7" '12 / (rf-r)- (6-221 x denotes the mole fraction of the impurity [252] 、 Tf is the meLting of pure substance. The resuLting enthalpies of formation of vacancies, which is summarized in table 6-L0, are found to be about one hal-f of sublimation enthal.py values at 0 K for a1l the hydrogen halides, in contrast to two-thirds for Ar or Kr. For the sake of comparison the enthal.pies of self-diffusion in phase I obtained by NMR method AH(NMR) are included in table 6-10. The vaLues of AH (NMR) are in good agreement with those of AH",rb (0 K) rather than hs . The facts indicate that the NIvtR can observe the energy barrier required to remove a molecule from the lattice. Howeverr a comparison of h" and AHsub(O K) obtained by calorimetric study. ind.icates that reLaxation of surrounding molecuLes into a vacancy is J.arge" NMR can not see this relaxation and ` む phenomenon. ● ● ● [253] ● 6-L0. The enthalpy of formation of vacancies and the ratio to heat of sublimation at 0 K. TABLE HC■ HBr ‐■ 0.45 ■ ■ 。 8五 瀞 DC■ 84 1■ 12。 h s △Hsub(O AH ..-.. K) 。‐ 17116 :° o.5o o.5l o.4g -J- 20.85 23 " 30 2;.sz 8。 4b カ ■ ラ.6° AH (NMR) -..----=' kJmol DBr 25。 5d 16.3d 2s.gd a Present results I^ *' From T, of H (Krynicki et aI. ) c From line width of H (Okuma et aI.) A ct From Tro of H (Genin et al. ) e From T, of H (ltorris et al. ) f From line width of H (Norris et a1.) : [2541 11。 91 o.5L .25 27 .43 24 23.4c 23.0f つ .D工 0.51 (O K)A kfmol 0● HI 6-4. Transition temperature region We evaLuated the contribution to heat capacity of crystal Lattice and vacancy formation at lower temperatures and at higher temperatures' respectiveJ-yIn this section, the nature of successive transitions will be discussed. When the rotationaL mol,ecuLar motion is treatedt two extremes are possibl-e: the molecuLes may rotate 0● essentially freely in the crystalr €ts is supposed to be the case for the sol-id hydrogens' or the rotational motion may be completely restricted and hence transformed into vibrational motion (libration). Whether either of these extremes or some intermediate situation pertains shouLd be determinable by experiment but rarely seems to have been established unambiguously. Our analyses for phase I will be made by assuming that the moLecules librate with the same frequencies as those in phase III. The bases for this are as follows. (i) The observed heat capacities in phase I, such as 5R at 110 K in HCI, are too large to be explained as free rotational and even as librationaL motion. (ii) The observed difference in heat capacity between HCI and DCI- is 3.2g .I K-l moL-I, which is in good agreement with 3. L9 ,f K:'1 moL-l caLculated by using LibrationaL frequencies in phase III" ● [255] ● (iii) Since the corresponding isotope effect in HBr and HI is larger than what one would expect from the difference in the librational frequency, some other factors than the motional (librational- or rotationaL) contributions will have to be tonsiaered. .