Manual Computational Anatomy Toolbox
Transcription
Manual Computational Anatomy Toolbox
Manual ComputationalAnatomyToolbox-CAT12 QUICKSTARTGUIDE ......................................................................................................................... 3 INTRODUCTIONANDOVERVIEW ...................................................................................................... 4 GETTINGSTARTED ............................................................................................................................ 4 DownloadandInstallation 4 StartingtheToolbox 5 BasicVBManalysis(overview) 5 BASICVBMANALYSIS(DETAILEDDESCRIPTION) ............................................................................... 7 7 PreprocessingData 7 9 FirstModule:SegmentData SecondModule:Displayonesliceforallimages ThirdModule:Checksamplehomogeneity FourthModule:Smooth FifthModule:EstimateTotalIntracranialVolume(TIV) 12 13 BuildingtheStatisticalModel Two-sampleT-Test 10 11 12 FullFactorialModel(fora2x2Anova) MultipleRegression(Correlation) FullFactorialModel(foranInteraction) 14 15 16 EstimatingtheStatisticalModel CheckingforDesignOrthogonality DefiningContrasts 17 17 19 1 SPECIALCASES................................................................................................................................ 21 21 CAT12forlongitudinaldata ChangeSettingsforPreprocessing PreprocessingofLongitudinalData 22 22 StatisticalAnalysisofLongitudinalDatainOneGroup StatisticalAnalysisofLongitudinalDatainTwoGroups 23 24 AlteredWorkflowsforVBM-analyses 27 Adaptingtheworkflows 28 28 29 CustomizedTissueProbabilityMaps CustomizedDARTEL-template OTHERVARIANTSOFCOMPUTATIONALMORPHOMETRY .............................................................. 31 Deformation-basedmorphometry(DBM) 31 Surface-basedmorphometry(SBM) 32 Regionofinterest(ROI)analysis 35 ADDITIONALINFORMATIONONNATIVE,NORMALIZEDANDMODULATEDVOLUMES.................... 37 NAMINGCONVENTIONOFOUTPUTFILES....................................................................................... 39 TECHNICALINFORMATION ............................................................................................................. 41 2 Quickstartguide VBMdata • Segmentdatausingdefaults(forlongitudinaldatauselongitudinalpipeline) • CheckdataqualityusingsamplehomogeneityforVBMdata • Smoothdata(suggestedstartingvalue8mm) • Estimatetotalintracranialvolume(TIV)inordertocorrectfordifferentheadsizeandvolume • Build 2nd-level model: Use "Full factorial" for cross-sectional data and "Flexible factorial" for longitudinaldataanduseTIVascovariateandselectthresholdmaskingwithanabsolutevalueof 0.1.Thisabsolutethresholdcanbeincreasedinthefinalanalysisto0.2oreven0.25. • Build2nd-levelmodel: o Use"Fullfactorial"forcross-sectionaldata o Use"Flexiblefactorial"forlongitudinaldata o UseTIVascovariate(confound)tocorrectfordifferentbrainsizesandselectcentering withoverallmean o Selectthresholdmaskingwithanabsolutevalueof0.1.Thisthresholdcanbeincreased inthefinalanalysisto0.2oreven0.25. • Estimatemodel • Checkdesignorthogonalityusingthe“Review”functionintheSPMGUI.Ifyoufindaconsiderable correlation between TIV and any other parameter of interest it is recommended to rather use globalscalingwithTIV.Checkthesection“Buildthestatisticalmodel”formoredetails • OptionallytransformandthresholdSPM-mapsto(log-scaled)p-mapsorcorrelationmaps • Optionallyoverlayselectedslices Additionalsurfacedata • Segmentdataandadditionallyselect"Surfaceandthicknessestimation"in"Writingoptions" • Optionally extract additional surface parameters (e.g. suclus depth, gyrification index, cortical complexity) • Resampleandsmoothsurfacedata(suggestedstartingvalue15mm) • Checkdataqualityusingsamplehomogeneityforsurfacedata • Build 2nd-level model: Use "Full factorial" for cross-sectional data and "Flexible factorial" for longitudinaldata • Estimatesurfacemodel 3 IntroductionandOverview This manual is intended to help any user to perform a computational anatomy analysis using the CAT12 Toolbox. Although it will mainly focus on voxel-based morphometry (VBM) other variants of computationalanalysissuchasdeformation-basedmorphometry(DBM),surface-basedmorphometry (SBM),andregionofinterest(ROI)morphometricanalysiswillbealsointroducedandcanbeapplied withafewchanges. Basicallythemanualmaybedividedintofourmainsections: • Naturally, a quick guide of how to get started is given at the beginning. This section provides informationhowtodownloadandinstallthesoftwareandstarttheToolbox.Furthermore,ashort overviewonthestepsofaVBManalysisisgiven. • AdetaileddescriptionofabasicVBManalysisissubsequentlygiven,whichwillguidetheuserstep by step through the whole process – from preprocessing to the selection of contrasts. This descriptionshouldprovideallnecessaryinformationtoanalyzemoststudiessuccessfully. • There are a few special cases of VBM analyses, for which the basic analysis workflow has to be adapted.Thesecasesarelongitudinalstudiesandstudiesinchildrenorspecialpatientpopulations. Relevant changes to a basic VBM analysis are described here and a description of how to apply these changes is provided. Importantly, only the changes are described – steps like for example qualitycontrolorsmoothingarethesameasinthebasicanalysisandnotdescribedasecondtime. • The manual closes with information on native, normalized and modulated volumes, which determines how the results may be interpreted. Furthermore an overview of the naming conventionsusedaswellastechnicalinformationisgiven. GettingStarted DOWNLOADANDINSTALLATION • TheCAT12ToolboxrunswithinSPM12.Thatis,SPM12needstobeinstalledandaddedtoyour Matlab search path before the CAT12 Toolbox can be installed (see http://www.fil.ion.ucl.ac.uk/spm/andhttp://en.wikibooks.org/wiki/SPM). • Download (http://dbm.neuro.uni-jena.de/cat12/) and unzip the CAT12 Toolbox. You will get a foldernamed“cat12”,whichcontainsvariousmatlabfilesandcompiledscripts.Copythefolder “cat12”intotheSPM12“toolbox”folder. 4 STARTINGTHETOOLBOX • StartMatlab • StartSPM12(i.e.,type“spmfmri”) • Select“cat12”fromtheSPMmenu(seeFigure1).Youwillfindthedrop-downmenubetweenthe “Display”andthe“Help”button(youcanalsocalltheToolboxdirectlybytyping“cat12”onthe Matlabcommandline).ThiswillopentheCAT12Toolboxasadditionalwindow(Fig.2). Figure1:SPMmenu Figure2:CAT12Window BASICVBMANALYSIS(OVERVIEW) TheCAT12Toolboxcomeswithdifferentmodules,whichmaybeusedforananalysis.Usually,aVBM analysiscomprisesthefollowingsteps (a)Preprocessing: 1. T1imagesarenormalizedtoatemplatespaceandsegmentedintograymatter(GM),white matter(WM)andcerebrospinalfluid(CSF).Thepreprocessingparameterscanbeadjustedvia themodule“SegmentData”. 2. After the preprocessing is finished, a quality check is highly recommended. This can be achievedviathemodules“Displayonesliceforallimages”and“Checksamplehomogeneity”. 5 Both options are located in the CAT12 window under “Check Data Quality”. Furthermore, quality parameters are estimated and saved in xml-files for each data set during preprocessing.ThesequalityparametersarealsoprintedonthereportPDF-pageandcanbe additionallyusedinthemodule“Checksamplehomogeneity”. 3. BeforeenteringtheGMimagesintoastatisticalmodel,imagedataneedtobesmoothed.Of note,thisstepisnotimplementedintotheCAT12ToolboxbutachievedviathestandardSPM module“Smooth”. (b)Statisticalanalysis: 4. The smoothed GM images are entered into a statistical analysis. This requires building a statistical model (e.g., T-Tests, ANOVAs, multiple regressions). This is done by the standard SPMmodules“Specify2ndLevel”or“BasicModels”intheCAT12windowcoveringthesame function. 5. The statistical model is estimated. This is done by the standard SPM module “Estimate” (exceptforsurface-baseddatawherethefunction“EstimateSurfaceModels”shouldbeused instead. 6. If you have used total intracranial volume (TIV) as confound in your model to correct for different brain sizes it is necessary to check whether TIV reveals a considerable correlation withanyotherparameterofinterestandratheruseglobalscalingasalternativeapproach. 7. After estimating the statistical model, contrasts will be defined to get the results of the analysis.ThisisdonebythestandardSPMmodule“Results”. Thesequenceof“preprocessing!qualitycheck!smoothing!statisticalanalysis”remainsthe sameforeveryVBManalysis,evenwhendifferentstepsareadapted(see“specialcases”). AfewwordsabouttheBatchEditor… − As soon as you select a module from the CAT12 Toolbox menu, a new window (the Batch Editor)willopen.TheBatchEditoristheenvironmentwhereyouwillsetupyouranalysis(see Figure3).Forexample,an“<-X”indicateswhereyouneedtoselectfiles(e.g.,yourimagefiles, thetemplate,etc.).Otherparametershaveeitherdefaultsettings(whichcanbemodified)or requireinput(e.g.,choosingbetweendifferentoptions,providingtextornumericvalues,etc.). − Onceallmissingparametersareset,agreenarrowwillappearonthetopofthewindow(the currentsnapshotsinFigure3showthearrowstillingray).Clickthisarrowtorunthemodule or select “File ! Run Batch”. It is very useful to save the settings before you run the batch (clickonthedisksymbolorselect“File!SaveBatch”). 