Lecture - laboratory of theoretical physics
Transcription
Lecture - laboratory of theoretical physics
ГЕНЕРАЦИЯ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ ВНУТРЕННИМИ ДЖОЗЕФСОНОВСКИМИ КОНТАКТАМИ В ВЫСОКОТЕМПЕРАТУРНЫХ СВЕРХПРОВОДНИКАХ Theory: A. Koshelev, Materials Science Division, Argonne National Laboratory, USA S. Lin and L. Bulaevskii, Los Alamos National Laboratory, USA Experiment: U. Welp, T. Benseman, C. Kurter¶, K. Gray, W. Kwok Materials Science Division, Argonne National Laboratory, USA L. Ozyuzer Department of Physics, Izmir Institute of Technology, Turkey H. Yamaguchi, T. Yamamoto§, H. Minami, K. Kadowaki Institute for Materials Science, University of Tsukuba, Japan _____________________________________ ¶Current: University of Illinois at Urbana-Champaign, USA §Current: Beam Science Directorate, Japan Atomic Energy Agency Another R. Kleiner, Universität Tübingen, Germany experimental H. Wang, National Institute for Materials Science, Tsukuba , Japan + coworkers group: Международная зимняя школа физиков-теоретиков «Коуровка - XXXV» «Гранатовая бухта», Верхняя Сысерть, 23 февраля — 1 марта 2014 года Outline • History – Josephson effects and generation of em waves – Josephson junctions arrays, synchronization – Intrinsic JJ stacks in layered superconductors (Bi2Sr2CaCu2O8+δ) • Terahertz radiation from high-temperature superconductors – Review of experiments • Synchronization by internal resonance mode – – – – Mechanisms of coupling & structure of coherent state Radiated power, mode damping, features in IV Synchronization in inhomogeneous junction stacks Mechanism of line width • Mesa arrays Josephson effects in superconducting tunneling junctions B. D. Josephson, Phys. Lett. 1, 251 (1962) I φ2 A φ1 2e 2 • phase difference θ = φ2 − φ1 − Adl ∫ 1 hc • dc Josephson effect I ∝ sin θ • ac Josephson effect V∝ dθ/dt • alternating tunnel current I ∝ sin(2π f t) f = 2eV/h f/V = 0.483 THz/mV Nobel prize 1973 (with Giaever and Esaki) V Phase dynamics in a single junction Resistively Shunted Junction Model Sine-Gordon equation 2 jext 1 ∂ 2θ ν ∂θ ∂ θ 2 + − λJ 2 + sinθ = 2 2 ω p ∂t jJ ω p ∂t ∂x Current jJ Parameters: Finite T λJ Josephson length Voltage ωp plasma frequency cs = λJωp Swihart velocity ν damping parameter β = 1/ν2 McCumber parameter underdamped (ν 1) vs overdamped (ν 1) Vg First observations of radiation out of Josephson junctions Also: D. N. Langenberg et al., PRL 15, 294 (1965) Radiation power is very small: < 10-12 W Dynamic Josephson effects: Irradiate Jos. junction → steps at Vm = mhfext/2e voltage Shapiro steps current Dynamic Josephson effects: Fiske resonances = cavity modes excited by oscillating Josephson current Coon and Fiske, Phys. Rev., 138, A744 (1965) Kulik, Pis'ma ZhETF, 2, 134 (1965) ωn=csπn/l H0 l n=1 n=2 n=3 Coupling can be tuned by magnetic field D. N. Langenberg et al., PRL 15, 294 (1965) Field evolution of IVs l=4λJ, ν=0.1 Josephson junction arrays T. D. Clark, Phys. Lett. A 27, 585 (1968) … One-dimensional