\ 6-4-L. Extraction of anomalous part of at the transition Cn The observed heat capacities should be represented by Cn(obs.) =CL*CLib* (Cp-cv)u+Cd*Ct" , (6-231 where (Cp-Cv)N is (Cp-Cv) correction of normal part' which can not be directly observed in this case. CU is the heat capacity for the defect formation 0● (6-3). The Cr, is the referred to as AC^ p in section transitionaL part of heat capacity at constant pressure. The corresponding enthalpies and entropies can aLso be given by H{ObSO)= HL + H■ ib 十 ナ 1Hで ,b-9v)N Hd す Htr ′ (6-24) and s(obs.) = sL * stib * t{"n-"rr)* * sd * st,, (6'25') An attempt to estimnte (CP― C↓ )N Wa, made by a,sulning ● [256] that the obsё rvё d 0 ic■ α′V′ and χ at ■30 and ■50 K for and HBr respective■ y atte aseribedltO thosё Of norma■ ■atticeo ‐ ‐ Therefore′ (CPTCv)N=A・ iC:′ N ・ . (6-26) . where `T CL + C■ iも ・ 'v′ The Constantё ● A・ (6-27) ‐ │ determined for HC■ and HBr are :│ │││ tive■ yO 6. j― 0 5 島 1 ■ ・ ′lespと こ ・ 2。 7 x ■ 0 5 rno■ 」 。 for HI was assumed tO bι ‐ 0 ' ana 2.フ 3.O x‐ ■ The A・ ,le 961r99ti。 ■° = (,p19キ mputё d at se■ ected l ・ l tempeFatureS as sh6m i■ 'N Wlre C° ・ 19p.CV)N esselti'・・ γl tab■ , 6「 1■ l diff,rこ fr。 嵐(CplC↓ ‐ 9Va.laled in Sё Ction (6-2-2)in │ terms both of thё abso■ ute va■ ■e land lf continuity atl . 1‐ trans■ tion po■ nte The contriPutiO'7′ Cllヽ 191l C11・ │′ │(Fも ‐ Cdf and Ctr′ are l■ ■ustFated for lC■ ′ 車Br′ and Hェ ,inl l ‐ l l ,● figures 6,7(a)′ (b)′ and (C)′ respectively. [257] :││ ‐ ‐ │ ‐‐ TABLE 6-■ ■. ゆ The contribution of (itt the tttits of J K・・ mo■ K T一 HC■ HBr (CbT'↓ )N C9rre,キ ・ ) DC■ H工 101. DBr D工 20 29 43 47 0.6■ 0.97 ■。■2 ■。4■ ■.92 ■188 ■。95 2:35 53 40 0。 60 0。 8■ 0195 ■6■ 4 80 ■。52 ■。64 0。 0。 0。 3■ 0。 ■00 2。 38 2:46 2.8■ 2.93 2。 89 3。 ■20 3.33 3138 3.78 4し 04 3。 89 4.40 ■40 4.63 4.36 4.78 5。 20 4.9■ 5.44 ■60 5.44 5`38 5。 8■ 5。 94 6.47 664■ 6.84 6。 98 7.50 ■80 7388 200 ,● [258] 36 8.5■ 60 ︲ 、 ︲ ︲ セ っ\ 、 ■ oE 一 d 0 Ctr 40 (C ■ v)礎 cna 20 CL (a) 0 o 50 100 i50 戸 /K 0● FIGURE 6-7。 C■ ib′ The contribution of leal C,paCity cL′ (CP=Cv)N′ Cd′ and 9tr.(Sё e text)。 ● [259] (a)HCl. ′ ` 0 0 4 2 Yっ\ も ■oE一 ︰ 60 100 万/K ■● F工 GURЁ C■ 6-7. The contribution of heat capacity cL′ it' (CP二 The base Cv)N' Cd′ 'ld Ctr (S'e teXt)e ■ine for エエエーエエ 0 [260] (b)HBF・ transition is inc■ uded. 0 0 0 6 4 2 Yつ \ も ︲ TbE 一 Q 碑 嘔必 100 150 万 /K "● FIGURE 6-7. C■ ib′ Thё contribution Or heat Cap● (Cp Cv)N′ Cd′ and Ctr (See teXt)0 The base ■ine for エエエーI= ● [26■ ] city CL′ (C)H工・ transition is inc■ uded。 ● ● 6-4-2. The III-II phase transition An inspection of the observed heat capacities revealed, that the III-II transition part of HBr, DBr, HI, and DI couLd be separated from the other parts. To determine the exces.s heat capacity, enthalpy, and entropy contributed by the III-II transition, a curve, which is included in figure 6-7 and numerically given in table 6-L2, was drawn tangent to the heat capacity curve below and above the III-II transition" The enthalpies and entropies determined, whose uncertainties come from those in base Iines, are shown in table 6-13. It may be evidently claimed that the III-II transition has the entropy of R 1n2. This result is consistent with the structural model of phase II prpposed by neutron scattering experiments: Each molecule has two equiLibrium orientations with equal probabiJ.ities. ヤ● ● [262] 6-L2. The base val-ues of heat capacity for (in the units of J x-l mot-l) the III-Ir transition. TABLE ● K T一 ● HBr DBr Hエ DI 40 20。 4 2■ 。6 22。 8 24。 3 50 23。 0 25。 ■ 25。 8 28。 4 60 26.0 28.7 28。 8 32。 4 70 29.4 32。 32。 ■ 36。 4 80 33。 3 36.7 35.6 40。 4 90 37。 9 4■ 。4 39.3 44。 3 ■00 4362 46。 9 43。 4 48.4 ■■0 50.5 53。 6 48。 7 53。 0 5 ●● ● [263] TABLE 6-■ 3: ● The entha■ py and entropylof the ==工・ II transition. △H..ェ _ェ Jm。 . ェ ■ HBr ・490上 ´ ■0 DBr 497 + HI . 382 + 。SI工 エーエエ . :K ・ mo■・ 5。 77主 002 ■0 5.77 + 0:2 ■0 5。 75 + 0。 2 ● D1 424+10 5.80+032 R 1n2 = 5.76 0● ● ` [264] J x-l mol-I 6-4-3. The thermodynamic properties of the transitions Thermodynamic functions of the'transitions were computed as fol-Lows. Heat capacity Figures 6-8 (a) and (b) show the heat capacity Ct, "" separated out i.n preceeding section for hydrogen halides and deuterium halides, respectively. It can be seen that the heat capacities in phase I are large in magnitude and converge to zero at higher temperatures. This int,eresting result is a conclusive evidence of the existence of short-range order above the transition temperature. The negative vaLues of Ct, for HI and DI probably come from the poor estimation of the (Cp-Cv) N. Enthalpy ,● the transitions are plotted in figures 6-9 (a) and (b) for hydrogen halides and deuterium halides, respeciively. The corresponding enthalpies through Entropv The results obtained are summarized (a) and (b) for hydrogen halides in figures 6-10 and, deuterium respectively. The entropy associated with ● [265] halides' expansion ` 曇 TbE TYつ\ も 10 100 0● 150 万/K FIGURE 6-8(a)。 transitions. Heat capacities assOciated with 0′ HC■ , △′ HBrF ▽′ H工 . Dashed and dot― daShed ■ines shOw the high temporature ta■ ■s of SchOttky heat capacity with g./g。 ■ ■■ for ● c. = 2 and 2。 5 卜J Ino■ ・ ′respectiヤ el'。 [266] │ ざ 立 っ\ t ■oE一 ● 100 ●● 万 /K FttGURE 6-8(b)。 transitions◆ Heat capacities associated with 。′ DC■ dOt― dashed ■ines , △′ DBrF ▽′D■ 。 Dashed and show the high temperature ta■ ■s Of Schottky leat capacity with g./gO ● e. = 2 ald 2.5 kJ Ino■ ・ [267] ′respectivo■ y. ■■ fOr J l プ´ i /グア 2.0 r多 5 0 ノ / ご 七Eヱ \﹂ ・ !。 く / 5 ︱ 0。 0 50 ノ 0 ︱ / ″ │ ′:50 :00 200 250 万 /K 0● │ │ FIGURE 6-9(a). Entha■ pies through the transitions, 一――――――′HC■ , 一 =― 0 [268] ― ′ HBr, 一‐ ―‐■‐ ―′HI・ _.__^ ヽ “ / //デ「 2.0 r七 fイ ジ ‐ 丁:T‐ ` ン 5 ノ / 0 ﹂ 一 TもE つこ\ ミ :。 /′ ︲ 0.5 ′ ノ 0 0 :00 50 150 200 250 │ 万 │ /K ・ † FIGURE 6-9(b). ′ DC■ 口ntha■ pies , 二 ― ― ― ″ [269] thrOugh the transュ ′ DBrF ― ‐二 ‐二 =■ ′ D工 ti6ns。 .‐ R ln12 20 「1,牙 ′% ﹁ 1 /1 15 50 ︶ / 0 影η︲︲トノ/ メ ノ / 0 :00 150 万 /K 200 ‐ じ し F l ︱︱卜br I︰ ィ ︲︰ ︲ ′ ′ 0 5 ﹂ 立 っ\ げ ■oE 一 ● L´ F工 GURE 6-■ 0(a). transitiOns. Entropies associatё o with the ′ HC■ ― ‐― ‐― ‐― ′ HI. ″ [270] ,ニ ー T■ ′ HBF: 250 ´…´ ― ■ト ー・ ― R ln 12 20 ‐ ‐ 二 フ 丁 ■ 11 ︲ ︲ , ノ ︱ ︱ ︱ ん ︲ げ E一 立 っ\﹂ ■o 15 ′ 力え 0 5 0 o 50 100 !50 transitions。 ‐ /K 「 FttGURE 6-■ 0(b). 200 Entropies associatё d with the ′ DC■ 一 ‐― ‐― ‐― ′ D工 。 F ― 一 二 二 r [27■ ] ′ DBr, 250 t of the Lattice is not easily separated from that resuLting from the order-disorder transition, but it will be a small fraction of the total excess entropy. The value of R lnl-2.is marked in the figures. They showed that the entropy converges to R 1n12. One can relate this entropy value to the structural, model: Phase I at high temperature limit is the tweLve-fo1d d,isordered ntodification of molecular orientation. The short-range order just above the highest transition was found to be 37 , 24, and 13 per cent of R Ln12 in entropy for HClr HBr, and HI, respectively (see tabl-e 6-14), It is noteworthy that 0● ratio of the. short of R ln12 just above The TABLE 6-■ 4。 