Tesis Doctoral VALORIZACIÓN DE BIOMASA DE ORIGEN
Transcription
Tesis Doctoral VALORIZACIÓN DE BIOMASA DE ORIGEN
UNIVERSIDAD DE CASTILLA-LA MANCHA FACULTAD DE CIENCIAS Y TECNOLOGÍAS QUÍMICAS DEPARTAMENTO DE INGENIERÍA QUÍMICA Tesis Doctoral VALORIZACIÓN DE BIOMASA DE ORIGEN VEGETAL MEDIANTE PROCESOS TÉRMICOS Y TERMOQUÍMICOS DIEGO LÓPEZ GONZÁLEZ Ciudad Real, 2013 UNIVERSIDAD DE CASTILLA-LA MANCHA FACULTAD DE CIENCIAS Y TECNOLOGÍAS QUÍMICAS DEPARTAMENTO DE INGENIERÍA QUÍMICA VALORIZACIÓN DE BIOMASA DE ORIGEN VEGETAL MEDIANTE PROCESOS TÉRMICOS Y TERMOQUÍMICOS Memoria que para optar al grado de Doctor en Ingeniería Química presenta DIEGO LÓPEZ GONZÁLEZ Directores: Dr. José Luis Valverde Palomino Dra. María Luz Sánchez Silva Composición del tribunal: Dra. Paula Sánchez Paredes Dra. Mª Pilar Coca Llanos Dr. Javier Dufour Andía Profesores que han emitido informes favorable de la tesis: Dr. Fernando Dorado Fernández Dra. Antonio Monzón Bescós Ciudad Real, Julio de 2013 D. José Luis Valverde Palomino, Catedrático de Ingeniería Química de la Universidad de Castilla-La Mancha, y Dª. María Luz Sánchez Silva, Profesor Titular de Ingeniería Química de la Universidad de Castilla- La Mancha, CERTIFICAN: Que el presente trabajo de investigación titulado: “Valorización e biomasa de origen vegetal mediante procesos térmicos y termoquímicos”, constituye la memoria que presenta D. Diego López González para aspirar al grado de Doctor en Ingeniería Química y que ha sido realizada en los laboratorios del Departamento de Ingeniería Química de la Universidad de Castilla-La Mancha bajo su supervisión. Y para que conste a efectos oportunos, firman el presente certificado En Ciudad Real a 2 de Julio de 2013 José Luis Valverde Palomino María Luz Sánchez Silva TABLE OF CONTENTS Descripción del trabajo realizado A. INTRODUCCIÓN 1 2 A.1. Cambio Climático y Sostenibilidad 2 A.2. Biomasa 3 A.3. Tipos de Biomasa 6 A.4. Aprovechamiento energético de la biomasa......................... 15 A.5. Energía Termosolar............................................................... 27 A.6. Objetivo del trabajo............................................................. 32 B. MATERIALES Y MÉTODOS.......................................................... 34 B.1. Reactivos empleados........................................................ 34 B.2. Instalación experimentales.................................................... 35 B.2.1. Instalación para el estudio termoquímico de biomasa 35 B.2.2. Instalación para el estudio de degradación de fluidos de intercambio de calor.................................................... 35 B.3. Técnicas de caracterización............................................. 36 B.3.1. Específicas de biomasa......................................... 36 B.3.2. Caracterización de fluidos de intercambio de calor 38 C. DISCUSIÓN DE RESULTADOS...................................................... 41 D. CONCLUSIONES Y RECOMENDACIONES............................... 48 E. BIBLIOGRAFÍA......................................................................... 52 Abstract..................................................................................................... 58 CHAPTER 1: PYROLYSIS, COMBUSTION AND GASIFICATION CHARACTERISTICS OF NANNOCHLOROPSISGADITANAMICROALGAE 60 vii Table of contents 1.1. Introduction 63 1.2. Experimental 66 1.3. Results and discussion 73 1.3.1. Pyrolysis of the NG microalgae 73 1.3.2. Combustion of the NG microalgae 78 1.3.3. Gasification of the NG microalgae 83 1.4. Conclusions 96 1.5. References 96 CHAPTER 2: THERMOGRAVIMETRIC-MASS SPECTOMETRIC ANALYSIS OF LIGNOCELLULOSIC AND MARINE BIOMASS PYROLYSIS 2.1. Introduction 102 2.2. Experimental 105 2.3. Results and discussion 112 2.3.1. Thermogravimetric study of pyrolysis of lignocellulosic and marine biomass 112 2.3.2. Effect of heating rate 117 2.3.3. Gas products analysis 122 2.4. Conclusions 134 2.5. References 134 CHAPTER 3: THERMOGRAVIMETRIC-MASS SPECTROMETRIC STUDY ON COMBISTION OF LIGNOCELLULOSIC AND MARINE BIOMAS 3.1. Introduction 135 136 3.2. Experimental 138 3.3. Results and discussion 144 3.3.1.Combustion of lignocellulosic biomass 144 3.3.2. Combustion of marine biomass 167 3.3.3. Combustion of Canadian biomass 184 3.4. Conclusions viii 101 199 Table of contents 3.5. References CHAPTER 4: 200 207 4.1. Introduction 209 4.2. Experimental 211 4.3. Results and discussion 215 4.3.1. Thermogravimetric analysis 215 4.3.2. Gasification kinetic analyses 223 4.3.3. Gas evolution analyses 229 4.4. Conclusions 233 4.5. References 234 CHAPTER 5: CHARACTERIZATION OF DIFFERENT HEAT TRANSFER FLUIDS AND DEGRADATION STUDY BY USING A PILOT PLANT DEVICE OPERATING AT REAL CONDITIONS 5.1. Introduction 238 239 5.2. Experimental 243 5.3. Results and discussion 252 5.3.1. Heat transfer fluids characterization for their use as thermal fluids in parabolic trough plants 252 5.3.2. Pilot plant assembly and tuning 261 5.3.3. Model validation 268 5.4. Conclusions 270 5.5. References 271 CHAPTER 6: General Conclusions and Recommendations 273 6.1. CONCLUSIONS 273 6.2. RECOMMENDATIONS 276 LIST OF PUBLICATIONS AND CONFERENCES 278 ix Descripción del trabajo realizado DESCRIPCIÓN DEL TRABAJO REALIZADO Este trabajo da comienzo a una línea de investigación centrada en el desarrollo de nuevas tecnologías para la valoración integral de biomasa en el Departamento de Ingeniería Química de la Universidad de Castilla-La Mancha. En particular, esta Tesis Doctoral tiene como objetivo la evaluación de los principales procesos de conversión termoquímica de biomasa, principalmente pirólisis, combustión y gasificación, mediante el sistema experimental de termobalanza acoplada a un espectrómetro de masas. Adicionalmente, se estudió la degradación de fluidos de intercambio de calor en su aplicación en plantas termosolares de concentración. Este trabajo se encuadra dentro del proyecto CENIT VIDA basado en un consorcio de colaboración de instituciones públicas (ministerio de economía y competitividad) y privadas para el desarrollo de un nuevo concepto de BIO ciudad basada en el aprovechamiento de biomasa. Concretamente, este proyecto ha recibido la financiación de la empresa CT Ingenieros. Por otro lado, una parte de esta tesis ha sido realizada en colaboración con el instituto de investigación canadiense 1 Descripción del trabajo realizado IRDA(Institut de recherche et de developpement en agroenvironnement) y el centro de investigación francés CNRS (Centre national de la recherchescientifique). A. INTRODUCCIÓN A.1. Cambio Climático y Sostenibilidad La demanda energética se ha incrementado exponencialmente en los últimos años debido al crecimiento de la población mundial. Este hecho, junto con el agotamiento de recursos fósiles y el auge de la conciencia global sobre la degradación del medio ambiente son las principales razones que se proponen para realizar un cambio hacia una sostenibilidad global. El desarrollo sostenible se define como el “desarrollo que satisface las necesidades del presente sin comprometer la capacidad de las generaciones futuras para atender sus propias necesidades”, este cambio debe producirseen base a tres pilares fundamentales: eficiencia energética, dependencia energética y razones medioambientales. La eficiencia energética supone la mejora de los procesos energéticos actuales en términos de ahorro y desarrollo de nuevas tecnologías. Respecto la dependencia energética, la fuerte dependencia de nuestra sociedad de las fuentes de energía de origen fósil no renovable (petóleo, carbón y gas natural, principalmente) derivan en un continuo agotamiento de las mismas. Además, los yacimientos de origen fósil se encuentran concentrados en pocas regiosnes, lo que facilita las presiones políticas por parte de los países productores. En la Figura A.1 se representa el consumo de energía primaria en España (a) y mundial (b), para el año 2011 observándose que para ambos casos alrededor del 85% de los recursos energéticos que se utilizan son de origen fósil: petróleo, carbón y gas natural [1]. Por último, el deterioro del medioambiente debido el aumento rápido e importante de las concentraciones de gases de efecto invernadero (GEIs) siendo consecuencia del uso masivo e incontrolado de combustibles fósiles desde la época industrial hasta la actualidad. 2 Descripción del trabajo realizado Las energías renovables, por su carácter autóctono, contribuyen a disminuir la dependencia de los suministros externos, aminoran el riesgo de un abastecimiento poco diversificado, favorecen el desarrollo tecnológico y la creación de empleo y tienen un menor impacto medioambiental [1]. La utilización de tecnologías de energías renovables como la eólica, la geotérmica, la hidráulica, la solar y la obtenida a partir de la biomasa se presentan como alternativas para el reemplazo de los combustibles fósiles. El presente trabajo está dedicado a dos de ellas: los procesos de conversión de biomasa en energía y la mejora en la eficiencia de las plantas termosolares. a) b) CONSUMO DE ENERGÍA PRIMARIA EN ESPAÑA AÑO 2011, [Mtep] Hidráulica, 791,5 Renovables, 12,7 Hidráulica, 6,9 CONSUMO DE ENERGÍA PRIMARIA MUNDIAL AÑO 2011, [Mtep] Nuclear, 599,3 Nuclear, 13 Petróleo, 69,5 Carbón, 14,9 Renovables, 194,8 Petróleo, 4059,1 Carbón, 3724,3 Gas natural, 28,9 Gas natural, 2905,6 Figura 2.1.Consumo de energía primaria (a) mundial y en (b) en España expresado en millones de toneladas equivalentes de petróleo [Mtep], año 2011 [1]. A.2. Biomasa La biomasa ha sido desde siempre la mayor fuente de energía para el ser humano y se ha estimado que actualmente contribuye un 14% al abastecimiento de la energía mundial [2]. Una de las razones de que la biomasa haya tomado tanta importancia en los últimos años es la elevada disponibilidad de la misma, estimándose en aproximadamente 220 billones de toneladas secadas al año [3]. La biomasa se puede definir como “toda sustancia orgánica de origen vegetal o animal que puede ser convertida en energía”[4]. Sin embargo, esta definición resulta incompleta ya que estamos hablando de un vector energético que, a corto plazo, puede ser básico en nuestra sociedad. Este término hace referencia a toda materia orgánica 3 Descripción del trabajo realizado originada de forma inmediata en un proceso biológico, espontáneo o provocado, utilizable como fuente de energía[1]. La biomasa abarca un amplio rango de materias orgánicas que se caracterizan por su heterogeneidad. A.2.1. Aplicaciones de la biomasa. La existencia de diferentes tipos de biomasa y métodos de transformación de la misma, permite utilizarla como combustible para producción de energía térmica y eléctrica, o como materia prima para la producción de biocombustibles líquidos y gaseosos. • Producción de Energía Térmica. Este tipo de energía se obtiene principalmente de la combustión directa de residuos forestales, agrícolas, de industrias transformadoras de la madera y algunos agroalimentarios (orujillo de aceituna, orujo lavado de uva, cáscara de almendra, etc.). En el proceso se genera calor, tanto para su uso doméstico como industrial. • Producción de Energía Eléctrica. Este tipo de energía también se obtiene por la combustión principalmente de diferentes tipos de residuos como los utilizados para la producción de energía térmica, pero también de los cultivos energéticos y del biogás procedente de la digestión anaerobia de algunos residuos. El rendimiento de las plantas que emplean biomasa para producción de energía eléctrica no es muy elevado debido al elevado porcentaje de humedad que presenta la biomasa. • Producción de Biocombustibles Líquidos. La producción de biocombustibles líquidos que suplan a los derivados del petróleo (gasolina y diesel) es una opción muy ventajosa en cuanto al empleo de energías renovables y reducción de problemas medioambientales. Existen dos tipos de biocombustibles líquidos: los bioalcoholes (bioetanol) que se obtienen a partir de la fermentación mediante levaduras de materiales azucarados como caña de azúcar, remolacha, maíz, etc., y los biogasóleos (biodiesel) que se obtienen del proceso de transesterificación de materiales oleaginosos como girasol, colza, etc., o bien de grasas animales. 4 Descripción del trabajo realizado • Producción de Biocombustibles Gaseosos. La producción de biocombustibles gaseosos a partir de procesos biológicos anaerobios es una opción que presenta muchos beneficios. Este gas obtenido está formado principalmente por metano, y aunque tiene bajo poder calorífico puede utilizarse en las propias instalaciones donde es generado para producir tanto electricidad como calor. La gasificación también conlleva la producción de un gas combustible rico en hidrógeno y sobre todo en carbono. A.2.2. Características de la biomasa para su aprovechamiento energético. Son las propiedades inherentes de la biomasa las que van a determinar el proceso de conversión y las consecuentes dificultades de proceso que puedan surgir[4]. Para procesos de conversión de biomasa seca las propiedades más importantes son: • Humedad: Para la conversión térmica de biomasa son de interés aquellas biomasas que posean baja humedad.Se pueden considerar dos formas de humedad en biomasa: humedad intínseca, referida al contenido de humedad de la biomasa sin la influencia de los efectos de la climatología, y humedad extrínseca, contenido de humedad de la biomasa debido a los efectos de la climatología.Los procesos de conversión termoquímica requieren materias primas con un contenido bajo de humedad (< 50%). Se podrían usar materiales con mayor humedad pero el balance energético global para el proceso de conversión se ve perjudicado por los procesos de secado. • Poder calorífico (Energía/Masa) (MJ/kg): El poder calorífico de un material es una expresión del contenido energético liberado cuando el mismo se quema en aire.Se puede expresar de dos formas: - HHV (Higher heating value): Energía total liberada cuando el combustible es quemado, incluyendo la del calor latente contenido en el vapor de agua y, por tanto, representa la cantidad máxima de energía potencialmente recuperable dada una fuente de biomasa determinada. 5 Descripción del trabajo realizado - LHV (Lower Heating Value): Contenido energético sin contar el calor latente contenido en el vapor de agua.Se puede decir que el calor latente contenido en el vapor de agua no puede ser usado efectivamente y, por lo tanto, el LHV será el valor apropiado para considerar la potencialidad de uso de la biomasa como combustible. • Proporción de carbón fijo y volátiles: Este parámetro da una medida de cómo de fácil una biomasa determinada puede ser inflamada y, consecuentemente, gasificada u oxidada. - Contenido en volátiles: Porción liberada de gas mediante calentamiento (950 ºC durante 7 min). - Carbón fijo: Es la masa que queda después de la liberación de los volátiles, excluyendo la ceniza y humedad. • Contenido de Ceniza/Residuo: La rotura de los enlaces de la biomasa por procesos termoquímicos o bioquímicos produce un residuo sólido.El contenido de ceniza puede afectar al manejo y a los costes de proceso. En los procesos termoquímicos, la magnitud del contenido en ceniza afecta a la cantidad de energía disponible en el combustible. • Contenido en metales alcalinos: Los principales metales alcalinos contenidos en la biomasa son Na, K, Mg, P y Ca. El contenido de estos metales en la biomasa es un parámetro importante ya que estos metales pueden catalizar/inhibir los procesos dde conversión de biomasa en energía. Además. pueden reaccionar con los componentes de la ceniza produciendo compuestos que pueden producir bloqueos en los equipos. A.3.Tipos de biomasa A.3.1. Clasificación de biomasa La clasificación de la biomasa más ampliamente aceptada responde a su origen: 6 Descripción del trabajo realizado • Biomasa natural. Es la biomasa que se produce espontáneamente en la naturaleza sin ningún tipo de intervención humana (recursos generados en las podas naturales de un bosque). • Biomasa residual. Es la biomasa que genera cualquier actividad humana. Se distingue entre biomasa residual seca (aquella que procede de recursos generados en las actividades agrícolas y forestales, en las industrias agroalimentarias y en las industrias de transformación de la madera) y biomasa residual húmeda, como son los vertidos biodegradables formados por aguas residuales urbanas e industriales, los residuos ganaderos (generalmente purines) y también se incluyen los residuos sólidos urbanos (materiales biodegradables sobrantes del ciclo de consumo humano). • Cultivos específicos (energéticos). Son cultivos realizados en terrenos agrícolas y forestales dedicados exclusivamente a la producción de biomasa con fines no alimentarios, sino únicamente energéticos (cardo, girasol, caña de azúcar, maíz, remolacha, etc.). Éstos se dividen en leñosos y herbáceos. • Biomasa marina. Como pueden ser algas, hierbajos marinos, juncos, etc. El mayor punto de controversia encontrado en el uso de biomasa como fuente de energía primaria reside principalmente en la competitividad con el abastecimiento de humano comida. En este trabajo, se discutirá la conversión de biomasa lignocelulósica y marina principalmente A.3.2. Biomasa lignocelulósica Una parte importante de la biomasa es lignocelulósica, siendo la celulosa, la hemicelulosa y la lignina sus tres componentes principales. A diferencia de los hidratos de carbono o el almidón, la lignocelulosa no es fácilmente digerible por los seres humanos. Por ejemplo, se puede comer el arroz, que es un hidrato de carbono, pero no podemos digerir la paja, que es lignocelulosa. La biomasa lignocelulósica no forma parte de la cadena alimentaria humana y, por lo tanto, su uso para la obtención 7 Descripción del trabajo realizado de biogás y de energía, no suponen una amenaza para el suministro mundial de alimentos[5]. La celulosa no es un material fácilmente accesible como es el almidón o el azúcar, al encontrarse íntimamente unida a otros materiales como son la lignina o las sustancias pécticas.Las paredes lignocelulósicas son estructuras complejas y de difícil accesibilidad para algunos componentes (Figura A.2). El material lignocelulósico está constituido por tejidos vegetales que presentan una pared celular constituida por un entramado de microfribillas de celulosa sobre las que se forman capas de hemicelulosas y, posteriormente, se deposita la lignina. En este sentido, el aprovechamiento global del material requiere métodos de pretratamiento o fraccionamiento. Estos procesos son complejos y están alejados de rendimientos elevados. Además, no son capaces de aislar completamente cada componente sin modificarlo o degradarlo. Para comprender qué es un material lignocelulósico y poder aprovecharlo completamente, se deben conocer cuáles son los componentes principales de las paredes celulares, cómo se distribuyen en la propia pared y qué tejidos las contienen. Figura A.2..Matriz lignocelulósica[6]. 8 Descripción del trabajo realizado • Composición de la biomasa lignocelulósica. Los componentes de los materiales lignocelulósicos se clasifican en estructurales y secundarios. Los componentes estructurales los forman tres polímeros, la celulosa, la lignina y la hemicelulosa. Del total de compuestos que forman los materiales lignocelulósicos, casi la mitad son celulosa y un 20% lignina.La unión entre celulosa y lignina puede producirse directamente o generalmente a través de las hemicelulosas, como se observa en la Figura A.2. En las paredes no lignocelulósicas aparece otro componente formado por sustancias pécticas (pectina). En general, se puede establecer que entre un 60 y un 80% de los vegetales están constituidos por polisacáridos de elevado peso molecular como son las holocelulosas. Entre las holocelulosas podemos distinguir entre unos polímeros lineales de alto grado de polimerización, la celulosa y otros que resultan fácilmente extraíbles en álcalis, las hemicelulosas. - Celulosa: es un homopolímero lineal de elevado peso molecular y grado de polimerización; entre 200 y hasta 10.000 unidades en estado nativo de β-Dglucopiranosa unidas por enlace glicosídico o de tipo éter entre el carbono 1 y 4 (β,1 4). En la Figura A.3 se muestra la estructura polimérica de la celulosa de forma detallada. Figura A.3. Estructura primaria de la celulosa[5]. - Hemicelulosas: forman cadenas ramificadas de menor grado de polimerización que la celulosa y no tienen, por tanto, zonas cristalinas. Además, los 9 Descripción del trabajo realizado puentes de hidrógeno son menos eficaces, haciendo de las hemicelulosas polisacáridos más accesibles al ataque de reactivos químicos. El xilano se usa como compuesto representativo de la hemicelulosa por ser uno de los compuestos principales de la hemicelulosa y se ha demostrado que tiene un comportamiento térmico parecido(Wang y col., 2008; Yang y col., 2006) En la Figura 2.5 se muestra la estructura del xilano. Figura A.4. Estructura molecular del xilano . - Lignina: es un polímero aromático de estructura tridimensional bastante compleja, muy remificada y amorfa, formada por la condensación de precursores fenólicos unidos por diferentes enlaces. En la Figura A.5 se muestran las unidades estructurales de la lignina.La variedad de enlaces y estructuras del polímero lignina son debidas a la diversidad de reacciones de acoplamiento (al azar) entre las distintas formas resonantes de los radicales fenóxido. Figura A.5. Unidades estructurales de la lignina . Los componentes secundarios se clasifican en solubles en agua, disolventes orgánicos e insolubles. - Solubles en agua y disolvente orgánicos: conocidos como terpenos, son considerados polímeros del isopreno. Por otro lado, las resinas que contienen una 10 Descripción del trabajo realizado alta variedad de compuestos no volátiles como son grasas, ácidos grasos, alcoholes, resinas ácidas, fitoesteroides y otros compuestos neutros. Los fenoles, como los taninos y también son solubles algunos hidratos de carbono de bajo peso molecular, alcaloides y lignina soluble. - Insolubles: dentro de este grupo se encuentran las cenizas, que son principalmente carbonatos y oxalatos. Otros más raros y de poca proporción, pero que también pueden ser insolubles, son pequeñas cantidades de almidón, pectinas o proteínas. A.3.3. Biomasa marina Es la biomasa que producen los ecosistemas silvestres que se encuentran en los océanos y corresponde al 40% de la biomasa que se produce en la Tierra (algas, hierbajos marinos, juncos, etc.). Las algas han atraído la atención desde hace mucho tiempo como posible materia prima para la obtención de bioenergía[7-9], pero también la existencia de algunas especies ricas en lípidos pueden ser explotadas como una alternativa interesante para la producción de biodiesel[10; 11]. Son una biomasa muy prometedora por las siguientes razones: alta velocidad de crecimiento, alto rendimiento por área, alta eficiencia en la captura de CO2 y en la conversión de energía solar y no compiten con la agricultura de alimentos. Además, pueden crecer en aguas abiertas (océanos o estanques) y en bio-fotoreactores de tierra no cultivables [12]. La fijación de CO2 y las principales etapas de transformación de biomasa marina se ilustran en la Figura A.6. Las algas, que pertenecen al reino Protoctista y constituyen un grupo de organismos muy variado y complejo, se encuentran en una amplia variedad de ecosistemas acuáticos y terrestres gracias a su alta plasticidad y diversidad metabólica y se pueden clasificar de acuerdo a su tamaño en los siguientes grupos: • Microalgas: Incluyen todo tipo de microorganismos fotosintéticos, procariotas o eucariotas, unicelulares o filamentosos, de tamaño inferior a 0,02 cm. 11 Descripción del trabajo realizado • Mesoalgas: Se trata de microorganismos fotosintéticos, procariotas o eucariotas, unicelulares o filamentosos, unialgal o plurialgal, cuyo tamaño se encuentra entre 0,02 y 3 cm. • Macroalgas: Engloba a algas pluricelulares de diversas formas y tamaños que van desde los pocos centímetros a varios metros de largo. Las microalgas han recibido más atención que las macroalgas para la producción de biofuel, las cuales pueden ser cultivadas en estanques o fotobiorreactores con suministro de nutrientes o aguas residuales [13; 14]. Luz solar CO2 en atmósfera H 2O CO2 en atmósfera Organismos fotosintéticos Sustancias iniciales biofijación Crecimiento de microalgas Conversión bioquímica Conversión termoquímica Procesamiento microalgas Conversión directa Biofuel Biocrudo Biodiesel Gas Aceite de algas Combustión Alimentos origen animal Fertilizante Bioalcoholes Biodiesel Biogás Biohidrógeno Figura A.6. Fijación de CO2 y principales etapas de transformación de biomasa marina [15]. Las microalgas contienen en diferentes proporciones proteínas (6-52%), carbohidratos (5-23%) y lípidos (7-23%) [16]. De acuerdo con Ross y col. (2010)[17], las microalgas con un alto contenido en lípidos pueden ser una futura fuente de biocombustibles de tercera generación y productos químicos. 12 Descripción del trabajo realizado A.3.4. Selección de la biomasa sometida a estudio Como se ha comentado anteriormente, este trabajo se centra en el estudio de biomasa lignocelulósica y marina, especialmente algas. La selección de los diferentes tipos de biomasa sometidas a estudio se realizó en función de su composición. • Selección de biomasa lignocelulósica La elección de la biomasa depende, principalmente, de sus propiedades inherentes, del proceso de conversión y de las dificultades de procesamiento posteriores que puedan surgir. Las principales propiedades de interés para el tratamiento de biomasa como fuente de energía son las siguientes como se comentó anteriormente:contenido de humedad (MC), porcentaje de carbono fijo (FC) y proporción en volátiles (VM); la relación cenizas / residuos (AC / AR), valor calorífico, contenido de metal alcalino y la relación de celulosa / lignina[4]. En este sentido, se clasificaron diferentes especies de biomasa en un diagrama ternario basándose en sus análisis inmediatos, realizados a partir de los datos publicados por Yaman (2004) [18]. Se consideraron los siguientes parámetros: cenizas, materia volátil y el contenido de carbono fijo (Figura A.7). La biomasa se seleccionó de acuerdo con los siguientes criterios: -Biomasa con alto contenido de VM y AC bajos. -Biomasa de alto contenido FC y bajo AC. De acuerdo con estos criterios, se identificaron dos zonas en el diagrama claramente diferenciadas (señaladas con un círculo). La biomasa en estas dos zonas correspondió a: madera de abeto y madera de eucalipto (ambos con elevada proporción en volátiles) y corteza de pino (con el mayor contenido en carbono fijo). 13 Descripción del trabajo realizado 0 , 0 1,0 2 , 0 0,8 nf ijo a 6 , 0 Ce niz rbó Ca 4 , 0 0,6 0,4 8 , 0 0,2 Caña de azúcar Uva Maíz Oliva Colza Cáscara de arroz Serrín Girasol Hierbajo marino Jacinto de agua Abeto Tabaco Pino Desechos de algodón Eucalipto Paja 0 , 1 0,0 0,0 0,2 0,4 0,6 0,8 1,0 Volátiles Figura A.7. Diagrama ternario con diferentes tipos de biomasa terrestre según su análisis inmediato [19]. • Seleción de biomasa marina (microalgas) Para la selección de la microalga a utilizar en esta investigación se ha llevado a cabo un intenso estudio bibliográfico teniendo en cuenta su composición y las cantidades recomendadas de sus componentes para lograr los productos deseados. Para ello, se realizó un diagrama ternario con sus tres componentes principales: proteínas, carbohidratos y lípidos (Figura A.8) en base a los datos publicados por Brrown y col. (1991) [20] y Renaud y col. (1999) [21]. El criterio que se empleó, se basó en la selección de la biomasa con mayor contenido en lípidos [10]. Atendiendo a esto, se determinó que las microalgas que reunían mejores propiedades fueron la Nannochloropsis Gaditana, la Scenedesmus Almeriensis y la Isochrysis sp. De éstas, se seleccionaron las microalgasNannochloropsis Gaditana (microalga NG) y Scenedesmus Almeriensis por 14 Descripción del trabajo realizado su fácil disponibilidad y su comercialización en forma de polvo. Adicionalmente, se seleccionó una especie de microalga con elevado contenido en proteínas a modo comparativo. La especie de mciroalga con elevado contenido en proteínas elegida fue la Chlorella Vulgaris. 0 , 0 Scenedesmus quadricauda Scenedesmus dinorphus Chlamydomonas rheinhardii Chlorella vulgaris Chlorella pyrenoidosa Spyroga sp. Dunaliella salina Tetraselmis maculata Porphyridium cruentum Spirulina maxima Synechoccus sp. A. coffeaformes Nitzschia sp. Cryptomonas sp. Rhodomonas sp. Nephroselmis sp. Tetraselmis sp. NT Isochrysis sp. Rhodosorus sp. Tetraselmis sp. TEQL Nannochloropsis gaditana 1,0 2 , 0 0,8 teín as to ra s 6 , 0 P ro id oh rb Ca 4 , 0 0,6 0,4 8 , 0 0,2 0 , 1 0,0 0,0 0,2 0,4 0,6 0,8 1,0 Lípidos Figura A.8. Diagrama ternario que representa la composición en proteínas, carbohidratos y lípidos de diferentes especies de microalgas. A.4.- Aprovechamiento energético de la biomasa Existen multitud de procesos para el aprovechamiento energético de la biomasa. En la Figura A.9 se esquematizan los procesos más destacados. Este trabajo está centrado en el aprovechamiento energético de biomasa mediante procesos de conversión termoquímica, sin embargo se darán unas breves reseñas de otros procesos de converión de biomasa. 15 Descripción del trabajo realizado Termoquímicos o Combustión o Gasificación o Pirólisis o Licuefacción oTratamientoHidrotérmico Biomasa o Digestión anaerobia Bioquímicos o Fermentaciónalcohólica Figura A.9. Procesos para la conversión energética de biomasa[5]. A.4.1. Procesos de conversión bioquímica. Consisten en la aplicación de diversos tipos de microorganismos que degradan las moléculas de biomasa. Se utilizan para la transformación de biomasa húmeda en compuestos simples de gran contenido energético. Dos de las técnicas más importantes son: • Digestión anaerobia: Es un proceso de fermentación bacteriana en ausencia de oxígeno donde se genera una mezcla de gases, principalmente metano y dióxido de carbono, conocida como biogás, y también una suspensión acuosa o lodo que contiene los compuestos no degradados y los minerales. Se utiliza principalmente para la fermentación de biomasa húmeda del tipo de residuos ganaderos, aguas residuales urbanas o biomasa marina húmeda. En este caso se deben controlar una serie de variables como temperatura (aprox. 35 ºC), acidez (pH 6.6-7.6), contenido en sólidos (< 10%), nutrientes (carbono, nitrógeno, fósforo, azufre y sales minerales para el crecimiento y la actividad bacteriana) y compuestos tóxicos (bajas concentraciones de amoníaco, sales 16 Descripción del trabajo realizado minerales, detergentes y pesticidas que inhiben la actividad bacteriana). El biogás puede utilizarse como combustible, mientras que el efluente (lodo) se puede utilizar para la fertilización de suelos. Este proceso ocurre en tres etapas consecutivas: hidrólisis, fermentación y metanogénesis. En la hidrólisis, los compuestos complejos se dividen en azúcares solubles. En ese momento, las bacterias fermentativas los convierten en alcoholes, ácido acético, ácidos grasos volátiles y un gas que contiene H2 y CO2, el cual es metabolizado principalmente en CH4 (60-70%) y CO2 (30-40%) por metanógenos (Brennan y col., 2010). • Fermentación alcohólica: En el proceso de fotosíntesis las plantas almacenan la energía solar aportada en forma de hidratos de carbono simples (azúcares) o complejos (almidón y celulosa). A partir de estos hidratos de carbono se puede obtener por fermentación un bioalcohol, denominado bioetanol, empleando diferentes etapas según el tipo de biomasa a transformar. Estas etapas son las siguientes: a) Pretratamiento: transformación de la materia prima para favorecer la fermentación por medio de la trituración, molienda o pulverización. b) Hidrólisis: transformación, en medio acuoso, de las moléculas complejas en hidratos de carbono simples (azúcares) por medio de enzimas (hidrólisis enzimática) o mediante reactivos químicos (hidrólisis química). c) Fermentación alcohólica: conversión de los azúcares en bioetanol por la acción de microorganismos (levaduras) durante dos o tres días bajo condiciones controladas de temperatura (27-32 ºC), acidez (pH 4-5) y concentración de azúcares (< 22%) d) Separación y purificación del bioetanol: destilación de la masa fermentada para obtener bioetanol comercial del 96% o destilación adicional con un disolvente (benceno) para obtener un bioetanol absoluto del 99,5%. 17 Descripción del trabajo realizado El bioetanol es utilizado como combustible alternativo a las gasolinas, o bien mezclado con ellas, en el campo de la automoción. A.4.2. Procesos de conversión termoquímica. Se utilizan para la transformación de biomasa seca, es decir, residuos cuyo contenido en humedad no es muy elevado (principalmente paja, madera, orujillo, huesos, cáscaras). Son métodos basados en la utilización del calor como fuente de transformación de la biomasa donde se distinguen tres tipos de procesos según la cantidad de oxígeno aportada: • Pirólisis: Se puede definir como la degradación de la biomasa mediante calor en ausencia de oxígeno, resultando la producción de un sólido carbonoso (carbonilla o char), biocombustible (líquido) y fuel gas [22]. A través de la variación de los parámetros del proceso de pirólisis es posible influir en la distribución y características de sus productos.El proceso de pirólisis se puede representar como la siguiente reacción: → í ! + + " + #ℎ % Desde un punto de vista térmico el proceso se puede dividir en cuatro etapas principalmente: - Secado (100ºC): Ocurre en la etapa inicial de calentamiento a baja temperatura, perdiéndose la humedad y, por tanto, el agua que está débilmente enlazada. - Etapa inicial (100-300ºC): En esta etapa, se produce la deshidratación exotérmica de la biomasa, liberándose agua retenida y gases de bajo peso molecular como el CO y el CO2. - Etapa Intermedia (>200ºC): Se produce una pirólisis inicial, entre 200 y 600ºC, produciéndose la mayor parte del vapor o precursor de bio-combustibles. Se 18 Descripción del trabajo realizado comienza a romper las moléculas más grandes, descomponiéndose en el producto sólido (Primary char), gases condensables (vapor y precursores del producto líquido) y gases no condensables. - Etapa Final (≈300-900ºC): La etapa final de pirólisis conlleva el craqueo secundario de volátiles en producto sólido y gases no condensables. Si el tiempo de residencia de la biomasa es suficientemente elevado, se puede producir el craqueo de cadenas de elevado peso molecular en los gases condensables, incrementando el rendimiento hacia el producto sólido y gases.Esta etapa ocurre principalmente por encima de 300ºC. Si los gases condensables se retiran rápidamente del lugar de reacción se produce la condensación hacia bio-combustibles o alquitrán. • Combustión u oxidación: La combustión es el proceso más directo para la conversión de biomasa en energía útil, siendo usado en numerosas aplicaciones. Se basa en la oxidación completa de la materia orgánica de la biomasa con exceso de oxígeno (cantidad de oxígeno superior a la estequiométrica) convirtiendo la energía almacenada en calor, energía mecánica o electricidad[23]. Además de calor, en el proceso se genera dióxido de carbono, agua y cenizas. El proceso de combustión se puede representar como la siguiente reacción: + "→ " + " + #ℎ % + & % La ignición de la biomasa requiere elevadas temperaturas (≥ 550 ºC), constituyendo la etapa más costosa del proceso el comienzo del mismo. A pesar de su aparente simplicidad, la combustión es un proceso complejo desde un punto de vista tecnológico, donde tienen lugar elevadas velocidades de reacción y grandes cantidades de calor liberado. Además de obtenerse muchos productos y caminos de reacción. De forma general el proceso de combustión se divide en las siguientes etapas: - Secado: Evaporación del agua contenida en el combustible. 19 Descripción del trabajo realizado - Pirólisis y reducción: Descomposición térmica del combustible en volátiles y un producto sólido (char). - Combustión de los volátiles: Los productos obtenidos en la etapa anterior son quemados en presencia de oxígeno. - Combustión del char: Se produce la combustión del producto sólido. • Gasificación: La gasificación es un proceso termoquímico complejo que consiste en un número de reacciones químicas elementales en presencia de un agente gasificante, generalmente en atmósfera de aire, pobre de oxígeno (cantidad de oxígeno inferior a la estequiométrica) o vapor de agua[24]. La importancia de este proceso se puede resumir en los siguientes puntos [5]: - Incremento del valor calorífico de un combustible a través de la eliminación de componentes como el nitrógeno y el agua. - Eliminación de compuestos nocivos para el medioambiente, como pueden ser los óxidos de nitrógeno y azufre. - Reducción de la relación C/H del combustible. - Obtención de productos químicos de gran interés comercial. - Eliminación del oxígeno que constituye el combustible y, por lo tanto, se produce un incremento de su densidad energética. En general, cuanto mayor sea el contenido de hidrógeno de un combustible, menor será la temperatura de vaporización y mayor la probabilidad de que el combustible esté en estado gaseoso. La gasificación aumenta el contenido de hidrógeno en el producto mediante una de las siguientes formas: - Directa: Exposición directa al hidrógeno a alta presión. 20 Descripción del trabajo realizado - Indirecta: Exposición al vapor de agua en unas condiciones de temperatura y presión elevadas, donde el hidrógeno (producto intermedio) se añade al producto. Este proceso también incluye el reformado con vapor. Las principales reacciones que ocurren en el proceso de gasificación se describen a continuación [4] : C + O" → CO" (Combustión Completa) C + 1+2 O" → CO (Combustión Incompleta) La presencia de agua como agente gasificante, permite aumentar la proporción de hidrógeno generado de la siguiente forma: C + H" O → CO + H" (Reacción Water gas) En presencia de dióxido de carbono, el carbono de la materia orgánica reacciona para producir monóxido de carbono, según la reacción de Boudouard: C + CO" → 2CO (Reacción de Boudouard) También son importantes en el proceso de gasificación las reacciones de metanización: +2 +3 " " → ↔ (Reacción de metanización) - + " (Reacción de metanización) Al igual que la reacción de water gas, la reacción de water gas shift tiene lugar cuando existe vapor de agua en el medio de gasificación. + " ↔ " + " (Water gas shift reaction) Las flechas indican que las reacciones están en equilibrio y se pueden producir en cualquier dirección, dependiendo de la temperatura, presión y concentración de las 21 Descripción del trabajo realizado especies reaccionantes. De esto se deduce que el gas producto procedente de la gasificación consiste en una mezcla de monóxido de carbono, dióxido de carbono, metano, hidrógeno y vapor de agua. • Otros Procesos: Otros procesos para el aprovechamiento energético de la biomasa son el tratamiento hidrotérmico y la licuefacción. El primero convierte la biomasa en una atmósfera húmeda bajo presiones elevadas en hidrocarburos oxigenados parcialmente, no obstante, este proceso está todavía en fase de planta piloto. La licuefacción es la conversión de la biomasa en hidrocarburos líquidos estables aplicando bajas temperaturas y elevadas presiones de hidrógeno. Este proceso está atrayendo menos interés que la pirólisis ya que los reactores y los sistemas de alimentación son más complejos y costosos [4]. A.4.3. Evaluación de procesos de conversión termoquímica mediante tecnologías de análisis térmico (TA). • Análisis termogravimétricos. Durante los procesos de conversión termoquímica se presentan reacciones para las cuales el estudio cinético resulta muy interesante. En esta tarea, el análisis termogravimétrico (TGA) (realizado en un equipo denominado termobalanza) supone una herramienta muy potente y es una de las técnicas más utilizadas a escala laboratorio [25]. Consiste en medir la masa o el cambio de masa que experimenta una sustancia en función de la temperatura mientras la muestra se calienta (o se enfría) con un programa de temperaturas y bajo una atmósfera controlada (Montero, 2011).La variación de masa puede ser una pérdida o una ganancia de la misma. El registro de estos cambios nos dará información sobre si la muestra se descompone o reacciona con otros componentes. La principal ventaja del análisis termogravimétrico es que necesita un peso muy pequeño de muestra (escala de miligramos) para caracterizar un proceso. 22 Descripción del trabajo realizado La termogravimetría se está usando muy ampliamente acoplada a otras técnicas, como por ejemplo el análisis térmico diferencial (DTA) o calorimetría diferencial de barrido (DSC), y también técnicas de gases producidos (EGA) ya que permiten obtener información complementaria sobre el comportamiento de la muestra. • Calorimetría diferencial de barrido (DSC). La calorimetría diferencial de barrido (DSC; diferential scaning calorimetry) permite el estudio de aquellos procesos en los que se produce una variación entálpica como puede ser la determinación de calores específicos, puntos de ebullición y cristalización, pureza de compuestos cristalinos, entalpías de reacción y determinación de otras transiciones de primer y segundo orden. En general, el DSC puede trabajar en un intervalo de temperaturas que va desde la temperatura del nitrógeno líquido hasta unos 600 ºC. Por esta razón, esta técnica de análisis se emplea para caracterizar aquellos materiales que sufren transiciones térmicas en dicho intervalo de temperaturas. La finalidad de la calorimetría diferencial de barrido DSC es registrar la diferencia en el cambio de entalpía que tiene lugar entre la muestra y un material inerte de referencia en función de la temperatura o del tiempo, cuando ambos están sometidos a un programa controlado de temperaturas. La muestra y la referencia se alojan en dos crisoles idénticos que se calientan mediante resistencias independientes. Cuando en la muestra se produce una transición térmica, se adiciona energía térmica bien sea a la muestra o a la referencia, con objeto de mantener ambas a la misma temperatura. Por tanto, la DSC permite medir la energía que es necesaria suministrar a la muestra para mantenerla a idéntica temperatura que la referencia. La energía térmica es exactamente equivalente en magnitud a la energía absorbida o liberada en la transición. Por tanto, mediante el uso de la técnica DSC se puede evaluar la cantidad de calor liberado durante los procesos de conversión termoquímica. • Técnicas de análisis térmico acopladas al análisis de gases residuales. 23 Descripción del trabajo realizado La principal limitación del análisis térmico en el estudio de procesos es que no te proporciona informacción sobre los productos generados en los mismos. En este sentido, se suelen utilizar técnicas complementarias acopladas al análisis térmico y denominadas EGA, de sus siglas en inglés Evolved Gas Analysis. Existen diferentes técnicas que se pueden utilizar con este fin, como la cromatografía de gases (GC), espectroscopia de infrarrojo por transformada de Fourier (FTIR) ó la espetrometría de masas (MS). Entre todas ellas destaca el acoplamiento de termogravimetría con la especctrometría de masas (TGA-MS), siendo la única técnica experimental capaz de monitorizar en tiempo real la distribución de productos generados en el proceso partiendo de una muestra de bajo peso, enriqueciendo significativamente la información del mecanismo de descomposición correspondiente [26]. A.4.4. Revisión de trabajos bibligraficos de los procesos de conversión termoquímica de biomasa mediante TGA. DSC y TGA-MS. • Referentes a biomasa lignocelulósica. El proceso de pirólisis de biomasa lignocelulósica ha sido ampliamente estudiado en biliografía mediante TGA y DSC [26]. Desde el estudio de descomposición de los principales componentes de la biomasa lignocelulósica (celulosa, hemicelulosa y lignina) [27-31] hasta diferentes ipos de madera [32; 33] u otros tipos de residuo [34]. Por otro lado, los estudios sobre el proceso de pirólisis de microalgas es comparativamente mucho menor. Babich y col. (2011) [12] estudiaron la conversión pirolítica de la microalga Chlorella mediante la técnica de TGA acoplada con MS. Las muestras líquidas de biocombustible se recogen a partir de experimentos llevados a cabo en un reactor de lecho fijo. Demirbas y col. (2011) [15]estudió la producción de biocombustibles a partir de dos muestras de algas (Cladophora fracta y Chlorella protothecoid). Para ello, investigó el efecto de la temperatura sobre la cantidad de hidrógeno producido en los procesos de pirólisis y gasificación con vapor, estudiando los gases producidos en dichos procesos. El proceso de pirólisis es muy importante ya que es considerado como el primer paso de los procesos de combustión y gasificación. 24 Descripción del trabajo realizado El estudio de combustión de biomasa lignocelulósica mediante TGA es significativamente menor comparado con el de pirólisis. Zhang y col. (2011)[35] investigaron sobre las características de combustión de biomasa como la “paja” de arroz y la celulosa contenida en ella. Estudiaron las diferencias entres las curvas TGDTG-DSC y estimaron los parámetros de TG y los índices de ignición de las muestras de biomasa, obteniendo información sobre sus características básicas de combustión. Por otro lado, Zhang y col. (2012)[36], mediante sus estudios de los procesos de combustión obtuvieron resultados que mostraban que el proceso de combustión se puede describir como una reacción de primer orden. Joaquín Collazo y col. (2012)[37] investigaron sobre un método para la determinación del máximo error de muestreo y los intervalos de confianza de las propiedades térmicas medidas mediante TGA-DSC. Mustafa Versan Kok y Emre Özgür (2013)[38] estudiaron las características de combustión de muestras de biomasa como miscanto, madera de álamo, y cascarilla de arroz.Amutio y col. (2012) [39]analizaron la pirólisis oxidativa de biomasa lignocelulósica con diferentes concentraciones de oxígeno para establecer un modelo cinético para dicho proceso. El estudio de combustión de microalgas en cambio, ha sido poco estudiado. Chen y col. [40] evaluaron el fecto de la concentración de O2 en la combustion de la microalga Chlorella Vulgaris. El proceso de gasificación de biomasa es probablemente el menos estudiado. La mayoría de los estudios han sido dirigidos a la evaluación del comportamiento de diferentes tipos de carbón gasificándolos con vapor de agua o dióxido de carbono. En este sentido, Shabbar et al. [41] analizó la termodinámica de carbones bituminosos. Además, Tay et al. [42] evalúo el effecto de diferentes agentes gasificantes en diferentes tipos de carbones. Sin embargo, el estudio del proceso de gasificación de biomasa ha sido mucho menos estudiado. Mohammed et al. [43] evalúo las cinéticas y las características térmicas de residuo de frutas. Otros estudios han ido dirigidos a la evaluación del proceso de gasificación del char obtenido a partir de la pirólisis de la de diferentes tipos de biomasa[44-46]. En cambio, estudios de gasificación de biomasa marina mediante TGA no han sido encontrados hasta la fecha. 25 Descripción del trabajo realizado Finalmente, el estudio EGA de los procesos de conversión termoquímica son escasos en literatura. Huang y col. (2011)[47] investigaron la composición y las propiedades térmicas de hemicelulosa, celulosa y lignina. Barneto y col. (2009)[48] con el fin de optimizar el proceso térmico de pirólisis y tener un mayor conocimiento de la evolución de los gases volátiles en el mismo para analizar dos muestras de biomasa lignocelulósica.Li y col. (2003)[49]analizaron el comportamiento térmico y caracterizaron los gases obtenidos en el proceso de combustión de trece especies procedentes de China.Chul Yoon ycol. (2012) [50] estudiaron la pirólisis y la gasificación de biomasa lignocelulósica y de sus principales componentes mediante una combinación de termogravimetría y cromatografía de gases empleando aire o vapor como agentes gasificantes en diferentes proporciones. Aghamohammadi y col. (2011)[51] investigaron la emisión de los gases durante la combustión de madera tropical, bambú, tronco de aceite de palma, acacia y madera de caucho utilizando la técnica de análisis termogravimétrico acoplado a un espectrómetro de masas (TGAMS). Fang y col. (2006)[52] analizaron la pirólisis y la combustión de la madera bajo diferentes concentraciones de oxígeno mediante la técnica TGA-FTIR, así como la cinética de ambos procesos. Haykiri-Açma (2003)[53] estudió las características de combustión de algunas muestras de biomasa terrestre tales como la cáscara de girasol, las semillas de colza, el algodón y la piña mediante termogravimetría. Babich y col. (2011) [12] estudiaron la conversión pirolítica de la microalga Chlorella mediante la técnica de TGA acoplada con MS. Las muestras líquidas de biocombustible se recogen a partir de experimentos llevados a cabo en un reactor de lecho fijo. Demirbas y col. (2011) [15]estudió la producción de biocombustibles a partir de dos muestras de algas (Cladophora fracta y Chlorella protothecoid). Para ello, investigó el efecto de la temperatura sobre la cantidad de hidrógeno producido en los procesos de pirólisis y gasificación con vapor, estudiando los gases producidos en dichos procesos. Phukan y col. (2011)[14]caracterizaron el alga Chlorella sp mediante espectroscopía FTIR y realizaron un estudio termogravimétrico de la misma a diferentes velocidades de calentamiento para evaluar su viabilidad para la conversión termoquímica. Miao y col. (2004)[54] utilizaron dos especies en sus experimentos, 26 Descripción del trabajo realizado Chlorella protothecoides y Microcystis aeruginosa, para investigar la pirólisis rápida de ambas especies en un reactor de lecho fluido en una atmósfera inerte de N2 para proceder, posteriormente, a la comparación con resultados obtenidos de pirólisis lenta en un autoclave. Minowa y col. [55] realizaron el proceso termoquímico de licuefacción a la especie de microalga Botryococcus braunii para la obtención de combustibles líquidos y la recuperación de hidrocarburos. A.5. ENERGÍA SOLAR DE CONCENTRACIÓN: COLECTOR CILINDRO PARABÓLICO. A.5.1. Generalidades. El empleo de colectores cilindro-parabólicos se remonta a 1880, John Ericsson construyó un sistema de espejos cilindro-parabólicos para alimentar un motor de aire caliente. Frank Shuman y C.V. Boys, fueron los primeros en utilizar este tipo de espejos para la generación de energía de forma significativa, construyendo en 1912 una planta para el bombeo de agua con vapor en Meadi (Egipto) utilizando espejos con una superficie total de captación de 1200 m2. A pesar del éxito alcanzado, la planta se cerró en 1915 debido al inicio de la Primera Guerra Mundial y a los bajos precios del petróleo. Debido a la crisis del petróleo renació el interés en este tipo de tecnología siendo principalmente el Departamento de Energía de los Estados Unidos y el Ministerio de Investigación y Tecnología alemán los que impulsaron diversos prototipos solares cilindro-parabólicos para la producción de vapor y para el bombeo de agua. Posteriormente y basándose en la tecnología de espejos cilindros-parabólicos se consiguió producir electricidad solar para cubrir las necesidad de miles de habitantes en California (900 GWh/año). Estas centrales podían funcionar en modo solar o en combinación con gas natural, asegurando de esta forma su disponibilidad independientemente de las condiciones climatológicas o del ciclo día-noche. Las centrales se encuentran en el desierto de Mojave y hoy continúan su funcionamiento 27 Descripción del trabajo realizado con 354 MW de potencia instalada, planificándose la construcción de más centrales en sus alrededores. En 1981, la Agencia Internacional de la Energía construyó y probó un sistema para la producción de electricidad a base de captación solar mediante espejos cilindro parabólicos de 500 Kw de potencia en la Plataforma Solar de Almería (Tabernas).En esta plataforma se está investigando con todas las tecnologías termosolares. En 2008, entró en funcionamiento Andasol I, en Granada, con 50 MW instalados, y también cabe destacar la central de Iberdrola de 50 MW situada en Puertollano (Ciudad Real) Aún así, este tipo de energía se considera que está en una fase de demostración de viabilidad a gran escala, surgiendo cada día nuevos proyectos, con importantes retos tecnológicos como el almacenamiento de calor o la hibridación con biomasa o gas natural. • Funcionamiento de una planta termosolar de colector cilindro-parabólico. El esquema de funcionamiento de estas plantas es bastante simple. Se basan en un campo de espejos con forma parabólica, que concentran la luz solar sobre un eje, donde se encuentra una tubería por la que circula un fluido de intercambio de calor (generalmente aceite). Este fluido caliente se introduce a la zona de generación, un ciclo termodinámico convencional, donde se calienta agua para la producción de vapor para el accionamiento de una turbina. Además, este tipo de centrales son combinadas con otros tipos de combustibles, para los períodos de baja insolación. En la Figura A.10 se muestra una imagen de un colector cilindro-parabólico en la central termosolar de Almería y el diagrama de flujo de una planta termosolar (Flaberg Solar International).Este tipo de plantas son capaces de calentar el fluido de intercambio de calor hasta unas temperaturas entre 300 y 400 ºC (Razón de concentración: 15-50), obteniendo rendimientos de hasta el 60 % y con capacidad de 320 MW. 28 Descripción del trabajo realizado Figura A.10.