array Reviews: A. K. Jain et al., Phys. Rep. 109, 309 (1984) M. Darula et al., Sup. Sci. Tech. 12, R1 (1999) Two-dimensional array Achievement: S. Han et al., APL 64, 1425 (1994): 500 Nb/AlOx/Nb junctions, 47 µW at 394 GHz Synchronized oscillations: P ∝ N2 Synchronization adjustment of rhythms of oscillating objects due to their weak interaction Christiaan Huygens, 1665 Large Number of oscillators: Synchronization transition Kuramoto, 1975 Synchronization problem Linear array of point junctions Wiesenfeld, Colet, Strogatz, Phys. Rev. Lett., 76, 404 (1996) Kuramoto model (1975) Self-consistent analysis: Synchronization order parameter E.g., for α = 0 and g( ω j ) = γ /π ( ω j − ω )2 + γ 2 Synchronization transition at Kc = 2γ 0≤σ≤1 σ = 1 − 2γ / K for K > Kc Synchronization via coupling to common resonance P. Barbara et al., PRL 82, 1963 (1999) Nb/Al/AlOx/Nb-junctions, 150 GHz 3×36 Coherent emission from large arrays of discrete Josephson junctions 1D array of Nb-Al2O3-Al-Al2O3-Nb SINIS junctions Frequency is limited by the superconducting gap: ~ 0.7 THz for Nb Layered High-Tc superconductors Bi2Sr2CaCu2O8+δ (BSCCO) Tc up to 90 K H. Maeda et al. 1988 anisotropy 400-1000 s =1.56 nm 640 junctions/µm ∆ = 30-60 meV f < 15 THz Terahertz em waves Potential applications • new spectroscopy • medical imaging • security screening • quality control ~0.3THz ~20THz Tonouchi, “Cutting-edge THz technology”, Nature Photonics 1, 97 (2007) No commercial efficient compact continuous coherent THz sources QCL: Quantum Cascade Lasers DFG: Difference-Frequency Generation IMPATT: impact ionization avalanche transit-time diode MMIC: microwave monolithic integrated circuit TUNNET: tunnel injection transit-time diode RTD: resonant tunnel diode Electronic devices Optical devices Intrinsic Josephson effect BSCCO R. Kleiner al.,etPRL, 1992 S. M. et Kim al., 2005 ~2000 hysteretic junctions s • Multiple branches 1.8 µm×10µm×120 junctions Kleiner et al., 1992 … • Fiske resonances Irie et al., 1998; … Kim et al., 2005 H. B. Wang et al., 2001 • Shapiro steps Wang et al., 2000, 2001; Latyshev et al., 2001 … • Detection of Josephson radiation Hechtfischer et al., 1997 (6-120GHz); Batov et al., 2006 (0.5THz)… •… Challenge: Synchronize oscillations in all junctions Concept: Using internal resonance as a synchronizator Batov et al., 2006 Hp= 0.765 T Phase dynamics in stacks Maxwell equations + material relations for superconductor Reduced equations for phases ϕn and fields hn ∂ 2ϕn jz = σcEz + jJ sin ϕn jx = σabE x + Ez ≈ cΦ 0 pn 2 2 8π λab Φ0 ∂ϕn Φ ; Ex ≈ 0 ∂t 2 (l 2 Parameters: λab, λc London penetration depths γ = λc/λab anisotropy εc λ c ∂ϕn ∂h + sin ϕn − l2 n = 0 ∂t ∂x ) ⎞ ∂ϕn ∂ ⎛ ∂ϕn − 1 hn + + νab ⎜ − hn ⎟ = 0 ∂x ∂t ⎝ ∂ x ⎠ ∂pn 2πc ∂t Sakai et. al., 1993; Bulaevskii et. al., 1994 2πcs ∂t ωp = c ∇n2 + νc plasma frequency σab, σc quasiparticle conductivities s interlayer spacing λJ= γs Josephson length Reduced parameters: 2πγs2B h= Φ0 4πσc νc = εc ωp νab = t → ωp