6 − Of note, you can always find helpful information and parameter-specific explanations at the bottomoftheBatchEditorwindow.1 − Allsettingscanbesavedeitheras.matfileoras.mscriptfileandreloadedforlateruse.The .mscriptfilehastheadvantagetobeeditablewithatexteditor. Figure 3: The Batch Editor is the environment where the analysis is set up. Left: For all settings marked with “<-X”, files have to be selected (“Select Files”). Right: Parameters can be edited and adapted(“EditValue”). BasicVBMAnalysis(detaileddescription) PreprocessingData FIRSTMODULE:SEGMENTDATA Please note that additional parameters for expert users will be displayed in the GUI if you set the optioncat.extopts.expertguito“1”incat_defaults.m. CAT12!Preprocessing!SegmentData Parameters: 1 AdditionalCAT12-relatedinformationcanbefoundbyselecting“VBMWebsite“intheCAT12window(Tools→Internet →VBMWebsite”).Thiswillopenawebsite.Here,lookfor“VBMsubpages”ontheright. 7 o Volumes<-X!SelectFiles![selectthenewfiles]!Done - - Selectonevolumeforeachsubject.AstheToolboxdoesnotsupportmultispectral data(i.e.,differentimagingmethodsforthesamebrain,suchasT1-,T2-,diffusionweightedorCTimages),itisrecommendedtochooseaT1-weightedimage. Importantly,theimagesneedtobeinthesameorientationasthepriors;youcan double-check and correct via using “Display” in the SPM menu. The priors are locatedinyourSPMfolder“SPM12!tpm!TPM.nii”) o Splitjobintoseparateprocesses![usedefaultsormodify] - Inordertousemulti-threadingtheCAT12segmentationjobwithmultiplesubjects can be split into separate processes that run in the background. You can even closeMatlab,whichwillnotaffecttheprocessesthatwillruninthebackground without GUI. If you don’t want to run processes in the background then set this valueto0. - Keep in mind that each process needs about 1.5..2GB of RAM, which should be consideredtochoosetheappropriatenumberofprocesses. - Please further note that no additional modules in the batch can be run except CAT12segmentation.Anydependencieswillbebrokenforsubsequentmodules. o OptionsforinitialSPM12affineregistration![usedefaultsormodify] - The defaults provide a solid starting point. The SPM12 tissue probability maps (TPMs)areusedfortheinitialspatialregistrationandsegmentation.Alternatively, customizedTPMscanbechosen(e.g.forchildrendata)thatwerecreatedwiththe Template-O-Matic(TOM)Toolbox. o ExtendedoptionsforCAT12segmentation![usedefaultsormodify] Again,thedefaultsprovideasolidstartingpoint.Usingtheextendedoptionsyou canadjustspecialparametersorthestrengthofdifferentcorrections("0"means nocorrectionand"0.5"isthedefaultvaluethatworksbestforalargevarietyof data). - CAT12 provides a template for the high-dimensional DARTEL registration that should work for most data. However, a customized DARTEL template can be selected (e.g. for children data) that was created using the DARTEL toolbox. See the section “Customized DARTEL-template” for more information about the necessarysteps. o Writingoptions![usedefaultsormodify] - - - For GM, and WM image volumes see at the end of the document: “Additional Informationonnative,normalizedandmodulatednormalizedvolumes”.Note:The default option “Modulated normalized” will result in an analysis of relative differences in regional GM volume, that have to be corrected for individual brain sizeinthestatisticalanalysisusingtotalintracranialvolume(TIV). ABias,noiseandintensitycorrectedT1image,inwhichMRIinhomogeneitiesand noise are removed and intensities are normalized, can be written in normalized space.Thisisusefulforqualitycontrolandalsotocreateanaverageimageofall 8 - - - normalized T1 images in order to display / overlay the results. Note: For a basic VBManalysisusethedefaults. A partial volume effect (PVE) label image volume can also be written in normalized or native space or as a DARTEL export file. This is useful for quality control and also for future applications using this image to reconstruct surfaces. Note:ForabasicVBManalysisusethedefaults. TheJacobiandeterminantforeachvoxelcanbewritteninnormalizedspace.This informationcanbeusedtodoaDeformation-BasedMorphometry(DBM)analysis. Note:ForabasicVBManalysisthisisnotneeded. Finally, deformation fields can be written. This option is useful to re-apply normalization parameters to other co-registered images (e.g. fMRI or DTI data). Note:ForabasicVBManalysisthisisnotneeded. Note:Ifsegmentationfailsthisoftenoccursduetoanunsuccessfulinitialspatialregistration.Inthis caseyoucantrytosettheorigin(anteriorcommissure)intheDisplaytool.Roughlysetthecursorto theanteriorcommissureandpress“SetOrigin”Thenowdisplayedcorrectioninthecoordinatescan beappliedtotheimagebyusingthebutton“Reorient”.Thisprocedurehastoberepeatedforeach datasetseparately. SECONDMODULE:DISPLAYONESLICEFORALLIMAGES CAT12!Checkdataquality!Displayonesliceforallimages Parameters: o Sampledata<-X!SelectFiles![selectthenewfiles]!Done - Selectthenewlywrittendata[e.g.the“wm*”files,whicharethenormalizedbias correctedvolumes].Thistoolwilldisplayonehorizontalsliceforeachsubject,thus givingagoodoverviewifthesegmentationandnormalizationproceduresyielded reasonableresults.Forexample,ifthenativevolumehadartifactsorifthenative volumeshadawrongorientation,theresultsmaylookodd.Solutions:Use“Check Reg”fromtheSPMmainmenutomakesurethatthenativeimageshavethesame orientationliketheMNITemplate(“SPM!templates!T1”).Adjustifnecessary using“Display”fromtheSPMmainmenu. o Proportionalscaling![usedefaultsormodify] - Check“yes”,ifyoudisplayT1volumes. o Spatialorientation o Showsliceinmm![usedefaultsormodify] 9 - This module displays horizontal slices. This default setting provides a good overview. THIRDMODULE:CHECKSAMPLEHOMOGENEITY CAT12!Checkdataquality!Checksamplehomogeneity!VBMdata Parameters: o Data!New:Sampledata<-X!SelectFiles![selectgraymattervolumes]!Done - Selectthenewlywrittendata[e.g.the“mwp1*”files,whicharethemodulated(m) normalized (w) GM segments (p1)]. It is recommended to use the unsmoothed segmentations that provide more anatomical details. This tool visualizes the correlationbetweenthevolumesusingaboxplotandcorrelationmatrices.Thus,it willhelpidentifyingoutliers.Anyoutliershouldbecarefullyinspectedforartifacts or pre-processing errors using “Check worst data” in the GUI. If you specify differentsamplesthemeancorrelationisdisplayedinseparateboxplotsforeach sample. o Load quality measures ! New: XML files ! [optionally select xml-files with quality measures] - Optionallyselectthexml-filesthataresavedforeachdataset.Thesefilescontain usefulinformationaboutsomeestimatedqualitymeasuresthatcanbealsoused forcheckingsamplehomogeneity.Pleasenote,thattheorderofthexml-filesmust bethesameastheotherdatafiles. o Separationinmm![usedefaultsormodify] - Tospeedupcalculationsyoucandefinethatcorrelationisestimatedonlyeveryx voxel. Smaller values give slightly more accurate correlation, but will be much slower. o Nuisance![enternuisancevariablesifapplicable] - For each nuisance variable which you want to remove from the data prior to calculating the correlation, select “New: Nuisance” and enter a vector with the respective variable for each subject (e.g. age in years). All variables have to be entered in the same order as the respective volumes. You can also type “spm_load” to upload a *txt file with the covariates in the same order as the volumes.ApotentialnuisanceparametercanbeTIVifyouchecksegmenteddata withthedefaultmodulation. Awindowwithacorrelationmatrixwillopen,whichdepictthecorrelationbetweenthevolumes.The correlationmatrixshowsthecorrelationbetweenallvolumes.Highcorrelationvaluesmeanthatyour dataaremoresimilartoeachother.Ifyouclickinthecorrelationmatrixthecorrespondingdatapairs 10 willbedisplayedattherightbottomcornerandallowamorecarefulinspection.Thesliderbelowthe image changes the displayed slice. The popup menus at the right top corner provide more options. Hereyoucanselectothermeasuresthataredisplayedintheboxplot(e.g.optionallyqualitymeasures ifloadedsuchasnoise,bias,weightedoverallimagequality),canchangetheorderofthecorrelation matrix(byfilenameormeancorrelation).Finally,theworstdatacanbeshownintheSPMgraphics windowtocheckthedatamorecarefully. TheboxplotintheSPMgraphicswindowaveragesallcorrelationvaluesforeachsubjectandshows thehomogeneityofyoursample.Asmalloverallcorrelationintheboxplotnotalwaysmeansthatthis volume is an outlier or contains an artifact. If there are no artifacts in the image and if the image qualityisreasonableyoudon’thavetoexcludethisvolumefromthesample.Thistoolisintendedto utilitizetheprocessofqualitycheckingandthereisnoclearcriteriadefinedtoexcludeavolumeonly basedontheoverallcorrelationvalue.However,volumeswithanoticeableloweroverallcorrelation (e.g.belowtwostandarddeviations)areindicatedandshouldbecheckedmorecarefully. If you have loaded quality measures you can also display