to the va■ ue Fange order the‐ highest trans■ tion. HC■ 0。 37 HBr HI 0.24 0。 ■3 り [272] DC■ DBr 0。 3■ 0。 ■4 D工 0。 06 ● .o the amount of short range order persisting after destructionofthe1ongran9eorderisquitelarge especialLy for HCl. rn this connection the work'ot pomu(22) of rsing models in magnetic system is rather instructive. He points out that the fraction of the total magnetic entropy gained above transition temperature increases as the coordination number r z r decreases" This result is cl-earJ.y reasonable since in the Limit of infinite coordination al-L order must be long range in character, whereas in the limit of zero coordination only short range order is possible. on the analogy of this, we may conclude that the transition in HCl is, in large part, of the one dimension and then in phase I there ii a considerable local order with the zLg-zag chains, which may probably fluctuate both in time and in space. 6-4-4. Local order in phase I Analysis of configurational heat capacity As analyzed above, the configurational- heat capacity. in phase I is finite and asymptoticalLy approaches zero at high temperatures. To see the convergency of heat capacityr a pJ.ot of J.og Ca, against log T was made as shown in figure 6-11. Dispite the J"arge uncertainties in (Cn-Crr)pr it can be seen that the や [273] │.0 ヽ ヽ 。 ` △ ヽ ヽ ヽ 、 ヽ、 、 ヽ 、 一 9 、 ゝ 8 ′ 7 6 0 0 0 0 C︶ E一 ︵ Yつ\﹂ 2 ■o 卜 t ヽへ 0。 ・ 一 へ 、 ヘ \ ヽ ヽ 、 、、 ヽ 、ヽ o■ ミヽ ヽ 、 ヽ ヽ 、 . ム、 ヽ 、 ヽ 、 ヽ ヽ ヽ ヽ ヽ、 ヽ ヽ ^ ヽ 、 ヘ ●● 0。 5 2。 1 20 2。 2 2。 3 log(戸 /K) 6-11. Temperature dependence of heat capacity with local order in phase I. o, HCl; t t DCI; A, HBr; L, DBr; V, HI; l, DI. Dashed and d.ot-dashed lines FIGURE ケ tails of Schottky heat -1 | capacity with 91/99 = 11 for El = 2 and 2.5 kil molshow the -high temperature , 12741 for HCL and DCL d.iffers from that for HBr, DBr, HI, and DI. While the Ca, of the formers varies to the power of -(0.5+0.15) of temperature, the latter's varies to that of. -(2.0+0.5). The obvious interpretation of a t-2 term is that it is the high-ternperature tail of a Schottky anomaly. An effect of this tyPe can arise whenever there is only a limited number of closely spaced energy levels availabl-e to the system. When kT is much greater than the energy differences of the Levels, they convergency remain ef fectiveJ-y degenerate; when kT becomes to the energy differences, the change in the distribution over the energy Leve1s begins to have a marked effect on the thermodynamic properties and results in the onset of an anomaly in the heat capacity. We will analyze the local order in phase I in terms of the Schottky's model. Suppose there is a system in which the particles can exist in a group of two levels, separated from the ground state by energy eI and with degeneracY 91. Then the Schottky heat capacitY is comparable ″● CSCh=(平 )(輩 exp ) [1 θ [275] ( e,/kT, + Go/srl exP er/rrlz! ( (6-28) At high temperatures (er,/kr << L) the equation 6-28 becomes Csch = RgOg.