- Planta termosolar de colector cilíndro-parabólico en España (Plataforma Solar de Almería) y diagrama de flujo de una planta termosolar (Flaberg Solar International) (Forristal, 2003). A.5.2. Fluido de Intercambio de Calor (HTF). Los fluidos utilizados comercialmente son principalmente aceites compuestos por mezclas eutécticas de óxido de difenilo y óxido de bifenilo. Estos HTF presentan una serie de inconvenientes que se describen a continuación: • Riesgos para la salud de operarios de planta. La degradación del aceite térmico puede tener como consecuencia la aparición de aromáticos, que son nocivos. • Son compuesto tóxicos e inflamables. • Producen una disminución en su función de transmisor de energía y daños provocados en los equipos y tuberías por los que circula el fluido. • Poseen una presión de vapor elevada, generando elevadas sobrepresiones. Esto incrementa el coste de los recipientes para el almacenamiento de energía. • Tienen una temperatura de degradación baja, alrededor de los 300 ºC, disminuyendo la eficiencia del ciclo termodinámico para la producción de energía. Por tanto uno de los principales retos que presenta este tipo de tecnología es el cambio del fluido de intercambio de calor (HTF). Diversos autores, se han encaminado en la búsqueda de fluidos capaces de reemplazar a los utilizados 29 Descripción del trabajo realizado comercialmente. Los principales esfuerzos, se han dirigido hacia las llamadas sales fundidas. Estos estudios están encabezados por el Departamento de Energía de los Estados Unidos[56; 57]. Otro tipo de fluidos, los líquidos iónicos, han abierto un camino interesante para su sustitución [58; 59]. En la presente investigación, se pretenden estudiar diferentes HTF que puedan mejorar los que actualmente se están empleando en la industria. Con este fin, es importante un buen conocimiento de las propiedades específicas requeridas para un buen intercambio de calor. Para el estudio preliminar de las mismas, se consideró una lista de especificaciones propuesta por el Laboratorio Nacional de Energías Renovables (NREL, 2000). En esta se especifica que la capacidad de almacenamiento tiene que ser mayor de 1,9 MJ/m3, con un punto decongelación inferior a 0 ºC y una estabilidad térmica por encima de los 430 ºC. La presión de vapor debe ser inferior a la atmosférica para reducir el coste de recipientes y debe tener una viscosidad adecuada para disminuir los costes de bombeo. Además, como fluido de referencia se utilizarán las propiedades suministradas por el proveedor del aceite térmico Therminol® VP-1 (Tabla A.1). Tabla A.1.- Propiedades del HTF comercial Therminol®-VP1. Propiedades Therminol-VP1 Punto de Cristalización 12 ºC Humedad 300 ppm Viscosidad Cinemática (40ºC) 2,48 cSt Densidad 1060 kg/m3 Calor de fusión 97,3 Kj/kg Temperatura de ebullición 257 ºC Calor de vaporización 206 Kj/kg Rango óptimo de uso, líquido 12-400 ºC Rango óptimo de uso, vapor 260-400 ºC Capacidad calorífica 100ºC 1,78 J/g ºC Conductividad Térmica 100 ºC 0,1276 W/m K 30 Descripción del trabajo realizado • Propiedades de un Fluido de Intercambio de Calor (HTF). - Punto de congelación. El punto de congelación de un líquido es la temperatura a la que dicho líquido se solidifica debido a la reducción de temperatura.Este parámetro es muy importante, ya que un punto de congelación elevado (>0ºC) limita el uso de la planta en climas fríos, derivando en un elevado coste asociado a la protección a la congelación que requerirían las tuberías. - Estabilidad Térmica. La estabilidad térmica de los fluidos proporciona el límite de temperatura en el cual se puede operar.La necesidad de establecer estos parámetros debidamente, se traduce en dos aspectos, cuanto mayor sea la temperatura de descomposición el fluido va a ser capaz de almacenar más energía térmica, por lo que hace más eficiente el ciclo termodinámico para la producción de energía. - Viscosidad. Al tratarse de sistemas de fluidos en movimiento la viscosidad aparece como una propiedad importante a la hora de operar en la planta solar. - Capacidad calorífica: Mide la cantidad de energía térmica que un cuerpo puede almacenar. La importancia de su cálculo, se debe a que es necesario su determinación para el cálculo de la capacidad de almacenamiento energético. - Densidad. No es una propiedad térmica, pero su cálculo es importante, puesto que es necesaria para el cálculo de la capacidad de almacenamiento energético como se describirá posteriormente. 31 Descripción del trabajo realizado - Capacidad de almacenamiento térmico: Calor sensible y Calor latente. Esta variable define la capacidad de los mismos para almacenar calor. La capacidad de almacenamiento térmico sensible, se puede calcular fácilmente mediante la ecuación siguiente: 0 = 2 ∙ 4 ∙ ∆6ª (A.1) donde HS = Capacidad de almacenamiento sensible (MJ/m3) ρ = Densidad del fluido (kg/m3). Cp= Capacidad calorífica del fluido (J/(kg K)). ∆T= Diferencia entre la temperatura de entrada y de salida del campo solar. Para el cálculo de la capacidad de almacenamiento térmico latente se utilizará la ecuación: 8 =2∙∆ (A.2) donde HL = Capacidad de almacenamiento latente (MJ/m3) ρ = Densidad del fluido (kg/m3). ∆H= Entalpía de fusión/vaporización (J/kg). A.6.- Objetivo del presente trabajo En los apartados anteriores se ha puesto de manifiesto la importancia de las energías renovables en el futuro desarrollo de nuestra sociedad. Entre estas tecnologías cabe destacar el uso de la biomasa y la energía solar térmica como fuentes de energía renovable. Sin embargo, el grado de desarrollo de las mismas no ha alcanzado una 32 Descripción del trabajo realizado madurez tecnológica que permita un cambio en el modelo energético actual basado principalmente en el consumo de combustibles fósiles. Los procesos de conversión termoquímica de biomasa son los procesos más interesantes para el aprovechamiento energético de biomasa puesto que permiten transformar la energía química de la biomasa en diferentes formas, como la trasformación directa en energía (combustión) ó en combustibles líquidos, sólidos y gaseosos (pirólisis y gasificación) para su posterior procesamiento. Por otro lado, el cambio de los fluidos de intercambio de calor (HTF) utilizados comercialmente en plantas termosolares de concentración basados en hidrocarburos (mezas de difenilo y bifenilo) por otros obtenidos desde fuentes de energía renovable con la capacidad de incrementar el ciclo térmico para la obtención de energía es necesario para la optimización de estos procesos. Por todo lo anterior, se consideró de interés realizar una investigación enfocada al estudio de los principales procesos de conversión termoquímica (pirólisis, combustión y gasificación) de diferentes tipos de biomasa (lignocelulósica y marina). Adicionalmente, se evaluaron las propiedades físico-químicas de diferentes HTF para su uso en plantas termosolares de concentración de colector cilindro-parabólico y se puso en marcha una planta piloto para la evaluación de los mismos a escala semiindustrial. A tal fin, se planteó el siguiente programa de investigación: - Revisión bibliográfica y puesta a punto de las distintas instalaciones experimentales (equipos de análisis, calibración de gases, equipos de reacción, etc.). - Diseño y construcción de una planta piloto para el estudio de degradación de HTF para su aplicación en plantas termosolares de concentración. - Definición de las principales características de HTF. - Selección de biomasalignocelulósica y marina en base a su composición química. 33 Descripción del trabajo realizado - Evaluación de las condiciones de operación óptimas en el sistema experimental TGA-MS para el estudio de los principales procesos de conversión termoquímicas (pirólisis, combustión y gasificación). - Estudio de los procesos de pirólisis, combustión y gasificación de los diferentes tipos de biomasa seleccionada. - Modelización cinética de los procesos de pirólisis, combustión y gasificación. - Caracterización de los HTF a estudio y selección del más apropiado para su uso en plantas termosolares de concentración de colector cilindro-parabólico. - Puesta a punto de la planta piloto para el estudio de degradación de HTF. - Modelización de la degradación térmica del fluido comercial MOBILTHERM® 605. B. MATERIALES Y MÉTODOS A continuación, se detallan tanto los reactivos como los gases utilizados, indicando su concentración o pureza y la empresa suministradora. B.1. Materiales. Reactivos. • Celulosa microcristalina con un tamaño de partícula medio de 50 µm. Fue suministrada por la empresa Sigma-Aldrich. • Lignina alcalina en forma de polvo marrón con un tamaño de partícula medio de 50 µm. Fue suministrada por la empresa Sigma-Aldrich. • Xilano elaborado a partir de madera de haya con un tamaño de partícula medio de 100 µm. Se usó como referencia de la hemicelulosa y fue suministrado por la empresa Sigma-Aldrich. • Abeto, eucalipto y pino recogidos en la región de Castilla-La Mancha (España). Estas muestras se secaron en un horno durante 5 horas y se tamizaron para conseguir un tamaño de partícula medio entre 100 y 150 µm. 34 Descripción del trabajo realizado Gases. • Argón, envasado en botellas de acero a 200 bares con pureza superior al 99,996% y suministrado por la empresa PRAXAIR. • Nitrógeno, envasado en botellas de acero a 200 bares con pureza superior al 99,999% y suministrado por la empresa PRAXAIR. • Oxígeno, envasado en botellas de acero a 200 bares con pureza superior al 99,99% y suministrado por la empresa PRAXAIR. B.2. INSTALACIÓN EXPERIMENTAL A continuación se detallan los diferentes equipos que se utilizaron para realizar los diferentes desarrollos durante la presente investigación. B.2.1. Calorimetría diferencial de barrido (DSC) La diferente materia lignocelulósica fue analizada por calorimetría diferencial de barrido (DSC) en un equipo TGA/DSC modelo 1 STAReSystem de METTLER TOLEDO B.2.2. Análisis termogravimétrico (TGA) La pérdida de peso de los diferentes compuestos con la temperatura se analizó usando un equipo TGA/DSC modelo 1 STAReSystem de METTLER TOLEDO. Este equipo permite registrar con gran precisión la pérdida de masa de la muestra en función de la temperatura/tiempo. Para ello, se debe establecer una secuencia de calentamiento y configurar los gases circulantes por la cámara de reacción. La muestra se coloca en unos crisoles de alúmina preparados para soportar las altas temperaturas del ensayo. B.2.3. Análisis termogravimétrico – Espectrometría de masas (TGA-MS). Los productos liberados en el proceso de combustión se analizaron mediante el acoplamiento de un espectrómetro de masas, ThermosStar-GSD320 con un analizador de masa cuadrupolar y un potencial de ionización de 70 eV de PFEIFFER VACUUM a un equipo TGA/DSC modelo 1 STAReSystem de METTLER TOLEDO.El principio de funcionamiento de esta técnica se basa en la ionización de los componentes 35 Descripción del trabajo realizado producidos por la degradación térmica de la muestra, separándolos por su relación masa carga (m/z). Los espectrogramas obtenidos en cada experimento son almacenados y cuantificados por el propio software informático suministrado con el equipo. B.2.4. Análisis elemental El análisis elemental permite obtener el contenido de la muestra en los principales elementos químicos, como son carbono (C), hidrógeno (H), nitrógeno (N), oxígeno (O) y azufre (S). Para llevar a cabo este tipo de análisis se utiliza un analizador elemental, que es un equipo capaz de detectar todos los elementos citados mediante diversos mecanismos y dar el resultado en porcentaje en masa de cada uno de ellos en base seca. En el analizador elemental la separación de elementos de la muestra se produce por combustión a alta temperatura (950 ºC) mediante la inyección de una dosis elevada de oxígeno puro. Antes de ser introducidas en el mismo, las muestras deben ser secadas para eliminar el hidrógeno y el oxígeno procedente de su humedad, y así poder obtener los resultados en base seca. El porcentaje de C, H, N y S será una media de los valores obtenidos en los diez ensayos realizados a la muestra. El analizador elemental calcula automáticamente estos datos. El porcentaje de oxígeno (O) de la muestra se calcula según la ecuación [4.1]: = 100 − + + ; + < + #=> ? [4.1] siendo O, C, H, N, S y cenizas los porcentajes en masa de oxígeno, carbono, hidrógeno, nitrógeno, azufre y cenizas en base seca, respectivamente. El porcentaje en cenizas de la muestra se determina mediante el análisis inmediato. B.2.4. Análisis inmediato El análisis inmediato permite determinar cuatro de las características químicas más importantes de cualquier tipo de combustible: • Humedad. Es la proporción de masa de agua libre que contiene el combustible. El agua en el combustible puede encontrarse de dos formas diferentes: libre o combinada. El agua libre se denomina humedad y es la que se puede separar del combustible por simple calentamiento a 105 ºC. El agua 36 Descripción del trabajo realizado combinada forma parte de la estructura interna del combustible que, durante el calentamiento, se combina con otros elementos para dar lugar principalmente a hidrocarburos y para eliminarla es necesario calentar el combustible a temperaturas comprendidas entre 150-185 ºC. • Volátiles. Son las combinaciones de carbono, hidrógeno, oxígeno y otros gases que contiene el combustible. El desprendimiento de volátiles es un proceso exotérmico (desprende calor en el proceso de descomposición) que ayuda al proceso de combustión de la biomasa. • Cenizas. Son el residuo no orgánico de la combustión compuesto, principalmente, por las materias minerales que acompañan al combustible. Se trata de un residuo sólido no combustible, generalmente polvoriento, que queda después de la combustión completa de la biomasa. • Carbono fijo. El carbono fijo es la fracción residual de combustible, descontadas las cenizas, que queda tras la desvolatilización del mismo. El contenido en carbono fijo es un parámetro indicativo de la calidad del combustible. El equipo utilizado para realizar el análisis inmediato es el analizadortermogravimétrico y permite medir la pérdida de peso de la muestra en función de la temperatura en una atmósfera controlada. Para llevar a cabo los ensayos se ha empleado el analizador termogravimétrico TGA/DSC modelo 1 STAReSystem de METTLER TOLEDO. El método utilizado para llevar a cabo este estudio consistió en calentar la muestra de 25 a 950ºC a una velocidad de calentamiento de 10ºC/min en presencia de N2 con un caudal de 70 ml/min. A continuación, se mantuvo la temperatura 950ºC durante 60 minutos en presencia de O2 con un caudal de 20 ml/min. Las gráficas proporcionadas por el analizador termogravimétrico son pérdida de peso vs temperatura y derivada peso vs temperatura, denominadas TGA y DTGA, respectivamente. La curva TGA proporciona el contenido en volátiles, carbono fijo y cenizas, mientras que la curva DTGA proporciona la velocidad de pérdida de masa en 37 Descripción del trabajo realizado cada punto de calentamiento dando una idea de la estabilidad térmica de la descomposición de la muestra. Mediante el análisis de las gráficas TGA y DTGA en atmósfera inerte y oxidante se puede determinar los contenidos en volátiles, carbono fijo y cenizas de una muestra. Finalmente, el contenido en carbono fijo de la muestra en base seca se calcula según la ecuación [4.2]: % %A > B C = 100 − %D &áF &= + % => ? [4.2] donde los contenidos en volátiles y cenizas están expresados también en base seca. B.2.5.Espectroscopía de emisión atómica de plasma acoplado por inducción (ICPAES) Mediante esta técnica espectroscópica se determinó la composición química de la biomasa objeto de estudio. En concreto, se utilizó para calcular el porcentaje en peso de los distintos elementos metálicos de la muestra. El equipo utilizado para realizar los análisis es el modelo VARIAN LIBERTY RL sequential ICP-AES de análisis multielemental. La espectroscopia de emisión atómica se fundamenta en la excitación de los átomos metálicos mediante un plasma de Argón, capaz de alcanzar 10000 K, asegurando la completa atomización de la muestra en estado líquido. Al cesar la excitación, tiene lugar la emisión de radiación por parte del metal para volver al estado enérgico fundamental. La intensidad de dicha emisión permite cuantificar la concentración del elemento ya que depende de la cantidad de átomos del mismo. B.2.6. Microscopía electrónica de barrido (SEM) Para evaluar la morfología y el tamaño de la microalga NG se utilizó un microscopio electrónico de barrido Quanta 250 SEM con filamento de wolframio. El microscopio electrónico de barrido es un instrumento que permite la observación y caracterización superficial de materiales orgánicos e inorgánicos, proporcionando información morfológica del material analizado. La formación de la imagen se produce por la dispersión de los electrones. Esta capacidad de dispersión va a depender de las distintas estructuras atómicas de la muestra. El microscopio electrónico funciona como un microscopio convencional cuando las muestras son 38 Descripción del trabajo realizado conductoras. En cambio, cuando las muestras no son conductoras se pueden observar utilizando el régimen de bajo vacío, y cuando las muestras son orgánicas se emplea el régimen ambiental (ESEM). Para caracterizar la microalga NG se utilizó un detector modelo GSED (Gaseous SED Detector). B.2.7.Espectroscopía dispersiva de Rayos-X (EDAX) Es una técnica analítica utilizada para el análisis elemental o caracterización química de una muestra. Es una de las variantes de espectroscopia de fluorescencia de Rayos X que se basa en la investigación de una muestra a través de interacciones entre la radiación electromagnética y la materia, analizando los Rayos X emitidos por la materia en respuesta al choque con partículas cargadas. Sus capacidades de caracterización se deben en gran parte al principio fundamental de que cada elemento tiene una única estructura atómica permitiendo que los Rayos X característicos de la estructura atómica de un elemento sean identificados unos de otros.Para realizar este análisis se utilizó el modelo APOLLO X acoplado a un microscopio electrónico de barrido Quanta 250 SEM con filamento de wolframio. B.2.8. Determinación de la cantidad de celulosa, hemicelulosa y lignina El contenido de celulosa, lignina y xilano en las muestras de biomasa lignocelulósica se calculó de acuerdo con el método descrito por Yang y col. (2006)[27]. La determinación de la cantidad de extractos se llevó a cabo por extracción con disolvente (100 ml de acetona para 1 gramo de muestra de biomasa seca) a 60 º C. Después, la muestra de la biomasa se secó en un horno (110 º C) hasta que se obtuvo un peso constante. Posteriormente, el residuo sólido se enfrió a temperatura ambiente en un desecador y, finalmente, se pesó. La diferencia de peso antes y después de la extracción es la cantidad de extractivos. Para la determinación de la cantidad de hemicelulosa se añadieron 150 ml de solución de NaOH (20 g / l) a 1 gramo de muestra de biomasa seca libre de extractos, y la mezcla hirvió durante 3,5 h con agua destilada. El residuo se filtró y se lavó hasta pH neutro y se secó en un horno. El residuo se enfrió posteriormente a temperatura 39 Descripción del trabajo realizado ambiente en un desecador y posteriormente se pesó. La diferencia de peso antes y después de este tratamiento es la cantidad de hemicelulosa (Li y col., 2004). La determinación de la lignina se llevó a cabo por el método de Klason. Se añadieron 30 ml de H2SO4 (72%) a una muestra de 1 gramo de biomasa seca libre de extractos. La mezcla se calentó y se agitó durante 2 horas. Posteriormente, la mezcla se diluyó al 4% de concentración de H2SO4. La mezcla resultante hirvió durante 4 horas con agua destilada. El residuo se filtró y se lavó. Por último, se secó y se enfrió a temperatura ambiente en un desecador. La diferencia de peso antes y después del tratamiento es la cantidad de lignina. Finalmente, se calculó la cantidad de celulosa por diferencia de peso asumiendo que las muestras de biomasa están compuestas principalmente por extractivos, celulosa, hemicelulosa y lignina. B.3. PROCEDIMIENTO EXPERIMENTAL B.3.1. Análisis termogravimétrico del proceso de combustión La combustión de la biomasa lignocelulósica así como sus principales componentes se llevó a cabo en el equipo TGA (TGA-DSC 1, METTLER TOLEDO). Las muestras se precalentaron a 105 ºC durante 10 minutos para eliminar la humedad. Después, la biomasa se calentó desde 105 ºC hasta 1000 ºC empleando diferentes velocidades de calentamiento (10, 20, 40 y 80 ºC/min) en una atmósfera compuesta por un 21% de oxígeno y un 79% de argón. Estos estudios se realizaron de acuerdo con los trabajos realizador por Sánchez-Silva y col. (2013) para evitar las limitaciones de transferencia de materia y calor. En este sentido, la cantidad de muestra inicial fue de 6 mg, el tamaño de partícula se mantuvo en un rango entre 100-150 µm y se utilizó un caudal constante de 100 Nml/ min. B.3.2. Análisis de los productos gaseosos desprendidos en el sistema TGA-MS. El análisis de los productos gaseosos desprendidos durante el proceso de combustión se llevó a cabo en una termobalanza (TGA-DSC 1, METTLER TOLEDO) acoplada a un espectrómetro de masas (Thermostar-GSD320 con analizador de masa cuadrupolar; PFEIFFER VACUUM) con un potencial de ionización de 70 eV que 40 Descripción del trabajo realizado proporciona espectros hasta 300 a.m.u. La línea de conexión entre los equipos estaba envuelta con hilo calefactor para evitar la condensación de los gases en esta zona. Se realizó un análisis semicuantitativo usando un procedimiento de normalización. Para ello, las intensidades de los iones se normalizaron con la intensidad del isótopo 38 Ar para eliminar errores de instrumentación causados por la fluctuación del gas portador, el peso de la muestra y cambios en la sensibilidad del espectrómetro de masas [60]. Se calculó el área bajo la curva obtenida para cada uno de los gases desprendidos, tomándose como criterio comparativo entre las diferentes muestras [61]. C. RESULTADOS Y DISCUSIÓN El criterio empleado para la selección de la biomasa marina, se basó en la elección de la microalga con mayor contenido en lípidos y una menor cantidad de proteínas y carbohidratos. Por tanto, se realizó un diagrama ternario donde se determinó que la microalga Nannochloropsis Gaditana (microalga NG) reunía mejores propiedades para llevar a cabo este estudio. En el Capítulo 1, el estudio de la pirólisis, combustión y gasificación de la microalga NG se llevó a cabo mediante análisis termogravimétricos (TGA) y la novedosa técnica de termobalanza acoplada a un espectrómetro de masa (TGA-MS), siendo esta última la única herramienta capaz de detectar los compuestos que se desprenden de una muestra de bajo peso a tiempo real. Para la selección de las condiciones óptimas de operación en los procesos de pirólisis y combustión se evaluaron las siguientes variables: masa inicial de muestra, tamaño de partícula y caudal de gas reactivo. En el estudio del proceso de pirólisis se observó que la microalga NG posee 3 etapas de degradación. Una primera etapa asociada a la eliminación de agua y componentes más volátiles a temperaturas < 160ºC. La segunda etapa, donde se produce la mayor pérdida de peso, asociada a la degradación de proteínas, 41 Descripción del trabajo realizado polisacáridos y lípidos. Y una tercera etapa (> 450ºC) donde se produce la degradación térmica de la carbonilla. En el proceso de combustión de la microalga NG se dividió también en 3 etapas. Una primera etapa de secado asociada a la pérdida de agua a temperaturas < 125ºC. La segunda etapa, donde se produce la mayor pérdida de peso, asociada a la descomposición de proteínas, hidratos de carbono y lípidos. Y una tercera etapa (> 450ºC) donde se produce la oxidación de la carbonilla resultante. Del estudio de las diferentes variables se observó, de forma general, que al aumentar la masa inicial de muestra se produce una aceleración en el proceso de combustión así como un aumento en la velocidad de descomposición, a diferencia de lo que ocurría en el proceso de pirólisis. En el proceso de pirólisis, el efecto del tamaño de partícula tiene poca influencia en el mismo, mientras que en el proceso de combustión la muestra de menor tamaño es la más reactiva y se volatiliza antes. El caudal de gas no afecta a ninguno de los dos procesos. Posteriormente, se llevó a cabo un análisis de las condiciones óptimas de operación en el proceso de gasificación mediante TGA. Al aumentar la temperatura de gasificación se produce un aumento en los valores de reactividad y conversión. La reactividad aumenta y la conversión disminuye cuando la masa inicial de muestra disminuye y la porosidad de la muestra aumenta. Al aumentar el caudal de Ar, disminuye la conversión y aumenta la reactividad, al igual que ocurre al aumentar el % de vapor de agua. En la segunda parte de este trabajo se estudió la distribución de los productos gaseosos generados en los procesos termoquímicos de pirólisis, combustión y gasificación utilizando las condiciones óptimas para cada uno de ellos y empleando la técnica TGA-MS. 42 Descripción del trabajo realizado Mediante este análisis se concluyó que los productos generados durante el proceso de pirólisis se liberan en tres etapas. En la primera etapa, se desprendió agua a temperaturas < 160ºC. Posteriormente, en un rango de temperaturas entre 160 y 450ºC se identificaron la mayor parte de los componentes, siendo el principal compuesto detectado el CH3+ debido a la descomposición de los grupos carboxilos en las proteínas y los polisacáridos, junto con HCN, CH4N, CO2, C3H8N, CO, C6H6 y otros hidrocarburos volátiles como C2H5, C2H2 y CH4. Los compuestos nitrogenados son liberados debido a la degradación térmica de las proteínas. Finalmente, a temperaturas > 450ºC se produce la liberación de H2. En cuanto a la segunda parte de la investigación, el estudio de la pirólisis de los diferentes tipos de biomasa fue llevado a cabo mediante análisis termogravimétricos (TGA) y mediante la novedosa técnica de termobalanza acoplada a un espectrómetro de masas (TGA-MS). El uso de esta técnica se ha demostrado como la única capaz de detectar los compuestos que se desprenden de una muestra de bajo peso a tiempo real. Los tipos de biomasa sometidos a estudio fueron: la celulosa, la hemicelulosa y la lignina (componentes mayoritarios de la biomasa terrestre), la madera de abeto y una variedad de microalga (Nannochloropsis gaditana). En el Capítulo 2, primero se llevó a cabo un análisis de las condiciones óptimas de operación en el TGA-MS. Para el uso óptimo de esta técnica se tuvo en cuenta que a elevadas cantidades de muestra inicial conllevan efectos de transferencia de materia y de calor en el análisis termogravimétrico. Sin embargo, un bajo peso de muestra inicial disminuye la detectabilidad en el espectrograma de masas. Por lo tanto, hay que llegar a un compromiso en el que se utilice la mayor cantidad de masa inicial sin que se produzcan limitaciones en el proceso por efectos de transferencia de materia y de calor. Otras variables a estudio fueron la influencia del caudal de gas portador (He) y de la velocidad de calentamiento. Las condiciones óptimas resultantes de este estudio fue el empleo de un peso de muestra inicial de 10 mg, un flujo de gas portador He de 200 Nml/min y una velocidad de calentamiento de 40ºC/min 43 Descripción del trabajo realizado Posteriormente se llevó a cabo la evaluación del proceso de pirólisis para los diferentes tipos de biomasa seleccionados mediante un análisis termogravimétrico. En primer lugar se observó que la madera de abeto en el proceso de pirólisis se descomponía en cuatro etapas, una primera etapa asociada a la eliminación de agua a temperaturas ≤ 120ºC y tres etapas posteriores atribuidas a la descomposición de la hemicelulosa (≈ 220ºC), de la celulosa y la lignina (300-400 ºC) y la lignina (>400ºC) respectivamente. También se comprobó que el proceso de pirólisis tuvo lugar en un rango de temperaturas de 200 a 500 ºC, intervalo de temperaturas donde ocurre la mayor parte de la descomposición de la biomasa. Por último, se observó que la biomasa marina estudiada se degrada a mayores temperaturas (≈ 1000ºC) que la biomasa terrestre (≈ 700ºC). Una vez estudiado el proceso de pirólisis, se evaluó el efecto de la velocidad de calentamiento en la descomposición térmica de la biomasa mediante termogravimetría. Para llevar a cabo este estudio se utilizó 5, 15 y 40ºC/min. La velocidad de calentamiento influyó significativamente sobre la temperatura a la que comienza el proceso de pirólisis y en la que se produce la mayor pérdida de peso. En cambio, la velocidad no mostró un efecto tan claro sobre la cantidad de residuo generado. Empleando la técnica TGA-MS se estudió la distribución de los productos generados durante la pirólisis de la biomasa. Mediante este análisis se concluyó que los productos en la pirólisis se liberan en tres etapas. En la primera etapa, se desprendió principalmente agua a temperaturas ≤ 120ºC. Posteriormente, en un rango de temperaturas comprendido entre 200 y 450 ºC se identificaron la mayor parte de los componentes volátiles, siendo el principal compuesto detectado el CO2 junto con CH4, C2H6 y pequeñas cantidades de CO. Finalmente, a temperaturas ≥500 ºC se produce la liberación de H2. Finalmente, se desarrolló un modelo cinético que permitió estudiar, mediante termogravimetría, el comportamiento de la biomasa durante su pirólisis a diferentes 44 Descripción del trabajo realizado velocidades de calentamiento. Con este fin, se empleó un modelo teórico de múltiples saltos de descomposición basado en una expresión de velocidad tipo Arrhenius, obteniéndose los parámetros cinéticos (energía de activación, factor pre-exponencial y orden de descomposición) a cada velocidad considerada. En el Capítulo 3, el estudio del proceso de combustión de la biomasa lignocelulósica y de sus principales componentes se llevó a cabo mediante análisis termogravimétricos (TGA), análisis de calorimetría diferencial de barrido (TGA/DSC) y la novedosa técnica de termobalanza acoplada a un espectrómetro de masa (TGAMS), siendo esta última la única herramienta capaz de detectar los compuestos que se desprenden de una muestra de bajo peso a tiempo real. El proceso de combustión de la biomasa lignocelulóscia se divide en dos etapas prinicipalmente. La primera etapa, donde se produce la mayor pérdida de peso, llamada etapa de desvolatilización, en la cual se descomponen los principales componentes de la biomasa (celulosa, hemicelulosa y lignina). Y una segunda etapa (> 441ºC) donde se produce la oxidación del residuo carbonoso (char) resultante. La información obtenida mediante el análisis termogravimétrico se completó mediante el estudio del proceso de combustión de las muestras de biomasa lignocelulósica y de sus principales componentes por calorimetría diferencia de barrido (DSC). En general, se observaron dos regiones exotérmicas, la primera se atribuye a la etapa de desvolatilización y la segunda a la oxidación del char. Una vez estudiado el proceso de combustión, se evaluó el efecto de la velocidad de calentamiento en la descomposición térmica de la biomasa mediante termogravimetría. Para llevar a cabo este estudio se utilizaron 10, 20, 40 y 80 ºC/min. La velocidad de calentamiento influyó significativamente sobre la temperatura a la que comienza el proceso de combustión y en la que se produce la mayor pérdida de peso. En cambio, la velocidad de calentamiento no mostró un efecto tan claro sobre la cantidad de residuo generado. 45 Descripción del trabajo realizado Posteriormente, se estudió la distribución de los productos gaseosos generados en el proceso termoquímico de combustión empleando la técnica TGA-MS. Mediante este análisis se concluyó que los principales productos gaseosos generados fueron: CO, CO2 y H2O. También se produjeron hidrocarburos ligeros, atribuidos a reacciones secundarias, como son CH4 y C2H5. La mayoría de los productos detectados fueron generados durante la etapa de desvolatilización, mientras que sólo el NO2, C2H5O+, CO y CO2 se detectaron en la segunda etapa (etapa de oxidación). Se detectaron compuestos de nitrógeno, en mayor proporción que los compuestos de azufre, liberados en forma de aminas primarias y NOx. Finalmente, se desarrolló un modelo cinético que permitió estudiar, mediante termogravimetría, el comportamiento de la biomasa durante su combustión a diferentes velocidades de calentamiento. Con este fin, se empleó un modelo teórico de múltiples saltos de descomposición basado en una expresión de velocidad tipo Arrhenius, obteniéndose los parámetros cinéticos (energía de activación y factor preexponencial) a cada velocidad considerada. Se encontró el mejor ajuste de los datos experimentales con los modelos basados en el orden de reacción (Oi), la nucleación (Ni) y la difusión (Di). Mediante una aplicación Excel-VBA se evaluó el conjunto de ecuaciones diferenciales ordinarias que definen el modelo cinético. Se obtuvo un modelo teórico y se comparó con los datos obtenidos experimentalmente. En el proceso de combustión también se pueden observar tres etapas en la liberación de las emisiones gaseosas. En la primera etapa, se desprendió agua a temperaturas < 125ºC. Posteriormente, se produce la liberación de los compuestos CO2, SO2, NO2, C3H8N y NH3 en la segunda etapa del proceso. La liberación de SO2 se atribuye a los radicales sulfatos existentes en los polisacáridos y a la degradación de los sulfuros en los residuos orgánicos. Finalmente, a temperaturas > 450ºC se produce la liberación de H2, NH3, NO2, CO y CH3+. Los hidrocarburos volátiles como CH4, C2H2 y C2H5 no se generaron durante el proceso. 46 Descripción del trabajo realizado Los principales productos que se detectaron en el proceso de gasificación fueron CO2, CO y H2, junto con CH4, C2H6, C2H5, C2H4 y C2H2 que también fueron generados. Además, se estudió la influencia de la concentración de vapor en la distribución de productos obtenida, utilizándose diferentes concentraciones de vapor de agua. A medida que se incrementa la cantidad de vapor en el medio, también lo hace la concentración de H2 y se produce la disminución de la producción de CH4. Estos hechos indican que las reacciones water gas y water gas shift se ven favorecidas al incrementar la concentración de vapor en el agente gasificante y la reacción de reformado de metano podría estar teniendo lugar: En el Capítulo 5 se concluyó que las propiedades más importantes que deben reunir los fluidos térmicos para su aplicación en una planta termosolar son: un amplio rango de temperaturas en estado líquido, una elevada temperatura de degradación, una viscosidad baja, una temperatura de fusión baja, una densidad adecuada y una capacidad calorífica elevada. Posteriormente se realizó un estudio comparativo de cuatro tipos de HTF, dos sales fundidas: Sal Solar y Hitec XL y dos líquidos iónicos: ([BMIM][BF4]) y ([EMIM][BF4]). Del análisis comparativo se descartaron las sales fundidas ya que, aunque poseían la mayor resistencia térmica (temperaturas de degradación ≥ 500ºC) su temperatura de fusión es elevada, 230ºC para la Sal Solar y 120ºC para la Hitec XL, estando limitada su aplicación a temperatura ambiente. Entre los dos líquidos iónicos se determinó que el [BMIM][BF4] poseía las mejores propiedades para ser utilizado en plantas solares, debido a que poseía una temperatura de degradación mayor y una temperatura de fusión menor, y además contaba con propiedades térmicas similares al [EMIM][BF4]. 47 Descripción del trabajo realizado D. CONCLUSIONES Y RECOMENDACIONES De los resultados obtenidos en esta investigación se pueden obtener las siguientes conclusiones finales: De los resultados obtenidos en esta investigación se pueden extraer las siguientes conclusiones. 1. En el estudio termogravimétrico del proceso de pirólisis de la microalga NG se identifican tres etapas. La primera pérdida de peso atribuida a la pérdida de agua y componentes más volátiles de la microalga (< 160ºC). En la segunda etapa se distinguen tres hombros, el primero a 180ºC asociado a la degradación de proteínas y polisacáridos solubles y dos picos a altas temperaturas (271 y 411ºC) atribuidos a la degradación de la celulosa de la pared celular de la microalga y otros polisacáridos insolubles y lípidos, respectivamente. En la última etapa (> 450ºC) se produce la degradación térmica de la carbonilla. 2. En las curvas TGA-DTGA asociadas al proceso de pirólisis se puede observar como, en el estudio del efecto de la masa inicial de muestra un aumento de la misma desplaza el proceso térmico a temperaturas más elevadas y disminuye la velocidad de descomposición. En el caso del estudio del efecto del tamaño de partícula y del caudal de gas portador (Ar), se observa que no tienen influencia en el proceso ya que todas las curvas se solapaban indicando que no existen limitaciones por transferencia de materia y de calor. 3. Las condiciones de operación óptimas para llevar a cabo el proceso de pirólisis de la microalga NG fueron: masa inicial de muestra de 9 mg con un tamaño de partícula de 100-250 µm, caudal de Ar de 200 ml/min y velocidad de calentamiento de 40ºC/min. 48 Descripción del trabajo realizado 4. Del estudio termogravimétrico del proceso de combustión se puede concluir que el proceso está dividido en tres etapas. La primera etapa, que corresponde a la etapa de secado, se atribuye a la pérdida de agua libre y débilmente ligada a las biomoléculas. La segunda etapa (180-450ºC) se caracteriza por una pérdida de peso importante debida a la descomposición de las proteínas, los hidratos de carbono y los lípidos que constituyen la microalga. La última etapa (> 450ºC) se corresponde con la oxidación de la carbonilla resultante. 5. En las curvas TGA-DTGA asociadas al proceso de combustión se puede observar como la masa de muestra inicial tiene un efecto significativo en el proceso. Al aumentar, desplaza el proceso de combustión a temperaturas más bajas y aumenta la velocidad de descomposición. En el caso del efecto del tamaño de partícula, la muestra con el menor tamaño es la más reactiva y se volatiliza antes debido a que posee una mayor superficie que ofrece una resistencia menor a la difusión. En cuanto al efecto del caudal de O2 no tiene influencia sobre el proceso debido a que la concentración de O2 es constante. 6. Las condiciones de operación óptimas para llevar a cabo el proceso de combustión de la microalga NG fueron: masa inicial de muestra de 10 mg con un tamaño de partícula de 100-250 µm, caudal de O2 de 100 ml/min y velocidad de calentamiento de 40ºC/min. 7. En las curvas TGA-DTGA del proceso de gasificación se pueden observar las distintas variables estudiadas. Un aumento en la temperatura de gasificación produce un aumento en los valores de reactividad y conversión. La reactividad aumenta y la conversión disminuye cuando la masa inicial de muestra disminuye y la porosidad de la muestra aumenta. Al aumentar el caudal de Ar, disminuye la conversión y aumenta la reactividad, al igual que ocurre al aumentar el % de vapor de agua. 49 Descripción del trabajo realizado 8. Las condiciones de operación óptimas para llevar a cabo el proceso de gasificación de la microalga NG fueron: temperatura de gasificación de 850ºC, 20 mg de muestra inicial con un tamaño de partícula de 100-250 µm en presencia de 200 ml/min de Ar y un 5% de vapor de agua. 9. El estudio TGA-MS del proceso de pirólisis permitió obtener la distribución de los productos generados en el mismo. Se identificaron principalmente tres etapas. En la primera, se desprendió agua a temperaturas < 160ºC. Posteriormente, en un rango de temperaturas entre 160 y 450ºC se identificaron la mayor parte de los componentes, siendo el principal compuesto detectado el CH3+ debido a la descomposición de los grupos carboxilos en las proteínas y los polisacáridos, junto con HCN, CH4N, CO2, C3H8N, CO, C6H6 y otros hidrocarburos volátiles como C2H5, C2H2 y CH4. Los compuestos nitrogenados son liberados debido a la degradación térmica de las proteínas. Finalmente, a temperaturas > 450ºC se produce la liberación de H2. 10. En el proceso de combustión también se pueden observar tres etapas en la liberación de las emisiones gaseosas. En la primera etapa, se desprendió agua a temperaturas < 125ºC. Posteriormente, se produce la liberación de los compuestos CO2, SO2, NO2, C3H8N y NH3 en la segunda etapa del proceso. Finalmente, a temperaturas > 450ºC se produce la liberación de H2, NH3, NO2, CO y CH3+. Cabe destacar que en este proceso el compuesto con el pico de mayor intensidad es el CO2 y la liberación de SO2 puede atribuirse a los radicales sulfatos existentes en los polisacáridos y a la degradación de los sulfuros en los residuos orgánicos. 11. Mediante la comparación de las curvas del MS de los procesos de pirólisis y combustión es posible evaluar el efecto de la presencia de oxígeno en la degradación térmica o liberación de productos. En la combustión de la microalga se produjo una mayor cantidad de CO2, observándose además, a 50 Descripción del trabajo realizado diferencia del proceso de pirólisis, emisiones de NO2 y SO2. Sin embargo, los hidrocarburos volátiles como CH4, C2H2 y C2H5 no se generaron durante el proceso. 12. Los principales productos que se detectaron en el proceso de gasificación fueron CO2, CO y H2, junto con trazas de hidrocarburos ligeros como CH4, C2H6, C2H5, C2H4 y C2H2. Además, se estudió la influencia de la concentración de vapor en la distribución de productos emitida. A medida que se incrementa la cantidad de vapor en el medio, también lo hace la concentración de H2 y se produce la disminución de la producción de CH4. Con objeto de ampliar y completar los resultados obtenidos en esta investigación se recomienda: - Investigar otros procesos menos comunes pero que pueden tener un gran interés medioambiental como puede ser la oxy-combustión con CO2 y atmósfera deficiente de O2. - Escalar los experimentos de pirólisis, combustiión y gasificación en sistemas experimentales para validar los resultados obtenidos mediante TGA-MS - Uso de catalizadores para incrementar la generación de productos de interés, como puede ser el H2 en el proceso de gasificación. - Testeo de diferentes aceites de origen vegetal en la planta piloto diseñada y optimizada para su uso en plantas termosolares de concentración. - Evaluación de los aceites usados en el proceso de combustión, gasificación y pirólisis en el sistema experimental TGA-DSC-MS. 51 Descripción del trabajo realizado E. BIBLIOGRAFÍA [1] I.D.A.E. Instituto para la Diversificación y el Ahorro de Energía. Biomasa. (http://www.idae.es/index.php/idpag.233/relcategoria.1037/relmenu.48/mod.pags/me m.detalle). [2] Harun, N.Y., Afzal, M.T. 2010. Thermal decomposition kinetics of forest residue. Journal of Applied Sciences, 10(12), 1122-7. [3] WEC. World Energy Council 2010. Survey of Energy Resources. [4] McKendry, P. 2002. Energy production from biomass (part 1): Overview of biomass. Bioresource Technology, 83(1), 37-46. [5] Basu, P. 2010. Biomass Gasification and Pyrolysis: Practical Design and Theory. Elsevier Science. [6] Bidlack, J., Malone, M., Benson, R. 1992. Molecular Structure and Component Integration of Secondary Cell Walls in Plants. [7] Catallo, W.J., Shupe, T.F., Eberhardt, T.L. 2008. Hydrothermal processing of biomass from invasive aquatic plants. Biomass and Bioenergy, 32(2), 140-5. [8] Patil, V., Tran, K.Q., Giselrød, H.R. 2008. Towards sustainable production of biofuels from microalgae. International Journal of Molecular Sciences, 9(7), 1188-95. [9] Miao, X., Wu, Q. 2006. Biodiesel production from heterotrophic microalgal oil. Bioresource Technology, 97(6), 841-6. [10] Chisti, Y. 2007. Biodiesel from microalgae. Biotechnology Advances, 25(3), 294-306. [11] Xu, H., Miao, X., Wu, Q. 2006. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology, 126(4), 499-507. [12] Babich, I.V., van der Hulst, M., Lefferts, L., Moulijn, J.A., O'Connor, P., Seshan, K. 2011. Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels. Biomass and Bioenergy, 35(7), 3199-207. 52 Descripción del trabajo realizado [13] Bae, Y.J., Ryu, C., Jeon, J.K., Park, J., Suh, D.J., Suh, Y.W., Chang, D., Park, Y.K. 2011. The characteristics of bio-oil produced from the pyrolysis of three marine macroalgae. Bioresource Technology, 102(3), 3512-20. [14] Phukan, M.M., Chutia, R.S., Konwar, B.K., Kataki, R. 2011. Microalgae Chlorella as a potential bio-energy feedstock. Applied Energy, 88(10), 3307-12. [15] Demirbas, A. 2011. Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems. Applied Energy, 88(10), 3541-7. [16] Brown, M.R., Jeffrey, S.W., Volkman, J.K., Dunstan, G.A. 1997. Nutritional properties of microalgae for mariculture. Aquaculture, 151(1-4), 315-31. [17] Ross, A.B., Biller, P., Kubacki, M.L., Li, H., Lea-Langton, A., Jones, J.M. 2010. Hydrothermal processing of microalgae using alkali and organic acids. Fuel, 89(9), 2234-43. [18] Yaman, S. 2004. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management, 45(5), 651-71. [19] Sanchez-Silva, L., López-González, D., Villaseñor, J., Sánchez, P., Valverde, J.L. 2012. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresource Technology, 109, 163-72. [20] Brown, M.R. 1991. The amino-acid and sugar composition of 16 species of microalgae used in mariculture. Journal of Experimental Marine Biology and Ecology, 145(1), 79-99. [21] Renaud, S.M., Thinh, L.V., Parry, D.L. 1999. The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture, 170(2), 147-59. [22] Demirbaş, A., Arin, G. 2002. An overview of biomass pyrolysis. Energy Sources, 24(5), 471-82. [23] Quaark, P., Knoef, H., Stassen, H.E. 1999. Energy from Biomass: A Review of Combustion and Gasification Technologies. WORLD BANK PUBN. [24] 2012. Review of the Literature on Catalytic Biomass Tar Destruction: Milestone Completion Report. BiblioBazaar. 53 Descripción del trabajo realizado [25] Brown, M.E., Gallagher, P.K. 2011. Handbook of Thermal Analysis and Calorimetry: Recent Advances, Techniques and Applications. Elsevier Science. [26] White, J.E., Catallo, W.J., Legendre, B.L. 2011. Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. Journal of Analytical and Applied Pyrolysis, 91(1), 1-33. [27] Yang, H., Yan, R., Chen, H., Zheng, C., Lee, D.H., Liang, D.T. 2006. In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin. Energy and Fuels, 20(1), 388-93. [28] Grønli, M., Antal Jr, M.J., Várhegyi, G. 1999. A round-robin study of cellulose pyrolysis kinetics by thermogravimetry. Industrial and Engineering Chemistry Research, 38(6), 2238-44. [29] Lin, Y.C., Cho, J., Tompsett, G.A., Westmoreland, P.R., Huber, G.W. 2009. Kinetics and mechanism of cellulose pyrolysis. Journal of Physical Chemistry C, 113(46), 20097-107. [30] Nakamura, T., Kawamoto, H., Saka, S. 2007. Condensation reactions of some lignin related compounds at relatively low pyrolysis temperature. Journal of Wood Chemistry and Technology, 27(2), 121-33. [31] Liu, Q., Wang, S., Zheng, Y., Luo, Z., Cen, K. 2008. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis. Journal of Analytical and Applied Pyrolysis, 82(1), 170-7. [32] Rao, T.R., Sharma, A. 1998. Pyrolysis rates of biomass materials. Energy, 23(11), 973-8. [33] Stenseng, M., Jensen, A., Dam-Johansen, K. 2001. Investigation of biomass pyrolysis by thermogravimetric analysis and differential scanning calorimetry. Journal of Analytical and Applied Pyrolysis, 58-59, 765-80. [34] Caballero, J.A., Conesa, J.A., Font, R., Marcilla, A. 1997. Pyrolysis kinetics of almond shells and olive stones considering their organic fractions. Journal of Analytical and Applied Pyrolysis, 42(2), 159-75. [35] Zhang, C.C., Lu, H.J., He, Z. 2011. Combustion characteristics of biomass and its cellulose, Vol. 306-307. Jinan, pp. 143-6. 54 Descripción del trabajo realizado [36] Zhang, C., Lu, H., He, X. 2012. Combustion process's kinetics study of biomass and its cellulose based on biomaterials in material engineering, Vol. 568. Wuhan, pp. 328-31. [37] Collazo, J., Pazó, J.A., Granada, E., Saavedra, Á., Eguía, P. 2012. Determination of the specific heat of biomass materials and the combustion energy of coke by DSC analysis. Energy, 45(1), 746-52. [38] Kok, M.V., Özgür, E. 2013. Thermal analysis and kinetics of biomass samples. Fuel Processing Technology, 106(0), 739-43. [39] Amutio, M., Lopez, G., Aguado, R., Artetxe, M., Bilbao, J., Olazar, M. 2012. Kinetic study of lignocellulosic biomass oxidative pyrolysis. Fuel, 95, 305-11. [40] Chen, C., Ma, X., Liu, K. 2011. Thermogravimetric analysis of microalgae combustion under different oxygen supply concentrations. Applied Energy, 88(9), 3189-96. [41] Shabbar, S., Janajreh, I. 2013. Thermodynamic equilibrium analysis of coal gasification using Gibbs energy minimization method. Energy Conversion and Management, 65, 755-63. [42] Tay, H.L., Kajitani, S., Zhang, S., Li, C.Z. 2013. Effects of gasifying agent on the evolution of char structure during the gasification of Victorian brown coal. Fuel, 103, 22-8. [43] Mohammed, M.A.A., Salmiaton, A., Wan Azlina, W.A.K.G., Mohamad Amran, M.S. 2012. Gasification of oil palm empty fruit bunches: A characterization and kinetic study. Bioresource Technology, 110, 628-36. [44] Khalil, R., Várhegyi, G., Jäschke, S., Grønli, M.G., Hustad, J. 2009. CO2 gasification of biomass chars: A kinetic study. Energy and Fuels, 23(1), 94-100. [45] Mani, T., Mahinpey, N., Murugan, P. 2011. Reaction kinetics and mass transfer studies of biomass char gasification with CO2. Chemical Engineering Science, 66(1), 36-41. [46] Gómez-Barea, A., Ollero, P., Fernández-Baco, C. 2006. Diffusional effects in CO2 gasification experiments with single biomass char particles. 1. Experimental investigation. Energy and Fuels, 20(5), 2202-10. 55 Descripción del trabajo realizado [47] Huang, Y.F., Kuan, W.H., Chiueh, P.T., Lo, S.L. 2011. Pyrolysis of biomass by thermal analysis-mass spectrometry (TA-MS). Bioresource Technology, 102(3), 352734. [48] Barneto, A.G., Carmona, J.A., Alfonso, J.E.M., Blanco, J.D. 2009. Kinetic models based in biomass components for the combustion and pyrolysis of sewage sludge and its compost. Journal of Analytical and Applied Pyrolysis, 86(1), 108-14. [49] Li, X., Matuschek, G., Herrera, M., Wang, H., Kettrup, A. 2003. A study on combustion of Chinese coals by TA/MS. Journal of Analytical and Applied Pyrolysis, 67(2), 393-406. [50] Yoon, H.C., Pozivil, P., Steinfeld, A. 2012. Thermogravimetric pyrolysis and gasification of lignocellulosic biomass and kinetic summative law for parallel reactions with cellulose, xylan, and lignin. Energy and Fuels, 26(1), 357-64. [51] Aghamohammadi, N., Nik Sulaiman, N.M., Aroua, M.K. 2011. Combustion characteristics of biomass in SouthEast Asia. Biomass and Bioenergy, 35(9), 3884-90. [52] Fang, M.X., Shen, D.K., Li, Y.X., Yu, C.J., Luo, Z.Y., Cen, K.F. 2006. Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using TG-FTIR analysis. Journal of Analytical and Applied Pyrolysis, 77(1), 22-7. [53] Haykiri-Açma, H. 2003. Combustion characteristics of different biomass materials. Energy Conversion and Management, 44(1), 155-62. [54] Miao, X., Wu, Q., Yang, C. 2004. Fast pyrolysis of microalgae to produce renewable fuels. Journal of Analytical and Applied Pyrolysis, 71(2), 855-63. [55] Dote, Y., Sawayama, S., Inoue, S., Minowa, T., Yokoyama, S.y. 1994. Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction. Fuel, 73(12), 1855-7. [56] Bradshaw, R.W., Cordaro, J.G., Siegel, N.P. 2009. Molten nitrate salt development for thermal energy storage in parabolic trough solar power systems. Conference Molten nitrate salt development for thermal energy storage in parabolic trough solar power systems, 2, 615-24. [57] Kearney, D., Herrmann, U., Nava, P., Kelly, B., Mahoney, R., Pacheco, J., Cable, R., Potrovitza, N., Blake, D., Price, H. 2003. Assessment of a molten salt heat 56 Descripción del trabajo realizado transfer fluid in a parabolic trough solar field. Journal of Solar Energy Engineering, Transactions of the ASME, 125(2), 170-6. [58] Valkenburg, M.E.V., Vaughn, R.L., Williams, M., Wilkes, J.S. 2005. Thermochemistry of ionic liquid heat-transfer fluids. Thermochimica Acta, 425(1-2), 181-8. [59] Wu, B., Reddy, R.G., Rogers, R.D. 2001. Novel ionic liquid thermal storage for solar thermal electric power systems. Proceedings of the Solar Forum 2001 Solar Energy, 445-51. [60] Jakab, E., Till, F., Várhegyi, G. 1991. Thermogravimetric-mass spectrometric study on the low temperature oxidation of coals. Fuel Processing Technology, 28(3), 221-38. [61] Jones, J.M., Harding, A.W., Brown, S.D., Thomas, K.M. 1995. Detection of reactive intermediate nitrogen and sulfur species in the combustion of carbons that are models for coal chars. Carbon, 33(6), 833-43. 