the Mahalanobis distance between two measures:meancorrelationandweightedoverallimagequality.Thesetwoarethemostimportant measurestoevaluateimagequality.Meancorrelationmeasuresthehomogeneityofyourdatathat will be used for statistical analysis and is therefore a measure about image quality after preprocessing.Datathatdeviatefromyoursamplewillincreasevarianceandthereforeminimizeeffect sizeandstatisticalpower.Weightedoverallimagequalityincontrastcombinesmeasuresofnoiseand spatial resolution of the images before pre-processing. Although CAT12 uses effective de-noising approaches (e.g. spatial adaptive non-local means filter) pre-processed images will be also affected andshouldbechecked. TheMahalanobisdistanceallowstocombinethesetwomeasuresofimagequalitybeforeandafter pre-processing.IntheMahalanobisplotthedistanceiscolor-codedandeachpointcanbeselectedto obtainthefilenameanddisplaytheselectedslicetocheckdatamorecarefully. FOURTHMODULE:SMOOTH SPMmenu!Smooth Parameters: o ImagestoSmooth<-X!SelectFiles![selectgreymattervolumes]!Done - Select the newly written data [e.g. the “mwp1” files, which are the modulated(m)normalized(w)greymattersegments(p1)]. o FWHM![usedefaultsormodify] - 8-12mmkernelsarewidelyusedforVBM.Tousethissettingselect“edit value”andtype“888”(or“121212”,respectively)forakernelwith8mm (with12mm)FWHM. 11 o DataType![usedefaultsormodify] o FilenamePrefix![usedefaultsormodify] FIFTHMODULE:ESTIMATETOTALINTRACRANIALVOLUME(TIV) CAT12!StatisticalAnalysis!EstimateTIV Parameters: o XMLfiles<-X!SelectFiles![selectxml-files]!Done - Selectthexml-filesinthereport-folder[e.g.the“cat_*.xml”]. o Savevalues!TIVonly - ThisoptionwillsavetheTIVvaluesforeachdatasetinthesameorderas the selected xml-files. Optionally you can also save the global values for eachtissueclass,whichmightbeinterestingforfurtheranalysis,butisnot recommendedifyouareinterestedinonlyusingTIVascovariate. o Outputfile![usedefaultsormodify] PleasenotethatTIVisstronglyrecommendedtouseascovariateforallVBManalysisinorderto correctfordifferentbrainsizes.Fordeformation-orsurface-baseddatathisstepisnotnecessary. PleasealsocheckthatTIVisnotcorrelatingtoomuchwithyourparametersofinterest(pleasetake carethatyouuse“Centering”with“Overallmean”,otherwisethecheckfororthogonalityinSPMis sometimesnotworkingcorrectly).InthatcaseyoushouldratheruseglobalscalingwithTIV. BuildingtheStatisticalModel Althoughtherearemanypotentialdesignsofferedinthe2nd-levelanalysisIrecommendtousethe “Full factorial” design because it covers most statistical designs. For cross-sectional VBM data you haveusually1..nsamplesandoptionallycovariatesandnuisanceparameters: Numberoffactorlevels Numberofcovariates StatisticalModel 1 0 one-samplet-test 1 1 singleregression 1 >1 multipleregression 2 0 two-samplet-test >2 0 Anova >1 >0 AnCova (for nuisance parameters) or Interaction(forcovariates) 12 TWO-SAMPLET-TEST CAT12→StatisticalAnalysis→BasicModels * You could specify one or many covariates (i.e., partial out the variance of specific factors when lookingatgroupdifferences). Parameters: o Directory <-X ! Select Files ! [select the working directory for your analysis] !Done o Design!“Two-samplet-test” " Group 1 scans ! Select Files ! [select the smoothed grey matter volumesforgroup1;followingthis script these will be the “smwp1” files]!Done " Group 2 scans ! Select Files ! [select the smoothed grey matter volumesforgroup2]!Done " Independence!Yes " Variance!EqualorUnequal " Grandmeanscaling!No " ANCOVA!No It is strongly recommended to always use total intracranial volume (TIV) as covariate if you use modulated data in VBM in order to correct for differentbrainsizes. • • Covariates!NewCovariate • • • Name<-X!SpecifyText(e.g.,“age”) Vector <-X ! enter the values of the covariates (e.g., TIV and optionally age in years)inthesameorderastherespectivefile names or type “spm_load” to upload a *.txt file with the covariates in the same order as thevolumes Interactions!None Centering!Nocentering o Covariates* o Masking " ThresholdMasking!Absolute![specifyvalue(e.g.,“0.1”)] " ImplicitMask!Yes " ExplicitMask!<None> o GlobalCalculation!Omit o GlobalNormalization " Overallgrandmeanscaling!No o Normalization!None 13 FULLFACTORIALMODEL(FORA2X2ANOVA) CAT12→StatisticalAnalysis→BasicModels Parameters: o Directory<-X!SelectFiles![selecttheworkingdirectoryforyouranalysis]!Done o Design!“FullFactorial” " Factors!“New:Factor;New:Factor” Factor • Name![specifytext(e.g.,”sex”)] • Levels!2 • Independence!Yes • Variance!EqualorUnequal • Grandmeanscaling!No • ANCOVA!No Factor • Name![specifytext(e.g.,“handedness”)] • Levels!2 • Independence!Yes • Variance!EqualorUnequal • Grandmeanscaling!No • ANCOVA!No " SpecifyCells!“New:Cell;New:Cell;New:Cell;New:Cell” Cell • Levels![specifytext(e.g.,“11”)] • Scans ! [select files (e.g., the smoothed GM volumes of the left-handed males)] Cell • Levels![specifytext(e.g.,“12”)] • Scans ! [select files (e.g., the smoothed GM volumes of the right-handed males)] Cell • Levels![specifytext(e.g.,“21”)] • Scans ! [select files (e.g., the smoothed GM volumes of the left-handed females)] Cell • Levels![specifytext(e.g.,“22”)] 14 • Scans ! [select files e.g., the smoothed GM volumes of the right-handed females)] o Covariates* o Masking " ThresholdMasking!Absolute![specifyvalue(e.g.,“0.1”)] " ImplicitMask!Yes " ExplicitMask!<None> o GlobalCalculation!Omit o GlobalNormalization " Overallgrandmeanscaling!No o Normalization!None MULTIPLEREGRESSION(CORRELATION) CAT12→StatisticalAnalysis→BasicModels Parameters: o Directory<-X!SelectFiles![selectthedirectoryforyouranalysis]!Done o Design!“MultipleRegression” " Scans![selectfiles(e.g.,thesmoothedGMvolumesofallsubjects)]!Done " Covariates!“New:Covariate” Covariate • Vector![enterthevaluesinthesameorderastherespectivefilenamesof thesmoothedGMimages] • Name![specifytest(e.g,“age”)] • Centering!Nocentering • Intercept!IncludeIntercept o Covariates* o Masking " ThresholdMasking!Absolute![specifyvalue(e.g.,“0.1”)] " ImplicitMask!Yes " ExplicitMask!<None> o GlobalCalculation!Omit 15 o GlobalNormalization " Overallgrandmeanscaling!No o Normalization!None FULLFACTORIALMODEL(FORANINTERACTION) CAT12→StatisticalAnalysis→BasicModels Parameters: o Directory<-X!SelectFiles![selecttheworkingdirectoryforyouranalysis]!Done o Design!“FullFactorial” " Factors!“New:Factor” Factor • Name![specifytext(e.g.,”sex”)] • Levels!2 • Independence!Yes • Variance!EqualorUnequal • Grandmeanscaling!No • ANCOVA!No " SpecifyCells!“New:Cell;New:Cell” Cell • Levels![specifytext(e.g.,“1”)] • Scans![selectfiles(e.g.,thesmoothedGMvolumesofthemales)] Cell • Levels![specifytext(e.g.,“2”)] • Scans![selectfiles(e.g.,thesmoothedGMvolumesofthefemales)] o Covariates!“New:Covariate” " Covariate • Vector![enterthevaluesinthesameorderastherespectivefilenamesof thesmoothedGMimages] • Name![specifytest(e.g,“age”)] • Interactions!WithFactor1 • Centering!Nocentering o Masking " ThresholdMasking!Absolute![specifyvalue(e.g.,“0.1”)] 16 " " ImplicitMask!Yes ExplicitMask!<None> o GlobalCalculation!Omit o GlobalNormalization " Overallgrandmeanscaling!No o Normalization!None ESTIMATINGTHESTATISTICALMODEL SPMmenu!Estimate Parameters: o SelectSPM.mat<-X!SelectFiles![selecttheSPM.matwhichyoujustbuilt]!Done o Method!“Classical” CHECKINGFORDESIGNORTHOGONALITY IfyouhavemodeledTIVasconfoundingparameteritisnecessarytocheckthatTIVwillbeorthogonal (inotherwordsindependent)toanyotherparameterofinterestinyouranalysis(e.g.parametersyou are testing for). That means that TIV should not correlate with any other parameter of interest, otherwisenotonlythevarianceexplainedbyTIVwillberemovedfromyourdata,butalsopartsofthe varianceofyourparameterofinterest. Please keep in mind to use “Overall mean” as “Centering” for the TIV covariate. Otherwise, the orthogonality check sometimes even indicates a meaningful orthogonality only due to scaling issues. InordertocheckfordesignorthogonalityyoucanusetheReviewfunctionintheSPMGUI: SPMmenu!Review o SelectSPM.mat<-X!SelectFiles![selecttheSPM.matwhichyoujustbuilt]!Done o Design!Designorthogonality 17 Figure4:Grayboxesbetweentheparameterspointtoacorrelation:thedarkertheboxthelargerthe correlation(whichalsoholdsforinversecorrelations).Ifyouclickintheboxthecolinearitybetween theparameterswillbedisplayed. In the case of a considerable correlation an alternative approach is to use global scaling with TIV. Applythefollowingsettingsforthisapproach: o GlobalCalculation!User<-X!DefineheretheTIVvalues o GlobalNormalization " Overallgrandmeanscaling!Yes o Normalization!Proportional 18 Please note that the global normalization will also affect the absolute threshold for the masking becauseyourimageswillbenowscaledtoaglobalvalueof50.Whileusuallyanabsolutethresholdof 0.1..0.25isrecommended,thescaledvalueswillbenowsmallerbyafactorofaround30: o IfthemeanTIVis1500allimagesaregloballyscaledtoavalueof50.Thus,theoverall scalingis50/1500=1/30 o Togetthe(old)absolutethresholdof0.1(0.2)nowuse0.1/30(0.2/30) DEFININGCONTRASTS SPM menu ! Results ! [select the SPM.mat file] ! Done (this opens the Contrast Manager) ! Definenewcontrast(i.e.,choose“t-contrast”or“F-contrast”;typethecontrastnameandspecifythe contrastbytypingtherespectivenumbers,asshownbelow): T-contrasts: a. Simplegroupdifference ⇒UseSPM.matfrommodel“2sampleT-test” • ForGroupA>GroupB: • ForGroupA<GroupB: specify“1-1” specify“-11” b. 2x2ANOVA ⇒UseSPM.matfrommodel“2X2ANOVA” Forleft-handedmales>right-handedmales: Forleft-handedfemales>right-handedfemales: Forleft-handedmales>left-handedfemales: Forright-handedmales>right-handedfemales: etc. • Formales>females: • Forleft-handers>right-handers: c. MultipleRegression(Correlation) ⇒UseSPM.matfrommodel“CORRELATION” • • • • • Forpositivecorrelation: • Fornegativecorrelation: 19 specify“1-100” specify“001-1” specify“10-10” specify“010-1” specify“11-1-1” specify“1-11-1” specify“1” specify“-1” d. Incasethatthefirstcolumninthedesignmatrixisaconstant(sampleeffect)youhaveto prependa“0”toallcontrasts(e.g.