(gO+g.):2(c./kT)2 (6-29) = I and 91 = LL are given for the molecuLar model as wilL be proposed below, the high-temperature tait of Schottky heat capacity are plotted in figure 6-8 for .L = 2 (dashed Line) and 2.5 kJ mol-l (dot-dashed line). It can be seen from the figure that the absolute values of heat capacity and temperature dependence for bromides and iodides are explained by the Schottkyrs model with g7/gg = 11 and 61 = 2'v2.5 kJ mol-l. However, the behavior of chlorides is peculiar and will reguire a different mod,el. when 90 Possible mod.el on the rnolecular point of view *o will transLate the SchottkyIs modeL discussed above into the model on the molecuLar point of view. We As proposed by neutron scattering experiments, a molecuLe in phase I has twelve possibJ-e orientations so that a hydrogen bond can be formed. The moLecule in phase III prefer a certain orientation among them. The configiuration, has an ad.ditional stability with the dipolar and/or quadrupolar interactions with neighboring molecules r &s theoretical-J.y pointed out ´ 1 ・` [2761 ‖ │ ,rt?l │ by Hanamura.\"r In phase I with Local order, therefore, one can assume that a certain orientation has a lower orientations. Although the energy difference (er) is.not identical for eleven orientations, the assumption of gl = 11 can be used'' as a first approxirnation. The resul.ting-L er (2N2.5 kJ mol-1*) for bromides and iodides is the same order of magnitude as the energy required to reorient a molecule in phase III as estimated in section (6-2'5). This fact indicates the val.idity of the model that the subsidiarlr' 11 minima have energy e, relative to a principal minimum in orientation. On the other hand' the model for HCl and DCI can not be simply acquired. It is evident, however, that the local order is consid.erably retained and is not "thermalJ.y!' destroyed" energy than other eleven NMR ら● technique can aLso see the energy required to reorient a molecu1e. However, the values obtained (4.6 and 4,L J mol-l for DBr and DI respectiveLy) are about twice those obtained by the present thermal study. This descrepancy can be explained by the fact that NMR detects the energy barrier between two minima instead of the energy difference between them. [277] ● 6-5. Mechanism of the phase transitions In this last section, the phase transition will again considered on the basis of the results of thermodynamical analyses. As resuJ-t, one can "a approach the mechanism of the phase transitions be ユn hydrogen halides. ● 6-5-L. The disordering process The third law of thermodynamics for hydrogen halides and deuterium halides were verified by Giauque and wiebe(7)'rrra by clusius and wolf IB) respectively. The fact ind.icates that the phase III at 0 K is perfectly. in the ordered, state" On the other hand ●9 our anal-yses from the two angles, vi,z., heat capacity and entropy showed that the molecul-es in the phase I at infinite temperature have l2-fo1d orientations with equal probability in the perfectly disordered state. To ensure this mod.eL, the entropy in the liquid phase wiLL be considered. in the liquid phase The entropy gain between triple and boiling points, which will be referred to as triq, are shown in tabte 615. Their correlations in magnitude are HCI>HBr>HI and DC1>DBr>DI. The entropies associated with fusion The disorder ● [278] 辮一 一 ‐│ や I TABLE 6-■ ` The entrop■ es associated w■ th transitions and fusion and the entropv gains in be■ ow str △sf S■ q 土 ■■quid phase (in the units Of‐ J K ・ boiling point。 