57 Chapter 1: PYROLYSIS,COMBUSTION AND GASIFICATION CHARACTERISTICS OF NANNOCHLOROPSISGADITANA MICROALGAE Pyrolysis, combustion and gasification ofNannochloropsisGaditanamicroalgae (NG characteristics microalgae)were investigatedby thermogravimetric analysis (TGA).NG microalgae pyrolysis and combustion could be divided into three main stages: dehydration, proteins and polysaccharides degradation and char decomposition. The effects of the initial sample mass, particle size and gas flow on the pyrolysis and combustion processes were studied. In addition, gasification operation conditions such as temperature, initial sample mass, particle size, sweep gas flow and steam concentration, were experimentally evaluated. Chapter 1 Theevolved gases were analyzed online using mass spectroscopy (MS).In pyrolysis and combustion processes, most of the gas products were generated at the second degradation step. N-compounds evolution was associated with the degradation combustion of proteins. could Furthermore, be related SO2releasefrom tosulphated polysaccharidesdecomposition.The main products detected during gasification wereCO2, CO, H2, indicating that oxidation reactions, water gas and water gas shift reactions,were predominant. 1.1. INTRODUCTION. Recently,the utilization of biomass for transport fuels, chemical commodities, power generation and reduction of CO2 emissions is growing interest[1]. Thus, biomass has the potential of being an important renewable energy source. Algae are a very promising biomass for the following reasons: a high growth rate, high yield per area, high efficiency in CO2 capture and solar energy conversion and no competition with food agriculture. In addition, they can be grown in open water (sea water or ponds) and in bio-photo reactors on non-arable lands[2]. The generic term microalgae refer to a large group of very diverse photosynthetic micro-organisms of microscopic dimensions. They have received more attention than 63 Chapter 1 macroalgae for biofuels production, which can be cultured in ponds or photobioreactors with supply of nutrients or wastewater . Moreover, the production of microalgae does not require of high quality arable land and therefore it does not compete with food crops. Generally, microalgae varied in their proportions of protein (6-52 wt.%), carbohydrate (5-23 wt.%) and lipid (7-23 wt.%). Eustigmatophytes are rich in one or both of the 20:5(n-3) and 22:6(n-3) polyunsaturated fatty acids. According to Ross et al. (2009), microalgae with high lipid content could be a future source of third generation biofuels and chemicals.The oil content itself can be estimated to be 64.4 % of the total lipid component. Thus, Nannochloropsis Gaditana (NG) microalgae, belongs to Eustigmatophytes microalgae specie, have been proposed as a candidate to carry out this study. Interest towards the quality and characteristics of bio-oil from microalgae is revived nowadays, due to growing concerns over emissions, energy supply, oil prices and availability [2]. The conversion technologies for utilizing microalgae biomass can be divided into two basic categories of conversion: thermochemical and biochemical . Thermal technologies to process algae include direct combustion, pyrolysis and gasification. Combustion is the conversion of biomass fuels to several forms of useful energy in the presence of air or oxygen. Pyrolysis is a process that can be employed to convert algal biomass material into biofuel and gas in the absence of air or oxygen 64 Chapter 1 (350-700ºC). Gasification involves the partial oxidation of biomass into a combustible gas at high temperatures (800-900ºC). On the other hand, biological processes can allow the conversion of biomass into other fuels by means of anaerobic digestion, alcoholic fermentation and photobiological hydrogen production. Despite its inherent potential as a biofuel resource, the commercial viability of algal biofuel technology has not been achieved yet. A large number of researches on microalgae pyrolysis have been carried out in recent years[2-4].Very few studies have been focused on the combustion ofmicroalgae. Chen et al., (2011) reported the combustion behavior of Chlorella vulgaris microalgae under different oxygen concentrations by thermogravimetric analysis (TGA). Furthermore, Tang et al. [5] investigated the combustion of Chlorella protothecoides microalgae in N2/O2 and CO2/O2 atmospheres by means of same technique. [6]studied the effects of temperature in the combustion of marine algae. However, at the best of our knowledge, the gasification process of marine biomass has not been explored yet. The pyrolysis behavior of brown algae has been investigated using thermogravimetry and pyrolysis-GC-MS (PY-GC/MS) [1; 7] and thermogravimetrydifferential scanning calorimetry (TG/DSC) [3]. During the process of thermochemical conversion of biomass, the composition of the gas emissions should be determined before industrial application. In this sense, the 65 Chapter 1 evolution with time on stream of the volatile products evolved in the marine biomass pyrolysis or combustion processes has been carried out using the on-line combination of TGA and Fourier Transform Infrared Spectrometry (FTIR) [8]and thermal analysismass spectrometry (TA-MS) [9; 10]. As aforementioned, thermogravimetric analysis coupled with mass spectrometry (TGA-MS) could be a useful technique to obtain information at real-time of mass loss and evolved gases for pyrolysis, oxidation and gasification processes. The aim of the present study was to investigate the pyrolysis, combustion and gasification characteristics of theNannochloropsisGaditanamicroalgae by means of TGA.In addition, the effects of different operation conditions were studied. Moreover, evolved gases for the thermochemical conversion of NGmicroalgae were also evaluated using the MS technique. 1.2. EXPERIMENTAL 1.2.1. Materials NannochloropsisGaditana(NG microalgae) from Alga EnergyCompany was used in this work. It was collected in Cadiz Bay (Spain) and delivered in green powder with 100 µm average particle size.Its composition in dry basis is about 17.6 wt. % of lipids, 12.6 wt. % of fatty acids and 24.1 wt.% of proteins. The proximate and ultimate analyses of the NG microalgae are shown in Table 1.The proximate analyses were carried outaccording to the technical specifications UNE-EN UNE-EN 14775:2010, UNE-EN 15148:2010 and UNE-EN 1474-2 for ash, 66 Chapter 1 volatile matter and moisture determination, respectively. Metal salts contained in biomass have a significant impact on the thermal conversion processes[4]. In this research, the content of metals in the sample was determined by Inductively Coupled Plasma Spectrometry (ICP) (Table 1). Table 1.Proximate, ultimate analysis and mineral content determined by ICP of the NannochloropsisGaditanamicroalgae. Ultimate analysis (wt.%) Biomass C H N S O a 47.26 7.03 6.72 0.49 38.5 Proximate analysis (wt. %) NannochloropsisGaditan a Moisture Ash Volatile matter Fixed Carbon 5.12 10.68 75.91 8.29 Mineral content (ppm) a Ca Fe 8652 170 5 7 Na K P Mg Zn 189 23817 1385 9042 2 127 % of oxygen calculated from difference of C, H, N and S. 67 Chapter 1 Figure 1 shows the particle size distribution of theNG microalgae sample.The morphology and the overall appearance of sample are shown in Figure SS2.. Figure 1.NG microalgae particle size distribution a) 68 b) c) Chapter 1 Figure SS2. (a) SEM micrograph of NG microalgae sample. (b) SEM micrographs of the resulting char after the devolatilization step for 25-50 µm and (c) SEM micrographs of the resulting char after the devolatilization step for >250 µm. 1. 2.2. Equipment and Procedures Pyrolysis, combustion and gasification experiments were carried out in a TGA apparatus (TGA-DSC 1, METTLER TOLEDO). Each sample was analyzed at least three times, being the average value recorded. The experimental error in theweight loss and temperature measurements was ± 0.5% and ± 2 ºC, respectively. 1.2.2.1. Thermal Analysis for the Pyrolysis process The sample was heated from 40 to 1200ºC at a heating rate of 40 ºC/min under Argon (99.996 %) atmosphere. Initial sample weight, Argon flow rate and particle size of the sample were varied in order to obtain the most suitable operating conditions to avoid the effects of heat and mass transfer limitations. 1.2.2.2. Thermal Analysis for the Combustion process The sample was preheated at 125 ºC for 10 min in order to remove the moisture content.Subsequently, the sample was heated from 125 to 1000 ºC under a reactive atmosphere of pure oxygen (99.99 %). Initial sample weight, oxygen flow rate and particle size of the sample were evaluated in order to obtain the most suitable 69 Chapter 1 operating conditions to avoid the effects of heat and mass transfer limitations. Finally, the oxygen concentration was evaluated. On this account, experiments were performed under atmospheres containing 20 %, 40 %, 60% and 80 % of Oxygen in Argon. 1.2.2.3. Thermal Analysis for the Gasification process Figure SS1 shows the experimental set-up used for the gasification process. Gasification experiments were conducted in the presence of water vapor generated by a bubbler system. Ar was bubbled through degassed water heated to different temperatures. The effect of the gasification temperature, initial sample weight, Argon flow rate, particle size of the sample and water vapour concentration were evaluated. The gasification of the sample was performed in three steps: • Drying: the sample was heated in an inert atmosphere of pure Ar from 30 to 125 ºC at a heating rate of 15 ºC/min. • Pyrolysis: the sample was heated from 125 ºC to the operating temperature at a heating rate of 40 ºC/min. Ar was used as the carrier gas (200 ml/min (25 ºC, 0.9 atm)). • Gasification: the char obtained in the pyrolisis process was later gasified with the reactive gas mixture (Ar + H2O) at the test temperature for one hour. In this paper, X was the char conversion, which is defined as: = 70 − (eq. 1) Chapter 1 where w and w0 are the weight of char at any instant and at initial conditions, respectively. The reactivity R(s-1) was defined as: = 1 − ∙ = 1 1− (eq. 2) The reactivity at 50% char conversion was taken as a representative value[11]. FIC PC Ar FIC CO 1 0 O1 N2 O2 He Bubbling system Bubble Flow meter TGA Flow meter Thermobalance (TGA) Mass spectrometer (MS) PC 71 Chapter 1 Figure SS1. Experimental set-up for the gasification process. 1.2.2.4. TGA-MS Analysis of the Gaseous Products The analysis of the gas products distribution coming from the thermal analysis was carried out in a thermogravimetricanalyzer (TGA-DSC 1; METTLER TOLEDO) coupled to a mass spectrometer (Thermostar-GSD 320/quadrupole mass analyzer; PFEIFFER VACUUM) with an electron ionization voltage at 70 eV and provided mass spectra up to 300 a.m.u. The interface was wrapped with heating wire to circumvent condensation of exhausting gases. Pyrolysis, combustion and gasification experiments were carried out under the selected operating conditions. In order to identify ions with m/z in the range 0-300, a preliminary broad scan was performed at a heating rate of 40 ºC/min. Although a quantitative analysis was not performed in this work, a comparison of the intensity peak areas between different samples (semiqualitative analysis) was carried out by using a normalization procedure. The method used in this work was based on the relative integrated peak linear intensity normalized to total integrated peak linear intensities and to sample weight (eq. 3), that are reported elsewhere [12; 13]. ( ) = (eq. 3) ((∑ )∙ ) where R(Int)i is the relative integrated peak linear intensity, Inti is the integrated intensity of a gas species, and m is the mass of the sample. Ion fragments with R(Int) 72 Chapter 1 < 0.5 nA min/mg were not considered as their intensity is considered to be too close to the noise level [13]. 1.2.2.5. Scanning electron microscopy (SEM) observation. The surface features and porosity of samples were evaluated usingQuanta 250 (LFD) SEMequipped with an energy dispersive X-ray spectroscopy (EDS). 1.3. RESULTS AND DISCUSSION 1.3.1. Pyrolysis of the NG microalgae Figure 2 shows the weight loss curvesof the pyrolysis of NG microalgae for different initial sample weights, particle sizes and sweep gas flows at a heating rate of 40ºC/min. Table 2 summarizes the most relevant pyrolytic characteristics of NG microalgae. 100 (a) 60 0.3 40 0.2 20 0.1 0 100 80 Weight (%) 0.4 0.0 0.5 25-50 µm 50-100 µm 100-250 µm > 250 µm (b) 0.4 60 0.3 40 0.2 20 0.1 0 100 0.0 0.5 80 50 ml/min 100 ml/min 150 ml/min 200 ml/min (c) 0.4 60 0.3 40 0.2 20 0.1 0 100 200 300 400 500 600 Temperature (ºC) 700 0.0 800 Weight loss rate (% wt./ºC) 80 0.5 4 mg 7 mg 9 mg 15 mg 24 mg 73 Chapter 1 Figure 2.Thermogravimetric (TGA) and differential thermogravimetric (DTG) curves of the NG microalgae pyrolysis process as a function of: (a) initial weight, (b) particle size and (c) gas flow rate at a heating rate of 40 ºC/min. 74 Chapter 1 Table 2.Pyrolysis characteristics of the Nannochloropsisgaditana microalgae at different conditions. Pyrolysis Initial sample weight (mg) * T pyr (ºC) ** Tm (ºC) (dw/dT)max (wt. %/ ºC) *** Residue yield (wt. %) 1st peak 2nd peak 1st peak 2nd peak Particle size (µm) Gas flow (ml/min) 4 156 67 295 0.1 0.49 7 163 69 305 0.07 0.47 9 167 68 307 0.07 0.46 15 172 70 315 0.07 0.44 24 195 74 317 0.06 0.44 25-50 165 65 304 0.08 0.45 50-100 165 71 307 0.06 0.46 100-250 166 75 308 0.05 0.46 > 250 166 74 309 0.05 0.45 50 169 69 309 0.08 0.46 100 164 69 310 0.07 0.45 150 169 67 309 0.02 0.45 200 166 66 307 0.07 0.46 15.75 19.35 20.24 21.90 22.80 20.69 20.57 21.37 20.90 20.19 20.22 20.29 20.32 * Temperature at which pyrolysis started. Temperature at which a peak in the DTG curve was observed. *** Maximum weight loss rate. ** 75 Chapter 1 In good agreement with literature [3; 7-9], the thermogravimetric (TGA) and differential thermogravimetric (DTG) curves revealed three degradation steps common to all studied work conditions.The first stage (40-160ºC) was associated with a small weight loss due to dehydration (cellular water and external water). The second stage represented the main devolatilization reactions, where most of the sample weight was lost as volatile matter (160-450 ºC). Three shoulders canbe distinguished in this stage, being the low-temperature peak (180 ºC)mainly associated to the degradation of protein and soluble polysaccharide whereas the higher temperature peaks (271 and 411 ºC) would correspond to the degradation of crude cellulose in the cell wall, other insoluble polysaccharides and crude lipid[14]. Finally, the laststagetook place at temperatures above 450 ºC leading to char formation[8]. The effect of the initial mass of the sample on the NG microalgae pyrolysis was also examined (Figure 2a). Experiments were performed using different initial sample weights (4-24 mg) with particle sizeof 100-250 µm. Argon flow rate was fixed at200 ml/min (25 ºC, 0.9 atm). In agreement with Antal (1998) and Stenseng et al. (2001), increasing sample mass shifts the pyrolysis process to higher temperatures turning into higher residue yields (from 16 to 23 wt.%). The height of the DTG peaks decreasedwhereas the width increased withincreasing sample weights. However, TGA/DTG curves for weights of 7 and 9 mg overlapped, indicating negligible internal-thermal and external-mass transfer limitations. As described by Antal (1998), the lower peak height would correspond with the increase in the peak width and ahigher char yield. 76 Chapter 1 Therefore, high mass loadings caused heat-transfer and mass-transfer problems delaying the pyrolytic process[15]. In addition, the shape of the peak was slightly distorted at the high mass sample[15]. On the basis of the results described above, initial mass sample of 9 mg was selected for the following experiments. Figure 2b shows TGA/DTG plots versus temperature obtained from the pyrolysis of the NG microalgae at different particle sizes (25-50, 50-100, 100-250 and >250 µm) with initial mass of 9 mg and Ar flow rate of 200 ml/min (25 ºC, 0.9 atm). In all cases,the second and third stagesof thepyrolyticTGA/DTG profiles were similar for the second and third stages. However, the first stage was delayed for sample sizesbigger than 50µm. According to Mani et al. (2010), this fact could be attributed to the fact thatsmaller particles have larger surface area leading to less diffusion resistance for the pyrolysis reaction.On the other hand, the residueproduced (≈21 wt.%)remained constant regardless of the particle sizeused(Table 2). Therefore, a particle size of 100-250 µmwas selected to avoid the grinding or milling of the sample due to the NG microalgae sample had a narrow particle size distribution centered on this particle size range (Figure 1a). TGA/DTG curves for different sweep gas flows (50, 100, 150 and 200 ml/min) (25 ºC, 0.9 atm) using initial mass of 9 mg and a particle size range of 100-250 µm are shown in Figure 2c. As it canbe seen, the gas flow did not affect the pyrolysis outcomes [15]. In all cases, the amount of residue obtainedwas practically constant (20 wt.%). However, higher sweep gas flows were required in order to avoid secondary reactions due to long residence times inside the TGA[16]. 77 Chapter 1 1.3.2. Combustion of the NG microalgae The effect of the initial sample weight, the particle size and the oxygen gas flow at a heating rate of 40ºC/min on the NG microalgae combustion is shown in Figure 3. 3.5 25-50 µm 50-100 µm 100-250 µm > 250 µm 3.0 80 60 1.5 60 2.0 40 1.0 40 1.5 20 0.5 0 0.0 100 0.7 80 0.6 0.5 60 0.4 40 0.3 20 0.5 0 0.0 100 9 80 0.8 40 % O2 0.88 0.7 60 % O2 1.16 60 80 % O2 1.32 0.6 100 % O2 1.37 0.5 0.4 40 0.3 0.2 20 0.1 0 200 300 400 500 600 Temperature (ºC) 700 0.0 800 0.9 S* 10 20 % O2 0.65 0.2 20 2.5 1.0 Weight (%) 50 ml/min 100 ml/min 150 ml/min 200 ml/min Weight loss rate (% wt./ºC) 2.0 80 Weight (%) 100 2.5 4 mg 8 mg 10 mg 17 mg 24 mg Weight loss rate (% wt./ºC) 100 0.1 0 200 300 400 500 600 700 0.0 800 Temperature (ºC) Figure 3.TGA/DTG profiles for the NG microalgae combustion process as a function of: (a) initial weight, (b) particle size and (c) gas flow rate at a heating rate of 15 ºC/min. As reported by other authors [17-19], the combustion of NG microalgae took place inthree stages. The first stage occurred in the 30-125 ºC range,which corresponded to the loss of free water and water loosely bound to biomolecules. In this process, the cell structure was progressively destroyed, and phenomena such as alteration of lipid structures and protein thermal unfolding occurred. The second one, ranging from 180 to 450 ºC, was characterized by a major weight loss, which involved the decomposition of proteins and carbohydrates[10; 20]leading to the char formation. Finally, the last stage(450-600 ºC) corresponded to the oxidation of the formed 78 Chapter 1 remaining char.At the end of this stage, it was observed that between 25 and 8 wt.% of the char was not completely oxidized, depending on the conditions used.The main thermogravimetric features in the combustionof NG microalgae aresummarizedin Table 3.The influence of the initial weightwas investigated under oxygen atmosphere for different initial masses (4, 8, 10, 17 and 24 mg)of the NG microalgae samplewith particle sizeranging from100 to 250 µm and an oxygen flow rate of 100 ml/min (25 ºC, 0.9 atm)(Figure 3a). The initial weight had a significant effect on the thermal degradation behavior. In agreement with some studies reported in the literature [21; 22], the higher the sample weight, the lower both the temperature needed for the combustion process and the residue yields were (from 25 to 14 wt.%). Likewise, the DTG peaks heightincreased and the width decreased with increasing sample weights. As observed for the pyrolysis process, TGA/DTG curves for sample weights of 8 and 10 mg overlapped, indicating negligible internal-thermal and external-mass transfer limitations[15]. On the basis of the results discussedabove, a sample weight of10 mg was chosen for the experiments of the next section in order to ensure the detection of the gas products distribution coming from the combustion of the NG microalgae by means of a mass spectrometer. 79 Chapter 1 Table 3.Combustion characteristics of the Nannochloropsisgaditana microalgae at different conditions. Combustion Initial sample weight (mg) Particle size (µm) Gas flow (ml/min) OxygenConcentration (%) 4 8 10 18 24 2550 50100 100250 > 250 50 100 150 200 20 40 60 80 Td (ºC)* 199 202 203 206 207 202 203 206 204 204 199 202 201 206 203 203 201 200 To (ºC)** 481 472 472 470 466 475 477 477 481 474 476 480 482 502 496 491 486 478 Tf(ºC)*** 616 614 610 607 603 618 630 635 646 632 625 630 622 685 645 638 630 623 253 247 247 240 242 289 260 259 263 252 252 250 250 270 263 258 256 253 2 stag e 541 519 520 495 485 503 524 523 537 524 525 525 525 560 553 538 530 525 3rdstage 847 896 900 931 954 891 888 910 914 911 905 912 916 902 905 905 903 903 (dw/dT)max 1ststage 0.34 0.38 0.38 0.49 1.03 0.39 0.37 0.37 0.33 0.41 0.42 0.42 0.35 0.35 (wt. %/ ºC)***** 2ndstag e 0.41 0.65 0.63 2.38 2.36 3.47 0.67 0.76 0.50 0.66 0.67 0.66 0.42 0.53 3rdstage 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.06 0.05 0.05 0.05 0.06 0.06 25.3 4 18.9 1 17.1 4 14.4 3 13.9 4 19.50 12.53 12.75 13.64 10.0 1 10.3 6 10.1 0 10.1 8 10.2 6 1ststage Tm (ºC)**** Residue yield (wt. %) db nd 0.4 1 0.5 9 0.0 4 8.3 2 0.3 6 0.3 3 0.0 6 8.2 8 * Temperature at which initial decomposition took place, ** Temperature at which combustion started, *** Temperature at which combustion ended.,****Temperature at which a peak in the DTG curve was observed, *****Maximum weight loss rate, dbDry basis 80 100 0.3 6 0.5 8 0.0 6 0.3 7 0.6 3 0.0 5 9.4 8 9.5 9 Chapter 1 The effect of the particle size on the combustion of the NG microalgae was studied for four different particle sizes (25-50, 50-100, 100-250 and >250 µm) usingan initial weightof 10 mg and an oxygen flow rate of 100 ml/min (Figure 3b). According to the TGA/DTG curves, the most reactive sample was the NG microalgae with the smallest particle size(25-50 µm). In addition, the residue yield was slightly reduced at higher particles sizes (from 19 to 13 wt.%).Chouchene et al. (2010) noted that the char oxidation of the finest particles samplestook place at lower temperaturesthan those corresponding to higher sizes. These results are in agreement with those reported in previous works focused on the study of the influence of the particle size on biomass combustion[18; 23].Finally, TGA/DTG profiles for particle sizesranging from 50 to 100 andfrom 100 to 250 µm overlapped. Figure 3c shows TGA/DTG curves of the NG microalgae for different pure oxygen gas flows (50, 100, 150 and 200 ml/min) (25 ºC, 0.9 atm), an initial sample weight of 10 mg and particle sizesranging from 100 to 250 µm. Regardless the oxygen flow rates used, the combustion TGA/DTG profiles remained practically the same. Thus, the combustion behavior of the NG microalgae was not significantly affected by the oxygen flow rate due to the oxygen concentration was kept constant anyway. The effect of oxygen concentration on the combustion of the NG microalgae was studied for five different oxygen concentration (20/80, 40/60, 60/40, 80/20 and 100/0 oxygen/Argon ratios) using an initial weight of 10 mg, a total flow rate of 100 ml/min and a particle size range of 100-250 µm (Figure 3.d). TGA-DTG profiles show that the first decomposition step (180-400 ºC) was not influenced by the oxygen 81 Chapter 1 concentration as the curves almost overlap. This phenomenon is attributed to the thermal decomposition of the sample is in the kinetic control zone, being mainly affected by the temperature, and the effect of oxygen concentration is almost negligible [17]. However, in the temperature range between 380 and 475 ºC a small peak appeared in the DTG curves for oxygen concentrations of 20, 40 and 60 % being unappreciated for higher values of oxygen concentration. The effect of the oxygen concentration is highly remarked between 480 and 600 ºC, where the oxidation of the char was taking place. As the oxygen concentration is increased both, the initial oxidation temperature and the peak temperature in the DTG curve shifted to lower temperatures, whereas the final temperature of oxidation was decreased. On the other hand, the maximum weight loss was higher for increasing values of oxygen (Table 3). Thus, the oxygen concentration enhanced the combustion of the remaining char. These results agreed well with literature [18; 24], being attributed to the fact that the combustion reaction of the NG microalgae is in the diffusion control zone and the oxygen concentration becomes the major influencing factor [24]. In these types of tests, combustion characteristic index S is usually used to evaluate the combustion behavior of biomass [24]. S is defined as follows: ( = ) ∙( ) (eq. 4) ∙ where (dw/dt)max and (dw/dt)mean are maximum and average mass loss rates, respectively. Ti and Tb are the ignition and burnout temperatures. It is established, than the bigger the value S is, the higher the combustion activity [24]. Figure 3.d shows the 82 Chapter 1 value of S for the different oxygen concentrations studied. It can be observed that S increased as the concentration of oxygen was increased. However, for oxygen concentrations above 60 %, the increasing trend of S was stabilized. Thus, optimum values of oxygen concentrations were found to be between 60 and 100 %. 1.3.3. Gasification of the NG microalgae Biomass gasification depends mainly on the biomass type and the operating conditions, such as particle size, char porosity, temperature and partial pressure of the gasifying agents [11; 25; 26]. The gasification process generally includes a devolatilization step (pyrolysis) and a char gasification step.The char obtained after the devolatilization step was later gasified.In this study, a devolatilization step was carried out by heating the samples from 125 to 850 ºC at a heating rate of 40ºC/min under Aratmosphere.Figure 4 displays the char conversion (X) vs timeon stream obtainedat different temperatures, initial sampleweights, particle sizes,Argongas flows and steam concentrations. Furthermore, Table 4 lists the most relevant gasification characteristics of the NG microalgae. 83 Chapter 1 100 100 (b) (a) 550ºC 650ºC 750ºC 850ºC 80 Conversion (%) Conversion (%) 80 60 40 60 40 7 mg 9 mg 15 mg 20 mg 20 20 0 0 0 10 20 30 40 50 0 60 10 20 Time (min) 100 100 (c) 40 50 60 (d) 80 Conversion (%) 80 Conversion (%) 30 Time (min) 60 40 25-50 µm 50-100 µm 100-250 µm > 250 µm 20 60 40 50 ml/min 100 ml/min 150 ml/min 200 ml/min 20 0 0 0 10 20 30 40 50 0 60 10 20 Time (min) 30 40 50 60 Time (min) 100 (e) Conversion (%) 80 60 40 3.7% 5.5% 7.3% 20 0 0 10 20 30 40 50 60 Time (min) Figure 4.Char conversion vs time plots for the NG microalgae gasification process as a function of (a) temperature (b) initial weight, (c) particle size, (d) gas flow rate and (e) water vapour concentrations at a heating rate of 40 ºC/min. 84 Chapter 1 Table 4.Gasification characteristics of the Nannochloropsisgaditana microalgae at different Nannocholoropsisgaditana (NG) Temperature(ºC) Time X50 (min) -1 4 Reactivities ((s )*10 ) Time X50 (min) -1 4 Reactivities ((s )*10 ) 550 650 750 850 >60 >60 >60 19.9 - Initial sample weight (mg) 9.1 7 9 15 20 7.1 9.8 25.8 30.2 18.3 16.4 9.2 Particle size (µm) 8.5 25-50 50-100 100-250 > 250 Time X50 (min) 32 30.2 24.2 23.6 Reactivities ((s-1)*104) 6.3 7.4 7.6 Gas flow (ml/min) 8.2 50 100 150 200 Time X50 (min) 33.0 30.1 27.9 24.4 Reactivities ((s-1)*104) 5.3 7.5 9.9 48.2 Water vapour concentration (%) Time X50 (min) Reactivities ((s-1)*104) 3.7 5.5 7.3 33 30.1 27.9 6.2 7.5 8.3 conditions. 85 Chapter 1 The effect of the temperature(550, 650, 750 and 850 ºC) on the NG microalgae chargasification was studied considering an initial weight of 9 mg, a particle size ranging from 100 to 250 µm,an Argon flow rate of 200 ml/min, a steam concentration of 5 vol.% in Argon and a heating rate of 40ºC/min. As expected, the higher the gasification temperature, the higher both, the char conversion and the reactivitywere. The same behavior was reported elsewhere[11; 25; 26].50% of char conversion at 850ºC was achieved after 20 min, whereas at lower temperatures this level of conversion was achieved after 60 min. In fact, for the period of 60 min, only 48% of the char was converted at 750 ºC. According to Mani et al. (2011), the char gasification at temperatures lower than 1000 ºC, the chemical reaction was the ratedetermining step.This way, 850 ºC was chosenas the gasification temperature for the following experiments due to the fact that a high amount of char is converted in less time. Figure 4b shows the conversionof the NG microalgae char in the gasification process versus time on stream for different initial weights (7, 10, 15 and 20 mg) at 850ºC for particle sizes ranging from 100 to 250 µm, an Ar flow rate of 200 ml/min (25 ºC, 0.9 atm), a steam concentration of 5 vol.%in Arand a heating rate of 40ºC/min. The reactivity increasedwith decreasing initial sample weights.It is clear that the sample weight had a significant influence on the time to reach a plateau in all conversion curves. In fact, a constant conversion (50%) for 7 mg was obtained after 18 86 Chapter 1 min, whereas for 20 mg was achieved after 30 min. As expected, the reactivity decreased with the sample weight. On the basis of the results described above, an initial weightof the sample of 20 mg was selected. This value allowed to achieve reproducible experimental TGA data and to improve the sensitivity of the mass spectrometer. The effect of the particle size on the gasification of the NG microalgae char was studied for four different particle sizes (25-50, 50-100, 100-250 and >250 µm)at 850ºC foran initial sample weight of 20 mg, an Ar flow rate of 200 ml/min (25 ºC, 0.9 atm), a steam concentration of 5 vol.% in Argon and a heating rate of 40ºC/min (Figure 4c).Among the particle size ranges investigated, the higher the particle size, the shorter the time to reach a constant conversion was.However, according to the reported literature [26; 27], the reactivity should decrease with increasing particle sizes as a consequence of an increase in the diffusion resistance in the gasification process.In order to explain this finding, the surface feature and the porosity of the resulting char after the devolatilization step for each particle size was evaluated bySEM analyses (Figure SS2). SEM micrographs clearly showed that the porosity increasedwith the particle size justifying this unexpected behavior.In order to confirm SEM results, Nitrogen adsorption-desorption isotherms were carried out to the samples according to J.A. Díaz procedure [28]. This way, bigger samples of the NG microalgae were pyrolyzed in a flux bed reactor keeping the same operating conditions (Ar flow rate of 200 Nml/min, heating rate of 40 ºC/min and a final temperature of 850 ºC) for obtaining a bigger amount of char. The results obtained 87 Chapter 1 backed up the SEM analyses showing than the char produced from the pyrolysis of the NG microalgae had a non-very porous structure. Isotherms obtained can be assigned to a type II according to the IUPAC classification with a small hysteresis loop due to capillary condensation [28]. Type II corresponds to non-porous materials. The char left from the minimum particle range sample was the least porous (0.006 g/cm3), and the sample within the maximum particle range shown the highest porosity (0.01 g/cm3).The increase in the sample porosity affected the profile of total conversiontime on stream relationship (Figure 4c). The reactivity increased with porosity due to the reduction in gasifying agent diffusion resistance, which consequently decreased the time to reach a plateau in conversion[29].According to these results, particle sizes ranging from100 to 250 µm were selected for the following experiments. The sweep gas flow determines the gas residence time during the biomass gasification. Figure 4d shows the conversion versus time on stream curves of the NG microalgae charat 850ºC for different argon gas flows (50, 100, 150 and 200 ml/min) (25 ºC, 0.9 atm), an initial weight of 20 mg, a particle size ranging from 100 to 250 µm, a steam concentration of 5 vol. % in Argon and a heating rate of 40ºC/min.As the argon gas flow increased, the conversion vs time curves shifted to a higher conversion rate.According to Zhang et al. (2010), low sweep gas flow (long residence time)results in the formation of carbon deposits, consequently decreasing the gas yield. Thus, a value of argon flow of 200 ml/min (25 ºC, 0.9 atm)was chosen in order to minimize secondary reactions such as thermal cracking, recondensation[30] and increase the char conversion [29; 31]. 88 repolymerization and Chapter 1 The effect of the steam concentration on the gasification of the NG microalgae char was studied (3.7, 5.5 and 7.3 % in Argon) at 850ºC, for an initial weight of 20 mg, a particle size ranging from 100 to 250 µm, an argon flow rate of 200 ml/min (25 ºC, 0.9 atm)and a heating rate of 40ºC/min (Figure 4e). As expected, the reactivity increased with increasing steam concentrations. According to Florin and Harris (2008), water vapour has been identified as a catalyst for the char formation mechanism, enhancing the concentration of H2during the char gasification due to the occurrence of the watergas shift reaction. This is in agreement with previous reported studies [26]. However, a steam concentration of 5.5 % was selected for the following experiments since at higher concentrationsoverpressure problems in the bubbler system were observed. 1.3.4. Gas product analysis The main productsderived from the pyrolysis, oxidation and gasification of theNG microalgae were evaluatedby TGA-MS analysis. On the basis of a preliminary scan, a list of key molecular ions was compiled by rejecting signals when the maximum intensity was close to the noise level[32].Thedatabase of National Institute of Standards and Technology (NIST) were usedfor the atomic mass units (a.m.u.) selection.Furthermore, elemental analyses by Energy Dispersive X-ray Spectroscopy (EDS) were performed on the NG microalgae and the resulting solid residue obtained after the pyrolysis and oxidation process (Table 5).Characteristic peaks of C, N, O, Na, Mg, P, S, Cl, K and Ca were presented in the analysis of the NG microalgae. However, peaks correspondingto the N element were not detected in the EDS analysis of the solid residues obtained after the pyrolysis and combustion of the microalgae. 89 Chapter 1 Table 5.EDS analysis of both, the NannochloropsisGaditana microalgae and the solid residue obtained after pyrolysis and combustion. Samples Elements (wt. %) C* N O Na Mg P S Cl K Ca Nannochlor opsisGadita na 47.3 ± 0.5 10.6 ± 0.5 16.7 ± 0.5 8.7 ± 0.5 0.6 ± 0.5 2.6 ± 0.5 1± 0.5 8.8 ± 0.5 1.7 ± 0.5 1.9 ± 0.5 Pyrolysis residue 37.7 ± 0.5 0 ± 0.5 17.0 ± 0.5 13.2 ± 0.5 1.5 ± 0.5 8.5 ± 0.5 0± 0.5 10.7 ± 0.5 5± 0.5 6.3 ± 0.5 Combustion residue 0 ± 0.5 0 ± 0.5 48.4 ± 0.5 24.6 ± 0.5 3.1 ± 0.5 22.3 ± 0.5 1.6 ± 0.5 0± 0.5 0± 0.5 7.9 ± 0.5 Table 6 shows the molecular ions/ion fragments that were detected during the pyrolysis, oxidation and gasification of the NG microalgae using the selected operating condition fixed in former sections. 90 Chapter 1 Table 6. Molecular ions and probable parent molecules detected in the pyrolysis, combustion and gasification processes for the NannochloropsisGaditanamicroalgae. NannochloropsisGaditanamicroalgae Key molecular ions/Ion fragment Probable parent molecule Pyrolysis Combustion Gasification 2 H 2+ H2 X X X 15 CH3+ CH4 X X - 16 O+; CH4+ CH4 X - X 17 NH3+ NH3 - X - 18 H 2O + H 2O X X - 26 CN+; C2H2+ C2H2(acetylene) X - X 27 HCN+; C2H3+ HCN (nitriles) X - X 28 C2H4+; CO+ CO X X X 29 C2H5+ C2H5 (ethyl derivates) X - X 30 C2H6+; CH2NH2+ CH4N (primary amines) X - X 44 CO2+ CO2 X X X 46 NO2+; C2H4O+ NO2 - X - 56 C3H6N+; C4H8+ C4H8 (alquenes) - X - 58 C3H8N+ C3H8N (amines) X X - 64 SO2+ SO2 (sulfones) - X - C6H6 (benzene) X - - m/z 78 C6H6 + Mass spectra of the pyrolysis and oxidation processes for NG microalgae are shown in Figure 5.MS curves could be divided into three stages that could be related to the three degradation steps described in the TGA/DTG curves. 91 Chapter 1 (a) (b) + CH3 CO2 NO2 C2H2 Intensity (a.u.) Intensity (a.u.) HCN C2H5 CH4N CO2 CH4 SO2 C3H8N H2O C3H8N + NH3 CH3 H2 C6H6 CO H2O CO H2 C4H8 200 300 400 500 600 700 800 200 300 Temperature (ºC) 400 500 600 700 Temperature (ºC) Figure 5.Mass spectra of the (a) pyrolysis and (b) combustion of the NannochloropsisGaditana microalgae. Figure 5a shows the MS curves of the gaseous products released during the pyrolysis process. H2O, CO and CO2 were detected in the MS spectrum at <160 ºC due to the moisture content in the NG microalgae. In this case, most of the gas products (H2O,CO, C6H6, C3H8N, CO2, CH4N, HCN)and volatile hydrocarbons such as CH3+, CH4, C2H2, C2H5were generated at the second degradation step (160-450 ºC). As reported elsewhere [2; 8; 33], the pyrolysis of the carbohydrates and proteins of algaewould mainly take place in this stage.The N-containing compounds in the NG microalgae could be released in form of amines (C3H8N andCH4N) andnitrile (HCN)due to the thermal degradation of proteins[33]. According to other authors [8], CO2 was mainly produced by the cracking and reforming of carboxyl groups in protein and saccharides.HCN, C2H5, C2H2, CH4Nand CH3+were also producedin the last decomposition step (>450ºC), corresponding to the slow decomposition of the solid residue [8].A slow H2 release was observed at around 450-650 ºC, which could be caused by the further dehydrogenation of remaining carbonaceous species[2].Among 92 Chapter 1 various gaseous hydrocarbons released, the content of CH3+ was the highestone [4]. Similar decomposition profiles have been reported for different algae species by many authors [8; 14]. These results agree with the low nitrogen and carbon contentsin the pyrolysis solid residuemeasured by EDSanalysis (Table 5). The evolution profiles of the gaseous species, CO2, NO2, CO, SO2, C3H8N, H2O, NH3, CH3+, H2and C4H8, from the combustion of the NG microalgae are shown in Figure 5b. Two peaks at 265 and 515 ºCfor the H2O intensity associated with moisture and combustion of volatiles and char were obtained [10].The release of CO2and CO were observed at around 250-350 and 475-600 ºC due to the combustion of fixed carbon [10].Furthermore, the SO2release took place at225-300 and 350-425 ºC, which could be relatedto the decomposition of sulphated polysaccharideexisting in the NG microalgae [10; 14].The N-containing compounds evolution (NO2, C3H8N and NH3)at 225-350 ºCwas associated with the degradation of protein in the NG microalgae.Finally, H2, NH3,NO2and CH3+were detected in the last step (>500 ºC) corresponding to decomposition of the solid residue. By comparing pyrolysis and combustion MS curves, it is possible to evaluate the effect of the oxygen presence on the gas emission.As expected, the content of CO2in the combustion processwas the highestone whereas no generation of volatile hydrocarbons such as CH4, C2H2, and C2H5was observed. In addition, NO2 and SO2 were also released. Finally, as it can be seen in Table 5, some of the inorganic materials that were present in the EDS analysis of the NG microalgae were not found in the combustion or 93 Chapter 1 pyrolysis results, as chloride and potassium for combustion and sulfur in the pyrolysis residue, pointing out that the evolution of these compound took place during the combustion and pyrolysis of the sample. This fact is mainly due to the signals of these ion fragments were rejected as they were too close to the noise level. Further studies are required for the evaluation of the release of inorganics during combustion and pyrolysis as they are a potential source of contaminants. TGA/DTG-MS curves of the gasification process of the NG microalgaeare shown in Figure 6a.As can be seen in TGA/DTG curves, the time to reach the total conversion was 55 min. The main products detected during the gasification at 850ºC were CO2, CO, H2, indicating that oxidation reactions, water gas and water gas shift reactions were the predominant ones.In addition, traces of CH4, C2H6, C2H5, C2H4and C2H2were also generated. Similar evolution profiles have been reported elsewhere[31; 34; 35]. Figure 6b shows the yield of the main gases during the gasification process (CO2, CO, CH4 and H2) at different steam concentrations. It can be observed that as the proportion of water in the reactive gas was increased, the product distribution varied, enhancing the production of H2 and decreasing the CH4yield. This fact would indicate that water gas (C + H2O CO + H2), water gas shift (CO + H2O methane reforming (CH4+ H2O CO + 3H2)reactions werebeing promoted[32; 35].Anyway, CO and CO2 emissions were kept constant. 94 CO2 + H2)and Chapter 1 2.5 (a) TGA DTG Weight (%) 80 2.0 60 1.5 40 1.0 20 0.5 0 0.0 Weight loss rate (% wt./ºC) 100 H2 Intensity (a.u.) CO2 CO C2H5 C2H4 C2H6 C2H2 CH4 0 15 30 45 60 Time (min) 50 3.7 % 5.5 % 7.3 % (b) Product Yield (%) 40 30 20 10 0 H2 H2 CH4 CH4 CO CO CO2 CO2 Main curves Productsfor the gasification process of the Figure 6.(a) TGA-DTG-MS NannochloropsisGaditana microalgae and (b)Product yield for the gasification process of the NannochloropsisGaditana microalgae at different steam concentrations. 95 Chapter 1 1.4. CONCLUSIONS Pyrolysis, combustion and gasification of NG microalgae were analyzed by means of TGA-MS. Pyrolysis and combustion processes were divided into three stages. During pyrolysis, the main devolatilization step took place between 160 and 450 ºC, associated to the degradation of protein and soluble polysaccharide. In combustion the oxidation of the sample took place between 450 and 600 ºC. As oxygen concentration increased, the oxidation of the char shifted to lower temperatures. N-compounds evolution was associated with the microalgae proteins degradation. SO2release during combustioncould be related to sulphated polysaccharides decomposition.H2production was enhanced by steam concentration. 1.5. REFERENCES [1] Ross, A.B., Anastasakis, K., Kubacki, M., Jones, J.M. 2009. Investigation of the pyrolysis behaviour of brown algae before and after pre-treatment using PY-GC/MS and TGA. Journal of Analytical and Applied Pyrolysis, 85(1-2), 3-10. [2] Babich, I.V., van der Hulst, M., Lefferts, L., Moulijn, J.A., O'Connor, P., Seshan, K. 2011. Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels. Biomass and Bioenergy, 35(7), 3199-207. [3] Li, D., Chen, L., Zhang, X., Ye, N., Xing, F. 2011. Pyrolytic characteristics and kinetic studies of three kinds of red algae. Biomass and Bioenergy, 35(5), 1765-72. [4] Pan, P., Hu, C., Yang, W., Li, Y., Dong, L., Zhu, L., Tong, D., Qing, R., Fan, Y. 2010. The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils. Bioresource Technology, 101(12), 4593-9. [5] Tang, Y., Ma, X., Lai, Z. 2011. Thermogravimetric analysis of the combustion of microalgae and microalgae blended with waste in N2/O2 and CO2/O2 atmospheres. Bioresource Technology, 102(2), 1879-85. 96 Chapter 1 [6] Pane, L., Franceschi, E., De Nuccio, L., Carli, A. 2001. Applications of thermal analysis on the marine phytoplankton, Tetraselmis suecica. Journal of Thermal Analysis and Calorimetry, 66(1), 145-54. [7] Anastasakis, K., Ross, A.B. 2011. Hydrothermal liquefaction of the brown macroalga Laminaria Saccharina: Effect of reaction conditions on product distribution and composition. Bioresource Technology, 102(7), 4876-83. [8] Marcilla, A., Gómez-Siurana, A., Gomis, C., Chápuli, E., Catalá, M.C., Valdés, F.J. 2009. Characterization of microalgal species through TGA/FTIR analysis: Application to nannochloropsis sp. Thermochimica Acta, 484(1–2), 41-7. [9] Sanchez-Silva, L., López-González, D., Villaseñor, J., Sánchez, P., Valverde, J.L. 2012. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresource Technology, 109, 163-72. [10] Wang, S., Jiang, X.M., Han, X.X., Liu, J.G. 2009. Combustion Characteristics of Seaweed Biomass. 1. Combustion Characteristics of Enteromorpha clathrata and Sargassum natans. Energy & Fuels, 23(10), 5173-8. [11] Ollero, P., Serrera, A., Arjona, R., Alcantarilla, S. 2002. Diffusional effects in TGA gasification experiments for kinetic determination. Fuel, 81(15), 1989-2000. [12] Arenillas, A., Rubiera, F., Pis, J.J. 1999. Simultaneous thermogravimetric-mass spectrometric study on the pyrolysis behaviour of different rank coals. Journal of Analytical and Applied Pyrolysis, 50(1), 31-46. [13] Widyawati, M., Church, T.L., Florin, N.H., Harris, A.T. 2011. Hydrogen synthesis from biomass pyrolysis with in situ carbon dioxide capture using calcium oxide. International Journal of Hydrogen Energy, 36(8), 4800-13. [14] Wang, S., Jiang, X.M., Wang, N., Yu, L.J., Li, Z., He, P.M. 2007. Research on pyrolysis characteristics of seaweed. Energy and Fuels, 21(6), 3723-9. [15] Lin, Y.C., Cho, J., Tompsett, G.A., Westmoreland, P.R., Huber, G.W. 2009. Kinetics and mechanism of cellulose pyrolysis. Journal of Physical Chemistry C, 113(46), 20097-107. 97 Chapter 1 [16] Shuping, Z., Yulong, W., Mingde, Y., Chun, L., Junmao, T. 2010. Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer. Bioresource Technology, 101(1), 359-65. [17] Chen, C., Ma, X., Liu, K. 2011. Thermogravimetric analysis of microalgae combustion under different oxygen supply concentrations. Applied Energy, 88(9), 3189-96. [18] Chouchene, A., Jeguirim, M., Khiari, B., Zagrouba, F., Trouvé, G. 2010. Thermal degradation of olive solid waste: Influence of particle size and oxygen concentration. Resources, Conservation and Recycling, 54(5), 271-7. [19] Ross, A.B., Jones, J.M., Kubacki, M.L., Bridgeman, T. 2008. Classification of macroalgae as fuel and its thermochemical behaviour. Bioresource Technology, 99(14), 6494-504. [20] Yu, L.J., Wang, S., Jiang, X.M., Wang, N., Zhang, C.Q. 2008. Thermal analysis studies on combustion characteristics of seaweed. Journal of Thermal Analysis and Calorimetry, 93(2), 611-7. [21] Stenseng, M., Jensen, A., Dam-Johansen, K. 2001. Investigation of biomass pyrolysis by thermogravimetric analysis and differential scanning calorimetry. Journal of Analytical and Applied Pyrolysis, 58-59, 765-80. [22] Antal Jr, M.J., Várhegyi, G., Jakab, E. 1998. Cellulose Pyrolysis Kinetics: Revisited. Industrial and Engineering Chemistry Research, 37(4), 1267-75. [23] Bridgeman, T.G., Darvell, L.I., Jones, J.M., Williams, P.T., Fahmi, R., Bridgwater, A.V., Barraclough, T., Shield, I., Yates, N., Thain, S.C., Donnison, I.S. 2007. Influence of particle size on the analytical and chemical properties of two energy crops. Fuel, 86(1-2), 60-72. [24] Luo, S.Y., Xiao, B., Hu, Z.Q., Liu, S.M., Guan, Y.W. 2009. Experimental study on oxygen-enriched combustion of biomass micro fuel. Energy, 34(11), 1880-4. [25] Mani, T., Mahinpey, N., Murugan, P. 2011. Reaction kinetics and mass transfer studies of biomass char gasification with CO2. Chemical Engineering Science, 66(1), 36-41. 98 Chapter 1 [26] Gómez-Barea, A., Ollero, P., Fernández-Baco, C. 2006. Diffusional effects in CO2 gasification experiments with single biomass char particles. 1. Experimental investigation. Energy and Fuels, 20(5), 2202-10. [27] Mani, T., Murugan, P., Abedi, J., Mahinpey, N. 2010. Pyrolysis of wheat straw in a thermogravimetric analyzer: Effect of particle size and heating rate on devolatilization and estimation of global kinetics. Chemical Engineering Research and Design, 88(8), 952-8. [28] Díaz, J.A., Díaz-Moreno, R., Silva, L.S., Dorado, F., Romero, A., Valverde, J.L. 2012. Nickel supported carbon nanofibers as an active and selective catalyst for the gas-phase hydrogenation of 2-tert-butylphenol. Journal of Colloid and Interface Science, 380(1), 173-81. [29] Kirubakaran, V., Sivaramakrishnan, V., Nalini, R., Sekar, T., Premalatha, M., Subramanian, P. 2009. A review on gasification of biomass. Renewable and Sustainable Energy Reviews, 13(1), 179-86. [30] Pütün, A.E., Özean, A., Pütün, E. 1999. Pyrolysis of hazelnut shells in a fixedbed tubular reactor: Yields and structural analysis of bio-oil. Journal of Analytical and Applied Pyrolysis, 52(1), 33-49. [31] Zhang, M., Chen, H.P., Gao, Y., He, R.X., Yang, H.P., Wang, X.H., Zhang, S.H. 2010. Experimental study on bio-oil pyrolysis/gasification. BioResources, 5(1), 13546. [32] Florin, N.H., Harris, A.T. 2008. Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents. Chemical Engineering Science, 63(2), 287-316. [33] Maddi, B., Viamajala, S., Varanasi, S. 2011. Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass. Bioresource Technology, 102(23), 11018-26. [34] De Lasa, H., Salaices, E., Mazumder, J., Lucky, R. 2011. Catalytic steam gasification of biomass: Catalysts, thermodynamics and kinetics. Chemical Reviews, 111(9), 5404-33. 99 Chapter 1 [35] Kojima, T., Assavadakorn, P., Furusawa, T. 1993. Measurement and evaluation of gasification kinetics of sawdust char with steam in an experimental fluidized bed. Fuel Processing Technology, 36(1-3), 201-7. (1) 100 Chapter 2: THERMOGRAVIMETRIC-MASS SPECTROMETRIC ANALYSIS OF LIGNOCELLULOSIC AND MARINE BIOMASS PYROLYSIS The pyrolysis characteristics of three lignocellulosic biomasses (Fir Wood, Eucalyptus and Pine Bark) and a marine biomass (NannochloropsisGaditana microalgae) were investigated by thermogravimetric analysis coupled with mass spectrometry (TGAMS). Thermal degradation of lignocellulosic biomass was divided into four zones, corresponding to the decomposition of their main components (cellulose, hemicellulose and lignin) and a first step associated to water removal. Differences in volatile matter and cellulose content of lignocellulosic species resulted in different degradation rates. Microalgae pyrolysis occurred in three stages due to the main components of them (proteins), which are greatly different from lignocellulosic biomass. Heating rate effect was also studied. The main gaseous products formed were CO2, light Chapter 2 hydrocarbons and H2O. H2 was detected at high temperatures, being associated to secondary reactions (char self-gasification). Pyrolysis kinetics were studied using a multiple-step model. The proposed model successfully predicted the pyrolitic behaviour of these samples resulting to be statistically meaningful. 2.1. INTRODUCTION Depletion of world fossil fuel reserves and the external dependence that these types of fuels produce together with the environmental risks derived from its use are the main reasons of the increasing attention that renewable energies sources are receiving. In this context, biomass conversion for transportation fuels, chemical commodities and power generation is getting growing interest. Biomass is a term for all organic material that stems from plants including algae, trees and crops that are susceptible to be converted into energy (McKendry, 2002). One of the most controversial points in the use of biomass as an energy source is its possible competition with human food supply. Nevertheless, there are different types of biomass that fit into this definition without compromising world food supply. The main ones refer to lignocellulosic biomass (Basu, 2010) and marine biomass (especially algae). Algae are a good candidate because they present the following advantages: large amount available, fast growth, low priced, environment protection and suitable for pyrolysis (Wang, 2006). There are many conversion technologies for utilizing biomass, such as direct combustion, 102 thermochemical, biochemical and agrochemical processes. Chapter 2 Thermochemical conversion of biomass is considered as one of the most promising processes for biomass utilization (Shen et al., 2010). There are four thermochemical technologies: pyrolysis, gasification, combustion and liquefaction. Pyrolysis is of special interest since it is a prior step in combustion and gasification processes. Therefore, it seems essential to obtain a deep knowledge of biomass pyrolysis in order to gain further understanding of the combustion and gasification processes. Pyrolysis can be described as the biomass conversion by heat in the absence of oxygen in a relatively low range of temperatures (300-600 ºC), which results in the production of charcoal (solid), bio-oil (liquid) and fuel gas products. Thermal analysis has shown to be a powerful tool for investigating the pyrolysis of biomass. Numerous studies based on thermogravimetic analysis (TGA) and derivative thermogravimetry (DTG) have been carried out. Many of them focused on the main components of lignocellulosic biomass, mainly constituted by cellulose, hemicellulose and lignin (Wang et al., 2008; Yang et al., 2006), different types of lignocellulosic biomass (Barneto et al., 2011; Stenseng et al., 2001), and algae (Li et al., 2011; Peng et al., 2001). The effects of heating rate and amount of sample have been also reported in the literature (Lin et al. 2009). Pyrolysis kinetics is other of the aspects that has been widely studied by thermal analysis. Most studies have been focused on cellulose pyrolysis (Grønli et al., 1999, Lin et al., 2009), lignin and xylan (Rao and Sharma, 1997), lignocellulosic biomass (Órfão et al., 1999) and marine biomass (Wang et al., 2006). The determination of the kinetics corresponding to biomass thermal decomposition involves the knowledge of the reaction mechanisms. However, pyrolysis is an extremely complex process, where 103 Chapter 2 numerous reactions take place, practically making impossible to develop a kinetic model that takes into account all these reactions. Thus, the pyrolysis is usually studied in terms of pseudo-mechanistic models (Caballero et al., 1997). White et al. (2011) reported that kinetics of biomass decomposition can be divided into three principal types of models: single-step global reaction models, multiple-step models and semiglobal models. Thermal analysis itself might not seem sufficient for a thorough study based on kinetics. Therefore, other techniques must be used to obtain valuable results (White et al., 2011). The combination of thermogravimetric analysis coupled with mass spectrometry (TGA-MS) appears to give a deeper insight of the process. Some studies concerning TGA-MS of the biomass pyrolysis have been carried out (Grønli et al., 1999; Widyawati et al., 2011). One of the most attractive advantages of TGA-MS is that it is able to afford real-time and sensitive detection of evolved gases, which is an important and often a difficult task in many thermal applications (Huang et al., 2011). The aim of this study was to investigate the pyrolysis characteristics and gas products distribution of lignocellulosic (Fir Wood, Eucalyptus Wood and Pine Bark) and marine (Nannochloropsisgaditana microalgae) biomass by means of the TGA-MS technique. This work pretends to establish and gain further understanding of the possible relationships among these components, from those present in lignocellulosic materials to those that constitute terrestrial and marine biomass. Moreover, the effect of heating rate on the pyrolysis behaviour of these samples was also studied. Finally, experimental data obtained using thermogravimetric analysis were interpreted using a multi-step kinetic model. 