“01”). Interaction ⇒UseSPM.matfrommodel“INTERACTION” • ForregressionslopeGroupA>GroupB: • ForregressionslopeGroupA<GroupB: specify“001-1” specify“00-11” !Done F-contrasts: IfyouwouldliketousetheoldSPM2F-contrast“Effectsofinterest”therespectivecontrastvectoris: eye(n)-1/n wherenisthenumberofcolumnsofinterest.ThisF-contrastisoftenhelpfulforplottingparameter estimatesofeffectsofinterest. GettingResults: SPMmenu!Results![selectacontrastfromContrastManager]!Done • Maskwithothercontrasts!No • Titleforcomparison:[usethepre-definednamefromtheContrastManagerorchangeit] • Pvalueadjustmentto: o None(uncorrectedformultiplecomparisons),setthresholdto0.001 o FDR(falsediscoveryrate),setthresholdto0.05,etc. o FWE(family-wiseerror),setthresholdto0.05,etc. • Extentthreshold:[eitheruse“none”orspecifythenumberofvoxels2) 2 Inordertoempiricallydeterminetheextentthreshold(ratherthansaying100voxelsor500voxels,whichiscompletely arbitrary),simplyrunthisfirstwithoutspecifyinganextentthreshold.Thiswillgiveyouanoutput(i.e.,thestandardSPM glassbrainwithsignificanteffects).Whenyouclick“Table”(SPMmainmenu)youwillgetatablewithallrelevantvalues (MNI coordinates, p-values, cluster size etc). Below the table you will find additional information, such as “Expected NumberofVoxelsperCluster”.Rememberthisnumber(thisisyourempiricallydeterminedextentthreshold).Re-runSPM !Resultsetc.andspecifythisnumberwhenaskedforthe“ExtentThreshold”.Thereisalsoahiddenoptionin“CAT12! Datapresentation!ThresholdandtransformspmT-maps”todefinetheextentthresholdintermsofap-valueortouse the“ExpectedNumberofVoxelsperCluster”. 20 SpecialCases CAT12forlongitudinaldata BACKGROUND ThemajorityofVBMstudiesarebasedoncross-sectionaldata,whereoneimageisacquiredforeach subject.However,inordertotracke.g.learningeffectsovertimelongitudinaldesignsarenecessary, where additional time-points are acquired for each subject. The analysis of these longitudinal data requiresacustomizedprocessing,thatconsidersthecharacteristicsofintra-subjectanalysis.Whilefor cross-sectionaldataimagescanbeprocessedindependentlyforeachsubjectlongitudinaldatahasto be registered to the baseline image (or mean image) for each subject. Furthermore, spatial normalizationisestimatedforthebaselineimageonlyandappliedtoallimages(Figure5).Additional attention is then needed for the setup of the statistical model. The following section will therefore describedatapreprocessingandmodelsetupforlongitudinaldata. Textandfigureinpreparation Fig4.:FlowdiagramforprocessinglongitudinaldatawithCAT12.Thisfiguredemonstrates the steps for processing longitudinal data. After an initial realignment, the mean of the realigned images is calculated (mean) and used as reference image in a subsequent realignment.Therealignedimages(rix)arethencorrectedforsignalinhomogeneitieswith regard to the reference mean image. Spatial normalization parameters are estimated in thenextstepusingthesegmentationsofthemeanimage.Thesenormalizationparameters are applied to the segmentations of the bias-corrected images (p1mrix). The resulting normalizedsegmentations(wp1mrix)arefinallyagainrealigned. Preprocessingoflongitudinaldata-overview The CAT12 Toolbox supplies a batch for longitudinal study design. Here, for each subject the respectiveimagesneedtobeselected.Intra-subjectrealignment,biascorrection,segmentation,and normalizationarecalculatedautomatically.Preprocessedimagesarewrittenaswp1mr*andwp2mr* for grey and white matter respectively. To define the segmentation and normalization parameters, thedefaultsincat_defaults.mareused. 21 CHANGESETTINGSFORPREPROCESSING Youcanchangethetissueprobabilitymap(TPM)usingtheGUIorbychangingtheentryinthefile cat_defaults.m. Any parameters that cannot be changed using the GUI have to be set in the file cat_defaults.m: Changeyourworkingdirectoryto“/toolbox/CAT12”inyourSPMdirectory: !select“Utilities!cd”intheSPMmenuandchangetotherespectivefolder. Thentype“opencat_defaults.m”inyourmatlabcommandwindow.Thefilewillopenintheeditor.If youareunsurehowtochangethevalues,openthemodule“SegmentData”inthebatcheditorfor reference. PREPROCESSINGOFLONGITUDINALDATA CAT12!Segmentlongitudinaldata Parameters: o Data<-X!New:Subject!Subject!Longitudinaldataforonesubject!SelectFiles ![selectrawdata]!Done - Selectallvolumesforeachsubject.AstheToolboxdoesnotsupportmultispectral data yet (i.e., different imaging methods for the same brain, such as T1-, T2-, diffusion-weighted or CT images), it is recommended to choose a T1-weighted image. - Select“New:Subject”toadddataforanewsubject Thedataforeachsubjectshouldbelistedasone“subject”intheBatchEditor,i.e. thereareasmanysubjectslistedasincludedintheanalysis. !Forallotheroptionsyoucanfollowtheinstructionsforpreprocessingofcross-sectional data as described before. Please note that not all writing options are available for longitudinaldata. Forthenamingconventionsofallwrittenfilessee“Namingconventionofoutputfiles”.ThefinalGM segmentsaremwp1r*,thefinalWMsegmentsarenamedmwp2r*ifyouhaveselectedtooptionto modulatethedata.Withoutmodulationtheleading“m”isomitted. 22 Statisticalanalysisoflongitudinaldata-overview Themaininterestinlongitudinalstudiesisthecommonchangeoftissuevolumeovertimeinagroup of subjects or the difference in these changes between two or more groups. The setup of the statisticalmodelneededtoassessthesequestionswillbedescribedontwoexamples.First,thecase of only one group of 4 subjects with 2 time points each (e.g. normal aging) is presented. Subsequently, the case of two groups of subjects with 4 time points per subject will be described. These examples should cover most analyses – the number of time points / groups just have to be adapted. In contrast to the analysis of cross-sectional data as described before we have to use the flexiblefactorialmodelthatconsidersthatthetimepointsforeachsubjectaredependentdata. STATISTICALANALYSISOFLONGITUDINALDATAINONEGROUP CAT12→StatisticalAnalysis→BasicModels Parameters: o Directory<-X!SelectFiles![selecttheworkingdirectoryforyouranalysis]!Done o Design!“FlexibleFactorial” * SPM is internally handling some " Factors!“New:Factor;New:Factor” keyword factors such as “subject” or Factor “repl”. If you use “subject” as • Name![specifytext(e.g.,”subject”)*] keyword for the first factor the conditions can be easier defined by • Independence!Yes onlylabelingthetimepointsasinput • Variance!EqualorUnequal (seebelow). • Grandmeanscaling!No • ANCOVA!No Factor • Name![specifytext(e.g.,“time”)] • Independence!No • Variance!EqualorUnequal • Grandmeanscaling!No • ANCOVA!No " Specify Subjects or all Scans & Factors ! “Subjects” ! “New: Subject; New: Subject;New:Subject;New:Subject;” Subject • Scans![selectfiles(thesmoothedGMvolumesofthefirstSubject)] • Conditions!“12”[fortwotimepoints] Subject - Scans![selectfiles(thesmoothedGMvolumesofthesecondSubject)] 23 " - Conditions!“12”[fortwotimepoints] Subject • Scans![selectfiles(thesmoothedGMvolumesofthethirdSubject)] • Conditions!“12”[fortwotimepoints] Subject - Scans![selectfiles(thesmoothedGMvolumesofthefourthSubject)] - Conditions!“12”[fortwotimepoints] Maineffects&Interaction!“New:Maineffect” Maineffect • Factornumber!2 Maineffect • Factornumber!1 o Covariates(see“basicVBManalysis(detaileddescription)”) o Masking " ThresholdMasking!Absolute![specifyvalue(e.g.,“0.1”)] " ImplicitMask!Yes " ExplicitMask!<None> o GlobalCalculation!Omit o GlobalNormalization " Overallgrandmeanscaling!No o Normalization!None STATISTICALANALYSISOFLONGITUDINALDATAINTWOGROUPS CAT12→StatisticalAnalysis→BasicModels Parameters: o Directory<-X!SelectFiles![selecttheworkingdirectoryforyouranalysis]!Done o Design!“FlexibleFactorial” * SPM is internally handling some " Factors ! “New: Factor; New: Factor; New: keyword factors such as “subject” or Factor” “repl”. If you use “subject” as keyword for the first factor the Factor conditions can be easier defined by • Name![specifytext(e.g.,”subject”)*] onlylabelingthetimepointsasinput (seebelow). 