High order effects in γγ → VV
Transcription
High order effects in γγ → VV
High order effects in γγ → VV Werner K. Sauter UERGS/UFRGS 6 de setembro de 2007 Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 1 / 27 Summary 1 Introduction 2 LO & NLO & NNLO BFKL 3 Formalism 4 Results 5 Conclusions Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 2 / 27 Summary 1 Introduction 2 LO & NLO & NNLO BFKL 3 Formalism 4 Results 5 Conclusions Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 3 / 27 QCD & Pomeron Understanding of high energy hadron processes from a fundamental perspective within Quantum Chromodynamics (QCD) Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 4 / 27 QCD & Pomeron Understanding of high energy hadron processes from a fundamental perspective within Quantum Chromodynamics (QCD) Regge limit (s |t|) in QCD described by Lipatov et al. QCD Pomeron, described by BFKL equation Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 4 / 27 QCD & Pomeron Understanding of high energy hadron processes from a fundamental perspective within Quantum Chromodynamics (QCD) Regge limit (s |t|) in QCD described by Lipatov et al. QCD Pomeron, described by BFKL equation most simple case: onium-onium scattering ⇒ heavy onium allows perturbative expansion. Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 4 / 27 Photon-photon collisions off-shell photon scattering at high energy in e + e − colliders ⇒ advantage: not involve a non-perturbative target Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 5 / 27 Photon-photon collisions off-shell photon scattering at high energy in e + e − colliders ⇒ advantage: not involve a non-perturbative target three variables, virtuality of the photon (Q 2 ), the momentum transfer (t) and the quark mass (M). Real photons, Q 2 = 0 and t = 0, perturbative calculations only if M is large Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 5 / 27 Photon-photon collisions off-shell photon scattering at high energy in e + e − colliders ⇒ advantage: not involve a non-perturbative target three variables, virtuality of the photon (Q 2 ), the momentum transfer (t) and the quark mass (M). Real photons, Q 2 = 0 and t = 0, perturbative calculations only if M is large Vector meson pairs production in γγ collisions as a test of BFKL Pomeron Calculation: convolution the amplitude of the transition γ → V with BFKL amplitude. Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 5 / 27 Calculation Perturbative calculation for: heavy mesons (light meson production only in the case of large momentum transfer), high Q 2 , t 6= 0 Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 6 / 27 Calculation Perturbative calculation for: heavy mesons (light meson production only in the case of large momentum transfer), high Q 2 , t 6= 0 Previous work (Eur.Phys.J.C44:515-522,2005): γγ → V1 V2 in BFKL framework with Vi = ρ, ω, φ, J/Ψ, Υ vector mesons in the large t exchange (Q 2 = 0) ⇒ large rapidity gap in the final state. Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 6 / 27 Calculation Perturbative calculation for: heavy mesons (light meson production only in the case of large momentum transfer), high Q 2 , t 6= 0 Previous work (Eur.Phys.J.C44:515-522,2005): γγ → V1 V2 in BFKL framework with Vi = ρ, ω, φ, J/Ψ, Υ vector mesons in the large t exchange (Q 2 = 0) ⇒ large rapidity gap in the final state. Successful description of meson photo-production in HERA with the BFKL formalism (Enberg, Motyka, Poludniowsky), even in the case of light mesons. Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 6 / 27 Calculation Perturbative calculation for: heavy mesons (light meson production only in the case of large momentum transfer), high Q 2 , t 6= 0 Previous work (Eur.Phys.J.C44:515-522,2005): γγ → V1 V2 in BFKL framework with Vi = ρ, ω, φ, J/Ψ, Υ vector mesons in the large t exchange (Q 2 = 0) ⇒ large rapidity gap in the final state. Successful description of meson photo-production in HERA with the BFKL formalism (Enberg, Motyka, Poludniowsky), even in the case of light mesons. In this work: Use of photon virtualities, conformal spin, NLO BFKL eigenvalues (kernel, characteristic function) with the ρ & J/ψ mesons Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 6 / 27 Summary 1 Introduction 2 LO & NLO & NNLO BFKL 3 Formalism 4 Results 5 Conclusions Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 7 / 27 Leading order pQCD: hadron-hadron scattering amplitude as a sum of (αs ln s)n (s Q 2 Λ2QCD ) Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 8 / 27 Leading order pQCD: hadron-hadron scattering amplitude as a sum of (αs ln s)n (s Q 2 Λ2QCD ) Leading Logarithm (Order) terms: αs ' 0.2, σtot ' s 0.5 Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 8 / 27 Leading order pQCD: hadron-hadron scattering amplitude as a sum of (αs ln s)n (s Q 2 Λ2QCD ) Leading Logarithm (Order) terms: αs ' 0.2, σtot ' s 0.5 Next Leading Order terms: αs (αs ln s)n Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 8 / 27 DGLAP & BFKL DGLAP: summation of terms (αs ln Q 2 )n , αs small and ln Q 2 large, x = Q 2 /s 1 ⇒ σtot ∝ q(x, Q 2 ) Unintegrated gluon distribution F (x, Q 2 ) as solution of a integral equation (by Mellin transform): p −1/4 ln 1/x ln Q 2 Q 2 F (x, Q 2 ) ' ln(1/x) ln(Q 2 ) exp Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 9 / 27 DGLAP & BFKL DGLAP: summation of terms (αs ln Q 2 )n , αs small and ln Q 2 large, x = Q 2 /s 1 ⇒ σtot ∝ q(x, Q 2 ) Unintegrated gluon distribution F (x, Q 2 ) as solution of a integral equation (by Mellin transform): p −1/4 ln 1/x ln Q 2 Q 2 F (x, Q 2 ) ' ln(1/x) ln(Q 2 ) exp BFKL: small Q 2 , summation of terms (αs ln 1/x)n F (x, Q 2 ) ' α χ(1/2) p s Q αs χ00 (1/2) ln 1/x χ(γ) is the BFKL kernel. In LO, χ0 (γ) = 2ψ(1) − ψ(γ) − ψ(1 − γ) Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 9 / 27 NLO BFKL NLO corrections: αs (αs ln s)n Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 10 / 27 NLO BFKL NLO corrections: αs (αs ln s)n Characteristic function: χ(γ) = ᾱs χ0 (γ) + ᾱs2 χ1 (γ) + ᾱs3 χ2 + . . . Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 10 / 27 NLO BFKL NLO corrections: αs (αs ln s)n Characteristic function: χ(γ) = ᾱs χ0 (γ) + ᾱs2 χ1 (γ) + ᾱs3 χ2 + . . . Contributions to χ1 : running coupling, splitting functions, energy scale. Collinear corrections: χcoll 1 (γ) = Werner K. Sauter UERGS/UFRGS () A1 A1 − b 1 1 + − − γ2 (1 − γ)2 2γ 3 2(1 − γ)2 High order effects in γγ → VV 6 de setembro de 2007 10 / 27 NLO BFKL NLO corrections: αs (αs ln s)n Characteristic function: χ(γ) = ᾱs χ0 (γ) + ᾱs2 χ1 (γ) + ᾱs3 χ2 + . . . Contributions to χ1 : running