104 Chapter 2 2.2. EXPERIMENTAL 2.1.1 Materials Cellulose, Xylan and Lignin were purchased from Sigma Aldrich. Xylan was used as a representative of the hemicellulose component in the pyrolysis (Wang et al., 2008; Yang et al., 2006). These chemicals are as follow: Cellulose (microcrystalline cellulose with 50 µm average particle size), Lignin (alkali lignin in brown powder form with 50 µm average particle size) and Xylan (xylan processed from beechwood with 100 µm average particle size, was used as hemicellulose). The selected terrestrial biomass (FirWood, EucalyptusWood and PineBark) were taken from the region of Castilla-La Mancha (Spain). These samples were dried in an oven for 5 hours, milled and sieved to less than 240 µm. The microalgae NannochloropsisGaditana(NG microalgae) were purchased from AlgaeEnergy Company. This compound is delivered in green powder with 100 µm average particle size. 2.2.2. Biomass selection The choice of biomass mainly depended on its inherent properties, determining the conversion process and any subsequent processing difficulties that may arise. The main properties of interest for the biomass processing as an energy source are the following (McKendry, 2002): moisture content (MC); proportion of fixed carbon (FC) and volatiles (VM); ash/residue content (AC/AR); calorific value; alkali metal content; cellulose/lignin ratio. 105 Chapter 2 The first three characteristics are determined by means of the named proximate analysis. This analysis gives an idea of how good is the biomass to be converted into energy. Proportion of fixed carbon (FC) and volatile matter (VM) are two ways to represent the chemical energy stored in the biomass. The higher the VM/FC ratio is, the larger the available energy that biomass is able to be released. On the other hand, the moisture (MC) and ash content (AC) are two parameters that have adverse effects on the quality of the fuel. High values of HM decreases the calorific value of the fuel driving to an uneven overall energy balance whereas high values of AC leads to an increase of operational costs. In order to select the most proper kind of terrestrial biomass, a preliminary study of biomass species using a proximate analysis was done (Table 1). Table 1.Proximate analysis of lignocellulosic and marine biomass. Volatile Matter Fixed Carbon Ash Biomass (wt. %) (wt. %) (wt. %) Cellulose 92.8 6.1 1.1 Lignin 55.4 41.5 3.1 Xylan 76.1 21.6 2.3 Fir wood 78.1 17.1 4.8 Eucalyptus wood 76.4 16.3 7.3 Pine bark 69.4 27.5 3.1 83.1 10.1 6.8 Nannochloropsis Gaditana microalgae 106 Chapter 2 Taking into account the analysis listed in this Table and those reported by Yaman (2004) for different biomass, a ternary diagram was plotting by considering the following parameters: ash, volatile matter and fixed carbon contents (Figure 1). Biomass to be used in this study was selected according to the following criteria: - Biomass with high VM content and low AC. - Biomass with high FC content and a low AC. According to these criteria, two areas in the diagram were clearly identified (they have been outlined with a circle). Biomass within these two zones corresponded to: Fir Wood and Eucalyptus Wood (both with pretty higher VM) and Pine Bark (with the highest FC). 0 . 0 Sugarcane bagasse Grape Maize Olive Rapeseed Rice husk Sawdust Sunflower Brown Kelp Giant Water hyacinth Fir wood Tobacco Pine bark Cotton wastes Eucalyptus wood Straw 1.0 2 . 0 0.8 ed Fix h 4 . 0 As 6 . 0 n rbo Ca 0.6 0.4 8 . 0 0.2 0 . 1 0.0 0.0 0.2 0.4 0.6 0.8 1.0 Volatile Matter Figure 1.Ternary diagram with different kinds of terrestrial biomass according to their proximate analysis (biomass data was obtained from Yaman et al., 2004). 107 Chapter 2 2.2.3. Equipment and Procedures 2.2.3.1. Pyrolysis The pyrolysis of biomass components was firstly carried out in a TGA apparatus (TGA-DSC 1, METTLER TOLEDO). The sample was heated from 40 ºC to 900ºC at different heating rates (5, 15 and 40 ºC/min). From previous studies in TGA analysis the following operating conditions were chosen in order to avoid the effects of heat and mass transfer limitations: sample weight was kept at 10 mg, helium (99.99 %) at a flow rate of 200 ml/min was used as the carrier gas to provide an inert atmosphere and the particle size was kept lower than 300 µm. Each sample was analyzed at least three times, and the average value was recorded. The experimental error of these measurements was calculated, obtaining an error for all studied samples of ± 0.5% in weight loss measurement and ± 2 ºC in temperature measurement. 2.2.3.2. TGA-MS The analysis of the gas products distribution coming from the pyrolysis was carried out in a thermogravimetricanalyzer (TGA-DSC 1; METTLER TOLEDO) coupled to a mass spectrometer (Thermostar-GSD 320/quadrupole mass analyzer; PFEIFFER VACUUM) with an electron ionization voltage at 70 eV and provided mass spectra up to 300 a.m.u. The interface was wrapped with heating wire to circumvent condensation of exhausting gases. Approximately 10 mg of sample was loaded into an alumina crucible pan and heated from room temperature to 900 ºC at a heating rate of 40 ºC/min. In all experiments, He was used as the purge gas (99.99 %) with a constant flow rate of 200 ml/min. In order to identify ions with m/z in the range 0-300, 108 Chapter 2 a preliminary broad scan was performed at a heating rate of 40 ºC/min. The signals identified corresponded to the mass spectra of 2, 15, 18, 27, 28, 30, 32, 44 a.m.u, which corresponds to the main components of the pyrolysis gas (H2, CH4, H2O, C2H4, CO, C2H6 and CO2, respectively). 2.2.4. Kinetics Kinetic data from solid state pyrolysis was obtained using thermogravimetric analysis. The model proposed in this work is similar as that reported by Sun et al. (2011) for the determination of the kinetic parameters of decomposition of bagasse fibers, and is based on works previously reported (Órfão et al., 1999). Considering npyrolizable compounds, the kinetic rates of thermal decomposition of a material assuming independent parallel nth-order reactions and an Arrhenius dependence of the rate constants are: ni n E dα = ∑ ci kio exp − ia (1 − α i ) dt i =1 RTs (1) E dαi = kio exp − ia (1 − αi )ni dt RTs (2) where α is the degree of conversion of the material, kioand Eiaare the pre-exponential factor and the activation energy for the individual components; R is the gas constant; ni is the reaction order; and αi is the degree of conversion for the individual component defined by 109 Chapter 2 αi = mio − mip mio (3) wheremio and mip represent the mass at t=0 and t=t for each component, respectively. The constant ci is related to the initial composition of the different components. Finally, Ts is the actual sample temperature that may differ from the external temperature by a thermal lag. Lin et al. (2009) proposed the following equation as a function of a fitting experimental factor C to correct the thermal delay of the apparatus: Ts = To + b(t − C ) (4) In this equation, To and b represent the initial temperature and the heating rate, respectively. 2.2.4.1. Parameter estimation A VBA-Excel application was developed to solve this model (de la Osa et al., 2011; Valverde et al., 2004). The Bader-Deufhard method was used in the evaluation of the set of ordinary differential equations (Press, 1992), whereas the MarquardtLevenberg algorithm was used in the nonlinear regression procedure (de Lucas et al., 2006; Froment et al., 1990; Marquardt, 1963). The ordinary differential equation, Eq. (1) was solved by considering the following initial conditions: α(t=0) = 0 and αi(t=0) = 0 (5) The weighted sum of the squared differences between the observed (Exp) and the calculated (Pr) degree of conversion was minimized according to the following equation described elsewhere (de Lucas et al., 2006): 110 Chapter 2 SSQ = ∑ ∑ (α i Pr − α iExp ) j 2 n m i =1 j =1 (6) wherei represents the number of equations to be fitted, j the specific experimental data and n and m the total number of equations and experiments (more than 4500 if all the data generated in a TGA analysis are considered), respectively. AF-test is a statistical test in which the test statistic has a F-distribution under the null hypothesis. The procedure was based on the comparison between the tabulated Fvalue (F-test) and Fc, which was defined elsewhere (Froment, et al., 1990): n m ∑ ∑ (α i Pr )2 / k Fc = i =1 j =1 ∑ ∑ (α i Pr − α iExp ) j 2 / (n ∗ m − p ) n m (7) i =1 j =1 wherep represents the total number of parameters. If Fc is larger than F(p, n-p, 1-α), assuming a value of α = 0.05, 95% confidence level, the regression was considered to be meaningful, although there is no guarantee that the model is statistically suitable since the meaningfulness of each parameter in the model must be also evaluated. Hence, a complementary test, named t-test, was used. The t-test considers that the statistical hypothesis test follows a Student’s t distribution and allows to verify if the estimate of the parameter bfi differs from a reference value (generally zero). Thus, a parameter is meaningful (at α = 0.05) each time that the following inequality occurs: 111 Chapter 2 tci = α > t n − p,1 − 2 V bf ii b fi ( ) (8) where[V(bf)] ii represents the diagonal ith term of the covariance matrix used in the last step of n-linear regression procedure. 2.3. RESULTS AND DISCUSSION 2.3.1. Thermogravimetric study of pyrolysis of lignocellulosic and marine biomass The TGA/DTG profiles of the main components of the biomass here considered (hemicellulose (Xylan), lignin and cellulose) as a function of temperature at a heating rate of 15ºC/min during the pyrolysis process are shown in Figure 2a. There are substantial differences between the pyrolysis behaviour of these components. The decomposition of Xylan showed two peaks, starting at about 200 ºC and reaching its maximum weight loss rate at 250ºC, being the residue yield equal to 28 wt.%. These two peaks can be associated to the decomposition of the xylan side units and the cracking of the main xylan chains (Severian, 2008). The pyrolysis of Cellulose occurred between 290 ºC and 390 ºC reaching its maximum value at 340 ºC. It can be noticed the pronounced DTG profile of this sample. The residue yield of cellulose was the lowest one (9 wt.%). Lignin showed the highest thermal stability, decomposing in the whole range of temperatures studied (200-700 ºC). Furthermore, the DTG profile of Lignin was the flattest being the residue yield obtained the highest one (>40 wt.%). This fact could be due to the slow carbonization of lignin, being the main responsible 112 Chapter 2 for the biomass char formation (Yang et al., 2006). According to Wang et al. (2008), the differences in the thermal behaviour of these components can be attributed to their different chemical structures. Hemicellulose has a random and amorphous structure with little strength whereas cellulose has a crystalline and strong structure and it is resistant to hydrolysis. On the other hand, Lignin is the most different one due to the fact that it is a complex, heavily cross-linked and highly branched polymer (Basu, 2010). Figure 2b shows the TGA/DTG plots versus temperature for Fir Wood, Eucalyptus Wood and Pine Bark at a heating rate of 15 ºC/min. The criterion for biomass selection was explained in Section 2.2. Generally, the thermal degradation profiles of lignocellulosic biomass are interpreted as the addition of the independent degradations of their main components (Caballero et al., 1997). According to this fact, the pyrolysis process can be divided into four stages: moisture evolution (<120ºC); hemicellulose decomposition (150-310 ºC); lignin and cellulose degradation (310-400 ºC) and lignin decomposition (> 450ºC). In spite of these four well identified stages, there are some differences in the behaviour of these materials. The second zone, corresponding to the hemicellulose decomposition, took place at different temperatures as a function of the raw materials. This area is represented by a shoulder in the DTG curve (Grønli et al., 2002). In the case of the Fir Wood sample, hemicellulose decomposition took place at lower temperatures than for Eucalyptus Wood and Pine Bark. Nevertheless, regardless the sample, the third zone occurred in a similar range of temperatures (340-350 ºC). This 113 Chapter 2 temperature range agrees with that of the volatilization of cellulose shown in Figure 2a. In the last zone ascribed to lignin decomposition (zone IV), Pine Bark and Fir Wood were almost overlapped whereas that of Eucalyptus occurred with different weight loss rates, showing two peaks in the DTG curve at 505 ºC and 650ºC, respectively. Finally, the residue yield was 34, 29 and 26 wt.% for Pine Bark, Eucalyptus Wood and Fir Wood, respectively. The differences in the thermal behaviour of all lignocellulosic samples can be attributed to content variations of hemicellulose, lignin and cellulose. The higher content of hemicellulose in Fir Wood could explain the peak in the DTG curve obtained at low temperatures. In addition, the different contents of lignin could justify the differences among the residue yield observed, which is related to the fixed carbon content present in the sample. Pine Bark had the highest fixed carbon content, being the one leading to the largest residue yield. Finally, the differences in the maximum weight loss rate (in the order: Eucalyptus Wood> Fir Wood > Pine Bark) can be explained attending to the volatile matter and cellulose content in these samples (Damartzis et al., 2011). Figure 2c shows the TGA/DTG curves for the thermal decomposition of the variety of microalgae NannochloropsisGaditana(NG microalgae). Its thermal degradation behaviour can be divided into three zones. The first zone was attributed to a dehydration process at temperatures below 130ºC. The second zone, between 140 ºC and 540 ºC, corresponded to a devolatilization process. Three shoulders can be distinguished in this zone, being mainly associated to the decomposition of different 114 Chapter 2 kind of triglycerides and other hexane-soluble compounds (Marcilla et al., 2009). Finally, the last zone took place at temperatures above 540 ºC, being mainly related to residue decomposition. 115 Chapter 2 a) b) 0 2,4 0 1,2 0,8 0,4 150 300 450 600 750 900 0,45 0,30 ZONE IV 1,6 0,60 ZONE III 2,0 ZONE IV 20 ZONE III 20 ZONE II 40 ZONE II 40 60 ZONE I Weight (%) 60 0,0 Fir Wood Eucalyptus Wood Pine Bark 80 Weight loss rate (wt%/ºC) Weight (%) 80 Weight loss rate (wt%/ºC) 100 Cellulose Lignin Xylan ZONE I 100 0,15 0,00 150 300 450 600 750 900 Temperature (ºC) Temperature (ºC) c) 100 0,5 0,4 60 0,3 20 0 ZONE III 0,2 ZONE II 40 140 280 0,1 420 560 700 840 980 1120 Weight loss rate (wt.%/ºC) 80 ZONE I Weight (%) TGA DTG 0,0 Temperature (ºC) Figure 2.Thermogravimetric (TGA) and differential thermogravimetric (DTG) curves of the pyrolysis process of the biomass samples studied: (a) Cellulose, Xylan and Lignin; b) Fir Wood, Eucalyptus Wood and Pine Bark; (c) a variety of NannochloropsisGaditana microalgae. Sample holder: alumina; gas flow rate: 200 ml/min; sample size: 10 mg; heating rate: 15 ºC/min. 116 Chapter 2 To sum up, NG microalgae showed higher thermal stability than lignocellulosicbiomass, decomposing in a broader temperature range (the residue does not remain constant until temperatures above 900 ºC). Furthermore, the residue yield obtained for the microalgae was lower (about 15 wt. %) than those for the other types of biomass considered in this work. Nevertheless, the main loss weight, corresponding to the pyrolytic process, occurred at the same temperature range as that of the terrestrial biomass (200-500 ºC). On the other hand, the shape of the DTG curves for the analyzed samples showed evident differences. For the lignocellulosic biomass, a well-defined shoulder was observed in the DTG curves whereas three little humps were detected in the marine one. These differences were attributed to the different compositions of these materials. NG microalgae are mainly composed of proteins (>60 %) whereas lignocellulose biomass is constituted by cellulose, hemicellulose, lignin (>90%) and a little amount of extractives (Shuping et al., 2010). 2.3.2. Effect of heating rate Figure 3 shows TGA/DTG plots versus temperature obtained from the pyrolysis of Cellulose at different heating rates (5, 15 and 40 ºC/min). This figure represents the general trend of biomass samples studied during the pyrolysis process. 117 Chapter 2 100 5 ؛C/min 15 ؛C/min 40 ؛C/min Weight (%) 80 60 40 Weight loss rate (wt%/ºC) 20 0 2,5 2,0 1,5 1,0 0,5 0,0 250 300 350 400 450 500 Temperature (ºC) Figure 3.Effect of the heating rate in the pyrolysis process of Cellulose at 5, 15 and 40 ºC/min. Sample holder: alumina; gas flow rate: 200 ml/min; sample size: 10 mg. Table 2 shows the most relevant experimental results for all raw materials. As it can be seen in Table 2, the behaviour of all of them is quite similar. Generally, as the heating rate increased, the pyrolysis temperature (Tpyr) and all characteristic temperatures shifted to higher values (Table 2). It can also be observed that the maximum weight loss rate decreased as the heating rate was increased. These results are similar as those reported by other authors (Li et al., 2010; Peng et al, 2001). 118 Chapter 2 119 Chapter 2 Table 2. Pyrolysis temperatures for Cellulose, Lignin, Xylan, Fir Wood, Eucalyptus Wood, Pine Bark and Nannochloropsisgaditanamicroalgae at different heating rates. Heating Rate (ºC/min) Primary components of biomass Cellulose Xylan Lignin st nd 1 peak Tpyr* (ºC) Tm ** (ºC) Lignocellulosicbiomasss 2 peak Fir Wood st Sh 1 peak Marine Biomass Eucalyptus Wood Sh st 1 peak nd 2 peak rd 3 peak Pine Bark Sh st 1 peak NannochloropsisGaditana(NG) Sh 1st peak 2nd peak 5 275 191 202 167 170 180 140 15 290 200 210 184 183 200 145 40 300 5 322 235 271 340 218 328 279 305 486 625 297 342 186 305 804 15 340 249 295 355 236 346 292 330 503 667 312 353 205 330 854 209 220 199 201 208 162 40 356 265 310 368 257 368 305 342 514 690 319 365 213 342 911 (dw/dT) Max*** (wt.%/ºC) 5 15 40 2.62 2.29 1.94 0.5 0.56 0.57 0.54 0.52 0.51 0.24 0.26 0.28 0.18 0.19 0.2 0.63 0.59 0.55 0.36 0.35 0.33 0.47 0.46 0.46 0.1 0.09 0.06 0.06 0.05 0.04 0.29 0.28 0.27 0.43 0.4 0.36 0.13 0.11 0.10 0.47 0.46 0.46 0.06 0.05 0.05 Residue yield (wt.%) 5 8.83 26.9 46.2 26 28.46 35.4 5.96 15 9.05 28.2 45.0 25.2 26.63 35.3 9.46 40 9.13 28.6 43.8 24.4 25.58 33.9 10.917 * Temperature at which the pyrolysis started, ** Temperature where a peak in the DTG curve is formed, *** Maximun weight loss rate, Sh= Shoulder 120 Chapter 2 These changes could be mainly attributed to changes in the decomposition kinetics (Peng et al., 2001) and the fact that an increase of the heating rates provided higher thermal energy, ensuring a better heat transfer between the surrounding environment and the sample inside (Li et al., 2010). On the other hand, the residue yield is one of the parameters that did not remain constant. Several differences can be observed between the primary components of biomass and lignocellulosic biomass. First of all, Cellulose and Lignin followed opposite trends than Xylan. The residue yield for Cellulose and Lignin increased at increasing heating rates, whereas Xylan residue decreased. Shen et al. (2010) ascribed this fact to structure differences. The structure of cellulose is chemically and physically rearranged after the “preheating process”, enhancing the final production of char residue (Maschio et al. 1992). Thus, the char residue from Cellulose pyrolysis would increase with the longer pre-heating process at the low heating rate. In Xylan, the structure of the char residue formed at the low heating rate is less stable than that formed at the high heating rate, leading to secondary cracking reactions. The char formation in Lignin is enhanced at low heating rates. According to Nakamura et al. (2007), the formation mechanism of char in Lignin is attributed to condensation reactions. The effect of the heating rate in the residue yield for lignocellulosic biomass followed the same trend in all cases. The higher the heating rate, the lower the residue yield was. According to White et al. (2011), this fact can be attributed to the completion of thermal degradation reactions at high heating rates. Finally, NG microalgae showed a decrease in the residue yield with increasing heating rates. This is due to the fact that lower heating rates resulted in longer residence times inside the 121 Chapter 2 reactor favouring secondary reactions such as cracking, re-polymerization and recondensation, thus leading to char formation (Shuping et al., 2010). 2.3.3. Gas products Analysis The pyrolysis behavior of biomass by means of TGA-MS has been studied by different authors (Lin et al., 2009; Widyawati et al., 2011). TGA-MS measurements reproduce the evolution of the main gas products during the pyrolysis of biomass. This technique is the only one to simultaneously measure in real time the thermal decomposition and the gas product distribution of a very small sample. The present study was focused on the main volatile products of biomass pyrolysis on the basis of both their relative intensities across the temperature range 40-900ºC and on their relevancy. H2, -CH3, CH4, C2H4, C2H6, CO, CO2 assigned to the ion/mass intensities (m/z) 2, 15, 16, 27, 28, 30 and 44, respectively (according to the database of National Institute of Standards and Technology (NIST)). Mass spectra curves for all samples are shown in Figure 4. Mass spectrometry analysis for Xylan, Cellulose and Lignin are shown in Figure 4a. As aforementioned, the pyrolysis process for Cellulose and Xylan occurred in a relatively narrow range of temperature (200-500 ºC) coincidental with most of the gas product detection whereas thermal decomposition of Lignin took place in a wide temperature range. The main gas detected was in all cases CO2. Compared to Xylan and Lignin, Cellulose pyrolysis released most of gaseous products in a narrow temperature range (300-400 ºC). On the other hand, Xylan and Lignin released CH4 and -CH3 groups at 500 ºC. 122 Chapter 2 Firstly, CH4 was generated at 450ºC in Xylan and at 500 ºC in Lignin. Secondly, H2 was produced as CH4 and –CH3 groups are consumed. This fact can be attributed to CH4 steam reforming reactions (Eq. (9)) (Widyawati et al., 2011). Finally, Lignin showed the highest reactivity in the whole range of temperatures. These results are in good agreement with previous works using TGA-MS techniques (Widyawati et al., 2011). On the other hand, most of the H2 formation was observed at high temperatures (>500ºC). H2 production is attributed to secondary reactions as steam reforming of methane and/or tar cracking (Widyawati et al., 2011; Huang et al. 2011): CH4 + H2O ↔ CO + 3H2 CnHmOp + (2n-p)H2O ↔ nCO2 + (1/2m + 2n-p)H2 CnHm ↔Cn-xHm-y+H2+CH4+C CH4 steam reforming (9) Tar steam reforming (10) Thermal craking (11) Figure 4b shows the MS spectra for lignocellulosic biomass as a function of temperature. The process could be divided into 4 stages. Firstly, peaks at low temperatures (<150 ºC) represented the drying process of the samples. Furthermore, methyl groups were also detected in a similar way than in Lignin pyrolysis mass spectra. In the second stage (150-250 ºC), the main pyrolysis products detected were CO2, CO, H2O and light hydrocarbons (CH4 and C2H6). CH4 and CO2 productions were also detected at temperatures ranging from 400 to 500ºC. Additionally, at temperatures above 500 ºC two peaks were detected. The first peak occurred in all samples at a similar temperature (about 530 ºC); the second one shifted depending on the sample (650, 675 and 698 ºC for Fir Wood, Pine Bark, and Eucalyptus Wood, respectively). In spite of these differences, the CO2 and CH4 evolution was similar. On 123 Chapter 2 the other hand, two peaks related to H2 evolution was observed when the rate of CO2 and CH4 formation was decreasing, reaching its maximum values at about 750 ºC. The product distribution observed in the last stage (470-800 ºC) suggested that secondary reactions took place. These reactions could be attributed to tar cracking, (Eqs. 10 and 11), being CO2, CH4 and H2 mainly formed, Eqs. (10-11), self gasification of samples (Eq. 12) (Huang et al., 2011), and CH4 consumption by steam reforming (Eq.(9)) (Widyawati et al., 2011). C+H2O ↔ CO2 + H2 Self Gasification This way, it can be concluded that most of the H2 produced from lignocellulosic biomass pyrolysis came from secondary reactions (Widyawati et al., 2011). 124 (12) Chapter 2 a) Xylan Intensity (a.u.) CO2 Cellulose CO2 -CH3 CH4 H2O C2H6 H2 H2O H2 -CH3 O2 CO CO 150 CH4 C2H4 C2H6 O2 C2H4 300 450 600 750 150 900 300 450 600 750 900 Temperature (ºC) Temperature (ºC) Lignin Intensity (a.u.) CO2 -CH3 CH4 H2 O2 H2O C2H4 C2H6 CO 150 300 450 600 750 900 Temperature (ºC) b) Eucalyptus wood Fir wood CO2 Intensity (a.u.) CO2 -CH3 H2 -CH3 H2 C2H6 CH4 C2H6 H2O C2H4 C2H4 CO 150 300 450 600 750 CH4 H2O O2 900 O2 CO 150 Temperature (ºC) 300 450 600 750 900 Temperature (ºC) Pine bark Intensity (a.u.) CO2 -CH3 C2H6 H2 H2O CH4 C2H4 150 300 O2 CO 450 600 750 900 Temperature (ºC) Figure 4.Mass spectra corresponding to the pyrolysis of different biomass feedstocks: a) Xylan, Cellulose, Lignin. b) Eucalyptus Wood, Fir Wood and Pine Bark. 125 Chapter 2 Figure 5 shows the mass spectra of NG microalgae. No previous studies have been found in the literature about the pyrolysis process of microalgae by means of TGA-MS technique. Nevertheless, the pyrolytic characteristics of microalgae have been studied by using TG-FTIR (Marcilla et al., 2009) and GC-MS (Ross et al., 2008). As mentioned above, the pyrolysis process was divided into three stages (Figure 2c). The first zone (<140 ºC) corresponded to the loss of moisture and very light volatiles compounds. H2O and CH4 were released in a similar process as that described for lignocellulosic biomass. In the second zone, associated to the major weight loss, three well-identified products were detected. A first peak for CO2 and CH4 were detected at 190 ºC. Then, the main pyrolysis products (CO2, CO, CH4 and H2O) were detected between 240 and 440 ºC. The third stage corresponded to a similar process than that described for lignocellulosic biomass, where CH4, CO, CO2 and H2 were evolved. This product distribution agrees well with that reported by Ross et al. (2008). Four stages were identified: decomposition of carbohydrates (180-270 ºC) and proteins (320-450 ºC), loss of volatile metal and carbonate decomposition (<500 ºC), and char decomposition (>750ºC) present in NG microalgae leading to H2 and CO2 evolution, together with a significant proportion of inorganic material decomposed, probably metal carbonates (Ross et al., 2008). From the viewpoint of the pyrolysis of lignocellulosic biomass and marine biomass, two main differences can be observed. Firstly, pyrolysis products from NG microalgaewere detected at temperatures below 200 ºC. This behaviour is mainly due to the fact that microalgae are composed by different kind of extractives, triglycerides and hexane soluble components. These components are less thermal resistant than 126 Chapter 2 hemicellulose, cellulose and lignin present in about 90 % of the lignocellulosic biomass composition (McKendry, 2002). Secondly, H2 production from microalgae at high temperatures was lower than that from lignocellulosic biomass samples. This fact could be due to the fact that the char, formed during the pyrolysis of NG microalgae was less reactive than that occurred for Pine Bark, Fir Wood and Eucalyptus Wood. Algae Intensity (a.u.) CO2 -CH3 H2 CH4 C2H6 H2O O2 C2H4 CO 150 300 450 600 750 900 1050 1200 Temperature (ºC) Figure 5.Mass spectra of the pyrolysis of NannochloropsisGaditana microalgae. 2.3.4. Kinetic model Figure 6 shows the experimental (solid line) compared to the predicted curve (dotted line) obtained by non-linear regression of the kinetic model described in Section 2.1 for Cellulose, Eucalyptus Wood and NG microalgae pyrolysis at a heating rate of 40 ºC/min. It can be observed that the proposed model adequately reproduces the experimental values. 127 Chapter 2 100 Experimental Theoretical Weight (%) 80 60 40 20 0 100 200 400 600 800 Experimental Theoretical Weight (%) 80 60 40 20 0 200 400 600 800 100 Experimental Theoretical Weight (%) 80 60 40 20 0 200 400 600 800 1000 Temperature (ºC) Figure 6.Comparison between experimental and theoretical results for the pyrolysis of a) Xylan; b) Eucalyptus Wood; c) NannochloropsisGaditana microalgae. The Marquardt-Levenberg algorithm was used to obtain kinetic parameters (Marquardt, 1963). Table 3 shows the weight loss steps, the activation energy, the pre- 128 Chapter 2 exponential factor and the reaction order (n) for each weight loss step during the pyrolysis of biomass samples. Table 3.Estimated kinetic parameters for the pyrolysis of different types of lignocellulosic and marine biomass. Sample Step EA (KJ/mol) log Ko (log mol1-nln-1/s) n Cellulose 1 191.25 14.54 1 1 94.09 14.22 2 2 125.26 12.72 3 3 181.35 13.29 6 1 88.93 13.84 1 2 94.13 12.07 2 3 99.14 8.61 4 1 95.58 14.83 1 2 128.28 13.91 2 3 154.22 14.01 5 1 57.14 8.43 1 2 129.68 12.98 2 3 159.97 13.94 2 4 176.75 12.30 2 5 202.82 11.29 3 1 91.35 14.05 1 2 142.56 12.90 2 3 166.44 13.20 8 1 93.64 14.17 2 2 83.46 8.60 2 3 122.71 12.55 4 4 132.38 6.03 3 Xylan Lignin Fir Wood Eucalyptus Wood Pine Bark Nannochloropsis Gaditana microalgae 129 Chapter 2 Cellulose pyrolysis kinetics has been broadly studied (Grønli et al., 1999; Lin et al., 2009) due to two facts: cellulose is the main component in biomass structure and, its structure is more homogenous than hemicellulose and lignin (Basu, 2010). Cellulose thermal decomposition kinetics can be well fit by a single step first order reaction with an activation energy in the range of 180-240 KJ/mol and a pre-exponencial factor (log(ko)) of 14-19 log (1/s). (Grønli et al., 1999; Lin et al., 2009; Órfão et al., 1999). These values agreed well with the experimental results obtained (Table 3). Xylan and Lignin have also been studied in literature (Rao and Sharma, 1998). The decomposition of Xylan and Lignin was divided into three steps. Both of them showed lower activation energies than cellulose in the pyrolysis temperature range (step 2). The values of activation energies for the three steps in the pyrolytic decomposition of Lignin were the lowest ones, showing that is the most active material in the whole range of temperatures. Lignocellulosic biomass pyrolysis was divided into three steps: moisture evolution (0-150 ºC), main devolatilization process (150-400 ºC) and char decomposition (400900 ºC). In the case of Eucalyptus Wood, the last step was divided into two more substeps since the char showed higher reactivity. The kinetics parameters for each substep were in the same range of values, although no similarities were found in literature (Caballero et al., 1997; Órfão et al., 1999; Shen et al., 2010). For the kinetic evaluation of NG microalgae pyrolysis and that of for lignocellulosic biomass four steps were considered (Table 3). The value of the kinetics parameters obtained in the pyrolysis of lignocellulosic biomass samples and 130 Chapter 2 microalgewere in a similar range, though a lower activation energy for the microalgae pyrolysis were observed. These results agreed well with those reported by Li et al. (2010) under similar operating conditions. However, the values of activation energies, pre-exponential factors and reaction orders did not show a general trend. This fact suggested than the pyrolysis kinetics was greatly influenced by the type and composition of the biomass feedstock (Li et al., 2010; Shuping et al., 2010). Table 4 shows the comparison between the pyrolysis kinetic parameters of different types of biomass sources and the results obtained in this work. As aforementioned, the discrimination of kinetic parameters was done applying the F-test and the t-test at the 95% confidence level. The resulting parameters obtained from the computational non-linear regression are summarized in Table 5. In terms of statistical results, F-test considered the regression to be suitable in all cases since the corresponding values to the Fc/Ftest ratio was larger than one. The t-test was also used for evaluating each parameter in the model. As shown in Table 5, the values of tc/t-test ratio were also larger than one, showing the statistical significance of the proposed models and their corresponding parameters. 131 Chapter 2 Table 4.Comparison of pyrolysis kinetics parameters for different types of biomass (Cellulose, Hemicellulose, Lignin, Fir Wood, Eucalyptus Wood, Pine Bark and different types of microalgae). Hemicellulose (xylan) Cellulose Ligning Biomass Temperature range (ºC) β (ºC/min) k (log mol1-n ln1 /s) Ea (KJ/mol) Huang et al., 2011 200-400 5 4.2 67.6 Rao and Sharma, 1998 270-320 20 9.3 105.0 Present study 260-350 40 12.72 125.3 Grønli et al., 1999 270-360 40 17 222.0 Huang et al., 2011 340-360 5 15.4 210.8 Órfão et al., 1999 200-400 5 16.8 201 Rao and Sharma, 1998 280-350 20 5.7 82.7 Present study 240-390 40 14.5 191.2 Huang et al., 2011 250-305 5 0.12 35.4 Rao and Sharma, 1998 300-390 20 4.7 67.0 Present study 225-375 40 13.8 88.9 Órfão et al., 1999 120-375 5 3.4 48.5 -1.33 20.4 15.3 210.8 5.7 82.7 15.3 210.8 5.7 82.7 6.72 79.4 0.16 20.2 15.3 210.8 5.7 82.7 6.8 82.7 3.6 42.2 8.6 83.5 375-650 Pine Bark Present study 150-320 40 320-400 Fir wood Present study 150-250 40 250-500 Órfão et al., 1999 Eucalyptus wood 175-400 5 400-650 Present study 150-320 40 320-400 Peng et al. 2001 Algae 132 (S. Platensis) 220-540 (C. protothecoides) 190-540 Present study (NannochloropsisGaditana) 180-530 40 40 Chapter 2 Table 5.Estimated statistical parameters for the pyrolysis of different types of lignocellulosic and marine biomass -3 Sample Step tc (EA) tc (ko) tc (n) t-test Fc (* 10 ) F-test Cellulose 1 3351.79 10096.78 60.00 1.96 954 2.37 1 36.89 2.11 34.53 2 62.46 2.05 62.15 1.96 1325 1.83 3 210350 71.87 339 1 48.08 2.52 39.27 2 84.93 2.78 68.44 1.96 3659 1.83 3 107.85 4.34 123.14 1 2.66 82.38 75.43 2 87.99 55.08 89.98 1.96 14544 1.67 3 44.14 3221907 326.4 1 77.63 3.98 2 44.22 2.42 3 54.26 3.62 1.96 871 1.67 4 60.07 60.07 5 53.39 53.39 1 77.58 2.32 89.98 2 88.42 2.69 78.77 1.96 4218 1.88 3 13976008 107 662 1 48.32 2.39 89.98 2 171.35 5.89 9.74 1.96 14544 1.67 3 159.07 4.57 219.95 4 219.95 9.74 219.33 Xylan Lignin Fir Wood Eucalyptus Wood Pine Bark Nannochloropsis Gaditana microalgae 1.96 133 Chapter 2 2. 4. CONCLUSIONS Thermal characteristics and gas formation during pyrolysis of Fir Wood, Eucalyptus Wood, Pine Bark, NG microalgae and three individual components of lignocellulosic biomass (hemicellulose, lignin and cellulose) were analyzed by TGAMS. Pyrolysis of lignocellulosic biomass was divided into four zones: moisture evolution, hemicellulose decomposition, lignin and cellulose degradation and lignin decomposition. NG microalgae showed the highest thermal stability. The main products (CO2, light hydrocarbons and H2O) were generated between 200 and 450 ºC. H2 was produced at high temperatures (>700 ºC). Kinetic model satisfactorily predicted the pyrolysis of biomass. Furthermore, the statistical significance of the model was proved. 2.5. REFERENCES (1) Barneto, A.G., Vila, C., Ariza, J., 2011. Eucalyptus kraft pulp production: Thermogravimetry monitoring. Thermochim. Acta. 520, 110-120. (2) Basu, P., 2010. Biomass Gasification and Pyrolysis: Practical design and theory, first ed. Elsevier, Oxford. (3) Caballero, J.A., Conesa, J.A., Front, R., Marcilla, A., 1997. Pyrolysis kinetics of almond shells and olive stones considering their organic fractions. J. Anal. Appl. Pyrol. 42, 159-175. 134 Chapter 2 (4) Damartzis, Th., Vamvuka, D., Sfakiotakis, S., Zabaniotou, A. 2011. Thermal degradation studies and kinetic modelling of cardoon (Cynaracardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresour. Technol. 102, 6230-6238. (5) De la Osa, A.R., De Lucas, A. Romero, A., Valverde, J.L., Sánchez, P., 2011. Kinetic models discrimination for the high pressure WGS reaction over a commercial CoMo catalyst, Int. J. Hydrogen. Energ. 36, 9673-9684. (6) De Lucas, A., Sánchez, P., Dorado, F., Ramos, M.J., Valverde, J.L., 2006. Kinetic model of the n-Octane hydroisomerization on PtBeta agglomerated catalyst: Influence of the reaction conditions, Ind. Eng. Chem. Res. 45, 978-985. (7) Froment, G.F., Bischoff, K.B., 1990 Chemical reactor analysis and design, Wiley, New York. (8) Grønli, M., Antal, M.J., Varhegyi, G., 1999. A round robin study of cellulose pyrolysis kinetics by thermogravimetry. Ind. Eng. Chem. Res. 38, 2238-2244. (9) Grønli, M.G., Várhegyi, G., Di Blasi, C., 2002. Thermogravimetric analysis and devolatilization kinetics of wood. Ind. Eng. Chem. Res. 41, 4201-4208. (10) Huang, Y.F., Kuan, W.H., Chiueh, P.T., Lo, S.L., 2011. Pyrolysis of biomass by termal analysis-mass spectrometry (TA-MS). Bioresour. Technol. 101, 1968-1973. (11) Li, D., Chen, L., Yi, X., Zhang, X., Ye, N., 2010. Pyrolytic characteristics and kinetics of two brown algae and sodium alginate. Bioresour. Technol. 101, 7131-7136. (12) Li, D., Chen, L., Zhang, X., Ye, N., Xing, F., 2011. Pyrolytic characteristics and kinetic studies of three kinds of red algae. Biomass bioenergy. 35, 1765-1772. (13) Lin, Y-C., Cho, J., Tompsett, G.A., Westmoreland, P.R., Huber, G.W., 2009. Kinetics and Mechanism of Cellulose Pyrolysis. J. Phys. Chem. C. 113, 20097-20107. 135 Chapter 2 (14) Marcilla, A., Gómez-Siurana, A., Gomis, C., Chápuli, E., Catalá, M.C., Valdés, F.J., 2009. Characterization of microalgal species through TGTA/FTIR analysis: Application to nannochoropsis sp. Thermochim. Acta. 484, 41-47. (15) Marquardt, D.W., 1963. An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Ind. Appl. Math. 11, 431-441. (16) Maschio, G., Koufopanos, G., Lucchesi, A., 1992. Pyrolysis, a promising route for biomass utilization. Bioresour. Technol. 42, 219-231. (17) McKendry, P. 2002. Energy production from biomass (part 1): overview of biomass. Bioresour. Technol. 83, 37-46. (18) Nakamura, T., Kawamoto, H., Saka, S., 2007. Condensation reactions of some lignin related compounds at relatively low pyrolysis temperature. Journal of wood chemistry and technology. 27, 121-133. (19) Órfão, J.J.M., Antunes, F.J.A., Figueiredo, J.L., 1999. Pyrolysis kinetics of lignocellulosic materials-three independent reactions model. Fuel. 78, 349-358. (20) Peng, W., Wu, Q., Tu, P., Zhao, N., 2001. Pyrolytic characteristics of microalgae as renewable energy source determined by thermogravimetric analysis. Bioresour. Technol. 80, 1-7. (21) Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.O., 1992. Numerical recipes in Fortran, second ed. Cambridge University Press, Cambridge. (22) Rao, T.R., Sharma, A., 1998. Pyrolysis rates of biomass materials. Energy. 23, 973-978. 136 Chapter 2 (23) Ross, A.B., Jones J. M., Kubacki, M.L., Bridgeman, T. 2008. Classification of macroalgae as fuel and its thermochemical behavior. Bioresour. Technol. 99, 64946504. (24) Severian, D., 2008. Polysacharides: Structural diversity and functional versatility, Second ed. Marcel Dekker, New York. (25) Shen, D.K., Gu, S., Bridgwater, A.V., 2010. The thermal performance of the polysaccharides extracted from hardwood: Cellulose and hemicellulose. Carbohydr. Polym. 82, 39-45. (26) Shuping, Z., Yulong, W., Mingde, Y., Chun, L., Junmao, T., 2010. Pyrolysis characteristics and kinetics of the marine microalgae Dunaliellatertiolecta using thermogravimetric analyzer. Bioresour. Technol. 101, 359-365. (27) Stenseng, M., Jensen, A., Dam-Johansen, D., 2001. Investigation of biomass pyrolysis by thermogravimetric analysis and differential scanning calorimetry. J. Anal. Appl. Pyrolysis. 58-59, 765-780. (28) Sun, L., Chen, J.Y., Negulescu, I.I., Moore M.A, Collier B.J., 2011. Kinetics modeling of dynamic pyrolysis of bagasse fibers, Bioresour. Technol. 102, 1951-1958. (29) Valverde, J.L., De Lucas, A., Carmona, M.S., González, M., Rodríguez, J.F., 2004. A generalized model for the measurement of effective diffusion coefficients of heterovalent ions in ion exchangers by the zero-length column method, Chem. Eng. Sci. 59, 71-79. (30) Wang, G., Li, W., Li, B., Chen, H., 2008. TG study on pyrolysis of biomass and its three components under syngas. Fuel. 87, 552-558. 137 Chapter 2 (31) Wang, J., Wang, G., Zhang, M., Chen, M., Li, D., Min, F., Chen, M., Zhang, S., Ren, Z., Yan, Y., 2006. A comparative study of thermolysis characteristics and kinetics of seaweeds and fir wood. Process Biochem. 41, 1883-1886. (32) White, J.E., Catallo, W.J., Legendre, B.L., 2011. Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. J. Anal. Appl. Pyrolysis. 91, 1-33. (33) Widyawati, M., Church, T.L., Florin, N.H., Harris, A.T., 2011. Hydrogen synthesis from biomass pyrolysis with in situ carbon dioxide capture using calcium oxide. Hydrogen Energy. 30, 1-14. (34) Yaman, S. 2004. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers. Manage. 45, 651-671. (35) Yang, H., Yan, R., Chen, H., Zheng, C., Lee, D.H., Liang, D.T., 2006. In- Depth Investigation of Biomass Pyrolysis Based on Three Major Components: Hemicellulose, Cellulose and Lignin. Energy Fuels. 20, 388-393. 138 Chapter 3: THERMOGRAVIMETRIC-MASS SPECTROMETRIC ANALYSIS ON COMBUSTION OF LIGNOCELLULOSIC AND MARINE BIOMASS The combustion characteristics of lignocellulosic biomass and marine biomass were investigated by means of TGA-DSC-MS. Additionally, Canadian crops were investigated. The combustion process can be mainly divided into two main steps: devolatilization (Dev. stage) and char oxidation stage (Oxid. stage). The thermal behavior of both types of biomass could be related to the decomposition of their main components. During the Dev. stage of lignocellulosic biomass the hemicellulose and cellulose decompose whereas the oxidation stage was mainly ascribed to lignin. On the other hand, in the Dev. stage for microalgae all of their main components decompose in the following order: carbohydrates, lipids and proteins. Combustion kinetics were studied by Pseudo multi-components separate-stage models (PMSM). Models based on reaction order (Oi), nucleation (Ni) and diffusion (Di) achieved the best fitting to the experimental data. Additionally, the process was successfully modeled obtaining errors below ± 3.35 %. CO, CO2 and H2O were the main components evolved from Chapter 3 combustion. Additionally, light hydrocarbons (CH4 and C2H5) were also present. Finally, nitrogen compounds were in a higher proportion than sulfur compounds being released as primary amines and NOx. The NOx release was higher for the combustion of microalgae than for lignocellulosic biomass due to their high initial nitrogen content. The high ash content of microalgae and Canadian biomass samples catalyzed the volatile compounds release and shifted the process to lower temperatures. Furthermore, this fact implied that sample pre-treatment is required before being used in thermal applications Finally, the main pollutants released during the combustion process of Canadian biomass were analyzed. Nitrogen (NO, NO2 and HCN) and sulfur (SO and SO2) compounds were found in high proportions. Nitrogen compounds were released in both combustion stages, whereas sulfur compounds evolved mainly in the a lower temperature range. Other pollutants were found in lower concentrations (CH3Cl and C6H6). 3.1. INTRODUCTION As already mentioned in Chapter 2, thermochemical conversion of biomass is considered as one of the most promising processes for biomass utilization. These processes are employed for power generation, production of liquid biofuels, chemicals and charcoal.Thus, a good understanding of the decomposition of biomass during thermochemical conversion is important for developing efficient processing technology [1]. Combustion can be defined as the conversion of biomass fuels to several forms of useful energy in the presence of air or oxygen. Thermogravimetric techniques have commonly been used to investigate the thermochemical conversion of solid raw materials as coal and woods [2-4].Unlike pyrolysis, the combustion of biomass using 136 Chapter 3 thermogravimetric analysis has not been studied intensively yet [5].Recently, the combustion behavior of different types of wood has been performed[1; 5;6]. Furthermore, Kay et al., (2011) studied the effect of biomass components on the cocombustion of biomass and coal. Biomass characteristics and kinetics of biomass combustion are essential for modelingthe combustion in industrial processes [7]. Furthermore, a knowledge of the kinetics of the process has great importance for a correct design and product yield control [8]. Although there are significant differences in operating conditions, thermogravimetric analysis provides a powerful tool to accomplish preliminary kinetic studies on the thermal decomposition of solids.Algae are a very promising biomass for the following reasons: rapid growth rate, high yield per area, high efficiency in CO2 capture and solar energy conversion and no competition with food agriculture. Among the different types of algae, microalgae have received more attention than others because they can be cultured in ponds or photobioreactors with supply of nutrients or wastewater [9]. In Canada, the average annual wood cut has been estimated at 167.5 million m3 creating over 60 million tons of residues. The annual harvests are taken from approximately 1 million ha, constituting of only about 0.25 % of the total forestland in Canada[10]. Thus, due to the great potential of Canada soil and variety, it seems mandatory to invest on crops for energy production. Dedicated energy crops can come from multiple sources. However, it is recognized the high potential of woody crops (hardwoods and pines) and non-woody, highyielding annual and perennial crops (Miscanthus, switchgrass and sweet sorghum) due to multiples advantages. Some of the benefits of energy crops include: less capitalintensive conversion technologies, attractive opportunity for local and regional selfsufficiency, reduction in greenhouse gas emissions and viable alternative to fossil fuel use[11]. In spite of the environmental advantages, some aspects concerning the release of contaminants during biomass combustion must be taken into account. In this regard, NOx and SOx emissions depend on raw biomass composition, which usually is 137 Chapter 3 variable[12]. The control of NOx and SOxfrom biomass combustion can contribute to decrease the emissions of these pollutants in Canada which are around 0.7 and 1.2 million tons per year for NOx (as NO2) and SO2, respectively[13]. Furthermore, the chloride amount in biomass might turn into operational problems such as corrosion. Other organic compounds such as benzene and toluene are considered to be part of the most dangerous emissions from biomass combustion causing diseases as lung infection and leukemia[14]. Therefore, the knowledge of pollutant release during biomass conversion is truly important in order to reassure the use of biomass from the environmental point of view. As reported by Naik et al. (2010), suitable mathematical models can be derived for a better comprehension of the thermal behavior of these complex feedstock that allow to perform economic analysis and develop technology for a more efficient biomass conversion[10]. The aim of this work was to perform a comprehensive study of the combustion behavior of lignocellulosicand marine biomassby means of the TGA-DSC. Firstly, three different types of lignocellulosic biomass(fir wood, eucalyptus wood and pine bark) and their main components (cellulose, hemicellulose and lignin) technique.Secondly, three different microalgae species were selected:Chlorella vulgaris, NannochloropsisGaditana and ScenedesmusAlmeriensis. Finally, two different types of Canadian biomass were considered: woody crops (black spruce and Pinusbanksiana mixtures and willow) and different non-woody and perennial crops (common reed, reed phalaris and switchgrass). In addition, the effect of the heating rate on the combustion behavior of lignocellulosicsamples was also studied. Furthermore, the kinetics of the oxidation process were evaluated. Finally,the gases released during the combustion process were analyzed by MS. The main pollutant gases released during the combustion process of Canadian biomass were analyzed. 3.2. EXPERIMENTAL 3.2.1. Materials 138 Chapter 3 The lignocellulosic and marine biomass samples used in this study are those mentioned in Chapter 1. Furthermore, the combustion behavior of Canadian biomass samples was also evaluated. In this regard, two woody crops (black spruce and Pinusbanksiana mixtures and willow) and three different non-woody and perennial crops (common reed, reed phalaris and switchgrass) were harvested and collected from the province of Quebec (Canada). These samples were dried in an oven for 5 h, milled and sieved to an average particle size between 100-150 µm.The proximate analysis of Canadian biomass samples are shown in Table 3.1. The metal content in samples was determined by Inductively Coupled Plasma Spectrometry (ICP) is shown in Table 3.2. Table 3.1.-Proximate and ultimate analysis of biomass samples (black spruce and Pinusbanksiana mixtures (BP), willow (W), common reed (CR), reed phalaris(RP) and switchgrass (S)) Ultimate Analysis (wt. %)*daf Biomass C H N S O*diff BP 47.1 6.1 0.108 0.06 51.6 W 45.1 5.9 0.584 0.54 30.9 S 43.5 6.2 0.624 0.11 55.3 CR 39.2 4.9 0.627 0.03 53.1 RP 43.7 5.5 0.653 0.08 41.7 Proximate Analysis (wt. %) *daf Moisture Ash VM* FC* diff BP 3.7 1.1 79.8 15.4 W 5.2 6.3 68.9 19.5 S 4.4 7.5 74.4 13.7 CR 3.9 16.1 66.9 13.1 RP 3.7 6.7 72.4 17.2 BP 3.7 1.1 79.8 15.4 139 Chapter 3 *daf dry and ash free basis; VM: Volatile matter; FCdiff: wt. % of Fixed carbonwas calculated from difference from moisture, ash and volatile matter; Odiff: wt.% of oxygen calculated from difference of C, H, N and S. Table 3.2.-Characterization of biomass samples (black spruce and Pinusbanksiana mixtures (BP), willow (W), common reed (CR), reed phalaris(RP) and switchgrass (S)) Mineral content (ppm) Biomass Cl P K Ca Mg Al Cu Fe BP 14 64.8 471 1532 276 137 1 55 W 34 2154 5884 13675 1587 1529 10 618 S 129 1570 2286 6242 1529 1683 6 528 CR 1219 625 2114 4402 1468 1499 11 2648 RP 473 11371 6354 2127 960 178 5 333 Cr Na Ni Ba Sr Si Mn Zn BP 2 105 2 13 5 407 151 15 W 9 340 1 41 37 7159 132 269 S 10 335 2 21 18 24048 97 36 CR 18 671 3 22 - 20314 99 71 RP 1 19 2 11 1 12358 61 27 3.2.2. Equipment and Procedures 3.2.2.1. Thermogravimetric analysis for the combustion process The combustion of biomass components was firstly carried out in a TGA apparatus (TGA-DSC 1, METTLER TOLEDO). The sample was preheated at 105 ºC for 10 min to remove the moisture content. Subsequently, the sample was heated from 105 to 1000 ºC at 40 ºC/min under a reactive atmosphere of 21% of oxygen and 79 % of Argon. Additionally, the effect of the heating rate on the combustion process of lignocellulosic biomass was evaluated. In this regard, different heating programmes were used (10, 20, 40 and 80 ºC/min) Previous studies were carried out according to the procedure described in Chapter 1 in order to avoid heat and mass transfer 140 Chapter 3 limitations. In this sense, sample weight was kept at 6 mg, the particle size was kept in the 100-150 µm range and a constant flow rate of 100 Nml/min was used. 3.2.2.2. TGA-MS analysis of the Gaseous Products The analysis of the gas products distribution coming from the thermal analysis was carried out in a thermogravimetricanalyzer (TGA-DSC 1; METTLER TOLEDO) coupled to a mass spectrometer (Thermostar-GSD 320/quadrupole mass analyzer; PFEIFFER VACUUM) with an electron ionization voltage at 70 eV and provided mass spectra up to 300 a.m.u. The interface was wrapped with heating wire to circumvent condensation of exhausting gases. A semiquantitative analysis was performed by using a normalization procedure. The ion intensities were normalized to the intensity of 38Ar isotope to eliminate systematic instrumental errors [15]. 