24 " • Independence!Yes • Variance!Equal • Grandmeanscaling!No • ANCOVA!No Factor • Name![specifytext(e.g.,”group”)] • Independence!Yes • Variance!Unequal • Grandmeanscaling!No • ANCOVA!No Factor • Name![specifytext(e.g.,“time”)] • Independence!No • Variance!Equal • Grandmeanscaling!No • ANCOVA!No Specify Subjects or all Scans & Factors ! “Subjects” ! “New: Subject; New: Subject;New:Subject;New:Subject;” Subject • Scans ! [select files (the smoothed GM volumes of the 1st Subject of first group)] • Conditions!“[1111;1234]’“[firstgroupwithfourtimepoints] Donotforgettheadditionalsinglequote!Otherwiseyou havetodefinetheconditionsas“[11;12;13;14]“ Subject • Scans![selectfiles(thesmoothedGMvolumesofthe2ndSubjectoffirst group)] • Conditions!“[1111;1234]’“[firstgroupwithfourtimepoints] Subject • Scans![selectfiles(thesmoothedGMvolumesofthe3rdSubjectoffirst group)] • Conditions!“[1111;1234]’“[firstgroupwithfourtimepoints] Subject • Scans ! [select files (the smoothed GM volumes of the 4th Subject of secondgroup)] • Conditions!“[2222;1234]’“[secondgroupwithfourtimepoints] Subject • Scans![selectfiles(thesmoothedGMvolumesofthe1stSubjectofsecond group)] 25 " • Conditions!“[2222;1234]’“[secondgroupwithfourtimepoints] Subject • Scans ! [select files (the smoothed GM volumes of the 2nd Subject of secondgroup)] • Conditions!“[2222;1234]’“[secondgroupwithfourtimepoints] Subject • Scans ! [select files (the smoothed GM volumes of the 3rd Subject of secondgroup) • Conditions!“[2222;1234]’”[secondgroupwithfourtimepoints] Subject • Scans ! [select files (the smoothed GM volumes of the 4th Subject of secondgroup)] • Conditions!“[2222;1234]’”[secondgroupwithfourtimepoints] Maineffects&Interaction!“New:Interaction;New:Maineffect” Interaction • Factornumbers!23[Interactionbetweengroupandtime] Maineffect • Factornumber!1 o Covariates(see“basicVBManalysis(detaileddescription)”) o Masking " ThresholdMasking!Absolute![specifyvalue(e.g.,“0.1”)] " ImplicitMask!Yes " ExplicitMask!<None> o GlobalCalculation!Omit o GlobalNormalization " Overallgrandmeanscaling!No o Normalization!None 26 AlteredWorkflowsforVBM-analyses Background For most analyses the VBM Toolbox will supply all tools needed. That is, as the new segmentation algorithmisnotdependentonTissueProbabilityMaps(TPMs)anymoreandaspredefinedDARTELtemplates for healthy adults exist, most questions can be assessed using the toolbox settings. However, for some special cases such as analyses in children or special patient populations, the toolboxsettingsmightnotbeoptimal.ForthesecasestheCAT12Toolboxprovidesanintegrationinto the SPM12 environment that can be used to optimize the preprocessing. In the following, we will presentstrategieshowtodealwiththesespecialcases. StandardVBMpreprocessing:Input,Outputandwheretomodify ThefirstmoduleoftheCAT12Toolbox(“SegmentData”)processesallpreprocessingstepsexceptfor thesmoothing.Basically,ittakesstructuralvolumesandTPMsasinput.Itwillthensegmentthedata, applyaregistrationtoMNISpace(eitherrigidoraffine)andsubsequentlyanon-lineardeformation. The non-linear deformation parameters can be calculated via the low dimensional SPM default approachorthehighdimensionalDARTELalgorithmandthepredefinedtemplates.Figure5depicts thispreprocessingworkflowandhighlightspossibilitieswheretomodify. Figureinpreparation Fig. 5: Flow-chart of the preprocessing steps within the module “Segment Data”. Marked in red are those steps, where the preprocessing can be customized. Per default,thebuilt-inDARTELnormalizationworkswiththeCAT12DARTELtemplates of550healthyadultcontrolsubjects.Affineregisteredtissuesegmentscanbeused to create customized DARTEL-templates, which can then be used to replace the defaultDARTELtemplate. 27 Adaptingtheworkflows Customizedtissueprobabilitymaps-overview FordataonchildrenitwillbeagoodideatocreatecustomizedTPMs,whichreflectageandgenderof the population. The TOM8 Toolbox (available via: https://irc.cchmc.org/software/tom.php) provides the means to customize these TPMs. To learn more about the TOM toolbox, see also http://dbm.neuro.uni-jena.de/software/tom/. CUSTOMIZEDTISSUEPROBABILITYMAPS AbouttheTOM8Toolbox: !selectModule“createnewtemplate” !select“TOM.mat”(youwillhavetodownloadthisfiletogetherwiththetoolbox) !writepriors/templateassinglefile !forallothersusedefaultsettingsormodify.For“Age”eitheravectororameanage (whenusingtheaverageapproach)mustbespecified. ImplementationintoCAT12: CAT12→SegmentData Parameters: o OptionsforinitialSPM12affineregistration " TissueProbabilityMap(!SelectyourcustomizedTPMshere) CustomizedDARTEL-template-overview Forallcasesthatincludeatleast50-100subjectsacustomizedDARTELtemplatecanbecreated.That is,greymatterandwhitemattertissuesegmentsofallsubjectsareusedtocreateameantemplateof the study sample. As the CAT12 toolbox writes all files needed to create these templates (“DARTEL export”), this requires only two additional steps. In order to use these newly created DARTELTemplateswiththeCAT12Toolbox,anaffineregistrationoftheDARTELexportshouldbeused.From these affine registered segments customized DARTEL templates can then be created and used with theCAT12module“SegmentData”. 28 CUSTOMIZEDDARTEL-TEMPLATE PleasenotethattheuseofanownDARTELtemplatewillresultindeviationsandunreliableresultsfor anyROI-basedestimationsbecausetheatlaseswilldiffer. SeveralstepsareneededtocreatenormalizedtissuesegmentswithcustomizedDARTELTemplates. ThesestepscanbebatchedusingdependenciesintheBatchEditor.Thelaststepcanbererunusing the customized templates, if additional output files are needed. In the first step the T1 images are segmented, and the tissue segments normalized to the Tissue Probability Maps using an affine transformation.Startwithselectingthemodule“SegmentData”. CAT12!SegmentData Parameters: !foralloptionsexcept“writingoptions”usesettingslikefora“standard”VBManalysis. o WritingOptions • • • • “GreyMatter”!“Modulatednormalized”!“No” “GreyMatter”!“DARTELexport”!“affine” “WhiteMatter”!“Modulatednormalized”!“No” “WhiteMatter”!“DARTELexport”!“affine” These settings will produce the volumes “rp1*-affine.nii” and “rp2*-affine.nii”, which are the grey (rp1)andwhite(rp2)mattersegmentsafteraffineregistration.Thefollowingmodulescanbechosen directlyinthebatcheditor(SPM!Tools!DARTELTools!RunDARTEL(createTemplates),and SPM!Tools!CAT12!CAT12:SegmentData).Itmakessensetoaddandspecifythesemodules togetherwiththe“SegmentData”modulewithintheBatchEditorandtosetdependencies. SPM!Tools!DartelTools!RunDARTEL(createTemplates) Parameters: Images!selecttwotimes“new:Images” " " Images:!selectthe“rp1*-affine.nii”filesorcreateadependency. Images:!selectthe“rp2*-affine.nii”filesorcreateadependency. !allotheroptions:usedefaultsormodify SPM!Tools!DartelTools!NormalisetoMNIspace 29 Parameters: DartelTemplate!selectthefinalcreatedtemplatewiththeending“_6”. o Selectaccordingto!“ManySubjects” Flowfields:!selectthe“u_*.nii”filesorcreateadependency. • Images: ! New: Images ! select the “rp1*-affine.nii” files or create a dependency. • Images: ! New: Images ! select the “rp2*-affine.nii” files or create a dependency. o Preserve:!“PreserveAmount” " o GaussianFWHM:!usedefaultsormodify !allotheroptions:usedefaultsormodify Please note, that a subsequent smoothing is not necessary before statistics if you have used the option“NormalisetoMNIspace”withadefinedGaussianFWHM. Re-useofcustomizedDARTEL-templates OptionallyyoucanalsousethenewcreatedcustomizedDARTELtemplatesintheCAT12Toolbox.This mightbehelpfulifnewdataareclose(intermsofage)tothedatathathavebeenusedforcreating theDARTELtemplate.Then,itisnotmandatorytoalwayscreateanewtemplateandyoucansimply use the previously created DARTEL template. In that case an additional registration to MNI (ICBM) spacehastobeapplied: SPM!Tools!DartelTools!RunDARTEL(PopulationtoICBMRegistration) Parameters: DartelTemplate!selectthefinalcreatedtemplatewiththeending“_6”. SPM!Util!Deformations Parameters: Composition!“New:DeformationField” " DeformationField:!selectthe“y_*2mni.nii”filefromstepabove. o Output!“New:Pushforward” " Applyto!selectall“Template”fileswiththeending“_0”to“_6”. 