coupling, splitting functions, energy scale. Collinear corrections: χcoll 1 (γ) = A1 A1 − b 1 1 + − − γ2 (1 − γ)2 2γ 3 2(1 − γ)2 Full solution: lengthy expression (see in the following) Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 10 / 27 NLO BFKL NLO corrections: αs (αs ln s)n Characteristic function: χ(γ) = ᾱs χ0 (γ) + ᾱs2 χ1 (γ) + ᾱs3 χ2 + . . . Contributions to χ1 : running coupling, splitting functions, energy scale. Collinear corrections: χcoll 1 (γ) = A1 A1 − b 1 1 + − − γ2 (1 − γ)2 2γ 3 2(1 − γ)2 Full solution: lengthy expression (see in the following) Consequences: Large corrections Chance of the structure of the characteristic function: 2 saddle points (γ̄, γ̄ ∗ ) ᾱs χ(γ̄) 2 γ̄ Q s Cross sections:σ(s, Q 2 , Q02 ) ∼ Q12 QQ + (γ̄ ↔ γ̄)∗ , Q2 0 0 oscillates as functions of ln Q 2 /Q02 . Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 10 / 27 NNLO BFKL Beyond NLO: long calculations without guarantee of convergence. Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 11 / 27 NNLO BFKL Beyond NLO: long calculations without guarantee of convergence. Approximation to the NNLO kernel (see Marzani et al., arXiv:0704.2404) Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 11 / 27 NNLO BFKL Beyond NLO: long calculations without guarantee of convergence. Approximation to the NNLO kernel (see Marzani et al., arXiv:0704.2404) Slow convergence of the perturbative expansion. Expectation: NNLO aprox. with same qualitative shape as the LO term Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 11 / 27 NNLO BFKL Beyond NLO: long calculations without guarantee of convergence. Approximation to the NNLO kernel (see Marzani et al., arXiv:0704.2404) Slow convergence of the perturbative expansion. Expectation: NNLO aprox. with same qualitative shape as the LO term Inclusion of the collinear & anti-collinear singularities based in the duality between BFKL & DGLAP kernel anomalous dimension Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 11 / 27 NNLO BFKL Beyond NLO: long calculations without guarantee of convergence. Approximation to the NNLO kernel (see Marzani et al., arXiv:0704.2404) Slow convergence of the perturbative expansion. Expectation: NNLO aprox. with same qualitative shape as the LO term Inclusion of the collinear & anti-collinear singularities based in the duality between BFKL & DGLAP kernel anomalous dimension Contributions: Running coupling effects; dependence of the factorization scheme; kinematic variables. Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 11 / 27 NNLO BFKL Beyond NLO: long calculations without guarantee of convergence. Approximation to the NNLO kernel (see Marzani et al., arXiv:0704.2404) Slow convergence of the perturbative expansion. Expectation: NNLO aprox. with same qualitative shape as the LO term Inclusion of the collinear & anti-collinear singularities based in the duality between BFKL & DGLAP kernel anomalous dimension Contributions: Running coupling effects; dependence of the factorization scheme; kinematic variables. Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 11 / 27 Summary 1 Introduction 2 LO & NLO & NNLO BFKL 3 Formalism 4 Results 5 Conclusions Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 12 / 27 Factorization Scattering amplitude to cross sections 16π 3αs s |t| Im A(s, t) = 2 F(z, τ ), z = ln 2 , τ = 2 9t 2π Λ MV + Qγ2 Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 13 / 27 Factorization Scattering amplitude to cross sections 16π 3αs s |t| Im A(s, t) = 2 F(z, τ ), z = ln 2 , τ = 2 9t 2π Λ MV + Qγ2 F(z, τ ) = Z t2 X ν 2 + m2 2 dν e Y ωm (Q ,ν) 1 1 3 2 2 2 2 (2π) m [ν + (m + 2 ) ][ν + (m − 2 ) ] γVa γVb Im,ν (Q⊥ )Im,ν (Q⊥ )∗ Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 13 / 27 Factorization Scattering amplitude to cross sections 16π 3αs s |t| Im A(s, t) = 2 F(z, τ ), z = ln 2 , τ = 2 9t 2π Λ MV + Qγ2 F(z, τ ) = Z t2 X ν 2 + m2 2 dν e Y ωm (Q ,ν) 1 1 3 2 2 2 2 (2π) m [ν + (m + 2 ) ][ν + (m − 2 ) ] γVa γVb Im,ν (Q⊥ )Im,ν (Q⊥ )∗ dσ 1 = |A(s, t)|2 , dt 16π Werner K. Sauter UERGS/UFRGS () Z ∞ σ(γγ → V1 V2 ) = d|t| |t|min High order effects in γγ → VV dσ(γγ → V1 V2 ) d|t| 6 de setembro de 2007 13 / 27 Impact factors γV Im,νi (Q⊥ ) = 8Ci 1 Q3 ⊥ „ 2 Q⊥ 4 «iν „ ∗ Q⊥ Q⊥ «m Γ(1/2−iν+|m|) Γ(1/2+iν+|m|) 1 − i (ξ−ν))Γ( 1 − i (ξ+ν))Γ2 (1+iξ+|m|) Γ( 4 2 4 2 , i 3 i Γ( 3 4 + 2 (ξ−ν)+|m|)Γ( 4 + 2 (ξ+ν)+|m|) Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV R +∞ −∞ Ci2 = dξ 1+iξ+|m| ( τ4i ) V 3 3Γeei MV αem i × . 6 de setembro de 2007 14 / 27 Impact factors γV Im,νi (Q⊥ ) = 8Ci 1 Q3 ⊥ „ 2 Q⊥ 4 «iν „ ∗ Q⊥ Q⊥ «m Γ(1/2−iν+|m|) Γ(1/2+iν+|m|) 1 − i (ξ−ν))Γ( 1 − i (ξ+ν))Γ2 (1+iξ+|m|) Γ( 4 2 4 2 , i 3 i Γ( 3 4 + 2 (ξ−ν)+|m|)Γ( 4 + 2 (ξ+ν)+|m|) Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV R +∞ −∞ Ci2 = dξ 1+iξ+|m| ( τ4i ) V 3 3Γeei MV αem i × . 6 de setembro de 2007 14 / 27 Impact factors γV Im,νi (Q⊥ ) = 8Ci 1 Q3 ⊥ „ 2 Q⊥ 4 «iν „ ∗ Q⊥ Q⊥ «m Γ(1/2−iν+|m|) Γ(1/2+iν+|m|) 1 − i (ξ−ν))Γ( 1 − i (ξ+ν))Γ2 (1+iξ+|m|) Γ( 4 2 4 2 , i 3 i Γ( 3 4 + 2 (ξ−ν)+|m|)Γ( 4 + 2 (ξ+ν)+|m|) R +∞ −∞ Ci2 = dξ 1+iξ+|m| ( τ4i ) V 3 3Γeei MV αem i × . In the case of the NLO Calculation, the form factor is remains LO. NLO result have a huge expression (See Papa, Kotsky paper) Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 14 / 27 Impact factors γV Im,νi (Q⊥ ) = 8Ci 1 Q3 ⊥ „ 2 Q⊥ 4 «iν „ ∗ Q⊥ Q⊥ «m Γ(1/2−iν+|m|) Γ(1/2+iν+|m|) 1 − i (ξ−ν))Γ( 1 − i (ξ+ν))Γ2 (1+iξ+|m|) Γ( 4 2 4 2 , i 3 i Γ( 3 4 + 2 (ξ−ν)+|m|)Γ( 4 + 2 (ξ+ν)+|m|) R +∞ −∞ Ci2 = dξ 1+iξ+|m| ( τ4i ) V 3 3Γeei MV αem i × . In the case of the NLO Calculation, the form factor is remains LO. NLO result have a huge expression (See Papa, Kotsky paper) The results estimate the effects of NLO contributions Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 14 / 27 The BFKL eigenvalue ω In leading order ωLO = 2ᾱs <e [ψ(1) − ψ(1/2 + |m| + iν)] Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 15 / 27 The BFKL eigenvalue ω In leading order ωLO = 2ᾱs <e [ψ(1) − ψ(1/2 + |m| + iν)] The NLO BFKL eigenvalue are given using BLM energy scale setting within momentum space subtraction (MOM) renormalization scheme [Brodsky et al.]: MOM (Q 2 ,ν)=N χ ωBLM c LO (ν) αMOM (Q̂ 2 ) π » – α (Q̂ 2 ) 1+r̂ (ν) MOM π Q̂ 2 (ν)=Q 2 exp[ 21 χLO (ν)− 53 +2(1+ 23 I )], r̂ (ν) = − β0 4 h χLO (ν) − 53 2 i − 4χ Nc (ν) { LO I ≈2.3439 π 2 sinh(πν) [3+ 2ν cosh2 (πν) „ 1+ Nf Nc3 « × π 2 −4 11+12ν 2 π3 ]−χ00 LO (ν)+ 3 χLO (ν)− cosh(πν) −6ζ(3)+4φ(ν)} 16(1+ν 2 ) +7.471−1.281β0 Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 15 / 27 The BFKL eigenvalue ω 11Nc − 2Nf , 3 Z 1 cos(ν ln(x)) π 2 √ φ(ν) = 2 dx − Li2 (x) , 6 (1 + x) x 0 Z x ln(1 − t) dt . Li2 (x) = − t 0 β0 = Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 16 / 27 ω comparison Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 17 / 27 Choice of parameters Running coupling (based in the previous works): NLO (µ2 )= Nc =3, Nf =4, αLO s =0.2, αs Werner K. Sauter UERGS/UFRGS () 4π β0 ln µ2 /Λ2 QCD ( High order effects in γγ → VV ) , µ2 =Qa QB , ΛQCD =0.1 GeV 6 de setembro de 2007 18 / 27 Choice of parameters Running coupling (based in the previous works): NLO (µ2 )= Nc =3, Nf =4, αLO s =0.2, αs 4π β0 ln µ2 /Λ2 QCD ( ) , µ2 =Qa QB , ΛQCD =0.1 GeV Rapidity: In the present work, the choice is s Ypw = 2 , Λ2ab = γ|t|+λa (ma2 +Qa2 )+λb (mb2 +Qb2 ), γ = 0, λa,b = 1/2 Λab In Enberg et al. work (EPSW) the choice is s Yepsw = ln CY , CY = 0.3 Qa Qb Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 18 / 27 Choice of parameters Running coupling (based in the previous works): NLO (µ2 )= Nc =3, Nf =4, αLO s =0.2, αs 4π β0 ln µ2 /Λ2 QCD ( ) , µ2 =Qa QB , ΛQCD =0.1 GeV Rapidity: In the present work, the choice is s Ypw = 2 , Λ2ab = γ|t|+λa (ma2 +Qa2 )+λb (mb2 +Qb2 ), γ = 0, λa,b = 1/2 Λab In Enberg et al. work (EPSW) the choice is s Yepsw = ln CY , CY = 0.3 Qa Qb Cut in the t integration: in the present work, we use tmin = 0 (in previous results also tmin = 1) or as in EPSW, tmin = (Qa2 Qb2 )/s Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 18 / 27 Choice of parameters Running coupling (based in the previous works): NLO (µ2 )= Nc =3, Nf =4, αLO s =0.2, αs 4π β0 ln µ2 /Λ2 QCD ( ) , µ2 =Qa QB , ΛQCD =0.1 GeV Rapidity: In the present work, the choice is s Ypw = 2 , Λ2ab = γ|t|+λa (ma2 +Qa2 )+λb (mb2 +Qb2 ), γ = 0, λa,b = 1/2 Λab In Enberg et al. work (EPSW) the choice is s Yepsw = ln CY , CY = 0.3 Qa Qb Cut in the t integration: in the present work, we use tmin = 0 (in previous results also tmin = 1) or as in EPSW, tmin = (Qa2 Qb2 )/s Difference in the longitudinal and transverse parts of cross section: 2 2 dσT ma mb dσL 1 dσL = ∼ dt Qa Qb dt hQ 2 i dt Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 18 / 27 Summary 1 Introduction 2 LO & NLO & NNLO BFKL 3 Formalism 4 Results 5 Conclusions Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 19 / 27 Comparison with LO order dσ/dt × t Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 20 / 27 Comparison with LO order σtot × √ s Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 21 / 27 Choice of scale combination & parameters Choice of scales in rapidity and coupling For fixed coupling, zero virtuality: s0 = EMP For fixed coupling, non-zero virtuality: s0 = EMP or EPSW For running coupling, zero virtuality: s0 = EMP; µ0 = BLM For running coupling, non-zero virtuality: s0 = EMP; µ0 = EMP or s0 = EPSW; µ0 = EPSW Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 22 / 27 Choice of scale combination & parameters Choice of scales in rapidity and coupling For fixed coupling, zero virtuality: s0 = EMP For fixed coupling, non-zero virtuality: s0 = EMP or EPSW For running coupling, zero virtuality: s0 = EMP; µ0 = BLM For running coupling, non-zero virtuality: s0 = EMP; µ0 = EMP or s0 = EPSW; µ0 = EPSW Cut-off in integration: ρρ, tmin = 1, others tmin = 0 Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 22 / 27 Choice of scale combination & parameters Choice of scales in rapidity and coupling For