3.2.2.3. Kinetic analysis Kinetic data from solid-state combustion was obtained using thermogravimetric analysis. The devolatilization curve is usually obtained as a sum of the corresponding individual components contributions [2; 16]. However, solid-state reactions are a more complex process, involving processes such as nucleation, adsorption, desorption and surface/bulk diffusion [17]. The model proposed in this work is similar to that reported by Gil et al.[2] for the determination of the combustion kinetic parameters of coal/biomass blends.The kinetic rates were based on the Arrhenius equation[2; 6]. = = ∙ ( ) (1) ∙ / ∙ (2) wheref(α) represents the hypothetical model of the reaction mechanism;k is the reaction rate; Arepresents the pre-exponential factor (min-1); Eis the activation energy (kJ mol-1);Tis the absolute temperature (K); trepresents the time (min), and αis the degree of conversion defined by: 141 Chapter 3 = ( − ) ( − ) (3) wheremoand mtrepresent the mass at t=0 and t=t, respectively, and mfis the final mass of the sample. For a constant heating rate β(K min-1), β= dT/dt, Eq. (1) can be transformed into: ( )= (4) By integrating Eq. (4) gives: ( )= ( )= (5) whereg(α) is the integral function of conversion. Eq. (5) is integrated by using the Coats-Redfern method [18]: ( ) ln[ $] = ln[ ∙ & ∙ ' ∙ (1 − 2& ]−' &∙ + ' (6) Generally, the term 2RT/Ecan be neglected as it is much less than unity[19]. It has been demonstrated that for both, the temperaturesof combustion range and most values of E, the expression ln[AR/βE] in Eq. (6) is essentially constant [20]. Thus, if the correct expression of g(α) is used, the plot of ln[g(α)/T2] against 1/T should give a straight line with a high correlation coefficient of linear regression analysis, from which the values of E and A can be respectively calculated from the slope of the line; and by the intercept term in Eq. (6).The functions f(α) and g(α)referredto the different models for reaction are presented in Table 3.3(White et al., 2011).The Marquardt algorithm was used in the linear regression procedure to obtain the kinetic parameters (E and A). Furthermore, the statistical significance of the estimated parameters based on the F-test and t-test was performed according to the procedure described elsewhere[21]. 142 Chapter 3 Table 3.3.- Expressions for the most common reaction mechanisms in solid state reactions [17] Reaction model f(α) g(α) (1-α)n α Reaction order O0 O1 -ln(1-α) O2 -(1-α)-1 O3 1/2 (1-α)-2 Phase boundary controlled reaction R2 (1-α)(1-1/n) 1-(1-α)(1/2) 1-(1-α)(1/3) R3 Power Law P1 n(α)(1-1/n) α1/4 P2 α1/3 P3 α1/2 P4 α3/2 Nucleation and growth (Avrami-Erofeev equation) N1 n(1-α)[-ln(1-α)](1-1/n) [-ln(1-α)](1/1.5) N2 [-ln(1-α)](1/2) N3 [-ln(1-α)](1/3) N4 [-ln(1-α)](1/4) Diffusion D1 1/2α D2 [-ln(1-α)]-1 2/3 α2 (1-α)ln(1-α)+α 1/3 -1 D3 3/2(1-α) [1-(1-α) ] [1-(1-α)1/3]2 D4 3/2[(1-α)1/3-1]-1 1-2/3α-(1-α)2/3 143 Chapter 3 3.3. RESULTS AND DISCUSSION. 3.3.1. Combustion of lignocellulosic biomass Thermogravimetricstudy on combustion of lignocellulosic biomass Figure 3.1 shows the TGA-DTG profiles ofcombustion between 105 and 1000 ºC for the main components of lignocellulosic biomass (cellulose, xylan and lignin) and different types of lignocellulosic biomass (eucalyptus wood, fir wood and pine bark) at a heating rate of 40 ºC/min. Table 3.4 summarizes the most relevant combustion characteristics of lignocellulosic biomass at heating rates of 10, 20, 40 and 80 ºC/min. 100 Weight (%) 60 40 60 40 20 20 0 3.0 0.8 0 2.5 2.0 1.5 1.0 0.5 0.0 Eucalyptus Wood Fir Wood Pine Bark 80 Weight loss rate (% wt./ºC) Weight (%) 80 Weight loss rate (% wt./ºC) 100 Lignin Xylan Cellulose 125 250 375 500 625 750 875 1000 0.6 0.4 0.2 0.0 125 250 Temperature (ºC) 375 500 625 750 875 1000 Temperature (ºC) Figure 1.-Thermogravimetric curves for the combustion process of: a) main components of lignocellulosic biomass (cellulose, lignin and xylan) and b) lignocellulosic biomass (eucalyptus wood, fir wood and pine bark). 144 Chapter 3 Table 3.4.-Combustion characteristics for cellulose, lignin, xylan, fir wood, eucalyptus wood and pine bark at different heating rates Tdo*(ºC) Tpo* (ºC) Tpf* (ºC) Tp* (ºC) (dw/dT)max* (dwt.%/ºC) Residue yield (%) Cellulose 1st 2ndpeak peak 244 262 270 283 244 438 262 455 270 479 283 518 413 556 429 584 443 616 459 649 325 493 339 517 354 532 373 544 3.247 0.142 3.129 0.106 2.739 0.102 2.264 0.081 0.13 0 0 2.24 1st peak 196 205 217 226 262 277 288 304 243 253 264 274 0.675 0.778 0.841 0.978 Primarycomponents of biomass Xylan 2ndpeak 3rd 4rd peak peak 196 205 217 226 262 385 578 277 396 561 288 429 304 443 368 530 693 380 556 703 383 618 396 680 285 485 617 289 491 605 298 550 304 557 0.616 0.387 0.256 0.619 0.335 0.302 0.631 0.254 0.699 0.152 5.81 3.46 4.44 4.05 1st peak 138 142 146 166 348 302 309 313 285 297 309 312 0.144 0.141 0.132 0.123 Lignin 2ndpeak 138 142 147 166 348 302 309 313 455 434 442 459 444 395 397 404 0.590 0.277 0.271 0.213 5.48 5.51 2.61 2.93 3rd peak 455 434 446 459 555 619 757 832 481 499 518 537 0.905 0.603 0.336 0.301 4rd peak 832 911 880 0.02 1st peak 184 203 212 228 360 383 393 405 318 330 340 350 0.719 0.692 0.678 0.652 Firwood 2ndpeak 184 203 212 228 372 395 413 434 505 529 553 622 424 438 455 449 0.532 0.506 0.329 0.222 4.82 2.74 3.49 3.21 3rd peak 575 587 607 640 652 658 679 711 608 630 652 682 0.042 0.024 0.021 0.020 Lignocellulosicbiomass Eucalyptuswood 1st 2ndpeak 3rd peak peak 185 196 206 214 185 397 566 196 407 588 206 413 608 214 436 624 355 484 653 378 505 675 390 525 699 418 606 735 290 431 620 303 438 636 314 424 667 328 451 694 0.701 0.458 0.057 0.697 0.435 0.029 0.657 0.405 0.027 0.634 0.222 0.027 5.43 3.48 2.68 3.47 1st peak 186 196 199 212 342 356 368 388 314 322 333 344 0.542 0.521 0.509 0.451 Pine bark 2ndpeak 186 196 199 212 357 370 380 388 443 446 452 481 422 427 431 465 0.440 0.431 0.363 0.248 5.98 2.69 1.76 2.89 3rd peak 4th peak 443 446 452 481 531 561 589 653 469 473 491 528 0.450 0.435 0.37 0.080 607 616 653 645 667 715 627 645 658 0.016 0.012 0.08 145 Chapter 3 There are substantial differences in the thermal behavior of the main components of lignocellulosic biomass (Figure 3.1a), which are mainly attributed to their different chemical structures [3]. Lignin was the first component to decompose (146 ºC) whereas xylan and cellulose started decomposing at 187 and 266 ºC, respectively. This behavior is attributed to the fact that lignin and xylan have methoxy functional groups, which tend to break easily[3]. Lignin was the most thermal stable component decomposing in two steps, starting at 146 and 550 ºC, respectively. DTG curve for lignin oxidation presented the smallest and widest peaks. This fact is due to lignin is polymeric in nature with a threedimensional structure consisting of phenylpropane coupled with C-C or C-O-C bonds whose activity covers a wide range of temperatures [3]. The DTG curve for lignin combustion shows two main peaks at 397 and 518 ºC (decomposition rate of 0.295 and 0.326 %/ºC, respectively). The burnout temperature was established at 757 ºC. Xylanwas the least thermally stable component of biomass. Two strong decomposition peaks overlapped in the temperature range of 147-371 ºC, having the maximum DTG peak at 264 ºC (0.841 %/ºC). This degradation step is mainly attributed to C-O-C and some pyranose C-C bonds breakdown[5]. A second step was observed between 429 and 615 ºC. The primary decomposition of cellulose, in which 87 % by weight was lost, took place between 266 and 423 ºC. The DTG peak for cellulose oxidation was found at 354 ºC and presented the highest weight loss rate of all samples (2.74 %/ºC). During this stage, a complex set of reactions as denitration and deacetylation, scission of O-N, C-O, CC and C-H bonds might take place [22]. A smaller peak was found between 441 ºC and 637 ºC (0.10 %/ºC) that can be attributed to char oxidation. Figure 1b shows the TGA-DTG profiles for the combustion process of lignocellulosic biomass (eucalyptus wood, fir wood and pine bark). The thermal degradation of lignocellulosic biomass is often reported as the addition of the primary decomposition of their main components [3; 5;23]. As can be seen from Figure 146 Chapter 3 3.1.b,the lignocellulosic combustion biomass presented similar TGA-DTG profiles, exhibiting three decomposition peaks. In the temperature range between 180 and 388 ºC, a marked peak with a shoulder corresponding to the decomposition of cellulose and hemicellulose, was detected. According to different authors [3; 24;25], this stage represents the release of volatiles and their ignition leading to char formation. Then, a broad peak between 368 and 600 ºC,related to char oxidation,was observed. Lignin is the main contributor in this stage as it is the main responsible for biomass char formation [23]. Finally, a smaller peak was observed for all samples at temperatures above 625 ºC. This step is mainly related to inorganic matter decomposition as carbonates [26]. In spite of their similarity, several differences can be observed in the combustion behavior of the lignocellulosic samples here considered. Eucalyptus wood is the biomass sample with high cellulose content and low hemicellulosecontent. According to Kai et al.[3], a high content in cellulose shifts the devolatilization stage to lower temperatures, increasing the decomposition rate. Furthermore, the shoulder in the DTG curve, indicating hemicellulose decomposition, was less marked. On the other hand, pine bark had the minor cellulose content, presenting the lowest weight loss rate, whereas the shoulder related to the hemicellulose decomposition shoulder was the most pronounced. The second stage, corresponding to the oxidation of the char formed during the devolatilization stage, was characterized by the presence of lignin in the corresponding tested sample [3]. In this case, the DTG peak for the pine bark combustion was the widest one, from 368 to 589 ºC compared to the fir and eucalyptus woods. Finally, the last stage was similar in all samples studied, pointing out that cellulose, hemicellulose and lignin content had no influence on the residue generated at the end of the thermal process[3]. Effect of the heating rate. Figure 3.2 shows the DTG profiles for the combustion of biomass main components (cellulose, xylan and lignin) and lignocellulosic biomass(eucalyptus 147 Chapter 3 wood, fir wood and pine bark) at heating rates of 10, 20, 40 and 80 ºC/min. Table 3.4shows the most relevant characteristics of the combustion process. 3.5 3.0 0.8 10 ºC/min 20 ºC/min 40 ºC/min 80 ºC/min Cellulose 2.5 10 ºC/min 20 ºC/min 40 ºC/min 80 ºC/min Eucalyptus wood 0.6 2.0 0.4 1.5 0.2 0.5 Weight loss rate (% wt./min) Weight loss rate (% wt./min) 1.0 0.0 1.0 Xylan 0.8 0.6 0.4 0.2 0.0 Lignin 0.8 0.0 Fir wood 0.8 0.6 0.4 0.2 0.0 Pine bark 0.5 0.4 0.6 0.3 0.4 0.2 0.2 0.0 0.1 125 250 375 500 625 750 Temperature (ºC) 875 1000 0.0 125 250 375 500 625 750 875 Temperature (ºC) Figure 3.2.- Effect of the heating rate in the combustion process of: a) main components of lignocellulosic biomass (cellulose, lignin and xylan) and b) lignocellulosic biomass (eucalyptus wood, fir wood and pine bark) at 10, 20, 40 and 80 ºC/min. Figure 3.2a shows the DTG plots for the combustion of the main components of biomass at different heating rates. Generally, the higher the heating rate, the higher the temperature at which the peak appeared. This fact is attributed to the poor thermal 148 1000 Chapter 3 conductivity of lignocellulosic biomass, resulting in a particle gradient temperature [17]. Furthermore, the weight loss rate decreased with increasing values of theheating rate. Cellulose main peak shifted from 325 ºC at 10 ºC/min to 373 ºC at 80 ºC/min, whereas char oxidation peak turned from 493 ºC to 544 ºC. The maximum weight loss rate shiftedfrom 3.247 %/ºC to 2.264 %/ºC whereas the peak for the char oxidation varied from 0.142 to 0.081. Xylan and lignin combustion behavior followed a similar trend, although several differences can be observed. Maximum weight loss rate increased in the devolatilization stage with increasing heating rates for Xylan (from 0.675 to 0.978 %wt./ºC).These findings agree well with those obtained by William and Besler[27]. Furthermore, at low heating rates,10 and 20 ºC/min, an additional peak was found at temperatures above 500 ºC. This peak is mainly attributed to the presence of impurities that could not be extracted from the raw material [5]. These small impurity peaks vanished at 40 and 80 ºC/min by the overlapping effect caused by the use of high heating rates.Finally, lignin experimented an irregular behavior. In this case, three peaks were identified at 10, 20, and 40 ºC/min, whereas an additional peak was found at temperatures above 832 ºC. At 10 ºC/min the combustion of lignin was mainly performed between 300 and 525 ºC, occurring two peaks at 444 and 481 ºC in a similar way as that reported by Cheng et al. [5]. However, when the heating rate was increased, the first peak shifted to lower temperatures whereas the second one did to higher temperatures. As aforementioned, both peaks became broader by the overlapping effect caused by using high heating rates. Figure 3.2b shows the DTG combustion profiles for lignocellulosic biomass. Concerning the heating rate effect on lignocellulosic biomass combustion behavior, all the samples followed the general trend. The higher the heating rate, the higher the peak temperature was whereasthe maximum weight loss rate, for all DTG peaks, decreased. In all cases, the oxidation peak was broader when heating rate was increased. 149 Chapter 3 Kinetic analysis The kinetic model used in this work was derived fromthe PMSM (Pseudo multicomponent separate-stage models) approach. In this type of models, the biomass sample is composed of multiple pseudo components [19]. In this regard, the kinetic parameters can be determined assuming single separate reactions for the different stages of thermal conversion. As aforementioned, the DTG plots represented different decomposition peaks dividing the combustion process of biomass samples in different stages. Each stage represents a separate reaction. Biomass combustion was clearly defined by three main stages: devolatilization stage (Dev. stage), char oxidation stage (Oxid. stage) and remaining char burning stage (Rem. stage). However, some samples experimented additional decompositions. For example, the Dev. Stage for xylan was represented by two peaks. In order to differentiatethem, the Dev. stagefor xylan was divided into two stages:Dev. stage A and Dev. stage B. Furthermore, xylancombustion showed a peak athigh temperatures named as Imp. stage.Additionally, the Oxid.stage for lignin and pine bark combustion was characterized by two peaks. In a similar way, these stages were named as Oxid. stage A and Oxid stage B, respectively.This way, eq. (6) was used separately to each of the stages commented above.In order to obtain reliable kinetic data, operating parameterswere established according to the procedure described in Chapter 1. The model representing the form of g(α)(Table 3.3), which delivered the highest correlation coefficient,was considered to be the function representing the mass loss kinetics for the samples under study. The function g(α) depends on the mechanism controlling the reaction and the size and shape of the reacting particles [28]. Figure 3.3 and 3.4 shows the plots of ln[g(α)/T2] versus 1/T that provided the best linearity at 10, 20, 40 and 80 ºC/min for biomass main components and lignocellulosic biomass samples, respectively. Table 3.5 and 3.6 summarizes themain kinetic parameters of biomass samples.It can be seen from Figure 3.3,Table 3.5 and Table 3.6 that all the stages fitted well into a straight line. All cases showed an acceptable linear fit regression (r2> 0.9).However, only models based on reaction order (Oi), nucleation 150 Chapter 3 -10 Dev. Stage - O1 10 ºC/min Oxid. Stage - O1 2 ln g α /T (() ) -12 -10 Dev. Stage - O1 20 ºC/min Oxid. Stage - O1 -12 -10 -10 40 ºC/min 80 ºC/min Dev. Stage - O1 Oxid. Stage - O1 -12 -14 -14 -14 -14 -16 -16 -16 -16 -18 -18 -18 -18 -20 -20 -20 -20 -22 -22 Cellulose -22 0.0012 0.0016 0.0020 0.0024 0.0012 0.0016 0.0020 Dev. Stage - O1 Oxid. Stage - O1 -12 -22 0.0024 0.0012 0.0016 0.0020 0.0024 0.0012 0.0016 0.0020 0.0024 -1 1/T (K ) -6 10 ºC/min Dev. Stage A-N1 -8 (() ) 2 ln g α /T Dev. Stage A-N1 20 ºC/min Dev. Stage B-O2 -6 Dev. Stage B-O2 Oxid. Stage -O1 -8 Oxid. Stage -O1 Imp. Stage -O1 -10 -4 -12 Imp. Stage -O2 -10 -12 -6 40 ºC/min Dev. Stage A-N1 Dev. Stage B-O2 -8 Oxid. Stage -O1 -6 80 ºC/min Dev. Stage A-N1 -8 Dev. Stage B-O2 -10 -10 -12 -12 -14 -14 -14 -14 -16 -16 -16 -16 -18 -18 -18 -18 -20 -20 -20 Xylan -22 0.0008 0.0012 0.0016 0.0020 0.0024 -22 0.0008 -20 -22 0.0012 0.0016 0.0020 Oxid. Stage -O1 -22 0.0024 0.0012 0.0016 0.0020 0.0024 0.0012 0.0016 0.0020 0.0024 -1 1/T (K ) -10 -10 10 ºC/min Oxid. Stage A - O3 (() ) Oxid. Stage A - O1 -12 -10 40 ºC/min Dev. Stage - D3 Oxid. Stage B - O1 -14 2 ln g α /T 20 ºC/min Dev. Stage - D3 -12 -10 80 ºC/min Dev. Stage - D3 Oxid. Stage A - O1 -12 Dev. Stage - D3 Dev. Stage - O1 -12 Oxid. Stage B - O1 Oxid. Stage B - O1 Dev. Stage - O1 -14 -14 -14 -16 -16 -16 -18 -18 -18 -20 -20 -20 -22 -22 0.0008 Dev. Stage - O1 -16 -18 -20 -22 -24 Lignin 0.0012 0.0016 0.0020 0.0024 0.0012 0.0016 0.0020 0.0024 0.0012 0.0016 0.0020 0.0024 -22 0.0008 0.0012 0.0016 0.0020 0.0024 -1 1/T (K ) -8 -10 10 ºC/min 20 ºC/min Dev. Stage - O1 Oxid. Stage - O1 -10 -10 (() ) 2 ln g α /T 40 ºC/min Dev. Stage - O1 Oxid. Stage - O1 -12 Rem. Stage - O1 -10 80 ºC/min Dev. Stage - O1 Oxid. Stage - O1 -12 Rem. Stage - O1 -14 -14 -14 -14 -16 -16 -16 -16 -18 -18 -18 -18 -20 -20 Fir wood -22 0.0012 0.0016 0.0020 0.0024 0.0012 0.0016 0.0020 0.0024 Oxid. Stage - O1 Rem. Stage - O1 -12 -20 Dev. Stage - O1 -12 Rem. Stage - O1 -20 -22 0.0008 0.0012 0.0016 0.0020 0.0024 -22 0.0008 0.0012 0.0016 0.0020 0.0024 -1 1/T (K ) -10 -10 10 ºC/min Dev. Stage - O1 Oxid. Stage - O1 2 ln g α /T (() ) -12 Rem. Stage - O1 Dev. Stage - O1 20 ºC/min Oxid. Stage - O1 -12 Rem. Stage - O1 -10 -10 40 ºC/min 80 ºC/min Dev. Stage - O1 Oxid. Stage - O1 -12 -14 -14 -14 -14 -16 -16 -16 -16 -18 -18 -18 -18 -20 -20 -20 Eucalyptus wood -22 0.0012 0.0016 0.0020 0.0024 -22 0.0008 0.0012 0.0016 0.0020 0.0024 Dev. Stage - O1 Oxid. Stage - O1 -12 Rem. Stage - O1 Rem. Stage - O1 -20 -22 0.0008 0.0012 0.0016 0.0020 0.0024 -22 0.0008 0.0012 0.0016 0.0020 0.0024 -1 1/T (K ) -10 -10 10 ºC/min Oxid. Stage A - O1 Dev. Stage - O1 20 ºC/min Dev. Stage - O1 -12 Oxid. Stage A - O1 -12 Oxid. Stage B - O1 2 ln g α /T (() ) Oxid. Stage B - O1 Rem. Stage - O1 -10 -10 Dev. Stage - O1 40 ºC/min Oxid. Stage A - O1 -12 Oxid. Stage B - O1 Rem. Stage - O1 Oxid. Stage A - O1 -14 Rem. Stage - O1 -14 -14 -16 -16 -16 -16 -18 -18 -18 -20 -20 -20 -22 -22 -18 -20 Pine bark -22 0.0012 0.0016 0.0020 0.0024 0.0012 0.0016 0.0020 -14 0.0024 0.0012 0.0016 0.0020 0.0024 Dev. Stage - O1 80 ºC/min -12 -22 0.0008 Oxid. Stage B - O1 0.0012 0.0016 0.0020 0.0024 -1 1/T (K ) Figure 3.3.- Plot of ln(g(α)/T) vs 1/T for the combustion process of: a) main components of lignocellulosic biomass (cellulose, lignin and xylan) and b) lignocellulosic biomass (eucalyptus wood, fir wood and pine bark)at 10, 20, 40 and 80 ºC/min. 151 Chapter 3 Table 3.5.-Estimated kinetic parameters for the combustion of the main components of lignocellulosic biomass (cellulose, xylan and lignin) BiomassSample HeatingRate (ºC/min) Stages Mechanism Cellulose 10 20 40 80 Stages Mechanism Xylan 10 20 40 80 Stages Mechanism Lignin 10 20 40 80 152 E (kJ/mol) r2 E (kJ/mol) r2 E (kJ/mol) r2 E (KJ/mol) 164 166 171 173 0.9978 0.9937 0.9910 0.9908 187 193 159 181 0.9932 0.9930 0.9905 0.9906 - - - 0.9975 0.9947 0.9931 0.9925 107 106 105 104 0.9954 0.9945 0.9935 0.9954 146 142 129 80 0.9943 0.9946 0.9951 0.9900 188 252 - 0.9941 0.9930 0.9901 0.9925 55 89 96 88 0.9931 0.9965 0.9976 0.9958 60 119 74 52 0.9918 0.9946 0.9906 0.9913 599 128 125 131 131 96 84 83 70 A (1/min) Dev. Stage O1 3.5·1013 1.3·1014 1.3·1014 8.3·1013 Dev. Stage A N1 4.8·1012 1.9·1012 8.8·1012 3.7·1012 Dev. Stage D3 6.6·109 5.6·106 5.4·106 2.4·105 A (1/min) Oxid. Stage O1 1.21012 2.1·1012 3.4·109 8.6·1013 Dev. Stage B O2 7.6·109 3.6·109 2.3·109 1.0·109 Oxid. Stage A O1 1.8·105 2.3·106 8.6·106 1.4·106 A (1/min) Oxid. Stage O1 4.3·109 4.3·109 4.3·107 1.1·104 Oxid. Stage B O1 8.2·105 1.2·107 3.6·103 6.1·101 A (1/min) Imp.Stage O1/ O2* 1.7·1010 1.1·1015 Rem. Stage O1 6.9·1026 r2 - 0.9911 0.9761 - 0.9932 Chapter 3 Table 3.6.- Estimated kinetic parameters for the combustion of different types of lignocellulosic biomass samples (fir wood, eucalyptus wood and pine bark) BiomassSample HeatingRate (ºC/min) Stages Mechanism Fir wood 10 20 40 80 Stages Mechanism Eucalyptus 10 wood 20 40 80 Stages Mechanism Pine bark 10 20 40 80 E (kJ/mol) 75 82 89 88 87 85 90 92 95 97 97 103 A (1/min) Dev. Stage O1 1.3·106 6.4·106 4.6·107 2.4·107 Dev. Stage O1 2.1·107 1.7·107 6.9·107 6.9·107 Dev. Stage O1 1.3·108 2.8·108 4.1·108 6.7·108 r2 E (kJ/mol) r2 E (kJ/mol) r2 E (kJ/mol) 0.9933 0.9938 0.9905 0.9959 126 124 167 107 0.9932 0.9908 0.9926 0.9911 377 393 336 484 0.9942 0.9948 0.9902 0.9991 - 0.9933 0.9918 0.9926 0.9921 179 165 135 84 0.9930 0.9913 0.9947 0.9934 335 335 330 314 0.9930 0.9913 0.9904 0.9923 - 0.9943 0.9935 0.9953 0.9907 152 177 188 140 0.9954 0.9908 0.9903 0.9902 188 139 126 107 0.9916 0.9916 0.9910 0.9945 610 504 274 A (1/min) Oxid. Stage O1 3.4·108 2.1·108 1.2·1011 1.6·106 Oxid.Stage O1 5.9·1012 2.7·1011 1.1·109 5.3·104 Oxid. Stage A O1 1.5·1011 1.9·1013 2.2·1014 3.4·1010 A (1/min) Rem. Stage O1 9.6·1021 2.6·1022 3.5·1018 5.1·1022 Rem. Stage O1 1.6·1019 6.1·1018 9.6·1017 3.3·1016 Oxid. Stage B O1 4.2·1012 8.1·108 5.6·107 7.6·105 A (1/min) Rem. Stage O1 1.5·1035 2.5·1028 5.4·1014 r2 - - 0.9930 0.9924 0.9906 153 Chapter 3 (Ni) and diffusion (Di) achieved a regression coefficient above 0.98. These results agreed well with those reported in literature [2; 7;19]. The general disadvantage of dynamic thermal analysis is that in many cases more than one function g(α) fits the experimental results. Consequently, selection of the responsible mechanism and estimation of the real kinetic parameters can be difficult as previously reported [7]. Furthermore, separate stage models fail to predict the transition region between two mass losses processes and do not consider chemical processes. Regarding the Dev. stage, the cellulose combustion followed a first reaction order mechanism. That of lignin followed a D3 mechanism whereasxylanfollowed a N1and O2onesforDev. stage Aand Dev. stage B, respectively. The oxidation stage followed aO1 functionfor cellulose and xylanwhereas the lignin combustion fitted betterinto a O3 and O1for Oxid. stage Aand Oxid. stage B, correspondingly. The Imp.stage for the xylanoxidation was only found at 10 and 20 ºC/min. Different mechanism were found to be meaningful for each heating rate. O1model showed the best r2at 10 ºC/minwhereas O2 model was the one that better described the Imp stage at 20 ºC/min. Finally, the Rem. stage forlignin oxidation at 80 ºC/min followed an O1mechanism. Anyway,model function of first order (O1) yielded the best correlation coefficient for lignocellulosic biomass combustion process (Table 3.6). These results agreed well withthose reported elsewhere[19] and indicate that the composition of biomass do not influence the overall reaction mechanism of lignocellulosic biomass oxidation. Up to now, the effect of the heating rate on biomass thermal decomposition kinetics is still unresolved [17]. Different authors have proposed that the heating rate has minimal impact on the frequency factor, which is mainly related to the structure of the material [7; 17]. Anyway, the activation energy is the main characteristic attributed to the reactivity of a biomass sample [2; 7]. Figure 3.5 shows the estimated activation energies at different heating rates for the different stages of the combustion process ofbiomass samples.Concerning the kinetic parameters obtained for the main components oflignocellulosic biomass (Figure 3.5a and Table 3.5), several differences can be observed. Activation energies of biomass main components can beranked as 154 Chapter 3 follows: E(cellulose)>E(xylan)>E(lignin). This order determined that the decomposition of cellulose is the rate-determining step of the biomass combustion process[17]. On the other hand, the activation energy valueswere hardly affected by the heating rate. 250 300 Dev. Stage Xylan A Xylan B Cellulose Lignin A Lignin B Oxid. Stage 250 200 EA (Kj/mol) 200 150 150 100 100 50 50 0 0 20 40 60 80 100 0 Heating Rate (ºC/min) 125 20 40 60 80 100 Heating Rate (ºC/min) 250 700 Oxid. Stage Dev. Stage Fir wood Eucalyptus Wood Pine bark A Pine bark B Rem. Stage 600 200 EA (Kj/mol) 100 500 150 400 75 100 300 50 50 0 20 40 60 80 Heating Rate (ºC/min) 100 200 0 20 40 60 80 Heating Rate (ºC/min) 100 0 20 40 60 80 100 Heating Rate (ºC/min) Figure 3.4.-Comparison of activation energy for the combustion process of: a) main components of lignocellulosic biomass (cellulose, lignin and xylan) and b) lignocellulosic biomass (eucalyptus wood, fir wood and pine bark) at 10, 20, 40 and 80 ºC/min. The study of the Oxid.stage showed a similar trend as that commented for the previous stage. Activation energies for cellulose and xylan were higher than that for lignin. However, the higher the heating rate, the slightly lower the activation energies were.Finally, the activation energies for the Rem. stage werehigher than those obtained for the previous ones. This fact can be attributed to the high energy required to decompose inorganic matter [26]. The effect of the heating rate on the kinetic parameters for lignocellulosic biomass samples was similar to that commented for 155 Chapter 3 their main components (Figure 3.4.b and Table 3.6). Activation energies for the Dev. stage did not differ for different heating rates [1]. However, for the Oxid.stagethe higher the heating rate, the lower the activation energy was observed. Shen et al.[1]related this finding with the occurrence of gradient temperatures within the particle, which increased at higher heating rates. As above commented and expected, the value of activation energies for the Rem. stage were the highest one. In order to corroborate the kinetic analysis, the reconstruction of the weight loss curves was performed. Considering n separate reactions, the kinetic rates of thermal decomposition of a material can be easily derived from Eq. (4) as follows: dα. dT = A. βe 34 56 f. (α. ) (7) whereαi, Ai, Ei and fi(αi) are the degree of conversion, the pre-exponential factor, activation energy and model functions obtained for each stage of the combustion process, respectively. A VBA-Excel application was developed to solve this model based on the RungeKutta-Fehlberg method for the evaluation of the set of ordinary differential equations. Figure SS1 shows the experimental data (solid line) compared to the predicted one (dotted line) for the combustion process of biomass samples at a heating rate of 10 ºC/min, obtained by substituting the calculated activation energy and pre-exponential factor for each stage into Eq. (7). It can be observed that the proposed model adequately reproduces the experimental values, obtaining a low error for all cases. Finally, in order to ensure the reliability of the proposed models, the discrimination of kinetic parameters was done applying the F-test and the t-test at the 95% confidence level [23]. The resulting parameters obtained from the linear regression are summarized in Table 3.7 and 3.8. In terms of statistical results, F-test considered the regression to be suitable in all cases since the corresponding values to the Fc/Ftest ratio were larger than one. The t-test was also used for evaluating each parameter in the 156 Chapter 3 model. The values of tc/t-test ratio were also larger than one, showing the statistical significance of the proposed models and their corresponding parameters. Table 3.7.- Estimated statistical parameters for the combustion of biomass main components Sample Heating rate (ºC/ min) 10 20 Cellulose 40 80 10 20 Xylan 40 80 10 20 Lignin 40 80 Stage Dev. Oxid. Dev. Oxid. Dev. Oxid. Dev. Oxid. Dev. A Dev. B Oxid. Imp. Dev. A Dev. B Oxid. Imp. Dev. A Dev. B Oxid. Dev. A Dev. B Oxid. Dev. Oxid. A Oxid. B Dev. Oxid. A Oxid. B Dev. Oxid. A Oxid. B Dev. Oxid. A Oxid. B Rem. Step 1 2 1 2 1 2 1 2 1 2 3 4 1 2 3 4 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 4 tc (EA) 48.8 74.3 96.4 64.4 64.2 69.3 629 82.3 106 35.6 112 61.1 115 34.7 192 54.4 108 35.7 120 63.3 32.8 68.2 119 70.5 65.3 77.3 23.9 91.1 60.7 93.3 107 39.1 104 80.8 52.4 tc (k0) 2.47 2.61 2.08 1.97 4.54 273 13.6 2.60 4.38 2.12 4.20 2.11 2.43 2.21 8.04 2.27 2.22 2.03 5.58 3.40 2.30 4.53 8.25 3.89 3.39 5.82 2.52 4.19 4.53 4.43 8.37 2.87 5.83 8.28 3.58 t-Test 1.96 1.96 1.96 1.96 1.96 1.96 1,98 1,99 1.96 1.96 1.96 1.96 1.97 1.96 1.96 1.96 1.97 1.96 1.96 1.99 1.98 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.97 1.96 1.96 Fc (·10-3) 44.8 362 204 325 10.3 337 1314 311 1118 154 578 405 409 193 1879 313 361 195 731 181 314 349 857 168 310 458 191 419 268 612 757 145 978 618 435 F-test 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 157 Chapter 3 Table 3.8.- Estimated statistical parameters for the combustion of lignocellulosic biomass Sample Heating rate (ºC/ min) 10 20 Eucalyptus wood 40 80 10 20 Firwood 40 80 10 20 Pine bark 40 80 Stage Dev. Oxid. Rem. Dev. Oxid. Rem. Dev. Oxid. Rem. Dev. Oxid. Rem. Dev. Oxid. Rem. Dev. Oxid. Rem. Dev. Oxid. Rem. Dev. Oxid. Rem. Dev. Oxid. A Oxid. B Dev. Oxid. A Oxid. B Rem. Dev. Oxid. A Oxid. B Rem. Dev. Oxid. A Oxid. B Rem. Step 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 4 1 2 3 4 1 2 3 4 tc (EA) 131 53.1 105 108 98.8 65.6 112 108 75.2 79.2 70.1 99.1 56.7 96.7 124 146 82.2 125 146 69.6 91.9 99.8 74.5 57.3 150 71.8 79.5 160 72.5 66.9 78.6 183 235 72.1 89.6 126 63.5 147 13.2 tc (k0) 6.16 3.78 2.19 5.27 2.13 2.02 5.33 2.45 2.96 4.01 4.42 2.44 1.12 4.08 2.42 3.29 3.43 2.26 3.29 2.74 2.37 4.96 5.15 2.04 6.54 2.46 2.44 7.05 2.17 2.62 3.18 8.14 10.7 3.18 3.38 5.58 2.44 6.70 3.49 t-Test 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.97 1.96 1.96 1.98 1.96 1.96 1.97 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.98 1.96 1.98 1.96 2.02 Fc (·10-3) 537 24.5 673 354 669 261 370 892 474 185 605 659 79.1 567 523 1826 435 1147 1825 425 543 396 685 433 716 483 542 825 486 366 567 1030 1832 412 1195 471 467 716 110 F-test 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Gas evolved analysis The main products derived from the combustion of lignocellulosic biomass and its main components were evaluated by TGA-MS analysis. On the basis of a preliminary scan, a list of key molecular ions was compiled and gathered inTable 3.9. 158 Chapter 3 Table 3.9.-Molecular ions and probable parent molecules detected in the combustion of lignocellulosic biomass and its main components. (m/z) Key molecular ions/Ion fragment Probable parent molecule Cellulose Lignin Xylan Fir wood Eucalyptus wood Pine bark 2 15 16 18 26 27 28 29 30 44 45 46 47 48 50 51 52 53 54 55 56 57 58 60 64 68 70 72 84 95 96 H2+ CH3+ O+, CH4+ H2O+ CN+, C2H2+ HCN+, C2H3+ C2H4+, CO+ C2H5+ C2H6+, CH2NH2+ CO2+ C2H5O+, C2H7N+, CHS+ NO2+, C2H5OH+ CH3S+, CCl+, C2H5OH+ CH3SH+, CHCl+, SO+ C4H2+, CH3Cl+, CF2+ C4H3+, CHF2+ C4H4+ C4H5+ + C4H6 , C2H4CN+ C4H7+, C3H3O+ C3H6N+, C4H8+ C4H9+, C3H5O+, C3H2F+ C3H8N+ COS+ SO2+ + C5H8 , C4H4O+, C3H6CN+ C5H10+, C4H6O+, C4H8N+ C4H8O+, C4H10N+, C6+ C5H10N+ C5H3O2+ C7H12+ H2 CH4 CH4 H2O C2H2 HCN (nitriles) CO C2H5 (Ethylderivates) CH4N (Primary amines) CO2 C2H5O (hydroxyderivates) NO2 CH3Cl SO CH3S C4H3(aromatics) C4H4 (aromatics) C4H5 (aromatics) C4H6 (aromatics) C4H7 (aromatics) C4H8 (alquenes) C3H5O (cyclopentanol) C3H8N (amines) COS SO2 C4H6O(cyclohexenones) C4H6O (cycloalkanones) C4H8O(alkanones) C5H10N (pyrolidines) C5H3O2(furycarbonil-derivates) C7H12 (alicyclics) X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X - X X X X X X X X X X X X X X X X X X - X X X X X X X X X X X X X X X X X X X X X X X X X - X X X X X X X X X X X X X X X X X X X X X X X X X - X X X X X X X X X X X X X X X X X X X X X X X X X - 159 Chapter 3 Mass spectrometry analysis for the oxidation of xylan, cellulose and lignin are shown in Figure 3.5. MS curves were move up and down in order to obtain a clearevolved gas profile. Magnifying picture of the curves was placed in the upper right corner. MS spectra of biomass main components could be divided into different stages related to their degradations steps studied in the TGA/DTG curves and described in previous sections.Table 3.10 summarizes the most representative MS ions detected, their integrated peak intensities in the whole temperature range and the temperature where the maximum emission peak was found. Cellulose sample combustion showed the major emission peak for all productsat the devolatilization stage at temperatures around 350 ºC which is in good agreement with its maximum DTG peak.In this stage, the degradation of glycosyl units in cellulose produced H2O, CO and CO2 leading to the formation of char residue.Xie et al.[29]stated that during the devolatilization of cellulose the complete decomposition of glycosidicstructuresproceeded. Furthermore, rapid depolymerization of cellulose turned into the breakdown of the molecule,producing a variety of low molecular weight products[5]. Inthe char combustion stage only H2O, CO, CO2, NO2, C2H5O+(hydroxyderivates) and C2H5were detected at 510 ºC. CO and CO2 evolution from cellulose sample oxidation is believed to be a consequence of the loss of carbonyl and carboxyl groups previously formed by the oxidation of hydroxyl groups [5]. This fact can also be corroborated by the presence of C2H5O+ in this temperature range.In a similar way, xylanevolution was resolved in two stages. This way, volatiles were released between 200 and 450 ºC whereas only CO2, CO, CH3+,C2H5O+, HCN and NO2 were found at higher temperatures. In this case, the maximum evolution rate for most compounds was found at temperatures between 260 and 270 ºC. The formation of two peaks for CO, CO2 and H2O in this stage showed the good correlation with its DTG profile. However, a second group of compounds (H2, CH3, C2H2, and HCN) had their maximum emission peak at 466 ºC, coincidental to the shoulder in the CO2 curve. This second peak could be due to char elimination and rearrangement reactions. Finally, CO, CO2, C2H5O+and NO2decomposed at higher temperatures. Lignin sampleMS spectra showed a more diversified profile, volatile 160 Chapter 3 compounds evolved within the whole temperature range as expected from the TGDTG analysis, which could beattributed to the presence of aromatic compoundsin the raw material thatremained after their oxidation in air at 240 ºC [29], widening the temperature range for volatiles evolution.As abovementioned, lignin sample was the first biomass component to start decomposing. Most volatiles started evolving in the 130-200 ºC temperature range, finding the main emission peak for H2O, CH3Cl, CH3S+,SO and SO2at 340 ºC.The low temperatures at which oxygenated compounds evolved pointed out that aliphatic HOgroups were easily removed from lignin[30]. In this stage, CO, CO2 and H2O were released by C-C bond scission [31]. Furthermore, the decomposition ofsulphoxide and sulphone groups facilitated lignin depolymerization[30]. C2H2, CH4N and CH3+ emission peaks occurred at 392, 397 and 427 ºC, respectively.The evolution of these compounds was associated to dehydration and demethylation reactions [30].H2O, C2H2, HCN, COS, CO and CH4maximum peaks took place between 483 and 501 ºC. H2 was later released at 529 ºC being attributed to the hydrogen splitting from aromatic rings [30]. Finally, CO2, NO2 and C2H5O+peak was found between 553 and 575ºC where the devolatilization of char took place. A last CO2 peak was found at high temperatures related to carbonates decomposition. This peak was not observed in cellulose and xylansamples MS profiles which is due to their low inorganic content. This fact confirmed that the peak observed in the DTG profiles at high temperatures can be attributed to the inorganic matter present in the formed ash. Finally, it can be observed that cellulose sample MS spectra showed the highest intensity peak for all the observed products in the devolatilization stage being in agreement with its high DTG peak. Furthermore, the low CO2 peak in the oxidation stage compared to that of lignin and xylan samples was due to the low amount of fixed carbon. On the contrary, lignin and xylan samples showed their highest CO and CO2 peaks in the oxidation stage. 161 Chapter 3 + C4H8O + C5H3O2 H2 C5H12 + C4H8O Intensity (a.u) + C5H10N Intensity (a.u) Intensity (a.u) CO2 C2 H2 + CH3S COS + CH3S CH4 + C3H8N C3H5O C4H8 COS CH4 H2 H2 200 200 300 400 500 300 600 400 500 600 200 300 Temperature (ºC) 500 600 Temperature (ºC) Temperature (ºC) CO2 CO2 C2H5 Intensity (a.u.) 400 CO CH4N C2H5 + C2H5O + C2H5O HCN H2O CH3 C2H2 C2H5 + CO CH4N NO2 H2O C3H8N HCN + C4H4O C4H5 C4H6 C4H8 CH3 NO2 NO2 CO C4H7 H2O + C2H5O SO2 CH4N HCN CH3Cl COS 200 CH3 + + + C4H6O 400 600 Temperature (ºC) 800 C4H7 C2H2 C3H5O 1000 200 400 600 Temperature (ºC) 800 1000 200 400 600 800 Temperature (ºC) Figure 3.5.-Mass spectra of the combustion of the main components of lignocellulosic biomass (cellulose, xylan and lignin) at 40 ºC/min. 162 1000 Chapter 3 Table 3.10.-Maximum peak temperatures and integrated peak areas for biomass main components and lignocellulosic biomass Compound H2 CH3+ CH4 H2O C2H2 HCN CO C2H5 CH4N CO2 C2H5O+ NO2 CH3S+ SO CH3Cl C4H3+ C4H4+ C4H5+ C4H6 C4H7 C4H8 C3H5O C3H8N COS SO2 C4H4O C4H6O+ C4H8O+ C5H10N+ C5H3O2+ C7H12+ Cellulose Tp* (ºC) Int** (min/mg) 356 0.2 356 11.7 353 696 356 2.3 356 1.6 354 310 351 27.7 351 16.5 354 403.5 354 4.7 357 1.8 354 0.01 352 0.03 360 0.03 360 0.1 355 0.2 355 0.3 355 0.3 355 0.2 352 0.03 357 0.4 360 0.04 352 0.3 358 0.01 355 0.02 361 0.02 358 0.01 361 0.02 Lignin Tp* (ºC) 529 427 501 488 483 483 496 392 397 575 560 553 334 362 344 482 334 - Int* (min/mg) 2.0 26.6 0.6 586 1.8 2.1 281 18.4 11.6 652 2.1 0.8 0.2 0.7 0.4 0.2 1.1 - Xylan Tp* (ºC) 468 468 305 262 466 466 265 262 257 530 530 268 271 268 263 296 258 - Int* (min/mg) 2.8 13.8 0.3 552 2.6 3.7 176 18.5 7.8 445 6.2 2.6 0.2 0.2 0.1 0.3 0.1 - Firwood Tp* (ºC) Int* (min/mg) 363 0.3 342 5.7 437 40.6 337 592 342 1.6 340 2.5 422 287 343 19.2 340 13.8 459 768 461 9.3 461 3.4 489 0.1 315 0.03 323 0.3 356 0.1 318 0.2 333 0.1 349 0.1 349 0.1 346 0.2 336 0.1 333 0.3 339 0.1 346 0.1 - Eucalyptuswood Tp* (ºC) Int* (min/mg) 305 0.9 313 6.7 431 55.5 323 580 323 1.5 324 2.1 413 230.3 313 21.6 311 14.7 416 589 416 7.8 414 2.6 291 0.1 250 0.05 311 0.9 319 0.1 309 0.3 324 0.1 319 0.2 312 0.3 317 0.2 330 0.1 322 0.3 304 0.3 325 0.1 - 163 Pine bark Tp* (ºC) Int* (min/mg) 351 0.2 313 2.8 433 48.2 321 878 316 1.1 313 1.5 415 657 311 20.6 313 12.6 434 953 431 10.4 434 2.2 306 0.1 250 0.03 311 0.1 370 0.01 309 0.08 306 0.04 335 0.06 314 0.07 317 0.08 350 0.03 307 0.1 307 0.08 0.03 335 0.03 - Chapter 3 164 Chapter 3 CH3Cl C4H4O Intensity (a.u) Intensity (a.u) C3H5O C4H4O H2 + C4H3 + C4H5 Intensity (a.u) C4H6 + C4H5 C3H5O H2 + C4H3 SO CH4 SO C4H4O C4H6 C4H5 + C4H4 + C4H5 + CO2 CH4 CH3S 300 CH3S 400 500 CO2 SO2 + 200 200 300 600 400 500 200 600 Intensity (a.u.) NO2 C2H5O C2H5O CH4N NO2 C2H2 C2H2 CH4N HCN CH3 COS + + C4H8 COS C3H8N + C4H7 C4H4 + C4H4 C4H8 + C3H8N CH3Cl 600 Temperature (ºC) 800 1000 200 C4H7 C4H7 COS 400 H2O CH3 HCN C2H2 200 + HCN CH3 C3H8N 600 C2H5O CH4N + NO2 500 CO C2H5 H2O + 400 C2H5 CO CH3Cl 300 Temperature (ºC) C2H5 CO H2 CH4 Temperature (ºC) Temperature (ºC) H2O C4H8 SO2 SO CO2 + C4H4 400 600 Temperature (ºC) 800 1000 200 400 600 800 1000 Temperature (ºC) Figure 6.-Mass spectra of the combustion of lignocellulosic biomass (eucalyptus wood, fir wood and pine bark) at 40 ºC/min. 165 Chapter 3 Figure 3.6 shows the MS spectra for firwood, eucalyptus wood and pine bark.The gas products distributionwas pretty similar andmay be divided into three stages. As commented above, most compounds evolved during the devolatilization stage. Sulfur compounds were the first to be detected as SO and CH3S+. An intermediate emission peak was found, where CO and CH4 evolved. H2 was also emitted between these two stages. Finally, CO, CO2, C2H5O+, and NO2 were the main peaks detected during the char oxidation stage. The same pattern was followed by all the samples. However, the emission peaks temperatures changed. As expected from biomass samples DTG profiles, peaks for eucalyptus wood and pine bark took place at lower temperatures than those for fir wood. This fact could be due to compositional differences among them (volatile matter, cellulose and hemicellulose content). H2O, CO and CO2 were the main products obtained during biomass combustion (Table 3.10). CO and CO2 evolved over the whole temperature range with a higher proportion of CO2.CO is assumed to be formed by the creation of molecular oxide complexes that further rearrange turning into the evolution of CO [32].However, CO2presented a more complex formation process [32], as its production can be catalyzed or inhibited by the formation of carbon intermediates[33]. Pine bark released the highest amount of CO2 which is attributed to its high lignin content. However, the CO evolution from combustion of lignocellulosic biomass cannot be directly correlated to that for biomass components since CO signal has a great contribution of the CO2 one. Furthermore, there is also a minor contribution of ethylene to the ion corresponding to m/z=28[34].H2O was released in three steps. Firstly, the water released in the low temperature range was associated to the dehydration of the sample. Then, the higher peak for water was formed in the main devolatilization stage, being associated to the evolved aliphatic OH groups [15; 33]. Finally, a shoulder appeared in the MS spectra, which was related to the water formed by the oxidation of H2 and calcium carbonate decomposition [33]. The higher amount of H2O evolved from pine bark sample combustion was mainly due to its higher initial moisture content.Light hydrocarbons and especially CH4 and C2H5 were also predominant. CH4had two main origins related to devolatilizationand charring processes [6].It was also interesting to 166 Chapter 3 note the release of nitrogen compounds (N compounds) in form of HCN, NO2 and CH4N. However, it has to be careful with relative amount of amines as the associated ion (m/z=30) can be related to NO and C2H6compounds. Thus, N compounds emission should be related to NO2 rather than NO and CH4N. Two emission zones were found for N compounds. One stage related to the release of amines and NO2, which is attributed to the decomposition of proteins [12].In the second one,NO2 was only detected and attributed to the oxidation of the retained N in the char[35].Furthermore,Darvel et al.[12]reported a possible explanation for HCN formation (C(H)1 + C(N)1 → HCN + Cfas, where C(H)1 and C(N)1 arelocalized surface species and Cfas is a "free active site"). Finally, the rest of the products were found in low content. Among them, special attention to the release of sulfur and chloride compounds should be paid since they behave as hazard pollutants. Sulfur compounds were released as SO, CH3S and COS (SO2 signal was hardly detected during biomass combustion, which can be explained by the easy fragmentation of this ion within the mass spectrometer) whereas thechloride fraction was detectedin form of CH3Cl. 3.3.2. Combustion of marine biomass Thermogravimetric Analysis (TGA) Figure 3.7 shows TGA-DTG profiles for the microalgae Scenedesmusalmeriensis (SC), Nannochloropsisgaditana(NG) and Chlorella vulgaris (CV) at a heating rate of 40 ºC/min. Table 3.11 shows the most relevant combustion characteristics. Ignition, peak and burnout temperatures are the most characteristic parameters when evaluating the combustion performance of a material [36; 37]. Peak temperature (Tp) refers to the temperature where maximum loss weight rate (dw/dT)maxis reached. Peak temperature and its corresponding rate is a measure of combustibility and reactivity, respectively. Thus, the lower the Tp, the easier the ignition of a material is. The ignition temperature (Ti) is the temperature at which a sudden decrease in weight loss on the DTG curve is observed. Ti was calculated as the intersection between the tangent line to the point which decomposition started and the tangent line to the maximum weightloss rate. The burnout temperature (Tb) is the temperature where the process is finished. 167 Chapter 3 0 0.0 150 300 450 600 750 Temperature (ºC) 900 1050 20 0.2 0.1 0 0.0 150 300 450 600 750 900 1050 Temperature (ºC) 60 0.4 0.3 0.2 40 20 0 150 300 0.1 0.0 450 600 750 900 1050 Temperature (ºC) Figure 3.7.-Thermogravimetric curves for the combustion process of Scenedesmusalmeriensis (SC), Nannochloropsisgaditana (NG) and Chlorella vulgaris (CV) microalgae. 168 0.5 CV Sub-step III STAGE II Weight loss rate (wt.%/ºC) 40 0.3 80 Weight (wt.%) 60 STAGE I Sub-step I+ II 0.1 0.4 80 Weight loss rate (wt.%/ºC) 0.2 100 NG Final volatilization 0.3 STAGE II Sub-step III 0.4 STAGE I Sub-step II 20 100 0.5 Sub-step I Sub-step III SC Sub-step II 40 Sub-step I Weight (wt.%) 80 60 STAGE II Weight (wt.%) STAGE I Weight loss rate (wt.%/ºC) 100 Chapter 3 Table 3.11-TGA-DTG characteristics for the combustion process of Chlorella vulgaris (CV), Scenedesmusalmeriensis (SC) and NannochloropsisGaditana (NG) microalgae Biomass samples CV 1 st peak * 2 nd peak SC 3 rd peak 1 st peak 2 3 peak 172 Tdo (ºC) NG nd rd peak 4 th peak 1 st peak 2 nd peak 125 3rd 4th peak peak 142 * 265 276 237 Tb (ºC) * 725 696 716 Ti (ºC) Tpo (ºC) * 172 359 514 125 205 402 479 142 396 478 826 Tpf (ºC) * 359 514 725 205 402 479 696 396 478 716 998 Tp (ºC) * 304 378 607 175 311 453 555 284 430 573 955 (dw/dT)max* 0.44 0.24 0.19 0.07 0.48 0.12 0.22 0.40 0.11 0.18 0.05 (dwt.%/ºC) Residue (%) 16.1 19 5.9 CCF ( · 107)* 3.0 3.4 2.6 *Sh: Shoulder; Tdo: Initial decomposition temperature; Ti: Ignition temperature; Tb: Burnout temperature; Tpo: Initial peak temperature; Tpf: Final peak temperature; Tp: Peak temperature; (dw/dT)max: Maximum weight loss rate; Combustion characteristic factor The main decomposition stages are represented in Figure 3.7 by a solid line whereas the minor stages are represented as sub-steps and plotted by a dotted line. The thermal decomposition of microalgae under air atmosphere is usually described by two stages [38; 39]. These stages were identified in the DTG profile by the formation of pronounced peaks. The first stage comprised the devolatilization of the samples and it was extended until temperatures around 500 ºC. This stage was characterized by a major loss weight corresponding to the release of organic compounds leading to the formation of char [38]. The second stage, which took place at temperatures above 500 ºC, consisted of the combustion of the formed char and presented a variable Tb depending on the reactivity and the amount of char formed. However, this classification cannot result conclusive since different peaks can be observed during the first stage corresponding to the decomposition of microalgae main components. 169 Chapter 3 The first decomposition stage can be subdivided in three more sub-steps for samples SC and NG and in two more sub-steps for sample CV. The first sub-step was represented by a peak for sample SC and as a shoulder for sample NG, which is related to intrinsic lipid decomposition, such as aldehydes and ketones [40]. In addition, the decomposition of carbohydrates started in this temperature range (170180 ºC) [41]. This sub-step was not found for sample CV and might be due to its lower lipid and carbohydrate content. The second sub-step was detected by a peak at 284, 304 and 311 ºC for samples NG, CV and SC, respectively, and was associated to carbohydrates and proteins decomposition [42]. The maximum weight loss rate was observed in this sub-step for all samples. Sample SC had the highest (dw/dT)max (0.48 wt.%) followed by samples CV (0.44wt.%) and NG (0.40wt.%). Carbohydrates, proteins and ash content could influence this order. In this sense, the higher their content in the raw material, the higher the (dw/dT)maxwas. Regarding the ash content, this was much higher for samples SC and CV than for sample NG. In this sense, alkali metals present in the ash could catalyze the combustion process increasing the volatiles yield [43]. Finally, a third sub-step, common to all samples, was observed close to the char oxidation stage. This peak appeared at lower temperatures for sample CV (378 ºC) than for samples NG (430 ºC) and SC (453 ºC). In this stage, the final decomposition of lipids took place and it was mainly associated to the break-down of hydrocarbon chains of fatty acids [38; 40; 41]. In sample CV, this peak appeared at lower temperature and with a higher weight loss rate. This fact can be related to the higher protein content in this sample. In this regard, Kebelmann et al. [40] found a shoulder for the thermal decomposition of microalgae proteins close to the main decomposition stage. The second decomposition stage took place between 478 and 725 ºC. For sample SC, this stage took place at lower temperatures and with a slightly higher weight loss rate, if compared to that of samples CV and NG. This fact pointed out that SC devolatilization led to the formation of a bigger amount of char. This is in agreement with Ross et al. [41] who reported that high levels of K in the sample promoted the formation of char. Additionally, a last decomposition step was observed for sample 170 Chapter 3 NG between 826 and 998 ºC in a similar way as reported by Wang et al. for the combustion of seaweeds [26]. This step is mainly related to volatile metal loss and carbonate decomposition. Concerning the general burning profile of the microalgae samples, it can be observed that sample SC was the first to decompose (125 ºC) whereas samples NG and CV decomposed at 142 and 172 ºC, respectively. On the other hand, sample SC was the most difficult sample to ignite. Finally, the sample CV showed the highest Tb (725 ºC) compared with samples NG (716 ºC) and SC (696 ºC). Samples SC and CV left a high amount of ash (19 and 16 wt.%, respectively) compared to sample NG (5.9 wt.%). This fact restricts the use of sample SC and CV for direct combustion and gasification due to the catalyst/inhibiting effect of the ash. Thus, a pre-treatment based on water, acid or alkali washing to reduce the influence of minerals may be needed [44]. The combustion characteristic factor (CCF) can be used to preliminary assess the microalgae combustion performance [45]. This factor is based on the energy required to burn a material in terms of low Ti and Tb values and high (dw/dt)max and is expressed as follows: 889 = :; :; ( : )<=> ∙ ( : )<?=@ $ A ∙ B (7) where (dw/dt)max is the maximum burning velocity (%/min); (dw/dt)mean is the average burning velocity (%/min); Ti is the ignition temperature (K) and Tb is the burnout temperature (K). CCF values for all samples are shown in Table 3.11. In all cases, these values were bigger than 2 indicating the good general burning performance [37]. Sample SC required less energy than the other samples to perform the combustion. However, these data must be used only as a reference since they do not give any information about the heat released during the combustion process. 171 Chapter 3 Differential scanning calorimetry (DSC) In order to complete the information obtained by TG analyses, the marine biomass (samples CV, SC and NG) was also investigated by the DSC technique. Experimental DSC curves are presented in Figure 3.8. DSC main temperatures and heat of combustion (Hcomb) are included in Table 3.12 DSC analysis of lignocellulosic biomass has been studied by different authors [24; 37;46]. However, at the best of our knowledge, the DSC analysis of microalgae combustion has not been explored yet. 30 NG SC CV Heat Flow (W/g) 25 20 15 10 5 0 120 240 360 480 600 720 840 960 Temperature (ºC) Figure 3.8.