30 " " " Outputdestination!Outputdirectory!selectdirectoryforsavingfiles. Field of View ! Image Defined ! select final “Template” file with the ending “_6”. Preserve!PreserveConcentrations(no“modulation”). Finally,thenewtemplatecanbeusedasdefaultDARTELtemplateforanynewdatathatarecloseto thedatathathavebeenusedfortemplatecreation: CAT12!SegmentData Parameters: o Volumes<-X!SelecttheoriginalT1imageslikeinthefirstmodule“SegmentData”. o Extended Options for CAT12 segmentation ! “Spatial normalization Template” ! SelectnormalizedDARTELTemplate“wTemplate*_1.nii” - For all other options use the same settings as in the first module, or modify. o WritingOptions!selecttheoutputfilesjustlikeinanystandardVBManalysis: Howtoproceed All steps described above are just an adaption of the CAT12 Toolbox module “Segment Data”. As always it is a good idea to save the applied modules and to perform quality control. Here, the modules“Displayonesliceforallimages”and“Checksamplehomogeneity”fromtheCAT12Toolbox willbehelpful.Pleasealsonotethattheuseof Othervariantsofcomputationalmorphometry Deformation-basedmorphometry(DBM) Background DBMisbasedontheapplicationofnon-linearregistrationprocedurestospatiallynormaliseonebrain toanotherone.Thesimplestcaseofspatialnormalisationistocorrecttheorientationandsizeofthe brains. In addition to these global changes, a non-linear normalisation is necessary to minimise the remainingregionaldifferencesbymeansoflocaldeformations.Ifthislocaladaptationispossible,the deformations now reveal information about the type and localization of the structural differences betweenthebrainsandcanundergosubsequentanalysis. Differences between both images are minimized and are now coded in the deformations. Finally, a mapoflocalvolumechangescanbequantifiedbyamathematicalpropertyofthesedeformations– the Jacobian determinant. This parameter is well known from continuum mechanics and is usually 31 usedfortheanalysisofvolumechangesinflowingliquidsorgases.TheJacobiandeterminantallowsa directestimationofthepercentagechangeinvolumeineachvoxelandcanbestatisticallyanalyzed (Gaseretal.2001).Thisapproachisalsoknownastensor-basedmorphometrybecausetheJacobian determinantrepresentssuchatensor. Adeformation-basedanalysiscanbecarriedoutnotonlyonthelocalchangesinvolumebutalsoon theentireinformationofthedeformations,whichalsoincludesthedirectionandstrengthofthelocal deformations (Gaser et al. 1999; 2016). Since each voxel contains three-dimensional information, a multivariatestatisticaltestisnecessaryforanalysis.AmultivariategenerallinearmodelorHotelling’s T2testiscommonlyusedforthistypeofanalysis(Gaseretal.1999;Thompsonetal.1997). AdditionalStepsinCAT12 CAT12!SegmentData Parameters: o Writingoptions!Jacobiandeterminant!Normalized!Yes - Inordertosavetheestimatedvolumechangeschangethewritingoptionforthe normalizedJacobiandeterminantto“yes”. Changesinstatisticalanalysis Follow the steps for the statistical analysis as described for VBM, select the smoothed Jacobian determinants(e.g.swj_*.nii)andchangethefollowingparameters: CAT12→StatisticalAnalysis→BasicModels Parameters: o Covariates:Don’tuseTIVascovariate o Masking " ThresholdMasking!None " ImplicitMask!Yes " ExplicitMask!../spm12/tpm/mask_ICV.nii Surface-basedmorphometry(SBM) Background Surface-basedmorphometryhasseveraladvantagesoverusingvolumetricdataalone.Forinstance, brainsurfacemesheshavebeenshowntoincreasetheaccuracyofbrainregistrationcomparedwith Talairach registration (Desai et al. 2005). Brain surface meshes also permit new forms of analyses, such as gyrification indices that measure surface complexity in 3D (Yotter et al. 2011b) or cortical thickness(Gaseretal.2016).Furthermore,inflationorsphericalmappingofthecorticalsurfacemesh 32 raisestheburiedsulcitothesurfacesothatmappedfunctionalactivityintheseregionscanbeeasily visualized. Localadaptivesegmentation Gray matter regions with high iron concentration, like the motor cortex and the occipital regions, often have increased intensities that lead to misclassications. In addition to our adaptive MAP approach for partial volume segmentation we use an approach that allows adaptation of local intensitychangesinordertodealwithvaryingtissuecontrast(Dahnkeetal.2012a). Corticalthicknessandcentralsurfaceestimation We use a fully automated method that allows for measurement of cortical thickness and reconstructionsofthecentralsurfaceinonestep.Itusesatissuesegmentationtoestimatethewhite matter (WM) distance, then projects the local maxima (which is equal to the cortical thickness) to other gray matter voxels by using a neighbor relationship described by the WM distance. This projection-based thickness (PBT) allows the handling of partial volume information, sulcal blurring, andsulcalasymmetrieswithoutexplicitsulcusreconstruction(Dahnkeetal.2012b). Topologicalcorrection In order to repair topological defects we use a novel method that relies on spherical harmonics (Yotteretal.2011a).First,theoriginalMRIintensityvaluesareusedasabasistoselecteithera“fill” or“cut”operationforeachtopologicaldefect.Wemodifythesphericalmapoftheuncorrectedbrain surfacemesh,suchthatcertaintrianglesarefavoredwhilesearchingfortheboundingtriangleduring reparameterization.Then,alow-passfilteredalternativereconstructionbasedonsphericalharmonics ispatchedintothereconstructedsurfaceinareasthatpreviouslycontaineddefects. Sphericalmapping Asphericalmapofacorticalsurfaceisusuallynecessarytoreparameterizethesurfacemeshintoa common coordinate system to allow inter-subject analysis. We use a fast algorithm to reduce area distortion resulting in an improved reparameterization of the cortical surface mesh (Yotter et al. 2011c). Sphericalregistration Wehaveadaptedthevolume-baseddiffeomorphicDartelalgorithmtothesurface(Ashburner,2007) to work with spherical maps (Yotter et al. 2011d). We apply a multi-grid approach that uses reparameterizedvaluesofsulcaldepthandshapeindexdefinedonthespheretoestimateaflowfield thatallowsdeformingasphericalgrid. AdditionalStepsinCAT12 CAT12!SegmentData Parameters: o Writingoptions!Surfaceandthicknessestimation!Yes 33 Use projection-based thickness to estimate cortical thickness and to create the centralcorticalsurfacefortheleftandrighthemisphere. CAT12!SurfaceTools!Resample&SmoothSurfaces Parameters: o SurfaceData<-X!Selectthesurfacedata(e.g.[lr]h.thickness.*) o SmoothingFilterSizeinFWHM[usedefaultsormodify] - 12-18mmkernelsarewidelyusedforSBMandIrecommendtostartwitha valueof15mm. o Splitjobintoseparateprocesses - - Inordertousemulti-threadingtheCAT12segmentationjobwithmultiple subjects can be split into separate processes that run in the background. YoucanevencloseMatlab,whichwillnotaffecttheprocessesthatwillrun inthebackgroundwithoutGUI.Ifyoudonnotwanttorunprocessesinthe backgroundthensetthisvalueto0. Keep in mind that each process needs about 1.5..2GB of RAM, which shouldbeconsideredtochoosetherightnumberofprocesses. Please further note that no additional modules in the batch can be run except CAT12 segmentation. Any dependencies will be broken for subsequentmodules. Extractoptionalsurfaceparameters Youcanalsoextractadditionalsurfaceparametersthathavetoberesampledandsmoothedwiththe beforementionedtool. CAT12!SurfaceTools!Extract&MapSurfaceData!ExtractAdditionalSurfaceParameters Parameters: o CentralSurfaces<-X!Selectthecentralsurfacedata(e.g.[lr]h.central.*) o Gyrificationindex - Extract gyrification index (GI) based on absolute mean curvature. The methodisdescribedinLudersetal.NeuroImage,29:1224-1230,2006. o Corticalcomplexity(fractaldimension) - Extract Cortical complexity (fractal dimension) which is described in Yotter et al. Neuroimage,56(3):961-973,2011. - Warning:Estimationofcorticalcomplexityisveryslow! o Sulcusdepth 34 - Extract sqrt-transformed sulcus depth based on the euclidean distance between thecentralsurfaceanditsconvexhull. Transformation with sqrt-function is used to render the data more normally distributed. Changesinstatisticalanalysis For statistical analysis of surface measures you can use the common 2nd level models that are also usedforVBM.However,youhavetoanalyzeeachhemisphere(indicatedby“lh”and“rh”)separately. Follow the steps for the statistical analysis as described for VBM and change the following parameters: CAT12→StatisticalAnalysis→BasicModels Parameters: o Covariates:Don’tuseTIVascovariate o Masking " ThresholdMasking!None " ImplicitMask!Yes " ExplicitMask!<none> Asinputyouhavetoselecttheresampledandsmoothedfiles(seeabove).Athicknessfileoftheleft hemispherethatwasresampledandsmoothedwiththedefaultFWHMof15mmisnamedas: S15mm.lh.thickness.resampled.name.gii where“name”iftheoriginalfilenamewithoutextension.Pleasenotethatthesefilesaresavedinthe surf-folderasdefault. Do not use the “Estimate” function in the SPM window, but rather use the respective function in CAT12.ThisallowstooverlayyourresultsautomaticallyontotheFreesurferaveragesurface: CAT12!StatisticalAnalysis!EstimateSurfaceModels Regionofinterest(ROI)analysis CAT12 allows estimation of tissue volumes (and additional surface parameters such as cortical thickness)fordifferentvolumeandsurface-basedatlasmaps(Gaseretal.2016).Theresultsforeach dataset are stored as XML files in the label directory. The XML file catROI[s]_*.xml contains information of all atlases as data structure for one dataset and the optional “s” indicates surface atlases.YoucanusetheCATfunction“cat_io_xml”toreadtheXMLdataasstructure. PleasenotethatinthebetaversionofCAT12theseXMLfileswerenotautomaticallysavedbecause theoptionforROIanalysiswasdisabled.Iftheoption"cat12.output.ROI"incat_defaults.missetto "0" no ROI XML files are saved and you have to set this parameter to "1" and preprocess the data 35 againifyouareinterestedinROIanalysisofvolumedata(forsurfacedatatheseXMLfilesarealways extractedafterpreprocessing,thusitisnotnecessarytodothisforsurfacedata). Additionalstepsforsurfacedata WhileROI-basedvaluesforVBM(volume)dataareautomaticallysavedinthelabelfolderasXMLfile it is necessary to additionally extract these values for surface data. This has to be done after preprocessing the data and creating cortical surfaces. You can extract ROI-based values for cortical thicknessbutalsoforanyothersurfaceparameterthatwasextractedusingthe“ExtractAdditional SurfaceParameters”function: CAT12!ExtractROIData!ExtractROI-basedsurfacevalues Parameters: o (Left) Surface Data Files <-X ! Select surface data files such as lh.thickness.