PP - modelEAU
Transcription
PP - modelEAU
28/04/2013 BIOMATH Department of Applied Mathematics, Biometrics and Process Control Integration is a central theme (Reflections on the SAIA “Specialist” Group) Peter Vanrolleghem 01-jan-04 Watermatex 2004, Beijing, Nov 3-5 2004 UGent-BIOMATH, Coupure 653, 9000 Gent, Belgium (e-mail [email protected]) Water… I begynnelsen skapade Gud himmel och jord. Jorden var öde och tom, och mörker var över djupet Och Guds Ande svävade över vattnet djupet. vattnet. (Genesis 1:1-2) In the beginning God created the heaven and the earth. And the earth was without form, and void; and darkness was upon the face of the deep deep. And the Spirit of God moved upon the face of the waters. (Genesis 1:1-2) Docentföreläsning Ulf Jeppsson, 15 Dec 2003 Peter A. Vanrolleghem - 2 BIOMATH 1 28/04/2013 Reflexioner om vatten Industriell Elekttroteknik och Automation Noah’s ark flood (5500 B.C.) © Ulf Jeppsson BIOMATH Lunds universitet Peter A.IEA, Vanrolleghem -3 Docentföreläsning 15 december 2003 Global “Bluewater” Resources Distribution of Global Fresh Water & Salt Water Distribution of Global Fresh Water Only (2.5% of Global Water) 2.5% 0.9% 2.5% Fresh water 30% Total water 97.5% Salt water 69% 0.3% This is the proportion of the world’s fresh water that is renewable Glaciers/permanent snow cover Other (incl soil moisture, swamp water etc) Fresh groundwater (10.5m ck) Freshwater lakes and river flows ((93k ck) Peter A. Vanrolleghem - 4 a global network for water professionals BIOMATH 2 28/04/2013 Fresh and salt water Jeppsson (2003) BIOMATH Peter A. Vanrolleghem - 5 Systems Analysis & Integrated Assessment = Divide & Conquer • Integration is a key word Generalization • Reflections… Watermatex2004 PVRdr ds dt Peter A. Vanrolleghem - 6 BIOMATH 3 28/04/2013 Outline • • • • • • IWRM : Integrated Water Resources Management Within-fence modelling (complete WWTP) Ecological Risk Assessment/Management Plug&Play modelling Distributed Virtual Experimentation Concluding remarks Peter A. Vanrolleghem - 7 BIOMATH From global to local… (and back) Point sources versus non-point sources NASA Peter A. Vanrolleghem - 8 BIOMATH 4 28/04/2013 Worldwide Water Use by Sector Peter A. Vanrolleghem - 9 Peter A. Vanrolleghem - 10 a global network for water professionals BIOMATH BIOMATH 5 28/04/2013 Diffuse pollution modelling Nil case study for dynamic pesticide fate modelling Systems Analysis BIOMATH Peter A. Vanrolleghem - 11 Data collation (GIS-layers) Integration Peter A. Vanrolleghem - 12 BIOMATH 6 28/04/2013 HUMEUR • HUMEUR = HUMUS for EU (2006 ?) • HUMUS = Hydrologic Unit Model of the US (1993) • • • • Nutrients/Pesticides Catchment-scale Non-point source focus SWAT model (Soil & Water Assessment Tool, SWAT-model Tool USDA ) • HUMUNGOUS™ = HUMUS for the World (????) BIOMATH Peter A. Vanrolleghem - 13 Data collation • • • • Problematic in Europe No common database structure/format Different levels of quality/detail JRC – – – – – Joint Research Centre, DG Environment First European database by 2006 SWAT-use oriented Uncertainty aspects are considered Information on point pollution is major issue (unexpectedly) Peter A. Vanrolleghem - 14 BIOMATH 7 28/04/2013 Outline • • • • • • IWRM : Integrated Water Resources Management Within-fence modelling (complete WWTP) Ecological Risk Assessment/Management Plug&Play modelling Distributed Virtual Experimentation Concluding remarks Peter A. Vanrolleghem - 15 BIOMATH Within-Fence modelling Peter A. Vanrolleghem - 16 BIOMATH 8 28/04/2013 Benchmark Simulation Model No. 2 Influent wastewater Primaryy clarifier AS Secondary clarifier Thick. AD ADM1 BIOMATH Peter A. Vanrolleghem - 17 Model interfacing • Principles – Elemental balancing (C, H, O, N, P, COD, charge…) – System-specific S ifi b behaviour h i off components must be carefully reflected upon by domain specialists (e.g. nitrifiers in waste sludge ending up in digester) • 3 approaches – Supermodel (Dold et al., 2003) – One One-to-one to one interfaces (Vanrolleghem et al al., 2004) – Plant Wide Model Interface (Ayesa et al., 2004) Peter A. Vanrolleghem - 18 BIOMATH 9 28/04/2013 Supermodel • All components are considered in each subsystem • Behaviour must be described in each subsystem • Not scalable when more subsystems are considered ASP AD ASM1 components ASM1 components ADM1 components ADM1 components BIOMATH Peter A. Vanrolleghem - 19 One-to-one interfaces • For each model combination, 2 interfaces needed • Nx(N-1)/2 interfaces for N models • Generalized