DC■ DBr 7。 ■7 ■8。 7■ ■9。 ■0 ■7。 47 2■ 。■2 39 ■2。 86 ■2.83 ■2。 28 12.76 ■2。 87 6.■ 3 1◆ ■ 1074 ,。 66 4。 ,5 0■ ノ ・ ) Dエ HBr 9° HI InO■ HC■ ■2。 20.52 83 them. On the other hand, the St, in the solid at the triple point is in the order of HCI<HBr<HI, although it is DCI<DBr>DI in deuterium halides. The relations mentioned above qualitatively suggest two interesting features concerning the disorder: (i) The local order can not be destroyed on fusion. (ii) The local order that remains in the liquid state at the triple point will thereafter be destroyed on warming throughout the J-iquid region up to the boiling point. (iii) The overall entropy, i.e. the sum of Str, ASg' and Sr1n. r will then represent the total magnitude of order to A.S, 0● 5。 are approxirnatel-y equal ヽ ● [2791 among be destroyed. This, however, is not uniform in the ◆ series of HCl, HBr, and HBr; the difference probably accounts for the difference in other degrees of freed.om of motion in the liquid state. of disorder in solid phase As mentioned above, the crystal cooperatively and thermally gains orientational disord.er on heating,. As for the process of d.evelopment of the d.isorder, (25) d.iscussed s6ndor et al . Q4) and Hoshino et al . the case of DCI interms of mean square angular displacements .0lrra> ana .o?rrt. .03ot> which represents the molecular motion preventing the development of zkg-zag chains in the ab plane increases rapidly above The development K, while .Q?rrt shows no appreciable change with temperature. This anisotropy of molecular libration in chlorides despite the cubic synunetry may cause a peculiar behavior of the local order'heat capacity L23 │● in phase I of HCl and DCl. 1 The structure of phase I' structural investigation was made for the phase Ir of HBr. Our thermodynamical analyses, however, suggest that the structure can be supposed to be tetragonal system with 4-fold orientational disorder No 苺 [280] , `● in the ab plane because of its entropy value Sa, of about R 1n4 (= 11.53 J K-l motlI1. As for the phase Ir of HCl, it is a question of existence of the phase itself. ShouLd a transition without an anomaly in the heat capacity, if. it ever exists, be referred to as a phase transition ? It is hoped to straighten out some of the experimentaL confusion in neutron diffraction studies themselves that exists in connection with "L20 K transition". 6-5-2. Phase transitions and molecular interactions In the preceeding sections (6'2-5) and (6-4-4') , the energies required to reorient a molecuLe were obtained from the anaLysis of heat capacity in phases III and f, respectively. When a molecule is reoriented, the molecular interactions with neighbors should change. The energies, therefore, should be related to the molecular interactions. Hanamura evalu"t"d(23) the dipolar, quadrupolarr. and hydrogen bonding interaction energies between the neighboring molecules in hydrogen halides. Further, stability by arrangement of zLg-zag chains was discussed. Now, since the hydrogen bond is reserved by the 12-fo1d orientations of a molecule, the relevant molecular interactions may be of dipolar and quadrupolar. Table 6-16 shows the ■ [28■ 1 6-16. Values of dipole and quadrupole moments and, the interaction forces between the neighboring TABLE ロ - molecules. HBr HC■ o ‐ Hエ u x 1018 esu cm e x lo26 ""o .