* for all subjects StatisticalanalysisofROIdata Finally, the XML files of several subjects can be analyzed using an already existing SPM design with CAT12!AnalyzeROIs.Here,theSPM.matfileisusedinordertogetinformationaboutallrespective label files, but also about your design (including all covariates/confounds you have modeled). Thus, thesamestatisticalanalysisthatissavedintheSPM.matfileisappliedtoyourROIdata.Youcanthen selectacontrast,thresholdandameasurestoanalyze(e.g.Vgm,Vwm,thickness,gyrification...)and canchoosebetweendifferentatlasmaps.Theresultswillbeprintedandsavedasthresholdedlog-p volume or surface map. These maps can be optionally visualized using CAT12 ! Display Results ! SliceOverlayforvolumemapsorCAT12!DisplayResults!Displaysurfaceresultsforsurfacemaps. In order to analyze different measures (e.g. Vgm/Vwm for volumes or thickness/gyrification for surfaces)youcanuseanyexistingvolume-basedanalysistoextractdifferentvolumemeasuresorany existingsurface-basedanalysistoextractdifferentsurfacemeasures.Togiveanexample:Anexisting SPM.matfilewithaVBManalysisofGMallowsyoutoanalyzeROImeasuresforboth,GMaswellas WM.Thus,itisnotnecessarytohaveaSPM.matfileofaVBManalysisofWM.Thesameholdsfor surface-basedanalysis.IfyouhaveanexistingSPM.matfortheanalysisofcorticalthicknessyoucan also estimate ROI analysis for gyrification or fractal dimension. However, it is necessary to extract before ROI-based measures for each subject using CAT12 ! Extract ROI Data ! Extract ROI-based surfacevalues. ForROIanalysisofsurfacesyoucanselecttheSPM.matfileoftheanalysiseitherfortheleftorright hemisphere. The design should be the same and the ROI results will be always estimated for both hemispheres. Pleasenote,thatifyouhavemovedyourdataafterestimatingyouroriginalvoxel-orsurfaced-based statisticstheneededROIfilescannotbefound. OptionalextractionofROIdata Finally,theXMLfilesofseveralsubjectscanbecombinedandsavedforfurtheranalysisasCSVfile usingthe“EstimateMeanValuesinsideROI”function: CAT12!ExtractROIData!EstimatemeanvaluesinsideROI 36 Parameters: o XMLfiles<-X!Selectxmlfilesforeachsubjectthataresavedinthelabelfolder. o Outputfile!Defineoutputnameforcsvfile.Thisnameisextendedbytheatlasname andthenameofthemeasure(e.g.“Vgm”forgraymattervolume) Foreachmeasure(e.g.“Vgm”forgraymattervolume)andeachatlasaseparateCSVfileiswritten. Thisworksforbothvolumeaswellassurfacedata,butvolumeandsurfacedatahastobeprocessed separately using this function (surface-based ROI values are indicated by an additional “s”, e.g. ''catROIs_''). You can use external software such as Excel or SPSS to read the resulting CSV files for furtheranalysis.Takealsocareofthedifferentinterpretationbetween“.”and“,”dependingonyour regionandlanguagesettingsonyoursystem. UseofatlasfunctionsinSPM12 Moreover,youcanusethevolume-basedatlasesthatareprovidedwithCATalsoasatlasmapswith SPM atlas functions. This is especially helpful if you have used the default VBM processing pipeline because the CAT12 atlas maps are then in the same DARTEL space as your data. Thus, if you have used the default VBM processing pipeline it is recommended to use the CAT12 atlases in DARTEL spaceratherthantheSPMNeuromorphometricsatlas.InordertouseCAT12atlasesyouhavetocall the cat_install_atlases function once that will copy the atlases to SPM. By default only Neuromorphometics,LPBA40,andHammersatlasmapsareusedandareindicatedinthenamebya leading''dartel_''. Atlas maps for surfaces can be used with the function CAT12 ! Display Results ! Display Surface Results. Here, the data cursor function allows you to display atlas regions under the cursor. Furthermore,youcanusethe''Atlaslabeling''functiontoprintalistofatlasregionsoftheresulting clusters. Additionalinformationonnative,normalizedandmodulatedvolumes Whenpreprocessingtheimages(see“FirstModule:SegmentData”,onpages5-6),thedecisionabout thenormalizationparameterswilldeterminetheinterpretationoftheanalysisoutcomes.Pleasenote thatsomeoftheoutputoptionsareonlyavailableintheexpertmode. “Nativespace”producestissueclassimagesinspatialcorrespondencetotheoriginaldata.Although thiscouldbeusefulforestimatingglobaltissuevolumes(e.g.,GM+WM+CSF=TIV)itisnotsuitableto conductVBManalysesduetothemissingvoxel-wisecorrespondenceacrossbrains).Ofnote,ifoneis interested in these global tissue volumes in native space (“raw values”), it won’t be necessary to actually output the tissue class images in native space. The “Segment Data”-function automatically generatesanxmlfileforeachsubject(cat_*.xml),whichcontainstherawvaluesforGM,WM,and CSF.Thesubject-specificvaluescanbecombined(i.e.,integratedintoasingletextfile)byusingthe function:CAT12!StatisticalAnalysis!EstimateTIV. 37 “Normalized”producestissueclassimagesinspatialcorrespondencetothetemplate.Thisisuseful forVBManalyses(e.g.,“concentration”ofgraymatter;Goodetal.2001;Neuroimage). “Modulatednormalized”producestissueclassimagesinalignmentwiththetemplate,butmultiplies (“modulates”)thevoxelvaluesbytheJacobiandeterminant(i.e.,linearandnon-linearcomponents) derived from the spatial normalization. This is useful for VBM analyses and allows comparing the absoluteamountoftissue(e.g.,“volume”ofgraymatter;Goodetal.2001;Neuroimage).Pleasenote thatbyusingthistypeofmodulationyouhavetouseTIVascovariateinordertocorrectfordifferent brainsizes.AnalternativeapproachistouseglobalscalingwithTIVifTIViscorrelatingtoomuchwith your covariates of interest. See the section about “Checking for Design Orthogonality” for more information. If you use the expert mode you can optionally choose to modulate your data for non-linear terms only,whichwasthedefaultforpreviousVBMversions.Thisproducestissueclassimagesinalignment withthetemplate,butmultipliesthevoxelvaluesbythenon-linearcomponentsonly.Thisisuseful forVBManalysesandallowscomparingtheabsoluteamountoftissuecorrectedforindividualbrain sizes. Of note, this option is similar to using “Affine+non-linear” (see above) in combination with “global normalization” (when later building the statistical model using the traditional PET designs). Although this type of modulation was used in previous VBM versions as default it is not recommended anymore because the use of the standard modulation in combination with TIV as covariategivesmorereliableresults(Maloneetal.2015;Neuroimage). Forfurtherexplanationseealso(notyetupdated): http://www.neuro.uni-jena.de/vbm/segmentation/modulation 38 Namingconventionofoutputfiles Please note that the resulting files of CAT12 are organized in separate subfolders (e.g. mri, report, surf,label).Ifyoudon'twanttousesubfoldersyoucanchangetheoption"cat12.extopts.subfolders" incat_default.mto"0". Images(savedinsubfolder"mri") SegmentedImages: #p[0123]* [m[0]w]p[0123]*[_affine].nii Bias,noiseandintensitycorrectedT1image: #m* [w]m*.nii Jacobiandeterminant #j_ wj_*.nii Deformationfield(inversefield) y_(iy_) y_*.nii(iy_*.nii) * filename # imagespaceprefix Imagespaceprefix: m modulated m0 modulatednon-linearonly(expertmodeonly) w warped(spatiallynormalizedusingDARTEL) Imagespaceextension: _affine affineregisteredonly Imagedataprefix: p partialvolume(PV)segmentation 0 PVlabel 1 GM 2 WM 3 CSF 39 Surfacesinnativespace(savedinsubfolder"surf") SURF.TYPE.*.gii SURF left,righthemisphere[lh|rh] TYPE surfacedatafile[central|sphere|thickness|gyrification|...] central-coordinatesandfacesofthecentralsurface sphere-coordinatesandfacesofthesphericalprojectionofthecentralsurface sphere.reg-coordinatesandfacesofthesphereaftersphericalregistration thickness-thicknessvaluesofthesurface sqrtsulc-sqrt-transformedvaluesofsulculdepthbasedontheeuclidiandistancebetween thecentralsurfaceanditsconvexhull gyrification-gyrificationvaluesbasedonabsolutemeancurvature fractaldimension-fractaldimensionvalues(corticalcomplexity) Surfaces in (normalized) template space (after resampling and smoothing; saved in subfolder "surf") FWHM.SURF.TYPE.resampled.