-DSC curves for the combustion process of Nannochloropsisgaditana (NG), Scenedesmusalmeriensis (SC) and Chlorella vulgaris (CV) microalgae. Table 3.11.-DSCcharacteristics for the combustion process of Chlorella vulgaris (CV), Scenedesmusalmeriensis (SC) and NannochloropsisGaditana (NG)microalgae. Biomass samples CV T (ºC)* Tp (ºC)* Hcomb (kJ/g)* SC NG 1 Peak 2 Peak 1 Peak 2 Peak 1 Peak 2ndPeak 212-516 491 516-798 617 152-428 366 428-802 570 156-426 336 426-774 601 st nd 7.9 st nd 7.8 st 8.8 * T: temperature interval where a thermal event takes place; Tp: peak temperature; Hcomb: Heat released during combustion 172 Chapter 3 When studying the biomass combustion by the DSC technique, two different exothermic regions are generally observed [37; 46]. The first region is associated to the combustion of light volatile matters, which provides reactivity of biomass fuels. This peak is short and lower, so less heat was released. The second one represents the combustion of fixed carbon [46]. As can be seen in Figure 3.8, the first exothermic region for sample CV was represented as a wide shoulder rather than a peak. Concerning the heat released during the combustion of the different microalgae samples, it can be observed that samples with wider combustion peaks in the stage of fixed carbon oxidation showed a higher heat release than samples whose combustion was mainly developed in the stage of volatiles release. The first exothermic region appeared in all samples at a similar temperature interval (300 ºC). However, the second exothermic region covered a higher temperature range for sample NG (500 ºC) than for samples SC and CV (370 and 280 ºC, respectively). Biomass samples used in this work were ranked according to the combustion heat as follows: NG > SC > CV. This trend did not agree well with that obtained if the combustion characteristic factor (CCF) is considered. In the latter case, sample NG presented the lowest CCF value. As aforementioned, the CCF measures how easy a combustible is burnt in terms of low energy requirement to carry out the combustion process (low Ti and Tb). However, it does not give information about the exothermic reactions taking place during the combustion. DSC analysis helps to obtain a more realistic approach to the combustion process of biomass and determine the amount of energy contained in the char. Therefore, the devolatilization of sample NG led to the formation of the most energetic char. Furthermore, the high ash content in samples CV and SC might affect the char oxidation process [43]. Kinetic analysis The kinetic model used in this work was derived from the pseudo multi-component separate-stage models (PMSM) approach. In this type of models, the biomass sample is composed of multiple pseudo components [19]. In this regard, the kinetic parameters can be determined assuming single separate reactions for the different 173 Chapter 3 stages of thermal conversion. Microalgae combustion is usually described by two main stages: devolatilization stage (Dev. stage) and char oxidation stage (Oxid. stage). However, as aforementioned this classification may result unclear due to the fact that it does not consider different thermal events that take place during these stages. Thus, an additional sub-classification was carried out as in latter sections. In this regard, the different event occurring during the Devolatilization stages are named to as sub-step 1, 2 and 3. Furthermore, the last stage for sample NG combustion, related to volatile metal loss and carbonate decomposition, was named to as rem. step. Therefore, Eq. (6) was separately used to each of the stages above commented. The model representing the form of g(α) (Table 3.3), which delivered the highest correlation coefficient, was considered to be the function representing the mass loss kinetics for the samples under study. Figure 3.9 shows the plots of ln[g(α)/T2] versus 1/T that provided the best linearity at 40 ºC/min. Table 3.15 summarizes the main kinetic parameters for the biomass samples here studied. It can be seen that all the stages fitted well to a straight line. All samples showed the best regression coefficient for the model O1, which is the most used mechanism for the kinetic calculation of biomass thermal decomposition [17]. All microalgae samples showed a similar kinetic behavior. The main differences can be attributed to the different stages considered. In this regard, sample CV did not show the sub-step 1. Sample NG showed a slightly higher activation energy (116.8 kJ/mol) than sample SC (93.6 8 kJ/mol), which can be explained by the low temperature required for sample SC to decompose. In a similar way, little difference in the Ea values was observed for the sub-step 2. Sample NG showed the lowest Ea value (62.9 kJ/mol), pointing out that it was the most reactive sample and the easiest to ignite. This way, the combustion reaction is more continuous than that observed for the other microalgae [47]. Regarding sub-step 3, the low amount of lipid in sample CV and the closure of sub-step 2 and 3 would explain the lower Ea value obtained for this sample. Sample SC showed the highest Ea value, which may be due to its lipid composition. In this regard, Kebelmann et al. [40] reported different thermal behaviors 174 Chapter 3 between the lipids extracted from different types of microalgae being attributed to different fatty acids compositions. Concerning the second stage of combustion, Ea values were almost the same for all samples. This is in agreement with the results obtained by Yu et al. [47] for the combustion of different seaweeds. Finally, sample NG was the only one that showed a last sub-step at high temperatures. The Ea in this stage was markedly higher than that for the previous stage, pointing out to the high energy required for metals and carbonates volatilization. -8 Sub-step 2 Sub-step 3 Oxid-step CV -10 (() ) -8 Sub-step 1 Sub-step 2 Sub-step 3 Oxid-step Rem-step NG -10 -12 2 ln g α /T -6 -6 SC Sub-step 1 Sub-step 2 Sub-step 3 Oxid-step -8 -10 -12 -12 -14 -14 -16 -16 -18 -18 -14 -16 -18 -20 -20 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 3 1/T (1/K) * 10 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 1/T (1/K) * 10 3 -20 1.0 1.2 1.4 1.6 1.8 2.0 2.2 3 1/T (1/K) * 10 Figure 3.9.-Plot of ln(g(α)/T) vs 1/T for the combustion process of Scenedesmusalmeriensis (SC), Nannochloropsisgaditana (NG) and Chlorella vulgaris (CV) microalgae. In order to corroborate the kinetic analysis, the reconstruction of the weight loss curves was performed. Considering n separate reactions, the kinetic rates of thermal decomposition of a material can be easily derived from Eq. (4) as follows: : C : = A C A( A) (8) whereαi, Ai, Ei and fi(αi) are the degree of conversion, the pre-exponential factor, activation energy and model functions obtained for each stage of the combustion process, respectively. A VBA-Excel application was developed to solve this model based on the RungeKutta-Fehlberg method for the evaluation of the set of ordinary differential equations. Figure 3.10 shows the experimental data (solid line) compared to the predicted one 175 2.4 Chapter 3 (dotted line) obtained by substituting the calculated activation energy and preexponential factor for each stage into Eq. (8). It can be observed that the proposed model adequately reproduces the experimental values. The mean error between the experimental and theoretical curves was calculated and shown in Figure 3.10. The obtained error was lower in all cases than 3.1 %. Table 3.14.-Estimated kinetic parameters for the combustion of Nannochloropsisgaditana (NG), Chlorella vulgaris (CV) and Scenedesmusalmeriensis(SC) microalgae Sub-step 1 Ea A (kJ/mol) (1/min) 116.8 4.7·1013 93.6 1.2·1011 Biomass NG CV SC 113.2 124.9 126.1 NG CV SC Oxid. step 3.4·106 5.2·107 3.9·107 r 0.8 0.6 0.6 0.6 0.4 0.4 0.4 0.2 600 800 1000 1200 Mean error (%): 1.9 CV 0.0 400 0.9933 0.9901 0.9915 0.2 NG 0.0 r2 Theoretical Experimental Mean error (%): 3.1 Sc Sub-step 3 A (1/min) 4.1·1011 5.2·107 1.3·1013 1.0 Mean error (%): 2.7 0.2 Ea (kJ/mol) 157.8 135.27 178.9 0.9907 - 0.8 0.8 2 0.9911 0.9915 0.9907 1.0 1.0 (1-α ) Stage 1 Sub-step 2 Ea A r2 (kJ/mol) (1/min) 0.9901 62.9 3.1·105 80.9 1.9·104 0.9915 71.3 1.4·106 Stage 2 Rem. step 0.9912 326.5 1.0·1013 0.9921 0.9908 - 0.0 400 600 800 1000 1200 400 600 800 1000 1200 Temperature (K) Figure 3.10.-Comparison between experimental and theoretical results for the combustion process of Scenedesmusalmeriensis (SC), Nannochloropsisgaditana (NG) and Chlorella vulgaris (CV)microalgae. 176 Chapter 3 Evolved gas analysis The main products derived from the combustion of the marine biomass (samples CV, SC and NG) were evaluated by TGA-MS analysis. In this regard, a preliminary scan was performed in order to identify the main gaseous products released during the combustion of microalgae samples. The most prominent ions were detected at (m/z)= 2, 15, 18, 27, 28, 29, 30, 41, 44, 45, 46, 48, 50, 58, 60 and 64 corresponding to the following compounds: H2, CH4, H2O, HCN + C2H4, CO, C2H6, NO + CH4N (primary amines), C3H5+ (alkenes), C2H5O + CHO2 (esters and ethers + carboxylic groups), CO2, NO2, SO, CH3Cl, C3H6O (ketones), COS and SO2, respectively. Special attention must be taken into account when reporting some ions due to they could belong to multiple compounds. Thus, ions with m/z 27, 30 and 45 are related to the evolution of different compounds. Mass spectrometry analyses for the different types of microalgae here considered: Chlorella vulgaris (CV), Scenedesmusalmeriensis (SC) and Nannochloropsisgaditana(NG) are shown in Figure 3.15 and 3.16. MS spectra of microalgae could be divided into different stages related to their degradations steps studied in the TGA/DTG curves and described in previous sections. Table 3.11 summarizes the most representative MS ions detected, their integrated peak intensities in the whole temperature range and the temperature where an emission peak was found. Microalgae combustion is a chemical process where the organic matter contained in them is oxidized to release heat [26]. However, the oxidation of microalgae involves many complex reactions, both in parallel and series, such as thermal cracking, condensation and depolymerization due to the complex composition of microalgae. The thermal decomposition of microalgae can be considered step-wise were carbohydrates, proteins and lipids are decomposed. Thus, the study of gases evolving during combustion is of high importance from a fundamental point of view in order to gain further understanding of the complex reactions occurring during combustion. 177 Chapter 3 CO CH4 H2O NG SC CV Intensity (a.u.) CO2 200 400 600 800 1000 200 Temperature (ºC) 400 600 800 1000 200 Temperature (ºC) + C3H5 (alkenes) 400 600 800 200 Temperature (ºC) 600 800 H2 C3H6O (ketones) Intensity (a.u.) C2H6 400 Temperature (ºC) 200 400 600 Temperature (ºC) 800 200 400 600 Temperature (ºC) 800 1000 200 400 Temperature (ºC) 600 200 400 600 Temperature (ºC) Figure 3.11.-Gas evolution profile of CO, CO2, H2O, CH4, C3H5+ (alkenes), C2H5, H2 and C3H6O for the combustion process of Scenedesmusalmeriensis (SC), Nannochloropsisgaditana (NG) and Chlorella vulgaris (CV) microalgae. 178 800 Chapter 3 NO2 HCN + C2H4 NG SC CV CH3Cl Intensity (a.u.) CH4N + NO 200 400 600 800 1000 200 Temperature (ºC) 400 600 800 1000 200 SO 400 600 800 1000 200 600 C2H5O + CHO2 COS Intensity (a.u.) SO2 400 Temperature (ºC) Temperature (ºC) Temperature (ºC) 200 300 400 500 Temperature (ºC) 600 700 200 400 600 Temperature (ºC) 800 1000 200 400 600 800 Temperature (ºC) 200 400 600 800 1000 Temperature (ºC) Figure 3.12.-Gas evolution profile of NO, NO2 SO, SO2, COS, CH3Cl, HCN and CH4N for the combustion process of Scenedesmusalmeriensis (SC), Nannochloropsisgaditana (NG) and Chlorella vulgaris (CV) microalgae. 179 Chapter 3 Table 6.-MS characteristics for the combustion process of Chlorella vulgaris (CV), Scenedesmusalmeriensis (SC) andNannochloropsisgaditana (NG) microalgae (m/ z) Gas * 1 2 H2 12 C+ 14 CO+, N+ 15 CH4 18 H2O 27 C2H3+, HCN CO 28 29 30 180 Tp C2H6, CHO+ C2H6, CH2O, NO, CH4N (º C) 32 0 33 6 32 5 32 5 17 2 34 7 33 8 18 3 18 1 Tp2*(º C) SC Tp3*(º C) Tp4*(º C) Int* Tp1*(º C) Tp2*(º C) NG Tp3*(º C) Tp4*(º C) Int* Tp1*(º C) Tp2*(º C) CV Tp3*(º C) Tp4*(º C) Int* 517 - - 280 552 - - 552 - - - - 340 590 - - 380 611 811 - 539 - - 338 515 - - 379 554 693 - 506 - - 278 333 510 645 380 529 - - 309 523 - 282 431 563 - 298 375 567 - 440 519 - 334 449 603 - 378 592 899 - 555 - - 339 456 602 851 380 610 818 - 309 453 534 271 336 448 592 190 291 384 611 361 598 - 275 362 539 680 2.6·1 0-6 3.2·1 0-5 7.4·1 0-6 2.2·1 0-5 1.2·1 0-3 1.5·1 0-5 2.5·1 0-4 1.3·1 0-5 3.9·1 0-5 307 552 6.9·1 0-7 2.6·1 0-5 6.1·1 0-6 1.3·1 0-5 9.1·1 0-4 1.5·1 0-5 2.3·1 0-4 344 562 683 901 1.6·1 0-6 2.8·1 0-5 6.3·1 0-6 1.2·1 0-5 7.7·1 0-4 2.7·1 0-5 2.8·1 0-4 9.7·1 0-6 1.8·1 0-5 2.7·1 0-5 Chapter 3 41 44 C3H5+ (alkenes) CO2 48 C2H5O+; CHO2 NO2; C2H5OH SO 50 CH3Cl 58 60 C3H6O(keto nes) COS 64 SO2 45 46 32 9 32 9 34 0 33 7 27 9 30 6 32 6 38 8 28 1 450 - - 555 - - 554 - - 573 - - 443 - - 445 - - - - - - - - 375 582 - 2.5·1 0-6 5.3·1 0-4 6.1·1 0-6 1.9·1 0-6 4.1·1 0-6 1.2·1 0-7 1.2·1 0-7 8.6·1 0-8 4.4·1 0-7 331 437 - - 193 339 592 870 203 344 587 895 193 339 591 - 275 386 - - 279 421 - - 326 424 - - 413 - - - 275 383 597 - 4.5·1 0-6 6.9·1 0-4 7.6·1 0-6 2.5·1 0-6 4.2·1 0-7 5.3·1 0-7 1.9·1 0-7 1.6·1 0-7 4.1·1 0-7 379 425 501 - 380 610 818 - 372 609 899 - 392 608 830 - 322 429 - - 303 382 - - 395 573 - - 262 - - - 312 390 641 - 2.6·1 0-6 4.3·1 0-4 4.4·1 0-6 1.5·1 0-6 2.8·1 0-7 1.5·1 0-7 5.5·1 0-8 1.4·1 0-7 2.8·1 0-7 181 Chapter 3 The gaseous emissions followed a similar pattern in all microalgae samples. CO, CO2 and H2O were the main components produced and evolved over the whole temperature range. CO and CO2 main peaks took place at temperatures between 555 and 610 ºC being coincident with their DTG peak. The CO and CO2 emissions detected in this temperature range were due to the fixed carbon oxidation [26]. Emission peaks at lower temperatures were associated to the decomposition of carboxyl groups in protein and saccharides [48]. Furthermore, an additional peak was found for samples CV and NG at temperatures above 800 ºC, which was attributed to the decomposition of mineral matter, as carbonates, in the ash [26; 49]. On the other hand, H2O emissions reached their maximum evolution rate at 282, 298 and 309 for samples NG, CV and SC, respectively. The H2O produced at this step was mainly associated to the oxidation of oxygen containing functional groups (especially hydroxyl groups). H2O peaks at lower temperatures were attributed to the loss of cellular water and external water bounded by surface tension [44]. Finally, the water produced at higher temperatures was associated to the evolution of H2. In this regard, H2 was produced by the dehydrogenation of the char [50] and reached their maximum yield at 517 and 552 ºC for samples SC and NG and CV. In addition, H2O emissions peaks were found at slightly higher temperatures. This fact pointed out that H2O at this stage was produced by the oxidation of produced H2. H2O peaks were found at lower temperatures than CO2 ones, indicating that microalgae samples decomposition started via dehydration of the algae components followed by combustion [50] Light hydrocarbons (HC), especially CH4, were the main secondary products detected. The origin of HC is attributed to the decomposition of carbohydrates and lipids. In this sense, Marcilla et al. [51] reported that the main source of methyl groups was the decomposition of lipids. Their results agreed well with those reported in this study as maximum peaks for CH4 were obtained at 506, 510 and 529 ºC. Carbohydrates decomposition also led to the formation of HC, as it can be observed from the C2H5 and C3H5 (alkenes) emissions between 180 and 450 ºC. Emission peaks for HC were also observed at higher temperatures as reported by Bae et al. [52]. The evolution of oxygen containing hydrocarbons such as ketones (C3H6O) and carboxylic 182 Chapter 3 acids, esters and ethers (C2H5O + CHO2) was attributed to the breaking up of carbonyl groups from fatty acids[53]. Ketones were mainly detected between 326 and 396 ºC whereas carboxylic acids, ester and ethers evolved in two steps. The C-C scission of these compounds may turn out in direct CO emissions, or they can be later combined with oxygen to form CO2. The evolution of N-compounds took place forming different emission peaks. Nitrogen compounds (N-compounds) evolved as CH4N (primary amines), NOx and HCN. The first peak between 200 and 400 ºC was mainly associated to the decomposition of proteins. The second peak was related to the ignition of Ncontaining compounds between 400 and 500 ºC. In this temperature range, the presence of primary amines and HCN was less likely and their signal may have an important contribution of other compounds related to their ions such as HC and NO. The presence of NO at temperatures above 400 ºC has been reported by different authors [26; 48]. The last peak at temperatures above 500 ºC corresponded to the oxidation of the remaining nitrogen in the char. The maximum yield of NO2 was reached in this stage. The release of NOx is of high importance as they are the primary components of photochemical smog [26]. Chloride and sulfur compounds were released in lower proportions than nitrogen compounds. Chloride compounds were mainly detected as CH3Cl and emitted between 200 and 400 ºC, the evolution of this compound was much higher for the sample NG than for samples SC and CV which is in good agreement with their compositional analysis (Table 1.2). Concerning the release of sulfur compounds, SO and SO2 were the main products detected. Their release is mainly associated to the decomposition and oxidation of sulphated polysaccharides[48]. SO and SO2 maximum peaks were found at similar temperatures for all samples (270-300 ºC). Furthermore, a second emission peak was found in the lipid decomposition temperature range (350-480 ºC) for both compounds due to the degradation of organic sulfides in organic residues [48].These peaks were characterized by the apparition of SO2 at lower temperatures than SO. Finally, only SO2 was produced at higher temperatures being quite consistent 183 Chapter 3 with the combustion of fixed carbon temperature range. Furthermore, COS was produced, which can be originated by the partial oxidation of organic sulfur or the reaction of SO2 with carbon complexes [54]. Samples SC and NG showed peaks at temperatures above 700 ºC for different compounds (HCN + C2H4, C2H5, CH4N + NO, NO2, CO and CO2). The evolution of compounds in this temperature range is mainly associated to the catalytic effect of some compounds in the ash. Furthermore, the volatilization of some mineral matter and carbonates may take place as above commented. However, this fact was unusual as no appreciable weight loss was detected at this temperature for these samples (<0.05 wt.% for both samples). The interactions of the ash in the combustion of microalgae were out of the scope of this work. However, the problematic associated to their presence in combustion processes can be considered of high importance and further studies will be carried out in order to achieve a deeper insight of their behavior. 3.3.3. Combustion of Canadian biomass Thermogravimetric analysis Figure 3.13 shows the thermogravimetric (TGA) and derivative thermogravimetric (DTG) profiles for different types of biomass here considered: two woody crops (black spruce and Pinusbanksiana mixtures (BP) and willow (W)), and three herbaceous non-perennial energy crops (common reed (CR), reed phalaris (RP) and switchgrass (S)). Table 3.17 shows the main relevant combustion characteristics. The thermal decomposition of biomass under oxidative environment is usually described by two stages[19; 37;43]. Firstly, the devolatilization of the sample takes place at low temperatures (160-400 ºC), leading to char formation. Then, the oxidation of the sample occurs at temperatures higher than 400 ºC. Generally, each stage is attributed to the decomposition of the biomass main components (hemicellulose, cellulose and lignin)[3; 5].Hemicellulose and cellulose are assumed to decompose during the devolatilization stage[55]. Hemicellulose usually appears as a shoulder in the DTG curve in the devolatilization stage at low temperatures, whereas cellulose oxidation 184 Chapter 3 produces the main DTG peak in this stage. On the other hand, lignin decomposes in a wider temperature range being the main responsible of biomass char formation[56]. Finally, the formed char is burnt at high temperatures. 100 7 CCF (x10 ) 100 RP 3.16 CR 2.35 80 S 2.67 Weight loss derivative ( wt.% / ºC) Weight (%) 80 60 60 40 40 20 20 0 0 1.2 1.2 0.9 0.9 0.6 0.6 0.3 0.3 0.0 200 400 600 Temperature (ºC) 800 0.0 1000 7 CCF (x10 ) W 4.5 BP 5.16 200 400 600 800 1000 Temperature (ºC) Figure 3.13.-Thermogravimetric curves for the combustion process of: a) non-woody perennial crops (common reed (CR), reed phalaris (RP) and switchgrass (S)) and b) woody biomass (black spruce and Pinusbanksiana mixtures (BP) and willow (W)) For woody crops, sample W started decomposing at lower temperatures than sample BP (175 ºC and 197 ºC for samples W and BP, respectively). On the other hand, for herbaceous crops, sample RP decomposed at lower temperatures (160 ºC) than samples S (195 ºC) and CR (206 ºC). Concerning the devolatilization stage, herbaceous crops showed a more prominent shoulder in the hemicellulose decomposition region than woody biomass. This shoulder was more visible in the combustion of sample RP, indicating the presence of higher hemicellulose content. The ignition temperature was found to be for all samples between 290 and 315 ºC but for sample RP this temperature was lower (273 ºC). The maximum weight loss rate 185 Chapter 3 was found for samples BP and S, which pointed out to a higher content in cellulose. The char oxidation stage started at similar temperatures for all samples (375-391 ºC). However, it ended at a slightly higher temperature for herbaceous crops, 540 ºC, compared to 507-534 ºC temperature range for the woody crops. An additional mass loss weight was found in the combustion of sample W. This fact was attributed to the burning of the remaining semi-coke. The highest value of Tb was found for sample W, which is related to the presence of high lignin content. Finally, the amount of residue (ash) that remained after the combustion process is of great interest. Sample CR left the highest amount of residue (18.2wt.%) whereas BP yielded a very low one (1.6wt.%). The ash composition is dominated by metal oxides, especially silica, calcium oxide and potassium oxide. An high ash content can contribute to the development of the combustion process due to its catalytic effect[43]. In the opposite, a high ash content contribute to operational problems due to the occurrence of fouling and slagging phenomena. The relative amount of biomass main components is important when determining the quality of a biomass fuel. In this regard, a high content in hemicellulose and cellulose turns out in a low Ti and a high (dw/dT)max. On the other hand, a higher content in lignin produces a high amount of residue to be burnt. Wang et al. (2009)[37] described the combustion characteristic factor (CCF), that can be used as a criterion for fuel combustion performance according to the mentioned parameters (the higher the CCF value is, the easier to ignite a sample is), as follows: 889 = :; :; ( : )<=> ∙ ( : )<?=@ $ A ∙ B (8) where (dw/dt)max is the maximum burning velocity (%/min); (dw/dt)mean is the average burning velocity (%/min); Ti is the ignition temperature (K) and Tb is the burnout temperature (K). 186 Chapter 3 Table 3.14.-TGA-DTG characteristics for the combustion process of black spruce and Pinusbanksiana mixtures (BP), willow (W),switchgrass (S), common reed (CR) and reed phalaris (RP) Woodycrops BP 1 st W 2 peak Herbaceous non perennialcrops nd peak 1 t s peak 2 nd peak S 3 rd * Sh peak 1 st peak CR 2 nd * Sh peak 1 st peak RP 2 nd peak 1 st peak 2nd 3rd peak peak * Tdo (ºC) 197 177 195 206 160 * 316 292 314 295 273 Tb (ºC) * 507 695 543 544 549 Ti (ºC) * 197 391 183 385 611 195 195 380 206 206 375 160 263 381 Tpf (ºC) * 391 507 385 534 695 316 380 543 307 375 544 263 381 549 Tp (ºC) * 353 451 336 410 660 316 339 410 306 332 382 250 326 435 (dw/dT)max* 1.21 0.38 0.82 0.33 0.02 0.67 1.18 0.27 0.55 0.92 0.27 0.24 0.66 0.26 Tpo (ºC) (dwt.%/ºC) Residue (%) 1.6 8.6 6.7 18.2 11.7 *Sh: Shoulder; Tdo: Initial decomposition temperature; Ti: Ignition temperature; Tb: Burnout temperature; Tpo: Initial peak temperature; Tpf: Final peak temperature; Tp: Peak temperature; (dw/dT)max: Maximum weight loss rate 187 Chapter 3 CCF values for all samples are plotted in Figure 3.13. In all cases, these values were bigger than 2 indicating the good general burning performance[37]. However, these data must be used only as a reference since they do not give any information about the heat released during the combustion process. Differential scanning calorimetric analysis Woody crops (samples W and BP) and herbaceous non-perennial energy crops (samples S, CR and RP) were also investigated by the DSC technique. Experimental DSC curves are presented in Figure 3.14. This way, it is possible to identify the kind of mass loss event explained in the TG analyses[57]. DSC main temperatures and heat of combustion (Hcomb) are included in Table 3.18. 35 40 RP CR S 30 30 25 Heat flow (W/g) W BP 35 25 20 20 15 15 10 10 5 5 0 0 120 240 360 480 600 720 Temperature (ºC) 840 960 120 240 360 480 600 720 840 960 Temperature (ºC) Figure 3.14.-DSC curves for the combustion process of: a) non-woody perennial crops (common reed (CR), reed phalaris (RP) and switchgrass (S)) and b) woody biomass (black spruce and Pinusbanksiana mixtures (BP) and willow (W)) When studying the biomass combustion by the DSC technique, two different exothermic regions are generally observed[37; 46]. The first region is associated to the combustion of light volatile matters, which provides reactivity of biomass fuels. The second one represents the combustion of fixed carbon[46]. As can be seen from Figure 3.14, most biomass samples followed this trend. However, both exothermic regions in 188 Chapter 3 sample CR overlapped turning into only one peak at an intermediate temperature between those corresponding to volatile matters release and fixed carbon combustion, respectively. This fact can be explained attending to the low fixed carbon content in sample CR (Table 3.1). Furthermore, the high ash content might reduce the char combustion temperatures due to its catalytic metal content[43]. Concerning the heat released during the combustion of the different biomass samples, it can be observed that samples with more prominent DSC peak in the stage of combustion of fixed carbon showed a higher heat release than samples whose combustion was mainly developed in the stage of volatiles release. Biomass samples used in this work were ranked according to the combustion heat as follows: W> RP >CR>S >BP. This trenddid not agree well with that obtained if thecombustion characteristic factor (CCF) is considered. In the latter case, sample BP presented the highest CCF. As aforementioned, the CCF measures how easy a combustible is burnt in terms of low energy requirement to carry out the combustion process (low Ti and Tb). However, it does not give information about the exothermic reactions taking place during combustion. DSC analysis helps to obtain a more realistic approach to the combustion process of biomass and determine the amount of containing energy in the char. Therefore, the devolatilization of samples W and RP led to the formation of the more energetic char. The combination of this fact and a high CCF value might determine the combustion quality of a biomass[37; 46]. Kinetic analysis The kinetic model used in this work was derived from the pseudo multi-component separate-stage models (PMSM) approach. In this type of models, the biomass sample is composed of multiple pseudo components[19]. In this regard, the kinetic parameters can be determined assuming single separate reactions for the different stages of thermal conversion. As abovementioned, biomass combustion was clearly defined by two main stages: devolatilization stage (Dev. stage) and char oxidation stage (Oxid. stage). However, additional decompositions occurred for some samples. For example, the Dev. Stage for herbaceous crops was represented by two peaks. In order to 189 Chapter 3 differentiate them, the Dev. stage for them was divided into two stages: Dev. stage A and Dev. stage B. This way, an additional weight loss step took place for sample W combustion due to the remaining char burning. This stage was named as Rem. stage. Therefore, eq. (6) was used separately to each of the stages above commented. The model representing the form of g(α)(Table 3.3), which delivered the highest correlation coefficient, was considered to be the function representing the mass loss kinetics for the samples under study.Figure 3.15 shows the plots of ln[g(α)/T2] versus 1/T that provided the best linearity at 40 ºC/min. Table 3.19 summarizes the main kinetic parameters for the biomass samples here studied. It can be seen that all the stages fitted well to a straight line (r2> 0.99).All samples showed the best regression coefficient for the model O1, which is the most used mechanism for the kinetic calculation of biomass thermal decomposition[17; 19]. However, a good correlation was also obtained by the model D3 for the Dev. stage 1 in herbaceous crops. This stage corresponded to the hemicellulose decomposition temperature range. High correlation coefficients for diffusion mechanisms during the devolatilization stage of coal/biomass blends were also observed by Gil et al. (2010)[2]. Yorulmaz and Atimtay et al. (2009)[7] reported that different models can be suitable to describe the biomass combustion process by thermal analysis. Further research combining dynamic and isothermal studies should be carried out in order to elucidate the exact mechanisms of the oxidation process. Calculated activation energies for the multiple-step model for different types of woody and herbaceous biomass are listed in Table 4. Activation energies obtained for the first stage of woody biomass during the oxidation process were quite similar (91 kJ/mol and 101 kJ/mol for samples BP and W, respectively). These values are in good agreement with those obtained by different authors[1; 2]. Higher values were obtained for the oxidation stage. Thus, sample BP showed the highest one (143 kJ/mol), pointing out that the char obtained from this sample is less reactive. Finally, the Rem. stage in the oxidation of sample W showed a high value of the activation energy (372 kJ/mol). This fact could be attributed to the little amount of remaining char-semi-coke, 190 Chapter 3 which required a high energy to be decomposed[58]. On the other hand, herbaceous crops showed a more diversified activation energy distribution. Sample RP had the lowest activation energy value for Dev. stage 1, which is related to its high content in hemicellulose and lignin[17]. Higher activation energies in the Dev. stage 2 were obtained for samples RP and S, which is in agreement to the high value required for cellulose decomposition. However, sample CR showed for this stage a reduction in the activation energy. This might be due to the high content in ash, which catalyzes the biomass oxidation lowering the energetic requirement to let the combustion process progress. Finally, the values of the activation energy for the oxidation stage were lower than those observed in previous stages. -10 -10 -10 Dev. Stage 1 D3 Dev. Stage 1 D3 Dev. Stage 2 O1 -12 Dev. Stage 2 O1 -12 Dev. Stage 2 O1 -14 Oxid. stage O1 -14 Oxid. stage O1 -14 Oxid. stage O1 -16 -16 -16 -18 -18 -18 -20 -20 -20 -22 -22 S -24 -26 1.0 -22 RP -24 1.2 1.4 1.6 1.8 -1 2.0 2.2 2.4 -26 1.0 -24 1.2 1.4 1.6 1.8 -1 3 2.0 2.2 CR -26 1.0 2.4 1.2 1.8 -1 2.0 2.2 3 Dev. Stage O1 Dev Stage O1 -12 (() ) 1.6 1/T (K ) * 10 -10 -10 Oxid. Stage O1 -12 -14 -14 -16 -16 -18 -18 -20 -20 Oxid. Stage O1 Rem. Stage O1 -22 -22 -24 1.4 3 1/T (K ) * 10 1/T (K ) * 10 2 ln g α /T 2 ln g α /T (() ) Dev. Stage 1 D3 -12 BP -24 W -26 -26 1.0 1.2 1.4 1.6 1.8 -1 2.0 3 1/T (K ) * 10 2.2 2.4 1.0 1.2 1.4 1.6 1.8 -1 2.0 2.2 2.4 3 1/T (K ) * 10 Figure 3.15.-Plot of ln(g(α)/T) vs 1/T for the combustion process of non-woody perennial crops (common reed (CR), reed phalaris (RP) and switchgrass (S))and woody biomass (black spruce and Pinusbanksiana mixtures (BP) and willow (W)) 191 2.4 Chapter 3 In order to corroborate the kinetic analysis, the reconstruction of the weight loss curves was performed. Considering n separate reactions, the kinetic rates of thermal decomposition of a material can be easily derived from Eq. (4) as follows: : C : = A =C A( A) (8) whereαi, Ai, Eai and fi(αi) are the degree of conversion, the pre-exponential factor, activation energy and model functions obtained for each stage of the combustion process, respectively. A VBA-Excel application was developed to solve this model based on the RungeKutta-Fehlberg method for the evaluation of the set of ordinary differential equations. Figure 3.16 shows the experimental data (solid line) compared to the predicted one (dotted line) obtained by substituting the calculated activation energy and preexponential factor for each stage into Eq. (8). It can be observed that the proposed model adequately reproduces the experimental values. The mean error between the experimental and theoretical curves was calculated and shown in Figure 3.16. The obtained error was small in value for all samples (lower than 3.4%). 192 1.0 1.0 1.0 0.8 0.8 0.8 0.6 Mean error (%): 3.35 0.4 0.6 Mean error (%): 0.95 0.4 0.2 0.2 S 0.0 400 600 800 1000 1200 Theoretical Experimental Mean error (%): 1.86 0.6 0.4 0.2 RP CR 0.0 400 600 Temperature (K) (1-α ) (1-α ) Chapter 3 800 1000 1200 0.0 400 600 Temperature (K) 1.0 1.0 0.8 0.8 Mean error (%): 2.98 0.6 800 1000 Temperature (K) Mean error (%): 1.82 0.6 0.4 0.4 0.2 0.2 W BP 0.0 400 600 800 1000 Temperature (K) 1200 0.0 400 600 800 1000 1200 Temperature (K) Figure 4.-Comparison between experimental and theoretical results for the combustion process of non-woody perennial crops (common reed (CR), reed phalaris (RP) and switchgrass (S)) and woody biomass (black spruce and Pinusbanksiana mixtures (BP) and willow (W)) Evolved gas analysis Although contaminant emissions associated to biomass are lower than those in fossil fuels, they must be taken into account due to the high development of biomass conversion technologies[59]. In this regard, a preliminary scan was performed in order to identify the main contaminants released during the combustion of woody and herbaceous biomasses. The most prominent ions related to contaminants were detected at (m/z) = 18, 27, 28, 30, 36, 44, 46, 48, 50, 64 and 78 corresponding to the following compounds: H2O, HCN, CO, NO, CO2, NO2, SO, CH3Cl, SO2 and C6H6, respectively. Figure 3.17 and 3.18 shows the mass spectra obtained for the combustion process of woody and herbaceous crops. MS curves in Figure 3.18 were moved up and down in order to clarify the results due to the fact that they mostly overlapped. Table 3.20 193 1200 Chapter 3 summarizes the most representative MS ions detected, their integrated peak intensities in the whole temperature range and the most relevant temperatures. The mass spectra showed two emission peaks for most detected products. The first one that took place at lower temperatures, corresponded to the so-called oxidative pyrolysis or devolatilization of the sample. The second one corresponded to the oxidation of the char. CO, CO2 and H2O were the main compounds formed in the combustion process of woody and herbaceous biomass. CO and CO2 evolved for all samples in the whole oxidation temperature range. Both compounds showed emission peaks at similar temperatures in the first emission temperature range, whereas in the char oxidation stage the CO2 peak was detected at higher temperatures. The maximum CO and CO2 yield was observed in the Oxid. stage. CO formation during the first stage was associated to decarbonylation reactions, secondary reactions between volatiles and rearrangement of the char skeleton[33]. Furthermore, the CO evolution during the char oxidation stage was mainly due to the formation of active carbon sites in the char which were later oxidized, releasing CO and leaving oxygen atoms attached to carbon surface[32]. The CO2 evolution during the first decomposition stage followed a similar path than that for CO. However, the later appearance of CO2 compared to CO during the second stage, pointed out that a fraction of the produced CO reacted with oxygen increasing the CO2 yield. Additionally, Li and Brown et al. (2001)[32] established different pathways for CO2 evolution during char combustion involving the formation of different carbon-oxygen complexes. On the other hand, H2O spectra was released into one step between 334 and 356 ºC. In this stage, the water formed is known as pyrolityc water[34]and is produced due to hydroxyl groups bond scission. A small shoulder could also be observed at slightly high temperatures. The H2O shoulder is mainly attributed to the oxidation of hydrogen produced at temperatures higher than 400 ºC due to char cracking reactions and the occurrence of the reverse water-gas shift reaction[33; 34]. 194 Chapter 3 CO CO2 H2O Intensity (a.u.) BP W S CR RP 200 400 600 800 1000 200 Temperature (ºC) 400 600 800 1000 200 Temperature (ºC) NO 400 600 Temperature (ºC) HCN Intensity (a.u.) NO2 200 400 600 Temperature (ºC) 800 1000 200 400 Temperature (ºC) 600 200 400 600 800 1000 Temperature (ºC) Figure 3.17.-Gas evolution profile of CO, CO2, H2O, NO and NO2 for the combustion process of non-woody perennial crops (common reed (CR), reed phalaris (RP) and switchgrass (S)) and woody biomass (black spruce and Pinusbanksiana mixtures (BP) and willow (W)) 195 Chapter 3 SO SO2 BP W S CR RP Intensity (a.u.) C6H6 200 400 600 800 1000 200 400 600 200 600 CH3Cl CCl2 Intensity (a.u.) CH2Cl 400 Temperature (ºC) Temperature (ºC) Temperature (ºC) 200 400 600 Temperature (ºC) 800 1000 200 400 Temperature (ºC) 600 200 400 Temperature (ºC) Figure 3.18.- Gas evolution profile of C6H6, SO, SO2, CH2Cl, CCl2 and CH3Cl for the combustion process of non-woody perennial crops (common reed (CR), reed phalaris (RP) and switchgrass (S)) and woody biomass (black spruce and Pinusbanksiana mixtures (BP) and willow (W)) 196 Chapter 3 Table 5.-MS characteristics for the combustion process of samples BP, W, CR, RP and S Biomass P1* BP P2* P1* W P2* (m/z) Comp 18 H2O 27 HCN 28 CO 30 NO 44 CO2 46 NO2 48 SO 49 CH2Cl 50 CH3Cl 64 SO2 78 C6H6 82 CCl2 247-373 T (ºC)* 127-425 188-408 194-372 188-449 194-377 198-385 - 240-545 209-334 198-464 - Tp (ºC)* 354 356 357 353 354 354 - 358 320 352 - 337 T (ºC)* 425-556 408-540 372-566 449-565 377-678 385-593 - - 334-429 - - 373-524 Tp (ºC)* Int*(A ºC/mbar mg) 425 1.7·10-4 420 2.1·10-6 440 3.6·10-4 481 2.2·10-5 458 6.3·10-4 468 3.3·10-6 - 1.1·10-8 355 1.2·10-7 4.9·10-8 - 357 7.6·10-8 T (ºC)* 113-408 185-391 167-373 169-397 152-365 163-373 233-411 260-553 222-438 217-409 294-532 245-524 Tp (ºC)* 336 338 342 335 343 334 342 337 325 301 376 341 T (ºC)* Tp (ºC)* 408-599 408 391-586 402 373-641 402 397-568 441 365-706 448 373-687 449 - - - - - - 1.9·10-6 1.9·10-4 1.4·10-5 4.3·10-4 1.9·10-6 1.8·10-8 2.4·10-8 7.3·10-8 4.3·10-8 3.6·10-8 4.6·10-8 235-414 295 184-400 305 193-445 306 207-486 320 - 253-516 340 Int*(A ºC/mbar mg) 1.1·10-4 P1* T (ºC)* Tp (ºC)* 157-408 341 196-389 341 184-365 343 210-483 339 181-360 341 198-373 340 P2* T (ºC)* 408-534 389-558 365-608 483-612 360-720 373-555 - - - - - - Tp (ºC)* 408 395 405 526 420 403 - - - - - - Int*(A ºC/mbar mg) 1.8·10-4 3.6·10-6 3·10-4 1.7·10-5 6.5·10-4 3.3·10-6 6.7·10-8 2.9·10-8 2.2·10-7 1.1·10-7 - 7·10-8 S P1* CR P2* P1* RP P2* * T (ºC) 139-594 208-387 180-353 180-470 174-348 169-375 213-399 184-400 161-416 169-323 235-435 234-353 Tp (ºC)* 336 337 339 335 340 335 307 306 304 295 343 341 T (ºC)* - 387-543 353-632 470-666 348-733 375-615 - - - 323-532 - - Tp (ºC)* - 386 384 518 397 390 - - - 349 - - Int* ( A ºC/mbar mg) 3.5·10-4 6.5·10-6 6·10-4 3.8·10-5 2·10-3 9.2·10-6 2.3·10-7 2.1·10-8 1.4·10-6 2.3·10-7 3.9·10-8 3·10-8 T (ºC)* 112-261 170-381 157-373 177-413 121-367 193-380 191-405 216-362 181-423 193-488 - - Tp (ºC)* 248 325 334 329 334 329 310 318 317 294 - - T (ºC)* Tp (ºC)* 261-605 334 381-629 418 373-632 419 413-615 517 367-734 459 380-639 459 - - - - - - Int*(A ºC/mbar mg) 3.5·10-5 1.7·10-8 1.4·10-4 9.1·10-6 3.1·10-4 1.5·10-6 5.2·10-8 2.6·10-8 1.5·10-7 5.2·10-8 - - *T: Temperature; *Tp: Peak temperature; * Int: Integrated peak area; *P1 First peak; *P2: Second peak 197 Chapter 3 Two emission regions were also observed for nitrogen compounds. NO and NO2 spectra showed two well developed peaks whereas HCN showed a clear peak in the Dev. stage and kept evolving as a shoulder up to temperatures around 400 ºC. The first emission peak for HCN, NO and NO2 took place at similar temperatures (330-356 ºC). In this stage, the nitrogen containing volatiles are mainly attributed to the decomposition of proteins[60]. Protein decomposition leads to the formation of volatile cyclic amides which, due to cracking reactions, produces HCN among other components[60]. The second peak stood out for the early apparition of NO2 followed by the NO emission at higher temperatures for all samples except for W. These results agree well with those reported by Darvell et al. (2012)[12] who found two stages for the combustion of different biomass char model samples. These stages were characterized by the release of NO at higher temperatures and the presence of sharper peaks. Peak areas for NO and HCN showed a higher amount of these compounds compared to NO2. This fact is due to ions selected as NO and HCN compounds, (m/z) = 30 and 27, respectively belong to other compounds such as light hydrocarbons, which are also common products from biomass combustion. Sulfur compounds (SO and SO2) were found in a lower proportion than nitrogen ones, which is in agreement with biomass samples ultimate analysis (Table 3.1). Both compounds were detected in all samples, but in sample BP, which had the lowest sulfur content in the original material and only SO2 was observed. SO and SO2 were released during the first stage at temperatures between 300 and 340 ºC. As observed by Otero et al. (2002), the SO2 peaks occurred at lower temperatures than CO2 peaks in a narrow temperature range and with a shallow shape. Chloride compounds were mainly detected as CH3Cl for all studied samples, which showed the clearest spectra, whereas Cl- ions were more diffused due to the fact that they were found close to the sensitivity level of the mass spectrometer. In the same way, C6H6 was only observed in samples W and CR, being an indicative of lignin decomposition. Sample CR showed the highest yield for volatiles, which were released at lower temperatures than observed for other biomasses. As above mentioned, the high content 198 Chapter 3 in ashes of sample CR, catalyzed the volatile release, increasing products yields and shifting them to lower temperatures[61]. 3.4. conclusions Combustion behavior and gas formation from the oxidation process of fir wood, eucalyptus wood, pine bark and three individual components of lignocellulosic biomass (cellulose, hemicellulose and lignin) were analyzed by TGA-MS.Biomass combustion took place into two main stages:devolatilization stage (Dev. stage) and oxidation stage (Oxid. stage). Most products detected in the combustion of lignocellulosic biomass were released during the Dev. stage whereas only NO2, C2H5O+, CO and CO2 were detected at the Oxid.stage. Nitrogen compounds were released as CH4N, HCN and NOx. Lignocellulosic biomass combustion was fitted to a first order reaction model (O1). The combustion behavior of marine biomass was carried out by TGA-DSC-MS. Three different types of microalgae (Nannochloropsisgaditana(NG), Scenedesmusalmeriensis(SC) and Chlorella vulgaris) were selected due to their chemical composition. Combustion of microalgae took place into two main stages: devolatilization stage and oxidation stage. However, up to three sub-steps could be identified during the microalgae combustion attributed to the decomposition of carbohydrates, proteins and lipids. The ignition characteristic showed that samples CV and SC required less amount of energy to develop the combustion process. However, NG sample released a higher amount of heat during the combustion. The kinetic analysis of microalgae combustion showed that the most representative mechanism for representing the process was a first order reaction model (O1). The excellent fitting between the experimental and theoretical curves (maximum mean error was 3.1%, for NG sample) confirmed the selection of model O1. CO, CO2 and H2O were the main products released during combustion. Other compounds detected during the combustion of microalgae were light hydrocarbons (especially CH4); nitrogen compounds (mainly released as NO, NO2 and HCN); sulfur compounds (SO, SO2 and COS); hydrogen and other oxygen containing hydrocarbons 199 Chapter 3 (ketones, esters, ethers and carboxylic acids). Nitrogen compounds were found in higher proportions than sulfur ones. Combustion behavior and gas formation from the oxidation process of two woody crops (black spruce and Pinusbanksiana mixtures (BP) and willow (W)), and three herbaceous non-perennial energy crops (common reed (CR), reed phalaris (RP) and switchgrass (S)) were studied by TGA-DSC-MS. Samples W and RP showed the best burning profile by combining a high combustion characteristic factor (CCF) and a high release of combustion heat (Hcomb). The kinetic analyses of the oxidation process was performed using pseudo mulit-component separate-stage models (PMSM). The combustion process was divided into three stages: Devolatilization stage (correlated with the hemicellulose and cellulose content in the samples), Oxidation stage (influenced by the initial amount of lignin in the samples) and Remaining burning (associated to the final char burning and devolatilization of inorganic matter). The high ash content of CR sample enhanced the amount of volatiles released during the combustion process lowering its activation energy. The good fitting of experimental curves with theoretical ones validated the proposed model (mean error below 3.4 %). H2, CO and CO2were the main product obtained from energy crops combustion process. Furthermore, NOx were detected in a higher proportion than other pollutants such as SOx, chloride compounds (CH3Cl) or aromatic ones (C6H6). 3.5. References [1] Shen, D.K., Gu, S., Luo, K.H., Bridgwater, A.V., Fang, M.X. 2009. Kinetic study on thermal decomposition of woods in oxidative environment. Fuel, 88(6), 1024-30. [2] Gil, M.V., Casal, D., Pevida, C., Pis, J.J., Rubiera, F. 2010. Thermal behaviour and kinetics of coal/biomass blends during co-combustion. Bioresource Technology, 101(14), 5601-8. [3] Kai, X., Yang, T., Huang, Y., Sun, Y., He, Y., Li, R. 2011. The effect of biomass components on the co-combustion characteristics of biomass with coal. Zhangjiajie, Hunan. pp. 1274-8. 200 Chapter 3 [4] Stenseng, M., Zolin, A., Cenni, R., Frandsen, F., Jensen, A., Dam-Johansen, K. 2001. Thermal analysis in combustion research. Journal of Thermal Analysis and Calorimetry, 64(3), 1325-34. [5] Cheng, K., Winter, W.T., Stipanovic, A.J. 2012. A modulated-TGA approach to the kinetics of lignocellulosic biomass pyrolysis/combustion. Polymer Degradation and Stability, 97(9), 1606-15. [6] Barneto, A.G., Carmona, J.A., Alfonso, J.E.M., Blanco, J.D. 2009. Kinetic models based in biomass components for the combustion and pyrolysis of sewage sludge and its compost. Journal of Analytical and Applied Pyrolysis, 86(1), 108-14. [7] Yorulmaz, S.Y., Atimtay, A.T. 2009. Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis. Fuel Processing Technology, 90(7-8), 939-46. [8] Cordero, T., Rodríguez-Maroto, J.M., Rodríguez-Mirasol, J., Rodríguez, J.J. 1990. On the kinetics of thermal decomposition of wood and wood components. Thermochimica Acta, 164(C), 135-44. [9] Phukan, M.M., Chutia, R.S., Konwar, B.K., Kataki, R. 2011. Microalgae Chlorella as a potential bio-energy feedstock. Applied Energy, 88(10), 3307-12. [10] Naik, S., Goud, V.V., Rout, P.K., Jacobson, K., Dalai, A.K. 2010. Characterization of Canadian biomass for alternative renewable biofuel. Renewable Energy, 35(8), 1624-31. [11] Hood, E.E., Nelson, P., Powell, R. 2011. Plant Biomass Conversion. Wiley. [12] Darvell, L.I., Brindley, C., Baxter, X.C., Jones, J.M., Williams, A. 2012. Nitrogen in biomass char and its fate during combustion: A model compound approach. Energy and Fuels, 26(11), 6482-91. [13] NPRI. Environment Canada. National Pollutant Release Inventory-2010 NPRI. [14] Miranda, T., Román, S., Montero, I., Nogales-Delgado, S., Arranz, J.I., Rojas, C.V., González, J.F. 2012. Study of the emissions and kinetic parameters during combustion of grape pomace: Dilution as an effective way to reduce pollution. Fuel Processing Technology, 103, 160-5. 201 Chapter 3 [15] Jakab, E., Till, F., Várhegyi, G. 1991. Thermogravimetric-mass spectrometric study on the low temperature oxidation of coals. Fuel Processing Technology, 28(3), 221-38. [16] Heikkinen, J.M., Hordijk, J.C., De Jong, W., Spliethoff, H. 2004. Thermogravimetry as a tool to classify waste components to be used for energy generation. Journal of Analytical and Applied Pyrolysis, 71(2), 883-900. [17] White, J.E., Catallo, W.J., Legendre, B.L. 2011. Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. Journal of Analytical and Applied Pyrolysis, 91(1), 1-33. [18] Coats, A.W., Redfern, J.P. 1964. Kinetic parameters from thermogravimetric data Nature, 201(4914), 68-9. [19] Liu, N.A., Fan, W., Dobashi, R., Huang, L. 2002. Kinetic modeling of thermal decomposition of natural cellulosic materials in air atmosphere. Journal of Analytical and Applied Pyrolysis, 63(2), 303-25. [20] Zhou, L., Wang, Y., Huang, Q., Cai, J. 2006. Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis. Fuel Processing Technology, 87(11), 963-9. [21] Sánchez-Silva, L., Gutiérrez, N., Romero, A., Sánchez, P., Valverde, J.L. 2012. Pyrolysis and combustion kinetics of microcapsules containing carbon nanofibers by thermal analysis-mass spectrometry. Journal of Analytical and Applied Pyrolysis, 94, 246-52. [22] Li, X.G. 1999. High-Resolution Thermogravimetry of Cellulose Esters. Journal of Applied Polymer Science, 71(4), 573-8. [23] Sanchez-Silva, L., López-González, D., Villaseñor, J., Sánchez, P., Valverde, J.L. 2012. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresource Technology, 109, 163-72. [24] Haykiri-Açma, H. 2003. Combustion characteristics of different biomass materials. Energy Conversion and Management, 44(1), 155-62. 202 Chapter 3 [25] Gani, A., Naruse, I. 2007. Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renewable Energy, 32(4), 649-61. [26] Wang, S., Jiang, X.M., Han, X.X., Liu, J.G. 2009. Combustion characteristics of seaweed biomass. 1. combustion characteristics of enteromorpha clathrata and sargassum natans. Energy and Fuels, 23(10), 5173-8. [27] Williams, P.T., Besler, S. 1996. The Influence of Temperature and Heating Rate on the Slow Pyrolysis of Biomass. Renewable Energy, 7(3), 233-50. [28] Gadalla, A.M.M. 1984. Kinetics of the decomposition of hydrated oxalates of calcium and magnesium in air. Thermochimica Acta, 74(1-3), 255-72. [29] Xie, X., Goodell, B., Zhang, D., Nagle, D.C., Qian, Y., Peterson, M.L., Jellison, J. 2009. Characterization of carbons derived from cellulose and lignin and their oxidative behavior. Bioresource Technology, 100(5), 1797-802. [30] Amen-Chen, C., Pakdel, H., Roy, C. 2001. Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresource Technology, 79(3), 277-99. [31] Liu, Q., Wang, S., Zheng, Y., Luo, Z., Cen, K. 2008. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis. Journal of Analytical and Applied Pyrolysis, 82(1), 170-7. [32] Li, C., Brown, T.C. 2001. Carbon oxidation kinetics from evolved carbon oxide analysis during temperature-programmed oxidation. Carbon, 39(5), 725-32. [33] Shen, D., Hu, J., Xiao, R., Zhang, H., Li, S., Gu, S. 2013. Online evolved gas analysis by Thermogravimetric-Mass Spectroscopy for thermal decomposition of biomass and its components under different atmospheres: Part I. Lignin. Bioresource Technology, 130, 449-56. [34] Widyawati, M., Church, T.L., Florin, N.H., Harris, A.T. 2011. Hydrogen synthesis from biomass pyrolysis with in situ carbon dioxide capture using calcium oxide. International Journal of Hydrogen Energy, 36(8), 4800-13. 203 Chapter 3 [35] Darvell, L.I., Jones, J.M., Gudka, B., Baxter, X.C., Saddawi, A., Williams, A., Malmgren, A. 2010. Combustion properties of some power station biomass fuels. Fuel, 89(10), 2881-90. [36] Idris, S.S., Rahman, N.A., Ismail, K. 2012. Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA). Bioresource Technology, 123, 581-91. [37] Wang, C., Wang, F., Yang, Q., Liang, R. 2009. Thermogravimetric studies of the behavior of wheat straw with added coal during combustion. Biomass and Bioenergy, 33(1), 50-6. [38] Tang, Y., Ma, X., Lai, Z. 2011. Thermogravimetric analysis of the combustion of microalgae and microalgae blended with waste in N2/O2 and CO2/O2 atmospheres. Bioresource Technology, 102(2), 1879-85. [39] Chen, C., Ma, X., Liu, K. 2011. Thermogravimetric analysis of microalgae combustion under different oxygen supply concentrations. Applied Energy, 88(9), 3189-96. [40] Kebelmann, K., Hornung, A., Karsten, U., Griffiths, G. 2013. Intermediate pyrolysis and product identification by TGA and Py-GC/MS of green microalgae and their extracted protein and lipid components. Biomass and Bioenergy, 49, 38-48. [41] Ross, A.B., Jones, J.M., Kubacki, M.L., Bridgeman, T. 2008. Classification of macroalgae as fuel and its thermochemical behaviour. Bioresource Technology, 99(14), 6494-504. [42] Shuping, Z., Yulong, W., Mingde, Y., Chun, L., Junmao, T. 2010. Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer. Bioresource Technology, 101(1), 359-65. [43] Bridgeman, T.G., Darvell, L.I., Jones, J.M., Williams, P.T., Fahmi, R., Bridgwater, A.V., Barraclough, T., Shield, I., Yates, N., Thain, S.C., Donnison, I.S. 2007. Influence of particle size on the analytical and chemical properties of two energy crops. Fuel, 86(1-2), 60-72. 204 Chapter 3 [44] Li, D., Chen, L., Chen, S., Zhang, X., Chen, F., Ye, N. 2012. Comparative evaluation of the pyrolytic and kinetic characteristics of a macroalga (Sargassum thunbergii) and a freshwater plant (Potamogeton crispus). Fuel, 96, 185-91. [45] Wang, S., Jiang, X.M., Han, X.X., Liu, J.G. 2009. Combustion Characteristics of Seaweed Biomass. 1. Combustion Characteristics of Enteromorpha clathrata and Sargassum natans. Energy & Fuels, 23(10), 5173-8. [46] Kok, M.V., Özgür, E. 2013. Thermal analysis and kinetics of biomass samples. Fuel Processing Technology, 106(0), 739-43. [47] Yu, L.J., Wang, S., Jiang, X.M., Wang, N., Zhang, C.Q. 2008. Thermal analysis studies on combustion characteristics of seaweed. Journal of Thermal Analysis and Calorimetry, 93(2), 611-7. [48] Wang, S., Jiang, X.M., Wang, N., Yu, L.J., Li, Z., He, P.M. 2007. Research on pyrolysis characteristics of seaweed. Energy and Fuels, 21(6), 3723-9. [49] Marcilla, A., Gómez-Siurana, A., Gomis, C., Chápuli, E., Catalá, M.C., Valdés, F.J. 2009. Characterization of microalgal species through TGA/FTIR analysis: Application to nannochloropsis sp. Thermochimica Acta, 484(1-2), 41-7. [50] Babich, I.V., van der Hulst, M., Lefferts, L., Moulijn, J.A., O'Connor, P., Seshan, K. 2011. Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels. Biomass and Bioenergy, 35(7), 3199-207. [51] Marcilla, A., Gómez-Siurana, A., Gomis, C., Chápuli, E., Catalá, M.C., Valdés, F.J. 2009. Characterization of microalgal species through TGA/FTIR analysis: Application to nannochloropsis sp. Thermochimica Acta, 484(1–2), 41-7. [52] Bae, Y.J., Ryu, C., Jeon, J.K., Park, J., Suh, D.J., Suh, Y.W., Chang, D., Park, Y.K. 2011. The characteristics of bio-oil produced from the pyrolysis of three marine macroalgae. Bioresource Technology, 102(3), 3512-20. [53] Li, D., Chen, L., Zhang, X., Ye, N., Xing, F. 2011. Pyrolytic characteristics and kinetic studies of three kinds of red algae. Biomass and Bioenergy, 35(5), 1765-72. [54] Jones, J.M., Harding, A.W., Brown, S.D., Thomas, K.M. 1995. Detection of reactive intermediate nitrogen and sulfur species in the combustion of carbons that are models for coal chars. Carbon, 33(6), 833-43. 205 Chapter 3 [55] Tapasvi, D., Khalil, R., Várhegyi, G., Skreiberg, O., Tran, K.Q., Grønli, M. 2013. Kinetic behavior of torrefied biomass in an oxidative environment. Energy and Fuels, 27(2), 1050-60. [56] Yang, H., Yan, R., Chen, H., Zheng, C., Lee, D.H., Liang, D.T. 2006. In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin. Energy and Fuels, 20(1), 388-93. [57] Leite, B.S., Andreuccetti, M.T., Leite, S.A.F., d'Angelo, J.V.H. 2012. TG and DSC analyses of eucalyptus black liquor as alternative methods to estimate solids content. Journal of Thermal Analysis and Calorimetry, 1-6. [58] Fang, M.X., Shen, D.K., Li, Y.X., Yu, C.J., Luo, Z.Y., Cen, K.F. 2006. Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using TG-FTIR analysis. Journal of Analytical and Applied Pyrolysis, 77(1), 22-7. [59] Miranda, T., Román, S., Montero, I., Nogales-Delgado, S., Arranz, J.I., Rojas, C.V., González, J.F. 2012. Study of the emissions and kinetic parameters during combustion of grape pomace: Dilution as an effective way to reduce pollution. Fuel Processing Technology, 103(0), 160-5. [60] Hansson, K.-M., Samuelsson, J., Tullin, C., Åmand, L.-E. 2004. Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds. Combustion and Flame, 137(3), 265-77. [61] Fahmi, R., Bridgwater, A.V., Darvell, L.I., Jones, J.M., Yates, N., Thain, S., Donnison, I.S. 2007. The effect of alkali metals on combustion and pyrolysis of Lolium and Festuca grasses, switchgrass and willow. Fuel, 86(10-11), 1560-9. 206 Chapter 4: GASIFICATION OF LIGNOCELLULOSIC BIOMASS CHAR OBTAINED FROM PYROLYSIS: KINETIC AND EVOLVED GAS ANALYSES The pyrolysis and gasification process of three types of lignocellulosic biomass (Eucalyptus wood, fir wood and pine bark) and biomass main components (cellulose, xylan and lignin) were studied by thermogravimetric-mass spectrometric analysis (TGAMS). Pyrolysis was used to obtain a solid fuel (char) that was later gasified with steam. The reactivity profiles of the studied biomass samples showed a clear catalytic effect at high conversion values which was directly correlated with their ash composition. Gasification apparent rates were obtained by a preliminary kinetic analysis. Three standard models were used to reproduce the gasification process. Only cellulose and pine bark samples obtained an accurate fitting being attributed to their low ash Chapter 4 content and subsequently low catalytic activity. A semi-empirical model, based on the catalytic effect observed, was proposed which highly improved the obtained fitting. H2, CO and CO2 were the main products obtained. Furthermore, secondary products such as CH4 pointed out the existence of methanation reactions. NOX were also observed indicating that part of the initial nitrogen in the sample was retained in the char after the pyrolysis process. 4.1. INTRODUCTION The production of clean and sustainable fuels arethe main challenges to tackle upcoming energy crises and global warming [1]. Among all renewable energy sources, biomass fuels are gaining particular attention as a potential alternative to increase energy independence on fossil fuels and reduce environmental pollution [2, 3]. Thermochemical conversion of biomass is the most promising route for biomass utilization. These processes mainly include the direct combustion, to generate heat and electricity, pyrolysis and gasification, to produce liquid and gaseous fuels which are suitable for feeding efficient gas engines and gas turbines [4, 5].Pyrolysis plays an important role in these processes,being the first chemical step in both gasification and combustion processes. Generally, pyrolysis can be considered as a two-stage process involving the devolatilization of biomass and the slow heterogeneous conversion of char [5]. The char generated during pyrolysis is a high energy-density solid fuel suitable for combustion and gasification processes. Gasification is of special interest due to the fact that it is compatible with new applications in the area of biomass conversion coal to liquid and superior environmental performance especially with regard to CO2 capture and sulfur removal. Furthermore, it is economical in a wide range of capacities (5 kWe onwards) [1, 6]. Gasificationcan be defined as the conversion of biomass to a gaseous fuel by heating in a gasification medium such as air, oxygen or steam involving a complex set of reactions [7, 8]. Char gasification is an important step during thermochemical 209 Chapter 4 conversion of lignocellulosic biomass because it often represents the rate-controlling phenomenon in the gasifier[9]. The progress of char gasification is a function of several factors such as particle size, porosity, gasifying agent chemical composition, gasifying agent partial pressure, reactor temperature, pore structure, number of active sites and ash content, among others[10]. Thermogravimetric analysis (TGA) has been commonly used for the study of the thermochemical conversion of biomass [11]. Compared to pyrolysis and combustion, there are few works reported in literature concerning the gasification of biomass. Most works have been focused on the study of coals. In this regard,Shabbar et al. [1] performed a thermodynamic analysis of bituminous coals. Furthermore, Tay et al. [7] studied the effect of different gasifying agents on the char structure of Victorian brown coal during the gasification. On the other hand, few studies have been reported on the gasification of biomass. Mohammed et al. [12]evaluated the thermal characteristics and kinetics of empty fruit bunches. Additionally, different authors have investigated the carbon dioxide gasification of biomass chars [13, 14]. During the process of thermochemical conversion of biomass, the composition of the gas emissions should be determined before industrial application. Complementary techniques to TGA must be used in order to obtain qualitative information of biomass transformation during the analyses. Very few studies have been found in literature concerning gas evolution from biomass gasification. Yang et al. [15] studied the steam gasification of tobacco by TGA coupled with gas chromatography (GC). Furthermore, Yoon et al. [16] used TGA-GC to perform an kinetic analysis of thewoody biomass gasification. In this sense, the use of TGA coupled with mass spectrometry (TGA-MS) can give a deeper insight of the gasification process being able to afford real-time and sensitive detection of evolved gases during the thermal analysis [17] . The aim of this work was to study the pyrolysis and gasification of different types of lignocellulosic biomass (fir wood, eucalyptus wood and pine bark) and their main components (cellulose, hemicellulose and lignin) by means of TGA. The pyrolysis of biomass samples was carried out to obtain a solid fuel (char) which was later gasified 210 Chapter 4 using steam. In addition, a preliminary kinetic analysis of the gasification process was performed in order to obtain the apparent gasification rates. Finally, the gases released during the gasification process were analyzed by MS. 4.2. EXPERIMENTAL 4.2.1. Materials Cellulose, xylan and lignin were purchased from Sigma-Aldrich. Xylanwas used as representative of that of the hemicellulose. These chemicals are as follow: cellulose (microcrystaline cellulose with 50 µm average particle size), lignin (alkali lignin in brown powder form with 50 µm average particle size) and xylan (xylan processed from beechwood with 100 µm average particle size). The selected terrestrial biomasses (fir wood, eucalyptus wood and pine bark) were taken from the region of Castilla-La Mancha (Spain) on the basis of a preliminary analysis [18]. These samples were dried in an oven for 5 h, milled and sieved to an average particle size between 100-150 µm. The proximate analysis, ultimate analysis and composition of biomass samples are shown in Table 1. The metal content in samples was determined by Inductively Coupled Plasma Spectrometry (ICP) (Table 1). The content of hemicellulose, lignin and xylan inlignocellulosic biomass samples was calculated according to the method reported elsewhere [19] (Table 1). 211 Chapter 4 Table 1.-Characterization of lignocellulosic biomass samples (Cellulose, xylan, lignin, fir wood, eucalyptus wood and pine bark) UltimateAnalysis (wt. %) Biomass Composition (wt. %)db,ab Cellulose Lignin Hemicellulose Extractives (%) (%) (%) (%) ProximateAnalysis (wt. %) Moisture Ash Volatilem Fixedcar (%) (%) atter (%) bon (%) C H N S O Cellulose Lignin Xylan 42.18 62.09 38.41 6.15 5.88 6.18 0.01 0.51 0.01 0.06 0.54 0.11 51.61 30.98 55.30 3.0 1.1 6.4 0.8 3.7 2.8 90.7 55.8 71.6 100 - 100 - 100 - Eucalyptus Wood Fir Wood Pine Bark 41.62 50.12 52.71 4.88 6.14 5.52 0.38 0.44 0.01 0.03 0.00 0.08 53.09 43.45 41.70 2.6 2.6 4.4 6.8 3.4 2.7 73.8 16.8 52 74.4 19.5 38 61.6 31.3 13 Mineral content (ppm) 17 24 31 24 30 37 7 8 19 Cellulose Lignin Xylan Eucalyptus Wood Fir Wood Pine Bark db Al 367 500 213 Ca Cr Cu Fe K Mg Na Ni Pb P Hg V Si Ti 2711 868 4343 16 13 7 66 48 77 106 126 77 575 1069 456 255 219 124 1476 7197 13828 980 758 382 37 35 17 6869 6100 3326 411 350 184 10 36 - 237816 181504 65856 84 150 81 43 4116 16 131 33 5078 1062 1431 51 47 7819 408 9 247228 18 557 946 10921 2726 22 19 71 74 717 385 1880 1254 1774 776 1807 2764 27 463 41 73 8608 7360 492 524 22 26 353166 474344 62 70 - dry basis, ab- ash free basis 212 6.0 39.3 19.2 Chapter 4 4.2.2. Equipment and Procedures 4.2.2.1. Thermogravimetric analysis for the combustion process The pyrolysis and gasification of biomass components was carried out in a TGA apparatus (TGA-DSC 1, METTLER TOLEDO). The experimental setup used for the gasification experiments was described in a previous study[20]. Steam was generated in a bubbler system.Ar was bubbled through degassed water heated to 33 ºC. Assuming the Ar-H2O mixture was saturated, a current with approximately 5% Vol. of H2O in Ar was obtained. The pyrolysis of the sample was carried out by preheating the sample at 105 ºC and then kept at 105 ºC for 10 min to remove the moisture content. Subsequently, the sample was heated from 105 to 1000 ºC at 40 ºC/min under a 200 Nml/min of Ar. The temperature was kept at 1000 ºC for 10 min to ensure the completion of the pyrolysis reaction. The sample was then cooled down to the gasification temperature (900 ºC). The gasification step was carried outunder isothermal conditions until the entire char was consumed. Previous studies were carried out according to Sanchez-Silva et al. in order to avoid the effects of heat and mass transfer limitations[20]. In this sense, initial sample weight was kept at 20 mg, the particle size was kept in the 100-150 µm range and a constant flow rate of 200 and 50Nml/min were used for pyrolysis and gasification experiments, respectively. 4.2.2.2. TGA-MS analysis of the Gaseous Products The analysis of the gas products distribution coming from the thermal analysis was carried out in a thermogravimetric analyzer (TGA-DSC 1; METTLER TOLEDO) coupled to a mass spectrometer (Thermostar-GSD 320/quadrupole mass analyzer; PFEIFFER VACUUM) with an electron ionization voltage at 70 eV and provided mass spectra up to 300 a.m.u. The interface was wrapped with heating wire to circumvent condensation of exhausting gases. In order to identify ions with m/z in the range 0-300, a preliminary broad scan was performed at a heating rate of 40 ºC/min. Although a quantitative analysis was not performed in this work, a comparison of the intensity peak areas between different samples (semiqualitative analysis) was 213 Chapter 4 carried out by using a normalization procedure. The ion intensities were normalized to the total ion current to eliminate systematic instrumental errors caused by the fluctuation of carrier gas flow, the shift in the sensitivity of the mass spectrometer method and the sample weight. The evolved gas peak areas are useful for comparing relative amounts of products from different samples [21]. 4.2.2.3. Kinetic analysis In this work, the char gasification was considered as an overall reaction, and a general kinetic expression can be written as follows [22]: = ( , )∙ ( ) (1) where k is the apparent gasification reaction rate, which includes the effect of temperature, T, and the effect of the gasifying agent concentration, Pw, and f(α) described the changes in the physical or chemical properties of the sample as the gasification proceeds[22]. Three different modelswere used in this work, the volumetric model (VM) (Eq. 2), the shrinking core model (SCM) (Eq. 3) and the random pore model (RPM) (Eq. 4): ( ) = (1 − ) (2) ( ) = (1 − ) (3) ( ) = (1 − ) ∙ 1 − ∙ ln(1 − ) (4) whereα is the degree of conversion and Ψ is a parameter related with the initial pore structure of the sample (α=0). For the parameter estimation a VBA-Excel application was developed to solve this model [23-25]. The Runge-Kutta-Fehlberg methodwas used in the evaluation of the set of ordinary differential equations. Furthermore, the statistical significance of the estimated parameters based on the F-test and t-test was performed according to the procedure described elsewhere [18]. 214 Chapter 4 4.3. RESULTS AND DISCUSSION 4.3.1. Thermogravimetric analysis In this work, the pyrolysis of biomass samples was carried out to obtain a solid fuel (char) which was later gasified using steam. The pyrolysis of biomass samples was studied previously and described elsewhere [18]. Thus, a comprehensive evaluation of the pyrolysis process of lignocellulosic biomass was not the objective of the present study. However, some remarks of this process are described in order to get a better understanding of the char formation mechanism. 4.3.1.1. Pyrolysis and gasification of lignocellulosic biomass main components Figures 1 shows the TGA/DTG profiles for the pyrolysis and gasification of biomass main components (cellulose, xylan and lignin). Table 2 summarizes the most relevant pyrolysis characteristics for all biomass samples (biomass main components and lignocellulosic biomass).The pyrolysis of biomass main components took place between 200 and 700 ºC as it can be seen from their DTG profile (Figure 1.b).Xylan sample was the first one to decompose showing two peaks at 262 and 306 ºC. On the other hand, cellulose sample decomposition took place in one stage between 220 and 500 ºC. The cellulose showed the highest weight loss rate (88 wt.%/min) beingthe sample which released thehighest amount of volatiles. Finally, lignin decomposed over the whole temperature range (215-700 ºC). Lignin thermal decomposition is a slow carbonization process producing the highest amount of char (43 wt.%) compared to that formed in xylan (28 wt.%) and cellulose (8 wt.%) pyrolysis. Figure 1.c shows the DTG profiles for the steam gasification of the char produced from biomass main components pyrolysis. It can be seen that the gasification of biomass chars started as soon as the gasifying agent reached the surface of the char particle. Lignin and xylan samples produced the most reactive char and it took around 26 and 29 min to be totally gasified whereas the char produced from cellulose sample was decomposed at a lower rate (~120 min). These facts agreed well with those 215 Chapter 4 reported by Lv et al. [9] who observed that the gasification of cellulose under dynamic conditions took place at higher temperatures and lower rates than for lignin. Steam Gasification Pyrolysis 80 Weight (wt.%) 1200 Cellulose Lignin Xylan Temperature 1000 800 60 600 40 Temperature (ºC) 100 400 20 200 0 0 25 50 75 100 125 150 Time (min) DTG DTG 300 400 500 600 700 Pyrolysis 80 60 40 20 0 0 3 6 9 Time (min) 12 15 1100 6 Steam Gasification 5 4 1000 3 2 1 0 0 20 40 60 80 100 120 Temperature (ºC) Weight loss rate (wt. %/ min) 200 Weight loss rate (wt. %/ min) Temperature (ºC) 900 Time (min) Figure 1.-Thermogravimetric (TG) and derivothermogravimetric (DTG) curves for the pyrolysis and gasification processes of biomass main components (cellulose, xylan and lignin). a) TGA curves for pyrolysis and gasification; b) DTG curves for pyrolysis; c) DTG curves for gasification 216 Chapter 4 Table 2.- Pyrolysis characteristics for cellulose, lignin, xylan, fir wood, eucalyptus wood and pine bark at 40 ºC/min Primary components of biomass Lignocellulosic biomass Cellulose Xylan Lignin 1st peak 1st 2nd peak peak 1st peak To (ºC)* 298 208 215 Tp ºC)* 373 262 306 376 327 368 453 304 358 510 293 364 519 (dw/dt)max* 86.8 52.8 32.3 20.3 15.1 24.2 4.4 15.8 27.9 2.9 11.1 15.5 3.1 Fir wood Sh* Eucalyptus wood 1st Tail* peak* Sh* 172 1st peak* Tail* Pine bark Sh* 165 1st Tail* peak* 180 (dwt.%/min) Char (wt.%) * 8.1 25.3 41.6 25.4 23.7 35.1 Sh: Shoulder in the DTG curve; Tail: Tail in the DTG curve; To: Initial temperature; Tp: Peak temperature; (dw/dt)max: Maximum weight loss rate 217 Chapter 4 4. 3.1.2. Pyrolysis and gasification of lignocellulosic biomass Figures 2 shows the TGA/DTG profiles for the pyrolysis and gasification of lignocellulosic biomass (fir wood, eucalyptus wood and pine bark). The shape of the DTG curve was similar for all samples. Pyrolysis Pine bark Fir wood Eucalyptus wood Temperature Steam Gasification Weight (wt.%) 80 1200 1000 800 60 600 40 Temperature (ºC) 100 400 20 200 0 0 25 50 75 100 125 150 Time (min) DTG DTG 300 400 500 600 700 Pyrolysis 25 20 15 10 5 0 0 3 6 9 Time (min) 12 15 1100 6 Steam Gasification 5 4 3 1000 2 1 0 0 20 40 60 80 100 120 Temperature (ºC) 200 30 Weight loss rate (wt. %/ min) Weight loss rate (wt. %/ min) Temperature (ºC) 900 Time (min) Figure 2.-Thermogravimetric (TG) and derivothermogravimetric (DTG) curves for the pyrolys and gasification processes of lignocellulosic biomass (eucalyptus wood, fir wood and pine bark). a) TGA curves for pyrolysis and gasification; b) DTG curves for pyrolysis; c) DTG curves for gasification 218 Chapter 4 Firstly, a shoulder can be observed at temperatures around 300 ºC which is attributed to hemicellulose decomposition. This shoulder was more sharped for pine bark sample which is in agreement with its high hemicellulose content (Table 1). Secondly, the maximum weight loss rate was observed at358, 364 and 368 ºC for eucalyptus wood, pine bark and fir wood samples, respectively. This stage is ascribed to cellulose decomposition. Eucalyptus wood sample showed the highest weight loss rate (27 wt.%/min) compared to that for fir wood (24 wt.%/min) and pine bark (16 wt.%/min) samples due to its high cellulose content. Finally, the maximum peak was followed by a wide tail which is essentially related to the lignin decomposition leading to char formation [5]. As expected, the pine bark sample, that was the sample with the highest lignin content, produced a higher amount of char (35 wt.%). On the other hand, eucalyptus and fir wood samples, with a similar lignin content, generated a similar char yield (25 and 24 wt.%, respectively). According to these evidences, the mechanism of lignocellulosic biomass pyrolysis can be divided into two main stages: devolatilization of raw biomass, where hemicellulose and cellulose mainly decompose, and the slow carbonization of the remaining biomass, associated to lignin decomposition turning into the production of the final char. Figure 2.c shows the DTG profiles for the steam gasification of the char produced from lignocellulosic biomass samples pyrolysis. Unlike their pyrolysis behavior, the gasification of lignocellulosic biomass chars could not be described according to their initial chemical composition. The eucalyptus wood sample, with the highest cellulose content, was the one that needed the least time to be gasified. Additionally, the char produced from pine bark sample pyrolysis, which was expected to decompose at lower times than eucalyptus and fir wood samplesdue to its high hemicellulose and lignin content, was the one thattook longer to be gasified. These results suggested that the char formation from lignocellulosic biomass may be affected by the presence of other components in the complex matrix of the wood. Therefore, the process cannot be explained by considering the proportional interactionsbetween their main components. 219 Chapter 4 In this regard, the morphology of the formed char is a factor usually employed to compare the reactivity of different chars [15]. Char conversion is more complicated than solid devolatilization as it is a heterogeneous process where the surface is the location of the chemical reactions [5]. It is recognized that the heterogeneous rates of char conversion are determined by the fundamental components, represented by surface area, surface accesibility, carbon active sites and catalytic active sites created by indigenous or added inorganic matter, and the local gaseous reactant concentration. Consequently, the reactive depends on three chief characteristics of the sample: chemical structure, porosity and inorganic constituents [5].Furthermore, the concentration of the gasifying agent also plays an important role in the process. The two first factors might be influenced by the initial cellulose, hemicellulose and lignin content in lignocellulosic samples. According to Lv et al.[26], biomass rich in lignin component produced a high surface area and porous charwhich makes easier the diffusion of the reactive agent turning intohigh gasification rates. On the contrary, biomass with a high cellulose content produced a fibrous structure char, lowering the char reactivity. However, this trend was not found in the experimental results obtained in this study. Therefore, assuming that the reactive gas concentration was kept constant in all experiments, these results pointed out that the catalytic activity of the indigenous inorganic matter in the biomass played a significant role in the gasification of the studied biomass samples.These results agree well with those reported byXie et al. [27]who observed that specific surface areas and porosities of lignin and cellulose char prepared at temperatures higher than 700ºC did not have a meaningful role in the oxidative mass loss process. These results are discussed in more detailed in the next sub-section. 4.3.1.3. Char Reactivity The reactivity of char is an important parameter when evaluating the gasification process. Several definitions were used to evaluate the char reactivity, however the more extended one refers to the intrinsic reactivity (Ri) and it can be described as follows [5, 22, 28, 29]: 220 Chapter 4 = −1 ∙ =1 1− ∙ (10) wherexiand wiare the conversion and weight of charat any time, respectively. The reactivity is dependent on the temperature and gas composition and varies with the conversion degree [5, 30]. Thus, a representative value of reactivity must be presented in order to make reliable comparisons. In this work, the reactivity at 50 % char conversion is taken to be representative (R50) 28, 29][30, 31]. R50 values and the time to achieve 100 % char conversion are summarized in Table 3. As aforementioned the reactivity of biomass main components was ranked as: Xylan> Lignin>Cellulose. On the other hand, lignocellulosic biomass samples was: Eucalyptus wood > Fir wood > Pine bark.Thus, this order is not correlated with the biomass samples chemical composition. The gasification rate (ri) is also used to describe the gasification reaction and was calculated by Eq. (11) [32]: = (11) Figure 3 shows the typical reactivity and gasification rates versus conversion plots on a comparative basis for biomass main components (cellulose, xylan and lignin) and lignocellulosic biomass (fir wood, eucalyptus wood and pine bark) samples. It can be observed that reactivity increase slowly up to conversion values of 0.8. However, for xylan, lignin, eucalyptus and fir wood samples a sudden rise of reactivity took place beyond 0.8 conversion, whereas pine bark and cellulose samples showed a lower rise.This behavior can be explained by a high activity of the inorganic matter contained in biomass samples[33]. As the gasification proceeds the carbon material is consumed and the metal to carbon ratios increase which strengthen the catalytic effect [33, 34].Furthermore, gasification rates versus conversion plots also corroborated this fact. Pine bark and cellulose samples showed a decreasing trend and no maximum was obtained whereas xylan, lignin, eucalyptus and fir wood samples showed a maximum. This fact points out that the catalytic activity of indigenous inorganic matter 221 Chapter 4 increasethe gasification rate of xylan, lignin, eucalyptus and fir wood samples. This reactivity profiles are similar to those reported by Blasi et al.[35] for the air gasification of wheat straw, olive husks and grape residues. Gasification rate (1/min) 6.0 4.5 3.0 1.5 0.0 1.5 Reactivity (1/min) 7.5 Cellulose Xylan Lignin Reactivity (1/min) Gasification rate (1/min) 7.5 1.0 0.5 0.0 0.0 0.2 0.4 0.6 0.8 1.0 6.0 4.5 3.0 1.5 0.0 2.5 2.0 1.5 Eucalyptus wood Fir wood Pine bark 1.0 0.5 0.0 0.0 Conversion (X) 0.2 0.4 0.6 0.8 1.0 Conversion (X) Figure 3.-Reactivity versus conversion profiles for a) lignocellulosic biomass main components (cellulose, xylan and lignin); b) lignocellulosic biomass (eucalyptus wood, fir wood and pine bark). Numerical indices such as the alkali index (A.I.) have been defined to describe the catalytic efficiency of the overall influence of catalytically active species within the ash [36]. This index is calculated as the ratio of the sum of the fraction of the basic compounds (catalytic nature) in the ash (CaO, MgO, K2O, Na2O and Fe2O3) to the fraction of the acidic compounds (non-catalytic nature) (Al2O3 and SiO2): . " = #ℎ( 222 . %) ∙ ('()*+ )*,-)*.( )*/0 ) ) (12 ) *3 ) ) (12) Chapter 4 Eucalyptus wood showed higher A.I than fir wood and pine bark (Table 3) which contributed to its higher reactivity. These results agreed well with the results obtained for the gasification of different types of coal [29, 36-38]. Thus, the gasification of lignocellulosic biomass char is more influenced by the mineral matter in the ash than their initial chemical composition. 4.3.2. Gasification kinetic analyses Figure 4 shows the experimental fitting to the three models used in this work. 1.0 1.0 Conversion (X) Cellulose Pine bark 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.0 Experimental VM SCM RPM 0.0 0 15 30 45 60 75 90 105 120 0 1.0 Conversion (X) Xylan 30 45 60 75 90 105 120 Fir wood 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.0 0.0 0 5 10 15 20 25 30 35 1.0 0 10 20 30 1.0 Lignin Conversion (X) 15 1.0 Eucalyptus wood 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.0 0.0 0 5 10 15 Time (min) 20 25 30 0 5 10 15 20 25 30 Time (min) Figure 4.-Comparison of the proposed models (volumetric model (VM), shrinking core model (SCM) and random pore model (RPM)) with experimental data. 223 Chapter 4 Table 4 summarized the obtained gasification constants and the statistical significance of the models. In general, it can be observed that volumetric model (VM) obtained the worst fitting to the experimental curves, whereas shrinking core model (SCM) and random pore model (RPM) achieved a better fit. VM assumes a homogeneous reaction throughout the particle and a linearly decreasing reaction surface area with conversion [22, 28]. On the other hand, SCM and RPM describe the evolution of the solid structure with conversion [34]. SCM assumes that a porous particle consists of an assembly of uniform nonporous grains and the reaction takes place on the surface of the grains assuming spherical shape of the porous. This model predicts a monotonically decreasing reaction rate and surface area because the surface area of each grain is receding during the gasification which agrees with profiles described for cellulose and pine bark (Figure 3). Finally, the RPM considers the overlapping of pore surfaces which reduces the area available for reaction[28]. This model is able to predict a maximum for the reactivity as the reaction proceeds, as it considers the competing effects of pore growth during the initial stages of gasification, and the destruction of the pores due to the coalescence of neighboring pores.As it can be seen from Figure 4, none of the models accurately predicted the biomass samples behavior for conversion values greater than 0.8 except for cellulose and lignin samples. Furthermore, it is clearly observed how these models clearly underpredicted the conversion values. These results agree well with literature [22, 28, 34]. This behavior is mainly due to the fact that these models fail to predict the catalytic activity of the ash and are only valid under the chemical controlled regime [22]. The good fitting of cellulose and pine bark sample to the proposed models, especially SCM, corroborated the low activity behavior of their indigenous inorganic matter.Anyway, curves predicted with SCM models obtained a slightly lower error than SCM for the gasification of the biomass samples used in this work. In order to ensure the reliability of the proposed models, the discrimination of kinetic parameters was done applying the F-test and the t-test at the 95% confidence level [18] (Table 4). In terms of statistical results, F-test considered the regression to be suitable in all cases since the corresponding values to the Fc/Ftest ratio were larger than one. The t-test was also used 224 Chapter 4 for evaluating each parameter in the model. The values of tc/t-test ratio were also larger than one, showing the statistical significance of the proposed models and their corresponding parameters. A semi-empirical model was proposed in order to obtain a model that accurately reproduce the gasification process of biomass samples (xylan, lignin, eucalyptus wood and pine bark). An expression representing the activity of biomass ashes at high conversion values was added to the SCM. SCM was chosen due to two facts. Firstly, the RPM includes an additional adjustable parameter (Ψ) which is difficult to be measured and secondly, the error obtained was not too different than that obtained for RPM.The proposed model include two parameters, an activation constant (ka) and activation order (na) and is described as follows: = ( , 4 ) ∙ (1 − ) 5 + ( ∙ 78 (13) 225 Chapter 4 Table 4.- Estimated parameters for the proposed models (VM, SCM and RPM) and their statistical analysis Biomass samples Model Parameters tc SCM 175522 3.84 1.1 32677 3.00 5.1 1.9 5.58 13991 2251 1602 3.84 31.7 4.48 98519 7025 3.84 22.5 2.14 38039 20194 3.00 8.9 Ψ 20.7 8.81 30254 2265 K (min-1)(·102) 7.32 89 2.49 -1 2 K (min )(·10 ) RPM Ψ VM SCM -1 2 K (min )(·10 ) 19.0 10.5 204 217283 3.00 8.8 33.5 3.31 25350 60942 1102 3.84 17.7 3.98 10221 9177 3.84 11.8 1.96 32749 3.00 8.8 6744 3.84 18.9 K (min )(·10 ) 7.23 64 44861 3.84 12.9 3.79 4458 73100 3.00 9.3 Ψ 10.2 2.08 27593 1343 11357 3.84 13.7 1.67 10011 132563 3.84 2.6 1.46 301 32128 3.00 1.2 1.8 294 -1 2 VM -1 2 K (min )(·10 ) RPM Ψ 226 3.84 3.84 20953 VM SCM 36796 110675 1.96 15236 4715 RPM Pine bark 1.96 7.3 6.26 Ψ SCM 1.96 2.29 RPM Eucalyptus wood 6.8 69809 VM Fir wood 3.84 55059 RPM SCM 24723 1.21 K (min )(·10 ) Ψ Xylan Error (%) 1.48 2 VM SCM Ftest 76 -1 RPM Lignin Fc 1.71 VM Cellulose ttest 1.96 1.96 Chapter 4 Figure 5 shows the experimental versus theoretical curves obtained by the proposed model (Eq. (13)). It can be observed that the additional term satisfactorily predicted the gasification process over the whole conversion interval. Furthermore, the errors obtained were all below ± 1% (Table 5). Thus, the addition of this simple term seemed to be sufficient for obtaining excellent predictions of the gasification rate. Additionally, the calculated parameters were statistically significant. Correlations of the proposed parameter (na) were searched with physical properties of the studied biomass samples in order to explain differences of the reaction rates between biomasses in a similar way than that reported by Dupont et al., [34]. Assuming the inorganic matter in the ash remains constant after the gasification process at the reaction temperature, different parameters as the catalytic inorganic elements content (Ca, K, Mg, Ca+K+Mg or the combination of them), A.I. and ash content were tested. 1.0 1.0 Conversion (X) Lignin Xylan 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 Experimental Theoretical 0.0 0.0 0 5 10 15 20 25 0 30 1.0 Fir wood Conversion (X) 5 10 15 20 1.0 Eucalyptus wood 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.0 0.0 0 5 10 15 20 25 30 35 0 Time (min) 5 10 15 20 Time (min) Figure 5.-Experimental results versus theoretical results obtained by the proposed semiempirical model. 227 Chapter 4 Table 5.- Estimated parameters for the proposed semi-empirical model and their statistical analysis. Biomass Parameter tc ttest Fc Ftest samples Lignin Xylan (%) ka 1.54·10-2 141 na 0.94 221 ka 3.55·10-2 100 na 0.67 36 -2 ka 2.56·10 na 0.76 80 Eucalyptus ka 4.92·10-2 152 wood na 0.43 13 Fir wood Error 3702315 1.96 5282310 2.37 0.1 1.96 37838 2.45 0.1 1.96 1431060 2.37 0.3 1.98 199429 2.45 0.7 The parameter nashowed a really good linearity with K content with a correlation coefficient higher than 0.97 (Figure 6). Thus, the proposed model can be generally described as: = ( , 4 ) ∙ (1 − ) 5 + ( ∙ (9.4:;<'(=*5.;∙>9? ) (14) This correlationship of the proposed parameters with active catalytic species might help to understand the role of the ashes in the gasification process. However, future work must be carried out in order to understand the process from a phenomenological point of view. 228 Chapter 4 0.8 0.7 na 0.6 0.5 0.4 0.3 0.2 0 5 [Ca] 10 15 Figure 6.-Correlation between the activation order (na) and the amount of Calcium of biomass samples. 4.3.3. Gas evolution analyses Figure 7 and 8 show the mass spectra for the main products obtained for the gasification process of lignocellulosic biomass and biomass main components. Figure 9 schematizes the gas yield calculated by integrating the data measured by MS. H2, CO and CO2 were the main products obtained (Figure 7). The evolution of these products took place within the whole process.The MS profile of these compounds correlate well with the reactivity one showingmaximums that are correlated with the higher activity of the mineral content in the ashes.In general, the high amount of mineral matter result in higher gas yields [16]. This way, eucalyptus wood, fir wood, lignin and xylan samples showed the highest gas yields whereas pine bark and cellulose samples had the lowest ones. H2 and CO were obtained in higher proportions than CO2 for all samples but fir wood one. The high amount of H2 and CO pointed out that char gasification reactions (C+H2O ↔ CO + H2; C+2H2O ↔ CO + 2H2)were predominant. Furthermore, the low amount of CO2 obtained for some samples (xylan, cellulose and pine bark) may indicate the existence of the Boudouard reaction (C + CO2 ↔ 2CO). As abovementioned, the amount of CO was very low for the fir wood sample. This fact, can be attributed to the existence of gas-phase reactions as the water-gas shift reaction (CO + H2O ↔ CO2 + H2) that can be catalyzed by the high calcium content of this sample. 229 Pine bark 0.3 0.20 0.2 0.15 0.10 0.1 0.05 0.0 0.00 H2 H2 H H22 CO CO CO CO CO2 CO2 CO2 CO2 80 0 20 40 60 120 80 100 120 Time (min) Time (min) 1.5 -4 1.5 Fir wood Xylan 1.0 1.0 0.5 0.5 0.0 0.0 H2 H2 H2 CO2 CO CO CO CO2 CO2 CO2 10 20 30 0 40 10 20 30 40 Time (min) Time (min) 1.5 -4 0 Eucalyptus wood Lignin 2 1.0 1 0.5 0.0 0 CO CO HH2 2 CO CO H H22 CO2 CO2 0 10 20 30 Time (min) 40 50 Intensity (A/(mbar mg))*10 40 Intensity (A/(mbar mg))*10 0 Intensity (A/(mbar mg))*10 0.25 Cellulose -4 Chapter 4 CO2 CO2 0 10 20 30 Time (min) Figure 7.-Gas evolution profile of H2, CO, CO2, H2O, NO and NO2 for the gasification process of cellulose, xylan, lignin, pine bark, eucalyptus wood and fir wood samples. 230 Pine bark Cellulose 0.8 0.10 0.4 0.05 0.00 0.0 CH4 NO2 COOH NO CH4 80 NO2 120 0 Time (min) 20 40 60 80 100 120 Time (min) 4 0.9 Xylan -6 40 Fir wood 3 0.6 2 0.3 1 0 0.0 COOH NO CH4 COOH NO CH4 NO2 NO2 0 10 20 30 Intensity (A/(mbar mg))*10 0 Intensity (A/(mbar mg))*10 -6 Chapter 4 C2H2 0 40 10 20 30 40 50 60 Time (min) Time (min) Eucalyptus wood 0.6 0.5 0.4 0.5 0.3 0.2 0.1 0.0 0.0 COOH NO NO HS SO 0 10 20 30 Time (min) 40 50 60 Intensity (A/(mbar mg))*10 -6 1.0 0.7 Lignin CH4 NO2 H2S CH4 COOH NO2 C2H2 SO2 C2H2 0 20 40 Time (min) Figure 8.-Gas evolution profile of secondary products produced in the gasification process of cellulose, xylan, lignin, pine bark, eucalyptus wood and fir wood samples. 231 Chapter 4 It can be observed that apart from H2, COand CO2, light hydrocarbons such as CH4 and C2H2were obtained in high proportions (Figure 8). Thus, secondary reactions as methanation (C+H2 ↔ CH4) and thermal cracking (CnHm ↔ Cn-xHm-y + H2 + CH4 + C) were taking place[39]. Eucalyptus wood gasification showed the highest yield of CH4. This fact could be explained by the high potassium content of the sample which is stated in literature as an active methanation catalyst [40].Furthermore, carboxylic acids (COOH) were also obtained, pointing out the existence of these compounds in the macromolecular structure of the produced char in a similar way than for lignites and sub-bituminous coals [36]. Nitrogen oxides were also detected in all the samples. On the other hand, sulfur compounds such as HS, H2S and SOx were only present in the gasification process of lignin sample. The origin of nitrogen and sulfur compounds is due to the dissociation of water at the char surface into hydrogen atom and a hydroxyl radical which is an extremely active oxidizing agent [41]. 0.06 Cellulose Lignin Xylan Fir wood Eucalyptus wood Pine bark Gas yield(A min/(mbar mg))·10 -3 4 3 0.04 2 0.02 1 0 0.00 H2 H 2 CO CO CO2 CO 2 CH4 CH4 C2H2 C2H2 NO NO SH HS HH2S S C2H5O COOH NO2 NO2 2 SO SO SO22 SO Figure 9.- Gaseous product yields for the gasification process of cellulose, xylan, lignin, pine bark, eucalyptus wood and fir wood samples. a) H2, CO and CO2; b) Secondary products. Table 6 summarized the elemental analyses of chars produced from pyrolysis and the final residue (ashes). It can be observed that after the pyrolysis process, N was retained in the char for all samples whereas S was only detected in the char produced from lignin sample pyrolysis. Finally, no C was found in the ashes, indicating that the complete gasification of the samples. 232 Chapter 4 Table 6.-Elemental analysis of biomass char and ash daf: dry ash Ultimate analysis (wt.%)daf Char basis, *Oxygen was calculated C H N S O* Cellulose 91.28 0.44 0.07 - 8.25 Lignin 68.02 0.49 0.88 0.16 30.44 Xylan 82.32 0.55 0.58 - 16.57 Fir wood 79.68 0.63 1.22 - 18.51 Eucalyptus wood 69.69 0.61 0.90 - 28.91 Pine bark 84.58 0.46 0.35 Ash - 14.76 C H N S O* Cellulose - - - - N/A Lignin - - - - N/A Xylan - - - - N/A Fir wood - - - - N/A Eucalyptus wood - - - - N/A Pine bark - - - - N/A by difference, N/A: Not available 4.4. CONCLUSIONS Thermal characteristics and gas formation during the pyrolysis and gasfication of eucalyptus wood, fir wood, pine bark and biomass main components (cellulose, xylan and lignin) were analyzed by TGA-MS. The presence of indigenous inorganic matter in the gasification process of biomass samples played an important role compared withtheir initial chemical composition. The reactivity of biomass samples was 233 Chapter 4 correlated with their alkali index and was ranked as follows: Xylan> lignin > cellulose and Eucalyptus wood > fir wood > pine bark. The high relevance of inorganic matter was proved by the inaccuracy of the results obtained by three standards models (VM, SCM and RPM) which fail to predict the effect of catalytic active species. A semiempirical model was proposed in order to accurately model the gasification process. The proposed model showed errors below 1 %. Furthermore, the models used in this work were statistically validated. The high production of H2 and CO showed the predominance of solid-gas reactions. On the other hand, gas phase reactions as watergas shift had a higher relevance in the gasification of fir wood due to its high calcium content. Methanation reactions also took place especially for eucalyptus wood sample and was correlated to the catalytic effect of potassium. 4.5. REFERENCES [1] Shabbar S, Janajreh I. 2013. Thermodynamic equilibrium analysis of coal gasification using Gibbs energy minimization method. Energy Conversion and Management; 65: 755. [2] Meng X, de Jong W, Badri FS, Benito P, Basile F, Verkooijen AHM. 2012. Combustion study of partially gasified willow and DDGS chars using TG analysis and COMSOL modeling. Biomass and Bioenergy; 39: 356. [3] Seo DK, Lee SK, Kang MW, Hwang J, Yu T-U. 2010. Gasification reactivity of biomass chars with CO2. Biomass and Bioenergy; 34(12): 1946. [4] Ollero P, Serrera A, Arjona R, Alcantarilla S. 2003. The CO2 gasification kinetics of olive residue. Biomass and Bioenergy; 24(2): 151. [5] Di Blasi C. 2009. Combustion and gasification rates of lignocellulosic chars. Progress in Energy and Combustion Science; 35(2): 121. [6] Kirubakaran V, Sivaramakrishnan V, Nalini R, Sekar T, Premalatha M, Subramanian P. 2009. A review on gasification of biomass. Renewable and Sustainable Energy Reviews; 13(1): 179. 234 Chapter 4 [7] Tay HL, Kajitani S, Zhang S, Li CZ. 2013. Effects of gasifying agent on the evolution of char structure during the gasification of Victorian brown coal. Fuel; 103: 22. [8] McKendry P. 2002. Energy production from biomass (part 2): Conversion technologies. Bioresource Technology; 83(1): 47. [9] Umeki K, Moilanen A, Gómez-Barea A, Konttinen J. 2012. A model of biomass char gasification describing the change in catalytic activity of ash. Chemical Engineering Journal; 207-208: 616. [10] Ahmed II, Gupta AK. 2011. Particle size, porosity and temperature effects on char conversion. Applied Energy; 88(12): 4667. [11] White JE, Catallo WJ, Legendre BL. 2011. Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. Journal of Analytical and Applied Pyrolysis; 91(1): 1. [12] Mohammed MAA, Salmiaton A, Wan Azlina WAKG, Mohamad Amran MS. 2012. Gasification of oil palm empty fruit bunches: A characterization and kinetic study. Bioresource Technology; 110: 628. [13] Khalil R, Várhegyi G, Jäschke S, Grønli MG, Hustad J. 2009. CO2 gasification of biomass chars: A kinetic study. Energy and Fuels; 23(1): 94. [14] Mani T, Mahinpey N, Murugan P. 2011. Reaction kinetics and mass transfer studies of biomass char gasification with CO2. Chemical Engineering Science; 66(1): 36. [15] Yang Y, Jin S, Lin Y, Huang S, Yang H. 2012. Catalytic gasification of tobacco rob in steam-nitrogen mixture: Kinetic study and fuel gas analysis. Energy; 44(1): 509. [16] Yoon HC, Pozivil P, Steinfeld A. 2012. Thermogravimetric pyrolysis and gasification of lignocellulosic biomass and kinetic summative law for parallel reactions with cellulose, xylan, and lignin. Energy and Fuels; 26(1): 357. [17] Huang YF, Kuan WH, Chiueh PT, Lo SL. 2011. Pyrolysis of biomass by thermal analysis-mass spectrometry (TA-MS). Bioresource Technology; 102(3): 3527. 235 Chapter 4 [18] Sanchez-Silva L, López-González D, Villaseñor J, Sánchez P, Valverde JL. 2012. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresource Technology; 109: 163. [19] Yang H, Yan R, Chen H, Zheng C, Lee DH, Liang DT. 2006. In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin. Energy and Fuels; 20(1): 388. [20] Sanchez-Silva L, López-González D, Garcia-Minguillan AM, Valverde JL. 2013. Pyrolysis, combustion and gasification characteristics of Nannochloropsis gaditana microalgae. Bioresource Technology; 130: 321. [21] Jones JM, Harding AW, Brown SD, Thomas KM. 1995. Detection of reactive intermediate nitrogen and sulfur species in the combustion of carbons that are models for coal chars. Carbon; 33(6): 833. [22] Fermoso J, Arias B, Pevida C, Plaza MG, Rubiera F, Pis JJ. 2008. Kinetic models comparison for steam gasification of different nature fuel chars. Journal of Thermal Analysis and Calorimetry; 91(3): 779. [23] Sánchez-Silva L, Gutiérrez N, Romero A, Sánchez P, Valverde JL. 2012. Pyrolysis and combustion kinetics of microcapsules containing carbon nanofibers by thermal analysis-mass spectrometry. Journal of Analytical and Applied Pyrolysis; 94: 246. [24] Jiménez-Borja C, Delgado B, Dorado F, Valverde JL. 2013. Experimental data and kinetic modeling of the catalytic and electrochemically promoted CH4 oxidation over Pd catalyst-electrodes. Chemical Engineering Journal; 225: 315. [25] Valverde JL, De Lucas A, Carmona M, González M, Rodríguez JF. 2004. A generalized model for the measurement of effective diffusion coefficients of heterovalent ions in ion exchangers by the zero-length column method. Chemical Engineering Science; 59(1): 71. [26] Lv D, Xu M, Liu X, Zhan Z, Li Z, Yao H. 2010. Effect of cellulose, lignin, alkali and alkaline earth metallic species on biomass pyrolysis and gasification. Fuel Processing Technology; 91(8): 903. 236 Chapter 4 [27] Xie X, Goodell B, Zhang D, Nagle DC, Qian Y, Peterson ML, et al. 2009. Characterization of carbons derived from cellulose and lignin and their oxidative behavior. Bioresource Technology; 100(5): 1797. [28] Mandapati RN, Daggupati S, Mahajani SM, Aghalayam P, Sapru RK, Sharma RK, et al. 2012. Experiments and kinetic modeling for CO2 gasification of indian coal chars in the context of underground coal gasification. Industrial and Engineering Chemistry Research; 51(46): 15041. [29] Zhang L, Huang J, Fang Y, Wang Y. 2006. Gasification reactivity and kinetics of typical Chinese anthracite chars with steam and CO2. Energy and Fuels; 20(3): 1201. [30] Gómez-Barea A, Ollero P, Fernández-Baco C. 2006. Diffusional effects in CO2 gasification experiments with single biomass char particles. 1. Experimental investigation. Energy and Fuels; 20(5): 2202. [31] Mitsuoka K, Hayashi S, Amano H, Kayahara K, Sasaoaka E, Uddin MA. 2011. Gasification of woody biomass char with CO2: The catalytic effects of K and Ca species on char gasification reactivity. Fuel Processing Technology; 92(1): 26. [32] Huang Y, Yin X, Wu C, Wang C, Xie J, Zhou Z, et al. 2009. Effects of metal catalysts on CO2 gasification reactivity of biomass char. Biotechnology Advances; 27(5): 568. [33] Marquez-Montesinos F, Cordero T, Rodríguez-Mirasol J, Rodríguez JJ. 2002. CO2 and steam gasification of a grapefruit skin char. Fuel; 81(4): 423. [34] Dupont C, Nocquet T, Da Costa JA, Verne-Tournon C. 2011. Kinetic modelling of steam gasification of various woody biomass chars: Influence of inorganic elements. Bioresource Technology; 102(20): 9743. [35] Di Blasi C, Buonanno F, Branca C. 1999. Reactivities of some biomass chars in air. Carbon; 37(8): 1227. [36] Hattingh BB, Everson RC, Neomagus HWJP, Bunt JR. 2011. Assessing the catalytic effect of coal ash constituents on the CO 2 gasification rate of high ash, South African coal. Fuel Processing Technology; 92(10): 2048. 237 Chapter 4 [37] Skodras G, Sakellaropoulos GP. 2002. Mineral matter effects in lignite gasification. Fuel Processing Technology; 77-78: 151. [38] Sakawa M, Sakurai Y, Hara Y. 1982. Influence of coal characteristics on CO2 gasification. Fuel; 61(8): 717. [39] Widyawati M, Church TL, Florin NH, Harris AT. 2011. Hydrogen synthesis from biomass pyrolysis with in situ carbon dioxide capture using calcium oxide. International Journal of Hydrogen Energy; 36(8): 4800. [40] Nanou P, Van Rossum G, Van Swaaij WPM, Kersten SRA. 2011. Evaluation of catalytic effects in gasification of biomass at intermediate temperature and pressure. Energy and Fuels; 25(3): 1242. [41] Chaudhari ST, Dalai AK, Bakhshi NN. 2003. Production of hydrogen and/or syngas (H2 + CO) via steam gasification of biomass-derived chars. Energy and Fuels; 17(4): 1062. 238 Chapter 5: CHARACTERIZATION OF DIFFERENT HEAT TRANSFER FLUIDS AND DEGRADATION STUDY BY USING A PILOT PLANT DEVICE OPERATING AT REAL CONDITIONS A pilot plant was designed to evaluate the degradation of heat transfer fluids (HTF) for their application in concentrating solar power plants (CSP). Firstly, the characterization of sixHTFs was carried out: two ionic liquids ([BMIM][BF4] and [EMIM][BF4]), two molten salts (Hitec XL and solar salt), a commercial HTF (Mobiltherm 605) and an oil extracted from NannochloropsisGaditanamicroalgae(NG oil). Mobiltherm 605 was selected for tuning the pilot plant due to its similarity to HTFs used in CSP, low cost and easy acquisition. The operating conditions were set according to thermogravimetric analysis. Thus, three isothermal experiments were carried out at 140, 160 ant 180 ºC for 15 days. Mobiltherm 605 viscosityincreased with time indicating that polymerization of hydrocarbon chainstook place. Two mathematical models were developed to assess the HTF behaviour in the pilot plant. A mathematical model for the estimation of the most representative parameters (viscosity, heat capacity and overall heat Chapter 5 transfer coefficient) of HTF performance was proposed. Furthermore, an activation/deactivation model was proposed to predict the variation of the estimated parameters with time. This model was validated with experimental viscosity measurements (average error of about 3 %). Finally, the statistical significance of the model wasproved. 