method to create interfaces is proposed ASM1 ADM1 Peter A. Vanrolleghem - 20 Converter ASM1-ADM1 ADM1 Converter ADM1-ASM1 ASM1 BIOMATH 10 28/04/2013 Plant-Wide Model Interface C C o o n n v v e ADM1-like e (PWMI) r r t t e e r r PWM compon nents vector C o n v e r t e r PWM compon nents vector C o n v ASM1-like ASM1 like e (PWMI) r t e r PWM compon nents vector PWM compon nents vector • Bus: models have a “wrapper” to one interface vector • 2xN interfaces, but if new model: work to be redone • Generalized method to create interfaces proposed BIOMATH Peter A. Vanrolleghem - 21 Role of SAIA-IWA ? • Support Benchmarking Task Group – Test case for interface development • Some model upgrading may be useful – E.g. pH-modelling in all units – Elemental composition in all models • Time to revise the IWA model suite ? (SBML !) – Gernaey et al. (2004): deficiencies in ASM1 – Gernaey et al. (2004): errors in current reports • Define IWA standard interfaces – Agree on underlying assumptions Peter A. Vanrolleghem - 22 BIOMATH 11 28/04/2013 Outline • • • • • • IWRM : Integrated Water Resources Management Within-the-fence modelling (complete WWTP) Ecological Risk Assessment/Management Plug&Play modelling Distributed Virtual Experimentation Concluding remarks BIOMATH Peter A. Vanrolleghem - 23 Ecological risk assessment Exposure Analysis Effects Analysis Atmosferic Deposition Treated Discharges WWTP Erosion & Runoff Untreated discharges Predicted Environmental Concentration (PEC) Peter A. Vanrolleghem - 24 Laboratory- and fieldstudies (toxicity tests) Predicted No Effect Concentration (PNEC) YES, potential risk BIOMATH 12 28/04/2013 Ecological risk assessment/management • Risk analysis of chemical substances: Risk Assessment Scientific part ? Precautionary principle Risk management Risk communication Risk Management Decision-making, policy ? BIOMATH Peter A. Vanrolleghem - 25 Include variability & uncertainty X mg/L Point estimate Make more realistic Peter A. Vanrolleghem - 26 Probabilistic approach PEC spatial + temporal + other variability & uncertainty BIOMATH 13 28/04/2013 Reduce spatial variability PEC temporal + other variability & uncertainty spatial + temporal + other variability & uncertainty Reduce spatial variability BIOMATH Peter A. Vanrolleghem - 27 Probabilistic risk assessment Exposure Environmental Concentration Distribution (ECD) Effects Species Sensitivity Distribution (SSD) Daphnia Peter A. Vanrolleghem - 28 % risk Pimephales BIOMATH 14 28/04/2013 Ecological risk assessment/management • Detailed information can be made available now – Geo-referenced – Variability V i bili and dU Uncertainty i (I (Imprecise i probabilities) b bili i ) • How does the manager deal with this ? – Summary statistics, indicators • Where is the divide between – Assessment – Management • Where does the precautionary principle belong ? Peter A. Vanrolleghem - 29 BIOMATH .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. Deterministic Risk Assessment Exposure modelling/ monitoring PP PEC Effects assessment Verdonck et al. UPEM conference, Kollekolle, June 7-9 2004 PP PNEC PP Risk quotient Risk managementPP Peter A. Vanrolleghem - 30 BIOMATH 15 28/04/2013 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ‘Old’ EU Deterministic Risk Assessment Current EU Risk Assessment Probabilistic Risk Assessment Exposure modelling/ monitoring Exposure modelling/ monitoring Exposure modelling/ monitoring Effects assessment ECD SSD PP Effects assessment PP PP ECD PP PEC PNEC PP Risk quotient PEC Effects assessment SSD PP PNEC PP Risk quotient Risk probability + confidence int. PP Risk managementPP Risk managementPP Risk management BIOMATH Peter A. Vanrolleghem - 31 Outline • • • • • • IWRM : Integrated Water Resources Management Within-the-fence modelling (complete WWTP) Ecological Risk Assessment/Management Plug&Play modelling Distributed Virtual Experimentation Concluding remarks Peter A. Vanrolleghem - 32 BIOMATH 16 28/04/2013 Plug-&-play Modelling • OpenMI (Blind, Watermatex2004): Software coupling • Peter Reichert (Watermatex 2004) “A standard interface between simulation programs and systems analysis software” • Pasky Pascual (Beijings News Plaza, 3-4 Nov 04) ”Modellers shouldn’t be coding anymore” • New back-end of WEST (Tornado) software f platform f with defined API with plug-&-play capability for tools set of available tools extensible by “coders” BIOMATH Peter A. Vanrolleghem - 33 T o rn a d o Plug&Play Solvers in Tornado M SLE D AE M odel C a lc