fixed coupling, zero virtuality: s0 = EMP For fixed coupling, non-zero virtuality: s0 = EMP or EPSW For running coupling, zero virtuality: s0 = EMP; µ0 = BLM For running coupling, non-zero virtuality: s0 = EMP; µ0 = EMP or s0 = EPSW; µ0 = EPSW Cut-off in integration: ρρ, tmin = 1, others tmin = 0 Results are complete = total + longitudinal parts c = t + l, t= l = fl 1 c, 1+f f = l= Q12 Q22 ⇒ M12 M22 f c 1+f In general, t c, Werner K. Sauter UERGS/UFRGS () l 'c High order effects in γγ → VV 6 de setembro de 2007 22 / 27 Differential cross sections Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 23 / 27 Total cross sections Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 24 / 27 Characteristics conformal spin: very small difference (not displayed); Overall result: decrease of the cross sections ⇒ ωLO ≥ ωNLO ; increase of the mass and the virtuality: flatter cross section, decrease of the cross sections; The LO and NLO results are distinguishable. Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 25 / 27 Summary 1 Introduction 2 LO & NLO & NNLO BFKL 3 Formalism 4 Results 5 Conclusions Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 26 / 27 Conclusions Probe QCD dynamics in a new & unexplored kinematic regime Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 27 / 27 Conclusions Probe QCD dynamics in a new & unexplored kinematic regime γγ processes have a important rôle in background contributions in other processes. Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 27 / 27 Conclusions Probe QCD dynamics in a new & unexplored kinematic regime γγ processes have a important rôle in background contributions in other processes. γγ processes can constrain the QCD dynamics in more clear process → heavy ion collisions (Eur.Phys.J.C46:219-224,2006); e + e − γγ (Phys.Rev.D73:077502,2006); σtot (hep-ph/0611171. To app. in J. Phys. G). Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 27 / 27 Conclusions Probe QCD dynamics in a new & unexplored kinematic regime γγ processes have a important rôle in background contributions in other processes. γγ processes can constrain the QCD dynamics in more clear process → heavy ion collisions (Eur.Phys.J.C46:219-224,2006); e + e − γγ (Phys.Rev.D73:077502,2006); σtot (hep-ph/0611171. To app. in J. Phys. G). Future photon colliders can be experimentally check/confront this predictions. Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 27 / 27 Conclusions Probe QCD dynamics in a new & unexplored kinematic regime γγ processes have a important rôle in background contributions in other processes. γγ processes can constrain the QCD dynamics in more clear process → heavy ion collisions (Eur.Phys.J.C46:219-224,2006); e + e − γγ (Phys.Rev.D73:077502,2006); σtot (hep-ph/0611171. To app. in J. Phys. G). Future photon colliders can be experimentally check/confront this predictions. Forthcoming studies: application on peripheral heavy ion collisions or other photon processes; use of other summations schemes for NLO BFKL; NLO meson form factors. Werner K. Sauter UERGS/UFRGS () High order effects in γγ → VV 6 de setembro de 2007 27 / 27
Similar documents
Lecture - laboratory of theoretical physics
– Frequency and polarization → Josephson origin – Frequency ∝ 1/width, from 0.4 to 0.85 THz, power up to 50 µW
More information