*.gii FWHM filtersizeinFWHMaftersmoothing SURF left,righthemisphere[lh|rh] TYPE surfacedatafile[thickness|gyrification|fractaldimension|...] thickness-thicknessvaluesofthesurface sqrtsulc-sqrt-transformedvaluesofsulculdepthbasedontheeuclidiandistancebetween thecentralsurfaceanditsconvexhull gyrification-gyrificationvaluesbasedonabsolutemeancurvature fractaldimension-fractaldimensionvalues(corticalcomplexity) 40 Imagesandsurfaceoflongitudinaldata After processing longitudinal data the filenames additionally contain an "r" between the original filenameandtheotherprefixestoindicatetheadditionalregistrationstep.Pleasealsonotethatonly thebias,noiseandintensitycorrectedaverageimageofalltimepointsforeachsubjectissaved. Reports(savedinsubfolder"report") Global morphometric and image quality measures are stored in the cat_*.xml file. This file also containsotherusefulinformationaboutsoftwareversionsandtheusedoptionsforpreprocessingthe data.Youcanusethecat_io_xmlfunctiontoreaddatafromxml-files.Furthermore,areportforeach datasetissavedaspdf-filecatreport_*.pdf. Regionsofinterest(ROI)data(savedinsubfolder"label") ROIdataisoptionallysavedasxml-filecatROI[s]_*.xml.Theoptional“s”indicatessurfaceatlases. Technicalinformation This toolbox is an extension of the segmentation in SPM12, but uses a completely different segmentationapproach.3 AMAPSegmentation ThesegmentationapproachisbasedonanAdaptiveMaximumAPosterior(AMAP)techniquewithout theneedforaprioriinformationabouttissueprobabilities.Thatis,theTissueProbabilityMaps(TPM) arenotusedconstantlyinthesenseoftheclassicalUnifiedSegmentationapproach(Ashburneret.al. 2005),butonlyforspatialnormalizationandtheinitialskull-stripping.ThefollowingAMAPestimation isadaptiveinthesensethatlocalvariationsoftheparameters(i.e.,meansandvariance)aremodelled as slowly varying spatial functions (Rajapakse et al. 1997). This not only accounts for intensity inhomogeneitiesbutalsoforotherlocalvariationsofintensity. PartialVolumeSegmentation Additionally, the segmentation approach uses a Partial Volume Estimation (PVE) with a simplified mixedmodelofatmosttwotissuetypes(Tohkaetal.2004).Westartwithaninitialsegmentation intothreepureclasses:graymatter(GM),whitematter(WM),andcerebrospinalfluid(CSF)basedon theabovedescribedAMAPestimation.TheinitialsegmentationisfollowedbyaPVEoftwoadditional mixedclasses:GM-WMandGM-CSF.Thisresultsinanestimationoftheamount(orfraction)ofeach puretissuetypepresentineveryvoxel(assinglevoxels-givenbytheirsize-probablycontainmore thanonetissuetype)andthusprovidesamoreaccuratesegmentation. 3 TheclassicSPM12segmentationisstillusedinaddition,butonlytoinitiallyremovenon-braintissuefromtheimageand togetastartingestimateforthesegmentation. 41 Denoising Furthermore, we apply two denoising methods. The first method is a spatial-adaptive Non-Local Means(SANLM)denoisingfilter(Manjónetal.2010)thatisappliedaftertheintensitynormalization. This filter removes noise while preserving edges and is implemented as preprocessing step. The secondmethodisaclassicalMarkovRandomField(MRF)approach,whichincorporatesspatialprior informationofadjacentvoxelsintothesegmentationestimation(Rajapakseetal.1997)andispartof the AMAP segmentation. The strength of the filters is automatically obtained by estimating the remainingnoiseintheimage. DartelNormalisation Another important extension to the SPM12 segmentation is the integration of the Dartel normalisation(Ashburner2007)intothetoolboxbyanalreadyexistingDarteltemplateinMNIspace. Thistemplatewasderivedfrom555healthycontrolsubjectsoftheIXI-database(http://www.braindevelopment.org) and is provided in MNI space4 for six different iteration steps of Dartel normalisation.Thus,forthemajorityofstudiesthecreationofsample-specificDarteltemplatesisnot necessaryanymore5. LocalAdaptiveSegmentation(LAS) Beside WM-inhomogeneities, also the GM intensity can vary for different regions like the motor cortex, the basal ganglia, or the occipital lobe. Although, these changes have an anatomical background (e.g. iron content, myelenization), they depend on the MR-protocol and often lead to GM-underestimationsforhigherintensitiesandCSF-overestimationsforlowerintensities.Therefore, alocalintensitytransformationofalltissueclassesisusedinordertoreducethiseffectsintheimage before the final AMAP segmentation. The strength of the changes is controlled by the LASstr parameter,with0fornoLAS,smallvalues(0.01-0.5)forsmalladaptations,0.5foraverageadaptation (default),andhighervalues(0.5-1)forstrongadaptations. Skull-Stripping CAT12containsarevisedgraph-cutbasedskull-strippingwithaarbitrarystrength,with0foramore liberalandwiderbrainmasksand1foramoreaggressiveskull-stripping.Thedefaultis0.5andwas successfullytestedonavarietyofdifferentimages. Thestrengthparameteraffectsmultipleinternalparameters: • Intensitythresholdstodealwithblood-vesselsandmeninges • Distanceandgrowingparametersforthegraph-cut/region-growing • Closingparametersthatfillthesulci 4 Thus,noadditionalMNInormalizationisnecessary. 5 For studies investigating data of children I still recommend creating a customized Dartel template. Of note, for this option a representative sample with a sufficient number of subjects is required (n>50-100). Alternatively, if a sufficient sample size cannot be achieved, the low-dimensional SPM12 normalization approach combined with customized Tissue ProbabilityMaps(e.g.fromtheTOM8toolbox)canbeselected. 42 • Smoothingparametersthatallowsharperorwiderresults Ifyoursegmentationsstillcontainskullandothernon-braintissue(e.g.dura)youcantrytoincrease thestrength.Ifpartsofthebrainaremissinginthesegmentationsthestrengthcanbedecreased. AffinePreprocessing(APP) To improve the initial SPM segmentation an initial affine registration on a bias-corrected image is appliedandtheintensityrangeislimitedtoavoidproblemsinspecialprotocols.Ifpreprocessingfails a more aggressive version is available that applies a rough bias correction and removes non-brain partsthebrainbeforetheinitialaffineregistration. Cleanup CAT12includesanewcleanuproutinethatusesmorphological,distanceandsmoothingoperationsto removeremainingmeningesfromthefinalsegmentation.Thestrengthofthecleanupiscontrolledby the cleanupstr parameter, with 0 for no cleanup, low values <0.5 for light cleanup, 0.5 for average cleanup(default),and1forstrongcleanup. Interpolation CAT12 uses an internal interpolation in order to allow more reliable results also for low resolution imagesandanisotropicspatialresolutions.Althoughaninterpolationcannotaddfurtherdetailstothe images, some of the used functions benefit from the higher number of voxels and the common stripedartefactsinmodulatedimagesarestronglydiminished. 43 References J.Ashburner(2005):Unifiedsegmentation.Neuroimage26(3):839-51. J.Ashburner(2007):Afastdiffeomorphicimageregistrationalgorithm.Neuroimage38(1):95-113. E.Luders,P.M.Thompson,K.L.Narr,A.W.Toga,L.Jancke,C.Gaser(2006):Acurvature-basedapproachto estimatelocalgyrificationonthecorticalsurface.Neuroimage,29(4):1224-30. C.Gaser,H.-P.Volz,S.Kiebel,S.Riehemann,H.Sauer(1999):Detectingstructuralchangesinwholebrainbased onnonlineardeformations–applicationtoschizophreniaresearch.Neuroimage,10:107-113. C.Gaser,I.Nenadic,B.Buchsbaum,E.Hazlett,M.S.Buchsbaum(2001):Deformation-basedmorphometryand itsrelationtoconventionalvolumetryofbrainlateralventriclesinMRI.Neuroimage,13:1140-1145. C.Gaser,R.Dahnke(2016).CAT-AComputationalAnatomyToolboxfortheAnalysisofStructuralMRIData. HBM2016.http://www.neuro.uni-jena.de/hbm2016/GaserHBM2016.pdf R.Dahnke,R.Yotter,C.Gaser(2012a).Corticalthicknessandcentralsurfaceestimation.Neuroimage,65:336348. R.Dahnke,G.Ziegler,C.Gaser(2012b).LocalAdaptiveSegmentation.HBM2012.http://www.neuro.unijena.de/hbm2012/HBM2012-Dahnke02.pdf R.Desai,E.Liebenthal,E.T.Possing,E.Waldron,J.R.Binder(2005):Volumetricvs.surface-basedalignmentfor localizationofauditorycortexactivation.Neuroimage26(4):1019-29. C.D. Good, I.S. Johnsrude, J. Ashburner, R.N. Henson, K.J. Friston, R.S. Frackowiak (2001): A voxel-based morphometricstudyofageingin465normaladulthumanbrains.Neuroimage.14(1Pt1):21-36. I.B.Malone,K.K.Leung,S.Clegg,J.Barnes,J.L.Whitwell,J.Ashburner,N.C.Fox,G.R.Ridgway(2015):Accurate automaticestimationoftotalintracranialvolume:anuisancevariablewithlessnuisance.Neuroimage104:36672. J.Manjon,PCoupe,L.Marti-Bonmati,D.L.Collins,M.Robles(2010).AdaptiveNon-LocalMeansDenoisingof MRImagesWithSpatiallyVaryingNoiseLevelsJournalofMagneticResonanceImaging,31:192-203. J.C. Rajapakse, J.N. Giedd, J.L. Rapoport (1997): Statistical Approach to Segmentation of Single-Channel CerebralMRImages.IEEETrans.Med.Imag.16(2):176-186. J. Tohka, A. Zijdenbos, A. Evans (2004): Fast and robust parameter estimation for statistical partial volume modelsinbrainMRI.Neuroimage23(1):84-97. R.A.Yotter,R.Dahnke,P.M.Thompson,C.Gaser(2011a):TopologicalCorrectionofBrainSurfaceMeshesUsing SphericalHarmonics.HumanBrainMapping,32(7):1109-24. R.A. Yotter, G. Ziegler, I. Nenadic, P.M. Thompson,C. Gaser (2011b): Local cortical surface complexity maps fromsphericalharmonicreconstructions.Neuroimage,56(3):961-973. R.A. Yotter, P.M. Thompson,C. Gaser (2011c): Algorithms to Improve the Re-Parameterization of Spherical MappingsofBrain.JournalofNeuroimaging,21(2):e134-47. R.A.Yotter,G.Ziegler,P.M.Thompson,C.Gaser(2011d):DiffeometricAnatomicalRegistrationontheSurface. HBM2011. 29-Oct-16 [email protected] [email protected] 44