t ( 4πσab εc γ 2ωp x→ x λJ 0.002 ) ( 0.1) l= λ ab s S. M. Kim et al., 2005 Plasma-waves spectrum and Fiske modes ω2p (k, q) = ω2p0 + c02 k 2 c0 = c/ εc 1 + 2 ( λ ab / s ) (1 − cos q ) 2 ωp0 Josephson plasma frequency, λab London penetration depth q = 0: in-phase mode, c0 q = π: anti-phase mode, cπ= (s/2λab)c0 Finite-size stack → cavity (Fiske) modes km=mπ/L In-phase mode, ωm,0=c0km ω1,0/2π = 1THz at L=43 µm • Can synchronize oscillations in many junctions • Generates outgoing radiation ~1/300 Anti-phase, ωm,π=cπkm • Excited by Josephson vortex lattice (Fiske steps in magnetic field) Homogeneous oscillations at H=0 → no direct coupling Coherent THz radiation from Bi2Sr2CaCu2O8 mesas Ozyuzer, et al., Science 318, 1291 (2007) Recent Review: Welp, Kadowaki and Kleiner, NATURE PHOTONICS 7, 702(2013) Ar-ion milling, photolithography; w = 40-100 µm, ~1µm high, 300 µm long Transport and radiation (bolometer) Radiation Power [a.u.] L. Ozyuzer, Mesa KK03: 100×300×1 µm 3 T=40K 1 30 4 I [mA] I [mA] 5 2 Heating: larger T ↓ smaller R ↓ smaller V 20 10 3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 U [V] 0 0.0 0.5 1.0 U [V] Radiation frequency fcut(THz) Parallel-plate filters: TE: cut-off for waves TM: no cut-off with f < fcut= c/2d E E Frequency: 1. Satisfies Josephson relation 2. Increases with decreasing width, roughly ~1/w: cavity resonance f = c0/2nw ; f = 0.52 THz for w = 80 µm, n ≈ 3.5 Emitted power: Initial: ~0.5 µW Now: up to 50 µW linewidth ~ 9 GHz, instrument resolution is 7.5 GHz Coherent emission Variable number of emitters n (= resistive junctions) Radiation frequency does not depend on n Coherent: P ~ n2 Direct observation of standing waves in mesas Emissions in low-bias and high-bias regimes R Hot-spot instability 61K Benseman et al., J. of Appl. Phys. 113, 133902 (2013) Measurements of line shape Unexpected T dependence Detector: Nb/AlN/NbN integrated receiver (Koshelets group) Scientific issues • • • • • Coupling to the resonance mode Structure and stability of coherent states Mechanisms of damping of cavity mode Limits of radiation power Mechanisms of line width Excitation of in-phase cavity mode Homogeneous state + External modulation, AEK and L. Bulaevskii, PR B 77, 014530 (2008) Lateral modulation of the Josephson critical current, jJ(x)=jJ g(x) Pleft Equation for c-axis homogeneous phase (reduced form) ∂ 2θ ∂θ ∂ 2θ +ν c + g ( x)sin θ − 2 = 0 2 ∂t ∂t ∂x 1/ωp unit of time z 0 Resistive state near resonance ω1 = c0π/L θ θ(x,t) = ω t + Re[ψ exp(-iω t)] cos(π x/L) Mode amplitude: Damping parameters: νc = 4πσ c ε cω p y λc unit of length + radiative boundary conditions ψ≈ Pright ig1 ω 2 − ω12 + iνω ν = νc+ νr + νb … x Coupling parameter 2 L g1 = ∫ cos(π x/L) g ( x)dx L 0 quasiparticle radiation from edges radiation to crystal ~ 10-2 -10-3 Cavity quality factor L Qc = ω νω p Alternating kink state S.