V a r . .. ... S o lv e Root I n te g B ro yd e n O p tim S cen Sens AB 2 P r a x is C ro s s AB 3 S im p l e x G rid CI P la in MC N e ld e r CVT R ic h a rd s o n IH S M il n e AB 4 IH S M o d i fie d E u le r CVODE PR RK4 E u le r R K 4ASC LSODA R osenb ro c k M i d p o in t Peter A. Vanrolleghem - 34 P lu g in s BIOMATH 17 28/04/2013 Outline • • • • • • IWRM : Integrated Water Resources Management Within-the-fence modelling (complete WWTP) Ecological Risk Assessment/Management Plug&Play modelling Distributed Virtual Experimentation Concluding remarks Peter A. Vanrolleghem - 35 BIOMATH Complex virtual experimentation • Virtual experimentation = model-based studies – For F environmental i l systems: Si Simulation l i d determines i time i • The studies we undertake: – Always take maximum a weekend to calculate… – Become more complex according to Moore’s law (x 1.8/yr) • How to speed up ? Peter A. Vanrolleghem - 36 BIOMATH 18 28/04/2013 Typical model: ~ 200 Differential equations ~ 1000 Constants/Parameters ~ 1000 Algebraic equations BIOMATH Peter A. Vanrolleghem - 37 Scenario analysis: ~ 4 Parameters ~ 10 Samples 104 Combinations 10,000 Simulations Peter A. Vanrolleghem - 38 BIOMATH 19 28/04/2013 CD4WC project • Cost-effective development of urban water systems for Water Framework Directive compliance – EU EU-project j t – Integrated study of sewer-WWTP-river system – Methodology for evaluation of design/upgrade scenarios • Simulations of WWTP options – – – – 5 climatic conditions 3 plant l t sizes i (3 (3.000, 000 30 30.000, 000 300 300.000) 000) 20 options 100 Monte Carlo shots (LHS) for uncertainty propagation = 30.000 simulations Peter A. Vanrolleghem - 39 BIOMATH Computational burden in modelling • • • • Scenario analysis multiple independent simulations Sensitivity analysis multiple independent simulations M t Carlo Monte C l analysis l i multiple independent simulations Optimization : Genetic Algorithm Steepest Descent • Experiment Design multiple independent simulations multiple dependent simulations multiple independent sensitivity analyses y for different p parameters • Robustness Optimization (Walters, Watermatex2004) = Optimization of sensitivity analyses multiple independent sensitivity analyses for different parameters Peter A. Vanrolleghem - 40 BIOMATH 20 28/04/2013 Distributed Virtual Experimentation • No split-up of model in submodels that are then simulated over multiple calculation nodes • Independent virtual experiments (e.g. simulations, sensitivity analyses) can be distributed • Different approaches to reach this: – Grid technology – Clustering – WDVE (West Distributed Virtual Experimentation) BIOMATH Peter A. Vanrolleghem - 41 Grid technology • World-wide network of computational & storage nodes • Virtual organizations Peter A. Vanrolleghem - 42 BIOMATH 21 28/04/2013 SuperMUSE Cluster (US EPA, Athens, Georgia) Peter A. Vanrolleghem - 43 BIOMATH SuperMUSE Cluster (US EPA, Athens, Georgia) • Supercomputer for Model Uncertainty and Sensitivity Evaluation • Babendreier et al. (2002) • Cluster-based solution • Linux/Windows mix • Goal: 384 client PCs, ~1000 GHz • No other use of PCs possible Peter A. Vanrolleghem - 44 BIOMATH 22 28/04/2013 Idle computers in your offices … BIOMATH Peter A. Vanrolleghem - 45 Distributed Virtual Experimentation • Applied to – WEST – SWAT • For Master Reichert !? Application Front-end Dispatcher Comm. Layer Middleware – Exp. Design – Monte Carlo Middleware Comm. Layer Acceptor Middleware Comm. Layer Acceptor Middleware Comm. Layer Acceptor Application Back-end Application Back-end Application Back-end Slave Peter A. Vanrolleghem - 46 Slave Slave BIOMATH 23 28/04/2013 Take home (Things to keep you awake ?) • Characteristics of the Specialist Group on Systems Analysis and Integrated Assessment (SAIA) – – – – – A Generalist Group, not a Specialist Group Galilei : last person to know everything about everything Now: a molecular layer of knowledge above the whole sea Specialist Group: Know everything about something SAIA: Know something about everything Peter A. Vanrolleghem - 47 BIOMATH Take home (Things to keep you awake ?) • Possible tasks of Specialist Group on Systems Analysis and Integrated Assessment (SAIA) – – – – – Don’t become a “Specialist” group, but “Generalist” group Remain multidomain in interest Support Task Groups (BSM, Calibration guidelines) Direct Task Group on Modelling ASPs Be at the nexus of policy-law-science policy law science Peter A. Vanrolleghem - 48 BIOMATH 24