5.1. INTRODUCTION Nowadays, the electricity power is mainly generated bycentral power plants or distributed generation systems. Renewable energy resources is one of the solutions to the dependence on the petroleum import, the energy efficiency and the conflictsusually arisen from the building of new large power plants based on fossil fuels [1]. Among all renewable energy sources, the solar energy is by far the most abundant one. There are two methods to extract electricity from solar radiation: photovoltaic (PV) and concentrating solar power (CSP) [2]. According to a study of the International Energy Agency,CSP is three times cheaper than PV[3]. Solar energy is not very dense. It is necessary to concentrate it to produce usable exploitable temperatures for the production of energy[4].There are two viable technologies to concentrate solar energy, those that concentrate iton a line and those that concentrate it on a point. Within the first group, the most developed techniques are the parabolic trough and linear Fresnel reflector technologies. In the second group, two technologies stand out: parabolic dishes and solar tower concentrated power plants[5].Among all of them, parabolic trough is the most mature technology, having a great promotion worldwide, which has turned out into great cost and performance improvements. 240 Chapter 5 Parabolic trough plants consist of large fields of parabolic trough collectors, a heat transfer fluid/steam generation system, aRankine steam turbine/generator cycle and optional storage and/or fossil-fired backup systems[6]. However, in spite of the great experience accumulated into this technology, there are still several technique gaps to make it competitive with traditional fossil-fuel based technologies. The main efforts have led to the improvement ofthe collector heat transfer [7, 8], the efficiency of the mirror [9], the integration of a thermal storage system [10]and the substitution of the heat transfer fluid [11, 12]. The substitution of the current heat transfer fluid (HTF) appears as one of the most prominent pathways to reduce costs due to the fact that very large quantities of HTF are needed, entailing high capital investment costs[12]. The present generation of commercial fluids used are organic synthetic oils composed by eutectic mixtures of diphenyl oxide and biphenyl[13]. This synthetic oil currently offers the best combination of low freezing point (12ºC) and upper temperature limit (393ºC) [12]. However, these oils are toxic and high flammable products, resulting into a direct danger to the plant operators. Furthermore, their use is limited by their degradation temperature (<400ºC), limiting the efficiency of the thermodynamic cycle for power generation. Additionally, they have high vapour pressures, exceeding atmospheric pressure, making difficult its use as thermal storage media as it would require impractically large pressure vessels[14]. In the recent years, different heat transfer fluids have been proposed. The fluids that have brought more attention are based on molten salts, mainly inorganic nitrate salts [14]and ionic liquids[13, 15]due to their excellent thermal properties. Van Valkenburg et al. [13] established a list of the properties that the new generation of HTF must satisfyto be considered adequate candidates.Wide liquid temperature range, high heat capacity, high density, high thermal and chemical stability,low vapour pressure and non-harmfulness are required[13, 15]. One of the problems when a HTF is evaluated is the difficulty of predicting its durability as an effective medium as energy carrier in a solar plant. However, no 241 Chapter 5 previous studies in literature about predicting the life cycle of the HTF at large scale have been reported. Thus, it seems necessary to design an experimental setup in order to evaluate the thermal performance of HTF. Furthermore, it could be helpful to establish mathematical models that reproduce the behaviour of the thermal fluids under different operating conditions. The aim of this work was to carry out the thermal and physical characterization of the different thermal fluids that have come up lately as feasible alternatives to be used in parabolic trough plants, such as molten salts, ionic liquids and microalgae oil. Furthermore, a comprehensive comparison among the studied HTF was done. Moreover, the design, assembly and tuning of a pilot plant based on CSP working principle have been carried out in order to evaluate the degradation of the most suitable HTF. Finally, mathematical models to predict the thermal behaviour of HTF under selected operating conditions have been proposed. The suggested models were validated and their statistical significance was proved. 5.2. MATERIALS AND METHODS 5.2.1 Materials 1-Butyl-3methylimidazolium tetrafluoroborate ([BMIM][BF4]) and 1-ethyl-3methylimidazolium tetrafluoroborate ([EMIM][BF4]) were purchased from Sigma Aldrich. The molten salts mixtures were prepared using NaNO3, KNO3 and Ca(NO3)2tetrahydrate. Reagent grade salts were provided by Sigma Aldrich. Hitec (60% NaNO3, 40% KNO3, Ca(NO3)2-tetrahydrate), Solar Salt (60% NaNO3, 40% KNO3, Ca(NO3)2-tetrahydrate) and Hitec XL (60% NaNO3, 40% KNO3, Ca(NO3)2tetrahydrate) were synthesized according to Bradshaw et al. [12]procedure. A commercial heat transfer fluid, MOBILTHERM 605, was purchased from EXXON MOBIL. 242 Chapter 5 Oil extracted from the microalgae NannochloropsisGaditana (NG microalgae) was provided by the University of Almeria (Spain).NG microalgae raw material was purchased from AlgaEnergy Company (Spain). NG microalgae belong toEustigmatophytes microalgae species with an average composition of 17.5 % lipids, 12.6% fatty acids and 24.1 % of proteins.The extraction process was carried out over lyophilized biomass, which was previously grounded and sieved to obtain a particle size between 100 and 300 µm. The extraction was done continuously in a distillation column joined with a stirring tank, using hexane as the extractor agent. 5.2. Equipment and procedures 5.2.1. Thermogravimetric Analysis (TGA) Thermal gravimetric analyses were carried out on a Mettler Toledo–TGA-DSC 1. The initial mass sample was kept between 4 and 15 mg for all tests. Each sample was analyzed at least twice in order to ensure the reproducibility of the measurements. Fast scans were performed in the temperature range 40-700 ºC in order to determinate the degradation temperature (Td) at a heating rate of 10ºC/min under a N2 flow of 60 ml/min. Isothermal TGA experiments were also used for long-term stability scans. The weight loss of the HTF was evaluated as a function of time under isothermal conditions at temperatures close to the calculated Tdby fast scans measurements. 5.2.2 Differential Scanning Calorimetry (DSC) and Modulated DSC (MDSC). The melting point and heat of fusion of studied samples were measured by using a differential scanning calorimeter (DSC), TA Instruments model Q100. Thesemeasurementswerecarried out byvaryingthetemperature in the range from -50 to 300 ºCwith a heating rate of 10 ºC/min under 60 ml/min N2flow. 243 Chapter 5 For themeasurementsofspecificheatcapacity (Cp), thesamplesweresubjectedto a heatingrampfrom 30 ºCto 300 ºCusing a modulation amplitude of ± 0.5 ºC, with 100 secondsperiodandanunderlyingheating rate of 0.5 ºC/min. 5.2.3. Viscosity Kinematic viscosity was measured using a Canon–Fenske capillary viscometer. The viscosity measurements were carried out in the temperature range of 25-100 ºC. The solution temperature was controlled by a thermostat in a circulating bath (TAMSON TV2000) monitored by a thermometer. The stopwatch with a resolution of 0.1 s was used to measure the flow times. 5.2.4. Density The density of different heat transfer fluids was measured by means of a Coriolis mass flow measuring system, Promass 80. This device allows the measurement of the density in a large temperature range (-50 – 350 ºC). The calibration was carried out with air and water at 23.3 ºC and 23.6 ºC in a laboratory certified by ISO/IEC 17025. 5.2.5. Heat Storage Sensible heat storage is easily calculated from the heat capacity, density and the temperature change chosen (Eq. 1). = ∙ ∙( − ) (1) whereEsis the sensible heat storage (J/m3), ρ is the density of the fluid (kg/m3), Cp is the heat capacity (J/(kg ºC)), Tout and Tin are the inlet and outlet temperatures of the solar field, respectively. For this work a rise in temperature of 100 ºC was selected due to the fact that it is often used in solar applications[13]. 5.3. Design of the HTF degradation pilot plant A pilot plant was designed and constructed for the thermal performance study of different HTF. The plant with an outer size of 1.15 m x 0.8 m x 2 m is composed of 244 Chapter 5 six functional units: a feedstock vessel, a pumping system, a tubular oven, a heat exchanger unit, a coriolis mass flow meter and an automatic control system. The installation is shown schematically in Fig. 1. TI PI TIC PI H-1 TIC PI TI MI FI PI TI FI TIC DI P-67 O-1 N2 V-1 TI TI P-1 Sampling Figure 1.Schematic diagram of the HTF degradation pilot scale plant. The central element of the equipment was a vertical cylindrical vessel (V-1) of 8 litres capacity (90 mm of inner diameter and 1.2 m height). The fluid was heated in V1 by an internal electrical resistance, able to reach temperatures up to 400 ºC. The HTF flowed through the piping system by means of a centrifugal pump Sterling (ZTND) (P-1) located at the bottom of the deposit. The flow was regulated by a valve 245 Chapter 5 system that allowed part of the oil to be recirculated to V-1. A valve for sampling was placed at the bottom of V-1 prior to the inlet to P-1. P-1 impulsedthe thermal fluid through a tubular oven (Fisher 3Kw) (O-1), which was used to heat the fluidagain, before reaching the heat exchanger unit (H-1). H-1 was made of copper. Table 1 lists the main mechanical details of the heat exchanger. O-1 was capable of heating the fluid up to 500 ºC. Table 1. Heat exchanger geometric characteristics: inner diameter (Din), outer diameter (Dext), equivalent length (Leq) and roughness (ε) of the internal pipes. Din (m) (·103) 7.92 Dout (m) (·103) 9.52 Leq(m) 10.48 ε (·104) 0.15 The fluid was later cooled down by air in a heat exchanger. The air was provided by a centrifugal fan (Sodeca CMA-426-2M) with a maximum air flow of 850 m3/h. After the cooling, the HTF passed through a Coriolis mass flow measurement unit (Promass 80) that continuously registered the flow rate and density. There was a bypass to the Coriolis unit in order to let the systemreach the steady state, avoiding device breakdowns due to high temperatures. Finally, the fluid was redirected to V-1, closing the loop. A nitrogen generator (model ZEFIRO 3, CINCL®) was used to provide a continuous flow of nitrogen (99.999 %) to guarantee an inert atmosphere in the pilot plant. Nitrogen was introduced into the system through a pipe located in the upper side of V-1. The piping system and the vessel used were all made of stainless steel and thermally insulated in order to minimize heat losses. 246 Chapter 5 The installation had several controllers and indicators. K-type thermocouples were used to measure temperatures: one was put inside V-1, other two were placed at the inlet and outlet of P-1; finally, another one was situated into O-1. Finally, other four thermocouples were used to measure both, the fluid and air temperature, at the inlet and the outlet of H-1.There were several pressure taps located all over the installation to measure pressure drop in different sections of the circulation loop. A P18L transducer was used to measure the relative humidity of air. Three proportional-integral-derivative (PID) controllers were used to control de plant. The first one was used to set the temperature of V-1, regulated by the internal electrical resistance placed inside the vessel. The second one was used to control the temperature of O-1 by adjusting the power supplied to the oven through the 3 kW resistance. Finally, a controller was used to set the temperature at the exit of H-1 by varying the air flow. Furthermore, the experimental setup was connected to a computer allowing a remote control of it. Using specific software developed by Adepro engineering company (Spain), temperatures, differential pressures, fluid density and fluid flow were processed and recorded every five minutes. Finally, data obtained were processed with a VBA-excel application to evaluate the main physic properties and its evolution withtime, as commented next. 5.4. Mathematical model of the thermal performance of HTF in the pilot plant With data collected from the pilot plant, a pseudo-state model was developed able to calculate the overall heat transfer coefficient in the heat exchanger,the specific heat capacity and viscosity of the HTF coming from the heat exchanger with time on stream. For this purpose, a VBA-Excel application was developed. Likewise, a nonlinear procedure for estimating the parameter in the model that accounted for the decay/growth with time on stream of the process variables under study was considered and solved according to the corresponding VBA-Excel application. 247 Chapter 5 Details of the partial calculations are shown in the following sections 5.4.1. Overall heat transfer coefficient determination The heat flow transferred between a cold and a hot fluid into a heat exchanger is defined as follows: = ∙ ∙∆ (2) whereQ is the heat transferred(W), A is the heat transfer surface area (m2), ∆Tml is the log mean temperature difference(ºC) and UF is the overall heat transfer coefficient (W/(m2·ºC)). The heat exchanger performance may be evaluated using Eq. (2),being the overall heat transfer coefficient (UF) defined as follows: = ) ( ∙∆ (3) Eq. (3) is only valid when the operation is carried out under a steady state condition. In other words, the flow of the hot and cold streams and their inlet temperatures must be virtually constant. 5.4.2. HTF specific heat capacity calculation The heat duty gained or lostwas estimated for both fluids as: = ∙ ∙( − ) (4) and = ∙ ∙( − ) (5) where QHTF and Qair are the heat duty (W)for HTF and air, respectively; CHTF and Cairare the corresponding specific heat capacity in (J/(kg·ºC)); mHTFand mairare the corresponding mass flow rates (kg/h);Ti, To, ti and to are the inlet and outlet temperatures (ºC) for the hot (HTF) and the cold (air) fluids, respectively. 248 Chapter 5 Under steady state conditions,the heat duties for both fluids are balanced according to the first thermodynamic law(Qair= QHTF= Q). This way, Eqs. (4) and (5) are equivalent: ∙( − ∙ )= ∙( ∙ − ) (6) andCHTFcan be calculated from: = ( ∙( − )) (7) On the other hand, air heat duty can also be defined as: = ∙∆ (8) wheremairis the dry air mass flow (kg/s) and ∆Hairis the enthalpy of the air (J/kg)calculated as the difference between the enthalpies of the inlet and outlet air stream, Ho and Hi, respectively: ∆ = − (9) These enthalpies can be calculated as a function of absolute humidity in the air as follows: = 4184.1 ∙ (0.24 ∙ = 4184.1 ∙ (0.24 ∙ + ()*+ ∙ (595 + 0.46 ))(10) + ()*+ ∙ (595 + 0.46 ))(11) whereXABSis the absolute humidity in the air surrounded the pilot plant (%). 5.4.3. Viscosity determination The viscosity determination was performed according to the Newton’s algorithm. As a first approximation, the model supposed a valueof viscosity for the HTF. Then, the fluid mean velocity in the air exchanger tube was calculated (Eq. (12)). 249 Chapter 5 /= 0.1∙ 234 ∙5234 6 ; ∙89: (12) 7 whereρHTF is the working fluid density (kg/m3) and Din is the heat exchanger inlet diameter tube (m). Friction factors were calculated for the laminar flow by the Poiseuille equation (Eq. (13)) whereas the Chen equation was used for the turbulent regime(Eq. (14)): < = => 16 ? @A (13) ? H = −4 ∙ log(E.F0G1 ∙ ( 8 ) − 9: 1.0I1J ∙ KL ? H ?.?0RO log[J.OJ1F ∙ P8 Q 9: 1.O10G + KL S,UVUW ] (14) Pressure drop of the fluid in the heat exchanger was calculated by the Fanning equation (Eq. (15)): Y= (Z234[ \Z2349 ) 5]^ _ + 2 ∙ < ∙ /J ∙ 8 9: (15) wherePHTFiand PHTFoare the working fluid pressure at the inlet and outlet of the heat exchanger and L is the equivalent length of the pipe where the fluid passed through (m).F represented a factor that should be zero or close to zero when the iterative process represented by the Newton’s algorithm is completed. 5.5. Deactivation/activation model. The variationof the calculated variables (µ, Cp and U) with time on stream was evaluated in terms of deactivation/activation depending on their decay/growth over time, respectively. These expressions are well-known in describing deactivation of catalysts in chemical reactions [16]. Four different deactivation/activation modelswere considered: ` = >ab\cd ∙ 250 (16) Chapter 5 ` = 1 (1 + e ∙ ) f ` = cd ` =1 (1 + (17) (18) cd ) (19) whereai is the estimated variable (µ, cp and U), kw is the deactivation/activation constant and t is time. 5.5.1. Parameter estimation. A VBA-Excel application was developed to solve this model [17], which was based on the Marquardt-Levenberg algorithm for nonlinear regression [18-20]. The weighted sum of the squared differences between the observed (Exp) and the calculated (Pr) variables was minimized according to the following equation described elsewhere [18]: gg = ∑ m? ∑lm?(i Z − i jk )Jl (20) wherei represents the number of equations to be fitted, j the specific experimental data and n and m the total number of equations and experiments, respectively. AF-test is a statistical test in which a F-distribution under the null hypothesis is established. The procedure was based on the comparison between the tabulated Fvalue (F-test) and Fc, which was defined elsewhere[19]: Yn = s o9pq ; ∑: ) 9uW ∑tuW( r (o9pq vo9wxy ); t : s ∑9uW ∑tuW (:∙svy) (21) wherep represents the total number of parameters. If Fc is larger than F(p, n-p, 1-α), assuming a value of α = 0.05, 95% confidence level, the regression was considered to be meaningful, although there is no guarantee that the model is statistically suitable since the meaningfulness of each parameter in the model must be also evaluated. Hence, a complementary test, named t-test, was used. The t-test considers that the statistical hypothesis test follows a Student’s t distribution and allows to verify if the 251 Chapter 5 estimate of the parameter bfi differs from a reference value (generally zero). Thus, a parameter is meaningful (at α = 0.05) each time that the following inequality occurs: n = z{|9 z @}({| )99 € > (• − b, 1 − J ) (22) where[V(bf)] ii represents the diagonal ith term of the covariance matrix used in the last step of the n-linear regression procedure. 5.3. RESULTS AND DISCUSSION 5.3.1. Heat transfer fluids characterization for their use as thermal fluids in parabolic trough plants The heat transfer fluids chosen for their study were: two ionic liquids (1-Butyl3methylimidazolium tetrafluoroborate ([BMIM][BF4]) and 1-ethyl-3- methylimidazolium tetrafluoroborate ([EMIM][BF4])), two molten salts (Hitec XL (60% NaNO3, 40% KNO3, Ca(NO3)2-tetrahydrate) and solar salt (60% NaNO3, 40% KNO3, Ca(NO3)2-tetrahydrate), a commercial HTF (Mobiltherm 605) and a new oil extracted from the microalgae NannocholorpsisGaditana (NG oil). These different kinds of fluids were selected due to their excellent properties and their different nature. Ionic liquids and molten salts have exceptional thermal properties since it is possible that they can be used as thermal storage media [12, 15]. On the other hand, algae are one of the most attractive biomass feedstock to produce high-valuable products. In this context, the oil extracted from them,which has been widely studied as a transport fuel [21], could be used as a valuable HTF.At the best of our knowledge, the use of the oil extracted directly from algae as a heat transfer fluid has not been reported yet. Table 2 shows the main properties that the new generation of HTFs must meet to be used in the parabolic trough technology field [22]. 252 Chapter 5 Table 2.Heat transfer fluids requirements according to National Renewable Energy Laboratory [22]. Heat transfer fluid requirements Storage density > 1.9 MJ/m3 Freezing point ≤ 0 ºC High temperature stability ≥ 430 ºC Vapor presure < 1 atm Material compatibility Carbon and stainlesssteel Viscosity Similar toTherminol VP-1 The commercial HTF Therminol®VP-1 was taken as the reference material. Density, degradation temperature, melting point, heat capacity, heat storage density and viscosity of the HTFsconsidered in this study together withTherminol® VP-1 are summarized in Table 3. 253 Chapter 5 254 Chapter 5 Table 3.Main properties of the studied HTF for their use in parabolic trough solar plants. Heat Transfer Fluids (HTF) Mobiltherm 605 NG oil Therminol® VP-1 0.83 1.28 1.06 650 220 300 257 230 120 -12 10 12 1.66 1.49 1.44 2.27 1.78 170.4 194.2 282.9* 296.3* 290.5 188,7 36.07 119.78 - - >>Therminol® VP1 2.63 Property [EMIM][BF4] [BMIM][BF4] Solar Salt HiTec XL Density (g/cm3) (100 ºC) 1.25 1.17 - - Degradationtemperature (ºC) 430 330 550 Meltingpoint (ºC) 14 < -50 Heat capacity (J/(g ºC)) (100 ºC) 1.36 Heat storage density, sensible ΔT=100ºC (MJ/m3) Viscosity (cP) (100ºC) 2.31 191.7 4.40 * Molten salts storage density calculation was made according to data collected from literature [11] 255 Chapter 5 3.1.1. Thermal stability. As was mentioned above, fast-scans do not provide reliable information about a material long-term thermal stability [23]. However, it is often reported as an appropriate value for establishing comparison among materials. According to values listed in Table 3, molten salts were the most thermal stable compounds.NG oil, HTF Therminol® VP-1, Mobiltherm 605 and [BMIM][BF4] showed the lowest degradation temperature (Td) whereas the value of Td of [EMIM][BF4] kept in the limit of the required value. Molten salts are eutectic mixtures, which imply that they are really stable in the fluid state. Furthermore, the studied molten salts are composed by metallic nitrates conferring a great thermal resistance[12]. On the other hand, ionic liquids thermal decomposition depends on the nature of the anion rather than that of the cation, and specially decreases withincreasinghydrophilicity of the anion[24]. Thus, [EMIM][BF4] showed higher Td value due to the higher hydrophilicity of the corresponding anion. Besides, ionic liquids can be easily contaminated (water, sodium ion, silver ion and chloride),which may have an important effect on its thermal behaviour [13].Finally, Mobiltherm 605 is a paraffinic mineral oil which Tdis typicallyrangingfrom 150 to 315 ºC [25]. These results were corroborated by long-term experiments. Figure 2 shows the long-term stability experiments for the ionic liquid [BMIM][BF4]. The corresponding Tdmeasured by fast scan turned out to be 330 ºC. However, it can be seen that after 5 hours at 300 ºC the liquid had lost almost the 20 wt. % of its initial weight. 256 Chapter 5 100 Weight (%) 80 60 40 20 0 50 100 150 200 250 300 350 400 450 500 Temperature (ºC) 100 Weight (%) 80 60 40 300 ؛C 350 ؛C 375 ؛C 20 0 1 2 3 4 5 Time (h) Figure 2. Fast scans and long-term thermal stability experiments for the ionic liquid [EMIM][BF4]. 257 Chapter 5 Table 4 shows the degradation rates (%/h) of all HTFs here considered. The degradation of the fluids took place at temperatures below their corresponding Td. These results agreed well with those reported in literature [13, 23]. This way, the thermal stability of the studied HTFsfollowed the trend:Hitec XL > Solar Salt>[EMIM][BF4]>[BMIM][BF4] >NG oil>Mobiltherm 605. Table 4.-Degradation rates of HTFs at different temperatures during isothermal experiments. HTF Molten salt Degradation rate (wt.%/h) T= 300 ºC T= 400 ºC T= 500 ºC Solar salt 0.018 ± 0.001 0.234 ± 0.001 0.445 ± 0.001 Hitec XL 0.001 ± 0.001 0.011 ± 0.001 0.079 ± 0.001 Ionicliquids T= 300 ºC T= 350 ºC T= 375 ºC [EMIM][BF4] 4.321 ± 0.001 10.75 ± 0.001 22.456 ± 0.001 [BMIM][BF4] 0.325 ± 0.001 1.609 ± 0.001 Microalgae oil NG oil Commercial fluid T= 200 ºC T= 235 ºC 0.021 ± 0.001 1.228 ± 0.001 T= 125 ºC T= 175 ºC 5.231 ± 0.001 T= 270 ºC 8.973 ± 0.001 T= 225 ºC Mobiltherm 605 0.842 ± 0.001 6.902 ± 0.001 19.303 ± 0.001 258 Chapter 5 5.1.2. Melting point/freezing point. Melting temperatures (Tm) were evaluated instead of freezing temperatures due to the fact that some of the fluids tend to super-cool. The targeted value of Tm would be below 0ºC, which would allowthese fluids to be used in cold weather regions. Among the selected HTFs,only [BMIM][BF4] and Mobiltherm 605 maintained their liquid state at these operating conditions. Molten salts had the highest Tm, being their use in parabolic trough plants difficult unless freeze protection could be used to keep them in the liquid state during the process [26]. On the other hand, the ionic liquid [EMIM][BF4] and the NG oil showed an acceptable value as long asa minimum heating is provided to the plant. 5.1.3. Heat capacity Heat capacity measurements were made by MDSC. Heat capacity affects directly to the storage capacity of the thermal fluids. All fluids were within an acceptable range close to Therminol® VP-1 heat capacity. Molten salts and NG oil showed the lowest values being Mobiltherm 605 the fluid with the highest one. 5.1.4. Density Density is a necessary value for the calculation of sensible heat storage. The higher the density, the higher the capacity of the compound to storage heat.The molten salts density at the targeted temperature (100 ºC) was not evaluated since they are still solids at this temperature. The ionic liquids density has been reported in literature[13].NG oil density is higher than that ofMobiltherm 605 andTherminol® VP1but it is lower than those of the ionic liquids. 3.1.5. Storage capacity Storage capacity is calculated as a function of the HTF density, heat capacity and usable liquid temperature range. These properties determine the use of HTF as thermal storage media and heat transfer fluids for solar power plants [15]. As it can be observed, all the studied HTFshad a value of the storage capacity above that of 259 Chapter 5 Therminol® VP-1. Therefore, all the candidates could be considered as useful thermal storage media. 3.1.6. Viscosity The parabolic trough-based technology is a flowing system.Thus,the viscosity of the HTF used in this process is of special interest in order to reduce pumping, operation and maintenance costs. The viscosity of the reference HTF (Therminol® VP1) is 2.48 cSt measured at 40 ºC.NG oil had the highest viscosity of all HTFs considered. Molten salts were not liquids at ambient temperature, which make them not suitable for this technology unless freeze protection methods are used. Ionic liquids under study were closer to the targeted viscosity although still seems too high to be considered viable candidates without causing problems in the HTF loop. Finally, Mobiltherm 605 showed the closest viscosity value to that of Therminol® VP-1. On the other hand, the best HTF should be an inexpensive and nontoxic liquid with excellent thermo-physical properties and a long service life [25]. The obtained resultsindicated that the thermal fluids with better propertieswere the ionic liquids, and more specifically the [EMIM][BF4]. However, there are still several drawbacks to deal with for its implementation in large scale parabolic trough plants. Availability and costs are two main issues that a fluid must meet. Ionic liquids and algae oil are still in the development phase, which imply high production costs and low availability[15]. Furthermore, its preparationprocedures are difficult and tedious. On the other hand, molten salts are inexpensive and are easily produced although theirhigh melting points add complexity and larger operating costs [12]. Therefore, the commercial HTF Mobiltherm 605 was selected in the following study due to its great availability and similar properties to the commercial fluid used in parabolic trough solar plants. The main characteristics of Mobiltherm 605 are shown in Table 5. 260 Chapter 5 Table 5.-MOBILTHERM 605 properties. Properties MOBILTHERM 605 Viscosity (µ) ASTM D 445 40 ºC (cSt) 30.4 100 ºC (cSt) 5.4 Freezing point, ºC, ASTM D97 -12 Flash point (ºC), ASTM D92 230 Maximumoperationtemperature (ºC) 316 Density (kg/l), ASTM D4052 0.86 5.3.2. Pilot plant assembly and tuning. 5.3.2.1. Selection of the operating conditions. The degradation of a HTF mainly depends on two variables: operation time and working temperature. The selected procedure to establish the most suitable operating conditions to evaluate the HTF degradation in the pilot scale plant was based in fast scans and long-term stability experiments performed by the TGA technique. In addition, an operation time of 15 days was chosen to evaluate the thermal degradation of the HTF in the pilot plant. Figure 3 shows the fast scans and the long-term stability experiments carried out with Mobiltherm 605. It can be observed that at temperatures above 175 ºC, Mobiltherm 605 started to decompose. Thus, the temperature set in the vessel (V-1) was kept in the temperature range between 125-180 ºC where slight degradation was appreciated. Secondly, the thermal fluid was heated up in the tubular oven (O-1)at 180 ºC in order to keep the temperature of the thermal fluid and accelerate its degradation 261 Chapter 5 in the heat exchanger (H-1). To sum up, three isothermal experiments were carried out in the pilot plant at working temperatures of 140, 160 and that at180 ºC during 15 days. 100 Weight (%) 80 60 40 20 0 50 100 150 200 250 300 350 400 450 500 Temperature (ºC) 100 Weight (%) 80 60 40 125 ؛C 150 ؛C 175 ؛C 200 ؛C 225 ؛C 20 0 0 1 2 3 4 5 Time (h) Figure 3.Fast scans and long-term thermal stability experiments for the commercial heat transfer fluid Mobiltherm 605. 262 Chapter 5 5.3.2.2. Pilot Plant Results Figure 4 shows the most relevant properties measured in the pilot plant: density (ρ)(kg/m3), mass flow (m)(kg/s), and the inlet and outlet (from the heat exchanger) temperature of the HTF (Ti and To, respectively) (ºC) for the isothermal experiment at 140 ºC. It can be seen that the results provided by the pilot plant were steady and no high fluctuations in the data collected were observed. 160 155 Temperature (ºC) Tin 150 145 Tout 140 135 130 840 0.04 3 0.03 ρ HTF (kg/m ) mHTF (kg/s) 820 800 0.02 780 0.01 760 0.00 0 3 6 9 12 740 15 Time (days) Figure 4.Most relevant properties measured with the pilot plant: density (ρ), HTF mass flow (mHTF) and the HTF temperature at the inlet and outlet of the heat exchanger (Ti and To, respectively). 263 Chapter 5 As described in section 2.4, three main parameters were estimated by means of the corresponding mathematical model: viscosity (µ) in kg/(m·s), heat capacity (Cp) J/(kg·ºC) and overall heat transfer coefficient (UF) in J/(m2·ºC·s).These parameters were normalized respecting their initial value. The viscosity is an important parameter when evaluating the operative life of a HTF as it has a direct impact on its heat transfer capacity. Furthermore, viscosity is important to design heat transfer applications because the pressure drop and the resulting pumping power depend on its value[27]. The HTF heat capacity (Cp) and the HTF overall heat transfer coefficient (UF) were also estimated to assess the heat transfer efficiency and performance of the fluid[28], which are directly related to the storage capacity of it[15]. There are many researchers focusing on the development of high performance heat transfer fluids [29]. However, there are not published any standard procedure to predict the life cycle of a HTF. The limits values have been mainly set byboth users and manufacturers experience. Nevertheless, there are more and more standards appearing concerning to oil in-service predictive maintenance. For instance, ASTM D 4378-03[30]and ASTM D 6224[31] are related to In-Service monitoring of mineral Turbine Oils for Steams and Gas turbines and lubricating oil for auxiliary power plants equipment, respectively.Thus, it is generallyaccepted a variation in viscosity of ± 15 %respect to its initial value, before an oil in-service could be considered out of its usable range. Figure 5 shows the estimated parameters normalized respecting their initial value (solid line) together with the deactivation model prediction (dotted line), described in section 2.5,for thethree experiments performedat140 ºC, 160 ºC and 180 ºC. It can be appreciated the good fitting reached by the deactivation/activation model. The results 264 Chapter 5 obtained showed that the change in viscosity after the fifteen days of operation was higher as the temperature increased, varying from 1.02 at 140 ºC to 1.06 at 180 ºC. 2.0 2.0 UF/UFo 140 ºC 1.2 1.2 0.8 0.8 0.8 0.0 2.0 2.0 2.0 1.2 0.4 0.0 0.0 Cp/Cpo Cp/Cpo (Cp/Cpo)th (Cp/Cpo)th 1.6 1.2 1.2 1.2 Cp/Cpo 1.6 0.8 0.8 0.0 0.0 0.0 2.0 2.0 µ/µo 0.8 0.4 0.4 0.4 2.0 µ/µo (µ/µο)th 1.6 1.2 1.2 1.2 µ/µο µ/µο 1.6 µ/µο 1.6 0.8 0.8 0.8 0.4 0.4 0.4 0.0 0.0 0 3 6 9 Time (days) 12 15 µ/µo (µ/µο)th (µ/µο)th 0.0 Cp/Cpo (Cp/Cpo)th 1.6 Cp/Cpo Cp/Cpo (UF/UFo)th 1.6 0.4 0.4 UF/UFo 180 ºC (UF/UFo)th U.F. /U.Fo 1.6 U.F. /U.Fo U.F. /U.Fo 1.6 2.0 UF/UFo 160 ºC (UF/UFo)th 0 3 6 9 Time (days) 12 15 0 3 6 9 12 15 Time (days) Figure 5.Estimated normalized experimental properties versus theoretical ones (th). As aforementioned, Mobiltherm 605 is a paraffinic mineral oil formed by hydrocarbon chains.According to ASTM D 4378-03 [30] and ASTM D 6224-02 [31], the main factors affecting the service life of these type of oils would be the contamination by secondary fluids, such as lubricants and water; the oil oxidation and the oil thermal degradation. In this work, the thermal degradation in inert atmosphere (provided by a constant flow of pure N2) was only considered. Concerning to the thermal degradation of the HTF, two effects could take place[25]. Firstly, the viscosity of the fluid can increase. At high temperature the fluid breaks down into smaller molecules due to thermal cracking, leading to a decrease in viscosity for the paraffinic oil. Secondly, the polymerization of hydrocarbon chains might occur,leading to an 265 Chapter 5 increase in viscosity. Therefore, opposite effects could be taken place, producing no net changes in viscosity even though the HTF degradationwas occurring. The viscosity of Mobiltherm 605 increased during operationat all the temperatures essayed. This fact points out that the polymerization path was the predominant effect. In addition, at the highest temperature tested the maximum variation of the viscosity turned out to be ~ 6 %,indicating the high thermal stability of Mobiltherm 605. The heat capacity (Cp) and overall heat transfer coefficient (UF) followed opposite trends. Cp increased with time, being the final value of 1.02, 1.03 and 1.12 for 140, 160 and 180 ºC, respectively. On the other hand, UF decreased with time. However, no influence of temperature was found and thefinal value of this parameter was 0.95. The activation/deactivation constants and the resulting parameters obtained by the non-linear regression procedure described in section2.5.1, are summarized in Table 6. As aforementioned, the discrimination of kinetic parameters was done applying the Ftest and the t-test at the 95% confidence level. In terms of statistical results, F-test considered the regression to be suitable in all cases since the corresponding values to the Fc/Ftest ratio was larger than 1. The t-test was also used for evaluating each parameter in the model. As shown in Table 6, the values of tc/t-test ratio were also larger than 1, showing the statistical significance of the proposed models and their corresponding parameters. 266 Chapter 5 Table 6.-Estimated deactivation constant (Kw) at different temperatures (140, 160 and 180 ºC) for MOBILTHERM 605. Temperature = 140 ºC Normalized parameters Kw tc µ/µo -1.22·10-3 4 Cp/Cpo -3.13·10-3 10 UF/UFo 2,12·10-3 6 t-test Fc F-test 1.96 56702 2.37 t-test Fc F-test 1.96 58102 2.37 t-test Fc F-test 1.96 311942 2.37 Temperature = 160 ºC Normalized parameters Kw tc µ/µo -1.32·10-3 4 Cp/Cpo -4.33·10-3 13 UF/UFo 2.86·10-3 9 Temperature = 180 ºC Normalized parameters Kw tc µ/µo -4.85·10-3 25 Cp/Cpo -2.56·10-3 13 UF/UFo 2.85·10-3 14 267 Chapter 5 5.3.3.Model validation With the aim of validating the theoretical values given by the activation/deactivation model (th), experimental viscosity measurements were carried out with a Fenskeviscometer. For these measurements, 100 ml samples were taken dailyaccording to the standard ASTM D 4378-03[30]. Figure 6 shows the experimental versus theoretical viscosity values as a function of time.It can be seen how the theoretical valuesfitted the experimental results accurately. Table 7 summarizes the absolute and relative errors among the theoretical and experimental values. The following relative errors were obtained: 0.59 %, 1.30 % and 2.33 % at 140 ºC, 160 ºC and 180 ºC, respectively. These results validate the procedures and model used in this work. 2.0 (µ/µο)estimated 140 ºC (µ/µο)exp. 1.6 µ/µο 1.2 0.8 0.4 0.0 2.0 (µ/µο)estimated 160 ºC (µ/µο)exp. 1.6 µ/µο 1.2 0.8 0.4 0.0 2.0 (µ/µ ο)estimated 180 ºC (µ/µ ο)exp. 1.6 µ/µο 1.2 0.8 0.4 0.0 0 3 6 9 12 15 Time (days) Figure 6.-Estimated normalized experimental viscosities versus experimental ones. 268 Chapter 5 Table 7.-Absolute and relative error of the experimental measurements of viscosity versus the theoretical ones. 140 ºC Days 0 2 4 6 8 10 12 14 15 0 -0.0078 -0.0084 -0.0153 0.0022 0.0014 0.0101 -0.0056 -0.0031 Absolute error 0.78 0.83 1.52 0.22 0.14 1.00 0.55 0.31 Relative error (%) 0 Mean error (%) 0.59 160 ºC 0 Absolute error Relative error (%) 0 0.0151 1.51 0.0215 2.15 0.0019 0.19 0.0262 0.0269 0.0086 2.60 2.66 0.85 0.0052 0.51 -0.0130 1.27 1.30 0.0593 5.92 0.0077 0.72 2.33 180 ºC 0 Absolute error Relative error (%) 0 0.0093 0.94 0.0099 0.99 0.0186 1.86 0.0114 0.0492 0.0456 1.12 4.90 4.54 269 Chapter 5 5.4. CONCLUSIONS A pilot plant was designed to evaluate the degradation of HTfs to be used in concentrating solar power plants (CSP). Six different HTFs were characterized:two ionic liquids (1-Butyl-3methylimidazolium tetrafluoroborate ([BMIM][BF4]) and 1ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4])), two molten salts (Hitec XL (60% NaNO3, 40% KNO3, Ca(NO3)2-tetrahydrate) and solar salt (60% NaNO3, 40% KNO3, Ca(NO3)2-tetrahydrate), a commercial HTF (Mobiltherm 605) and a new oil extracted from the microalgae NannochloropsisGaditana (NG oil). Mobiltherm 605 was selected for the assembling and tuning of the pilot plant due to its great availability and similar properties to the commercial fluid used in parabolic trough solar plants. The pilot plant behaviour was stable and no high fluctuations of data collected were detected. Three isothermal experiments were carried out at 140, 160 and 180 ºC for 15 days. The viscosity was selected as the key parameter to follow the HTF degradation. Mobiltherm 605 viscosity increased with time, indicating that the polimerization of hydrocarbon chains took place. The variation of viscosity was 6 % at 180 ºC pointing out the high thermal stability of Mobiltherm 605. Two mathematical models were developed to estimate the most representative parameters (µ, Cp and UF) with time on stream and predict the behaviour of the parameters during operation, respectively. The model was validated with experimental measurements of viscosity obtaining an error lower than 3%. Finally, the statistical significance of the model was also proved. 270 Chapter 5 5.5. REFERENCES [1] Sripakagorn A, Srikam C. Design and performance of a moderate temperature difference Stirling engine. Renew. Energy. 2011;36(6):1728-33. [2] Du Marchie Van Voorthuysen EH. The promising perspective of Concentrating Solar Power (CSP). Int. Conf. on Future Power Systems, 2005. [3] "World Energy Outlook 2004", International Energy Agency, Paris 2004. [4] El Gharbi N, Derbal H, Bouaichaoui S, Said N. A comparative study between parabolic trough collector and linear Fresnel reflector technologies. Conference A comparative study between parabolic trough collector and linear Fresnel reflector technologies, vol. 6. p. 565-72. [5] Mills D. Advances in solar thermal electricity technology. Solar Energy. 2004;76(1-3):19-31. [6] Price H, Lüpfert E, Kearney D, Zarza E, Cohen G, Gee R, et al. Advances in parabolic trough solar power technology. J. Sol. Energy Eng., Transactions of the ASME. 2002;124(2):109-25. [7] Al-Ansary H, Zeitoun O. Numerical study of conduction and convection heat losses from a half-insulated air-filled annulus of the receiver of a parabolic trough collector. Sol. Energy. 2011;85(11):3036-45. [8] Padilla RV, Demirkaya G, Goswami DY, Stefanakos E, Rahman MM. Heat transfer analysis of parabolic trough solar receiver. Appl. Energy. 2011;88(12):5097110. [9] Sansoni P, Fontani D, Francini F, Giannuzzi A, Sani E, Mercatelli L, et al. Optical collection efficiency and orientation of a solar trough medium-power plant installed in Italy. Renew. Energy. 2011;36(9):2341-7. [10] Laing D, Bahl C, Bauer T, Lehmann D, Steinmann WD. Thermal energy storage for direct steam generation. Sol. Energy. 2011;85(4):627-33. 271 Chapter 5 [11] Kearney D, Herrmann U, Nava P, Kelly B, Mahoney R, Pacheco J, et al. Assessment of a molten salt heat transfer fluid in a parabolic trough solar field. J. Sol. Energy Eng., Transactions of the ASME. 2003;125(2):170-6. [12] Bradshaw RW, Cordaro JG, Siegel NP. Molten nitrate salt development for thermal energy storage in parabolic trough solar power systems. Proc. ASME 3rd Int. Conf. Energy Sustain., vol. 2. p. 615-24. [13] Valkenburg MEV, Vaughn RL, Williams M, Wilkes JS. Thermochemistry of ionic liquid heat-transfer fluids. Thermochim. Acta. 2005;425(1–2):181-8. [14] Blake DM, L.; Hale, M.J.; Price, H.; Kearney, D.; Herrmann, U. New Heat Transfer and Storage Fluids for Parabolic Trough Solar Thermal Electric Plants. Proc. 11th ColarPACES Int. Symp. Conc. Sol. Power Chem. Energy Technologies. Zurich, Switzerland 2002. [15] Wu B, Reddy RG, Rogers RD. Novel ionic liquid thermal storage for solar thermal electric power systems In: Kleis SJ, Bingham CE editors. Proc. Sol. Forum 2001. Solar Energy: The Power to Choose, Washington, DC. 2001; p. 445-51. [16] Levenspiel O. Chemical reaction engineering: An introduction to the design of chemical reactors. In: Wiley, editor. Michigan1962. [17] Valverde JL, De Lucas A, Carmona M, González M, Rodríguez JF. A generalized model for the measurement of effective diffusion coefficients of heterovalent ions in ion exchangers by the zero-length column method. Chem. Eng. Sci. 2004;59(1):71-9. [18] De Lucas A, Sánchez P, Dorado F, Ramos MJ, Valverde JL. Kinetic model of the n-octane hydroisomerization on PtBeta agglomerated catalyst: Influence of the reaction conditions. Ind. Eng. Chem. Res. 2006;45(3):978-85. [19] Froment GF, Bischof, K.B. Chemical Reactor Analysis and Design. New York1990. [20] Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math. 1963;11:431-41. [21] Ross AB, Biller P, Kubacki ML, Li H, Lea-Langton A, Jones JM. Hydrothermal processing of microalgae using alkali and organic acids. Fuel. 2010;89(9):2234-43. 272 Chapter 5 [22] “Thermal storage for Solar Thermal Parabolic Trough Electric Power Systems”, National Renewable Energy Laboratory, Request for Proposal Number RCQ-0-30910, March 27, 2000. [23] Kosmulski M, Gustafsson J, Rosenholm JB. Thermal stability of low temperature ionic liquids revisited. Thermochim. Acta. 2004;412(1-2):47-53. [24] Singh G, Kumar A. Ionic liquids: Physico-chemical, solvent properties and their applications in chemical processes. Indian J. Chem. – Sect. A Inorg., Phys., Theor. Anal. Chem.. 2008;47(4):495-503. [25] Oyekunle LO, Susu AA. Characteristic properties of a locally produced paraffinic oil and its suitability as a heat-transfer fluid. Pet. Sci. Tech. 2005;23(11-12):1499-509. [26] Moens L, Blake DM, Rudnicki DL, Hale MJ. Advanced thermal storage fluids for solar parabolic trough systems. Int. Sol. Energy Conf., 2002; p. 277-83. [27] Chandrasekar M, Suresh S, Chandra Bose A. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp. Therm. and Fluid Sci. 2010;34(2):210-6. [28] Bergman TL. Effect of reduced specific heats of nanofluids on single phase, laminar internal forced convection. Int. J. Heat and Mass Transfer. 2009;52(5– 6):1240-4. [29] Saeedinia M, Akhavan-Behabadi MA, Razi P. Thermal and rheological characteristics of CuO-Base oil nanofluid flow inside a circular tube. Int. Commun. Heat and Mass Transfer. 2012;39(1):152-9. [30] ASTM 4378-03 AD. In-Service Monitoring of Mineral Turbine Oils for Steam and Gas Turbines. 2003. [31] ASTM 6224-02 AD. In-Service Monitoring of Lubricating Oil for Auxiliary Power Plant Equipment. 2003. 273 Chapter 6: GENERAL CONCLUSIONS AND RECOMMENDATIONS This chapter lists the main conclusions derived from the research performed in this Doctoral Thesis. In addition, some recommendations are suggested to be taken into account in further studies. 6.1. CONCLUSIONS - Pyrolysis, combustion and gasification characteristics of NG microalgae were analyzed by TGA-MS. High mass loadings cause heat-transfer problems, whereas small particle sizes led to less diffusion resistance. Gas flow did not affect pyrolysis and combustion. Gasification temperature had a direct impact on char conversion and reactivity. Reactivity increased with decreasing sample weight and increasing porosity. Low gas flow decreased char conversion. Pyrolysis and combustion main products were generated in the second degradation step. N-compounds evolution was associated with the microalgae proteins degradation. SO2 release during combustion could be related to sulphated polysaccharides decomposition. H2 production was enhanced by steam concentration. - Thermal characteristics and gas formation during pyrolysis of Fir Wood, Eucalyptus Wood, Pine Bark, NG microalgae and three individual components of lignocellulosic biomass (hemicellulose, lignin and cellulose) were analyzed by TGA- Chapter 6 MS. Pyrolysis of lignocellulosic biomass was divided into four zones: moisture evolution, hemicellulose decomposition, lignin and cellulose degradation and lignin decomposition. NG microalgae showed the highest thermal stability. The main products (CO2, light hydrocarbons and H2O) were generated between 200 and 450 ºC. H2 was produced at high temperatures (>700 ºC). Kinetic model satisfactorily predicted the pyrolysis of biomass. Furthermore, the statistical significance of the model was proved. - Combustion behavior and gas formation from the oxidation process of fir wood, eucalyptus wood, pine bark and three individual components of lignocellulosic biomass (cellulose, hemicellulose and lignin) were analyzed by TGA-MS. Biomass combustion took place into two main stages: devolatilization stage (Dev. stage) and oxidation stage (Oxid. stage). Most products detected in the combustion of lignocellulosic biomass were released during the Dev. stage whereas only NO2, C2H5O+, CO and CO2 were detected at the Oxid. stage. Nitrogen compounds were released as CH4N, HCN and NOx. Lignocellulosic biomass combustion was fitted to a first order reaction model (O1). - Combustion of microalgae took place into two main stages: devolatilization stage and oxidation stage. However, up to three sub-steps could be identified during the microalgae combustion attributed to the decomposition of carbohydrates, proteins and lipids. The ignition characteristic showed that samples CV and SC required less amount of energy to develop the combustion process. However, NG sample released a higher amount of heat during the combustion. The kinetic analysis of microalgae combustion showed that the most representative mechanism for representing the process was a first order reaction model (O1). The excellent fitting between the experimental and theoretical curves (maximum mean error was 3.1%, for NG sample) confirmed the selection of model O1. CO, CO2 and H2O were the main products released during combustion. Other compounds detected during the combustion of microalgae were light hydrocarbons (especially CH4); nitrogen compounds (mainly released as NO, NO2 and HCN); sulfur compounds (SO, SO2 and COS); hydrogen and 274 Chapter 6 other oxygen containing hydrocarbons (ketones, esters, ethers and carboxylic acids). Nitrogen compounds were found in higher proportions than sulfur ones. - Samples W and RP showed the best burning profile by combining a high combustion characteristic factor (CCF) and a high release of combustion heat (Hcomb). The kinetic analyses of the oxidation process was performed using pseudo mulitcomponent separate-stage models (PMSM). The combustion process was divided into three stages: Devolatilization stage (correlated with the hemicellulose and cellulose content in the samples), Oxidation stage (influenced by the initial amount of lignin in the samples) and Remaining burning (associated to the final char burning and devolatilization of inorganic matter). The high ash content of CR sample enhanced the amount of volatiles released during the combustion process lowering its activation energy. The good fitting of experimental curves with theoretical ones validated the proposed model (mean error below 3.4 %). H2, CO and CO2 were the main product obtained from energy crops combustion process. Furthermore, NOx were detected in a higher proportion than other pollutants such as SOx, chloride compounds (CH3Cl) or aromatic ones (C6H6). - Thermal characteristics and gas formation during the pyrolysis and gasfication of eucalyptus wood, fir wood, pine bark and biomass main components (cellulose, xylan and lignin) were analyzed by TGA-MS. The presence of indigenous inorganic matter in the gasification process of biomass samples played an important role compared with their initial chemical composition. The reactivity of biomass samples was correlated with their alkali index and was ranked as follows: Xylan > lignin > cellulose and Eucalyptus wood > fir wood > pine bark. The high relevance of inorganic matter was proved by the inaccuracy of the results obtained by three standards models (VM, SCM and RPM) which fail to predict the effect of catalytic active species. A semi-empirical model was proposed in order to accurately model the gasification process. The proposed model showed errors below 1 %. Furthermore, the models used in this work were statistically validated. The high production of H2 and CO showed the predominance of solid-gas reactions. On the other hand, gas phase reactions as water275 Chapter 6 gas shift had a higher relevance in the gasification of fir wood due to its high calcium content. Methanation reactions also took place especially for eucalyptus wood sample and was correlated to the catalytic effect of potassium. - A pilot plant was designed to evaluate the degradation of HTfs to be used in concentrating solar power plants (CSP). Six different HTFs were characterized: two ionic liquids (1-Butyl-3methylimidazolium tetrafluoroborate ([BMIM][BF4]) and 1ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4])), two molten salts (Hitec XL (60% NaNO3, 40% KNO3, Ca(NO3)2-tetrahydrate) and solar salt (60% NaNO3, 40% KNO3, Ca(NO3)2-tetrahydrate), a commercial HTF (Mobiltherm 605) and a new oil extracted from the microalgae Nannochloropsis Gaditana (NG oil). Mobiltherm 605 was selected for the assembling and tuning of the pilot plant due to its great availability and similar properties to the commercial fluid used in parabolic trough solar plants. The pilot plant behaviour was stable and no high fluctuations of data collected were detected. Three isothermal experiments were carried out at 140, 160 and 180 ºC for 15 days. The viscosity was selected as the key parameter to follow the HTF degradation. Mobiltherm 605 viscosity increased with time, indicating that the polimerization of hydrocarbon chains took place. The variation of viscosity was 6 % at 180 ºC pointing out the high thermal stability of Mobiltherm 605. Two mathematical models were developed to estimate the most representative parameters (µ, Cp and UF) with time on stream and predict the behaviour of the parameters during operation, respectively. The model was validated with experimental measurements of viscosity obtaining an error lower than 3%. Finally, the statistical significance of the model was also proved. 6.2. RECOMMENDATIONS 276 LIST OF PUBLICATIONS AND CONFERENCES List of publications and conferences PUBLICATIONS López-González, D., Valverde, J.L., Fernandez-Lopez, D., Sanchez-Silva, L. (In press). Thermogravimetric-mass spectrometric analysis on combustion of lignocellulosic biomass. Bioresource Technology. López-González, D., Valverde, J.L., Sánchez, P., Sanchez-Silva, L. 2013.Characterization of different heattransfer fluids and degradation study by using a pilot plant device operating at real conditions. Energy. 54, PP. 240-250 Sanchez-Silva, L., López-González. D., Garcia-Minguillan, A.M., Valverde, J.L. 2013. Pyrolysis,combustion and gasification characteristics of Nannochloropsisgaditana microalgae. BioresourceTechnology, 130, pp. 321-331 Sanchez-Silva, L., López-González, D., J. Villaseñor, J., Sánchez, P., Valverde, J.L. 2012.Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresource Technology, 109, pp. 163-172. CONFERENCES Keynotes A. de Lucas-Consuegra, J.L. Endrino, J. González-Cobos, D. López, J.A. Díaz, J.L. Valverde.ANQUE’s ICCE. Sevilla (Spain), June 2012. Oral presentations J.A. Díaz, J. González-Cobos, D. López-González, A. Romero, J.L. Valverde. ANQUE’s ICCE. Sevilla (Spain), June 2012. L. Sánchez-Silva, D. López-González, J. González-Cobos, J.A. Díaz, J. Villaseñor, P. Sánchez, J.L. Valverde. ANQUE’s ICCE. Sevilla (Spain), June 2012. 279 List of publications and conferences Posters: 2 contributions. 280