-Z. Lin and X. Hu, PRL 100, 247006 (2008); AEK, Phys. Rev. B 78, 174509 (2008) ϕn ( x, t ) ≈ ω t + (−1)n ϕkink ( x)+Re [ψ exp(− iω t ) ] cos(π x/L) + ... Static soliton (kink) at x = L/2 ϕkink (0) ≈ 0; ϕkink (L ) ≈ π ⎛ Lλ ω − ω kink width ls ≈ ⎜ ⎜ 16 ω 2 p ⎝ 2 J 2 1 2 1/ 3 ⎞ ⎟⎟ ⎠ Lx Effective modulation g ( x ) = cos [ ϕkink ( x )] ≈ −sign( x − L / 2) ψ= ig1 ω 2 − ω 12 + iνω 2 L g1 = ∫ cos(π x/L) cos(ϕkink )dx ≈ 4 / π L 0 Maximum possible coupling • exists without external modulations • provides efficient pumping of energy into the cavity mode Short-scale instability A.E.K., Phys. Rev. B 82, 174512 2010 Local plasma frequency ω p ( x ) ∝ C ( x ) ≡ cos (ωt + θ ( x, t ) ) t ≈ g ( x )C ( x ) g1(ω12 − ω 2 ) cos(π x / L ) 2 (ω12 − ω 2 )2 + ν 2ω 2 For decreasing positive g(x) g ( x )C ( x ) < 0 at x > L/2 → source of instability !! Homogeneous state is only stable if g(x) = 0 at x > L/2 For alternating-kink state g(x) ≈ -sgn(x - L/2) and (ω12 − ω 2 ) | cos(π x / L ) | → stable ≥ g ( x )C ( x ) = 2 0 2 (ω1 − ω 2 )2 + ν 2ω 2 Radiative boundary conditions for oscillating phase A.E.K. and Bulaevskii, Phys. Rev. B 77, 014530 (2008) Phase in resistive state ϕn(x,t) ≈ ωt + Re[θn,ω(x) exp(-iωt)] Boundary conditions for homogeneous oscillating phase θω ( x) = θω ,n ( x) Long symmetric mesa ∂θω ( L) % (0) = iζθω ( L) + iζθ ω ∂x ∂θω (0) % ( L) = −iζθω (0) − iζθ ω ∂x For isolated mesa on metallic plate with thin metallic contact on the top ⎡ 2i C ⎤ − 1 ln ⎢ ⎥ ⎣ π kω Lx ⎦ 2 k Lz (1) ω H 0 ( kω L) ζ% ≈ − 2 k L ζ ≈ ω z 2 2 kω=ω/c Lz n Ly L Radiation dampings 1. Radiation into free space (sensitive to mode and geometry) νr= 4ω p λ 2 c ωL 2ω Lz Re ⎡⎣ζ − ζ% ⎤⎦ = [1 + J 0 (kω L)] ∝ εω L c p Lz λω 2. Radiation into crystal Journ. of Phys., 150, 052124 (2009) Power flow to the crystal: Pbottom = νb = νr νb CabΦ 02 λabω 2 64π s L λab λc Lx Lz L2z ε c λabLx ψ 2 Stand alone mesa Kashiwagi et al. JJAP, 2012 An et al. APL, 2013 0.5 0.06 Dominating mechanism of damping! Stand-alone mesa 87×383 × 1.3 µm3 Transport and radiation near resonance Similar to: M. Russo and R. Vaglio, Phys. Rev. B 17, 2171 (1978) δj δjrad j Excess current (units of jJ) g12νω 1 δj= 4 [ω 2 − ω12 ]2 + ν 2ω 2 (single junction, no radiation) Energy balance IV = V 2 /R + E% 2 L2z /R + P δI V V Vr Φ 02ω 3 N 2 νr 2 Radiated power Pedge = ALy | ψ | A~1 Pedge = δ IV 3 2 32π c ν In resonance, for νr á ν Pedge∝ N2 π Ly L2 g12 jJ2 for ν ≈ νr Does not depend on N ! Pmax ≈ 2ω g1=0.3, jJ=500 A/cm2, Ly=300µm P = 1.5 mW ω/2π=1THz, L=43 µm achieved ~ 50 µW Synchronization in inhomogeneous mesas Emission Power Number of synchronized junctions Power of the mode Mesas with inhomogeneous cross section LN Feature in IV Natural frequencies: α = (L1 – LN)/LN/2 L1 Full synchronization Partial synchronization No synchronization 0.14 ωn ∝ Vn ∝ jn ∝ 1/Ln 0.24 α = 0.1 α = 0.0625 α = 0.08 0.3 0.25 0.2 0.2 0.13 0.16 0.15 0.12 12 0.12 13 N=50 νc=0.01,νab=0.2 l=50, L1=12.5 V 14 12 15 14 16 18 V 20 22 12 24 13.6 13.4 16 13 15 12.8 13.2 V 13.5 14 j=0.15 14 13 12.8 10 20 n 30 40 50 0 10 20 n 30 j=0.124 12.4 j=0.12 12 0 12.6 j=0.15 13 12.6 12.4 13 13.2 17 