*2 1.07 0.788 3.8 4 0.382 Dipolar interaction x to-14 erg(molecuLe) -1 1.99 0.92 0.19 Quadrupolar interaction L.4 1.9 l-.06 x to-14 erg(molecure)-1 Hydrogen bonding energy 42 x to-14 erg(morecule)-1 ,o ● t2az1 26 6 the neighboring molecules cal-culated by Hanamura: the order in magnitude is HCI>HBr>HI for dipoLar interactions, while it is HI>HC1>HBr for quadrupolar interactions. since the energy to reorient a molecule derived from the onset interaction energies 中 between of orientationaL disorder in phase III showed the relation HI>HCJ->HBr, the responsible molecular interactions may be quadrupolar. On the other hand, the analogous energies in phase I are equal- (2't'2'5 -1 for bromides and iodides. The related kJ mol-r) moLecular interactions, thereforer may be both dipolar and quadrupolar. It is interesting to note that one can relate the mechanism of phase transitions to the moLecular interactions from thermodynamical analyses and considerations, aLthough there are some uncertainties in est,irnation of the "normal" heat capacity. 0● ` [283] REFERENCES to CHAPTER 6 ■。 Barron′ T. Ho K.: Morrison′ ■957′ 35′ 2。 799. Chihara′ H.′ Inaba′ A. Je Chemo Therrnodynamics ■976′ 3。 ` in pFess。 」。Chem。 Chihara′ HoF ttnaba′ Ae Submitted to Therrnodynam■ . Can. J・ Phys. 」。 A. cs。 4。 Inaba′ A., chihara′ H. Je Cheme TherrrLOdynamics to be pub■ ishede φ 5. BeaumOnt′ R. H。 , Chihara′ H., Morrison′ Jo A。 ■96■ ″78′ ■462: Proc. Physe SoC. 6. Fё niche■ ′ H., Serin′ Bo Phys. Rev。 ■966′ ■42′ 490。 7. Giauque′ w. F。 , Wiebe′ R. J. Ame Cheme Soc。 ■0■ , 50′ 2■ 50′ 8。 93, ■928′ ■929′ 5■ ′ ■44■ ` G. Z. Naturforsche C■ usius′ K., W01f′ ■947′ 2a′ 495. 9。 ゝ● ■0。 Stewart′ Jo W. 」e Chem. Phys。 Niimura′ N.F Fujii′ 」. Y。 Physe Soce Japan ■962′ 36′ 400。 , Motegi′ H。 , HoshinO′ S. 842` ■973′ 35′ We: Lemke′ Ao Zo Anorgo A■ ■gemo Chem. ■■. Bi■ tz′ ■932′ 203′ 32■ 。 ■2。 Simon′ F., ve Simson′ Co Zo Phys。 ■3。 Ito′ M.F SuZuki′ M., Vokoyama′ T. ■924′ 2■ ′ ■68。 」. Chem. Physe 1969′ 50′ 2949‐ ■4。 Hornig′ 23′ De Fe, OSberg′ wo E. 662. 1284] 」. Chem. ●hys. ■955′ ■5。 Sutton′ L. Eb ed. ・ ・Tab■ es and cOnfiguratiOn in mo■ LondOn Soce′ ■6。 B■ ackman′ ■7。 of interatomic distancos ecu■ es land ions.I Cherne ■958. Mo Handb. Phys。 1955′ 7. Thirring′ H. Phys. Z. ■9■ 3′ ■4′ │ 867, ■5, ■9■ 4′ ■27, ■80。 ■8. Berg′ Wo T., MOrris9n′ 」O Ac Proco Royo SOc. (■ ■9. ondOn)■ 957′ A242, 467。 F■ ubacher′ P.′ Leadbetter′ Phi■ . ● 20。 J`F MOrrison′ A: Barron′ T. H. K.F Berg′ W. ToF MOrrison′ J. A。 957′ :A242′ 1473. 。Domb′ C., Sa■ ter′ ■e Phi■ . 単ag。 22。 J. ‐ Mage ■959′ 49′ 273` PrOco Roy. soc. (London)■ 2■ . Domb′ Co Adv. phys: ■960′ 9。 ■952′ 43′ ■083。 ‐ 28 suppl.′ 23. Hanamura′ コ. 」. Physo Soo. J,pan 1970′ ‐ ■92。 24. SandOr, E,, Farrow′ R. F. Ce Disc‐ 。 Faraday soc。 Q● ■969′ 25。 78: Nユ imura′ N., Fujii′ Y。 , Motegi′ 耳., HOshin6′ Se ACta Cryst. A ■972′ 28′ S192。 ● [285] ‐ ‐