13.8 12.5 40 50 0 10 20 n 30 40 50 Visualization of electric field 0.2 α = 0.08 0.19 0.18 0.17 0.16 0.15 0.14 0.13 0.12 12 14 16 18 V 20 17 16 15 14 13 12 0 10 20 n 30 40 50 P I Line width of Josephson radiation I0 V V0 f0=2eV0/h J ∝ sin(ω0t) f Current noise P I Line width of Josephson radiation I0 ∆f ∝ Dθ V V0 f J ∝ sin[ω0t + θ(t)] θ2(t)=Dθt Single junction: Line width due to quasiparticle-current fluctuations, kBT > ℏω Larkin and Ovchinnikov, Zh. Eksp. Teor. Fiz., 1967 Dahm et al., Phys. Rev. Lett. , 1969 Dθ ∝ j 2 f ν2 j 2 f kT ∝ B R ν ∝ 1/ Rd 2 R = V/I Rd= dV/dI 1 ⎛ 2e ⎞ Rd2 ∆f = ⎜ ⎟ kBT π⎝ h ⎠ R Line shrinking near cavity resonance Lin and AEK, Phys. Rev. B, 2013 0.20 |E(ω,0)| Normalized magnitude IB=0.14 2 1 ⎛ 2e ⎞ Rd2 ∆f = ⎜ ⎟ kBT π⎝ h ⎠ R 0.25 0.15 0.10 0.05 0.00 1.111 Frequency ω/2π 1.112 0.25 ν = 0.02, L = 0.4 2νT = 7.1 10-7 Normalized magnitude IB=0.16 IB 0.20 0.20 0.15 0.10 0.05 0.00 0.15 1.2195 1.2200 1.2205 Frequency ω/2π 1.2210 0.10 6.0 6.5 7.0 V 7.5 8.0 Normalized magnitude IB=0.18 0.4 0.2 0.0 1.2355 38 1.2360 1.2365 Frequency ω/2π 1.2370 Line width of synchronized stack Dominating quasiparticle current dissipation Effective noise current 1 J% = N N ∑ %j n =1 n 2 J% = %j n N 2 → 1/N narrowing 2 T 4 R ⎛e⎞ Line width ∆f 0 = → ⎜ ⎟ k BT 2 π NLx Lyν c l π N ⎝h⎠ R= sρ c Lx Ly Estimate ρc = 50 ohm cm, Lx=80 µm, Ly=200 µm, N=600, T=60K → ∆f0 =0.2 MHz Much smaller than best experimental observation (∆f0 ~ 20 MHz) Mesa arrays Synchronized mesa arrays → Route to enhance power Synchronization via base crystal Radiation field: Lin and AEK Physica C 491 24 (2013) Two resonances Uniform cavity mode in mesa → uniform standing wave in crystal 2L a= 1− ω2p (c π / L )2 Strongest interaction between the mesas Ndecay(ω)=1/Im[qk(ω)] ω2 = c 2 ( π / L )2 = ω2p + c 2 (2π / a )2 k=2π/a propagating waves decaying waves ω2 = 1 + l 2 k 2 ω Hy L a Mesa arrays, experiment Tim Benseman et al., Appl. Phys. Lett. 103, 022602 (2013): 3 mesas synchronized Total power up to 610 µW Summary • Artificial and intrinsic Jos. junction arrays • Resonant emission from BSCCO mesas – Frequency and polarization → Josephson origin – Frequency ∝ 1/width, from 0.4 to 0.85 THz, power up to 50 µW – Line width ~ 20 MHz • Scientific issues and properties – radiation losses, radiation power in ideal case – external and self-generated modulation of Josephson current • alternating kink state – synchronization in inhomogeneous mesas • partial synchronization – intrinsic line width • Mesa arrays Potential for powerful, efficient and compact THz source!
Similar documents
High order effects in γγ → VV
The NLO BFKL eigenvalue are given using BLM energy scale setting within momentum space subtraction (MOM) renormalization scheme [Brodsky et al.]: MOM (Q 2 ,ν)=N χ ωBLM c LO (ν)
More informationSession Title: [W1A] Sensors and Packaging Date: November 6
[Invited] Application of Microwaves in Medical Sensing and Treatment Yoshio Nikawa, Kokushikan University, Japan [W1E-3]
More information