Detection of climate trends from local time series using a Monte
Transcription
Detection of climate trends from local time series using a Monte
Calculation of climate trends functions from local time series Dieter F. Ihrig, FH Suedwestfalen, Iserlohn, Germany • Introduction and motivation • Calculate a trend function by filtering of time series • Results for temperature time series • Robustness and precision of the method • Results for other data • Conclusion Regensburg16 Prof. Dr. Dieter F. Ihrig 1 Calculate a trend function by filtering of time series 10 1 45 9,5 40 9 9 8,5 8,5 8 8 35 0,5 25 7,5 20 7 7 6,5 6,5 15 6 5,5 6 Time Series Average (330±20) y Average (345±20) y Average (369±20) y 5 250 290 310 330 350 370 390 5 250 0 270 290 310 330 350 370 390 Year Year Regensburg16 5 5,5 0 270 10 Time Series Number of Averaged Points Prof. Dr. Dieter F. Ihrig 2 W eighting 7,5 Tem perature 30 W e igh tin g T e m p e ra tu re 9,5 10 High Pass Calculate a trend function by filtering of time series Transformation Spectra Filtering Low Pass Time Series Apodization Trend Line Unprocessed Apodization Transformation Apodization Transformation Variation of Filter Parameter Residua Monte-Carlo-Optimization Regensburg16 Prof. Dr. Dieter F. Ihrig 3 Global Mean 1880 – 2015 1 1,00 0,80 0,60 0,40 0,20 0,00 -0,201880 1900 1920 1940 1960 1980 2000 2020 -0,40 -0,60 -0,80 January February March April May June July August September October November 0,8 Temperature Anomalies in K Temperature Anomalies in K 1,20 0,6 0,4 0 -0,2 -0,4 -0,6 1880 Temperature Anomalies in K 0,60 0,40 0,20 0,00 1880 1900 1920 1940 1960 1980 2000 2020 -0,20 -0,40 -0,60 Year Regensburg16 1900 1920 1940 1960 Years 1980 2000 2020 Temperature Increase Global Mean Trend 0,80 1K 0,2 Year 1,00 High Frequency Trend Time Series January February March April May June July August September October November December 2015 minus 1880 1,2 1 0,8 0,6 0,4 0,2 0 February April June August October December January March May July September November Prof. Dr. Dieter F. Ihrig 4 Zonal Mean 1880 – 2015 Temperature Increase Temperature Anomalies in K Time Series 2,50 2,00 1,50 1,00 0,50 0,00 -0,501880 1900 1920 1940 1960 1980 2000 2020 -1,00 -1,50 -2,00 2015 minus 1880 Global Mean 24N-90N 24S-24N 90S-24S 64N-90N 44N-64N 24N-44N EQU-24N 24S-EQU 44S-24S 64S-44S 3,5 3 2,5 2 1,5 1 0,5 0 64S-44S 24S-EQU 24N-44N 64N-90N 24S-24N Global 90S-64S 44S-24S EQU-24N 44N-64N 90S-24S 24N-90N Zone Year Temperature Increase Zonal Mean Trend Temperature Anomalies in K 2,50 2,00 1,50 1,00 0,50 0,00 1880 1900 1920 1940 1960 1980 2000 2020 -0,50 -1,00 -1,50 Year Regensburg16 Global Mean 24N-90N 24S-24N 90S-24S 64N-90N 44N-64N 24N-44N EQU-24N 24S-EQU 44S-24S 64S-44S 2015 minus 1880 3,5 3 2,5 2 1,5 1 0,5 -90 -70 -50 -30 0 -10 10 30 50 70 90 Latitude Prof. Dr. Dieter F. Ihrig 5 Vardo 70,4N 31,1E 1880 – 2015 4 Time Series Temperature in °C 10 5 0 1880 1900 1920 1940 1960 1980 2000 2020 -5 -10 -15 January February March April May June July August September October November December Annual Mean 3 Temperature in °C 15 1 0 1880 -1 Temperature in °C 6 4 2 0 -21880 1900 1920 1940 1960 1980 2000 2020 -4 -6 -8 Year Regensburg16 1900 1920 1940 1960 1980 2000 2020 -2 Years Temperature Increase 2015 minus 1880 Monthly Trends 8 2,6 K 2 Year 12 10 High Frequency Trend Time Series January February March April May June July August September October November December 6 5 4 3 2 1 0 February April June August October December January March May July September November Prof. Dr. Dieter F. Ihrig 6 Stations Temperature Increase 1880 – 2015 Los Angeles California 33,7N 118,3W Phoenix Sky H 33,4N 112,0W 6 5 5 4 2,2 K 4 3 3 1,43 K 2 2 1 1 0 0 February April June August October December January March May July September November February April June August October December January March May July September November -1 Shreveport Re 32,5N 93,8W St Louis Lamb 38,8N 90,4W 2 4 3 1 2 0 February April June August October December January March May July September November -1 -2 -3 -4 Regensburg16 1 0 February April June August October December -1 January March May July September November -0,04 K -2 -3 0,82 K -4 Prof. Dr. Dieter F. Ihrig 7 Stations Temperature Increase 1880 – 2015 3,5 Zonal Mean Polynomisch (Zonal Mean) Stations Stations Zonal Mean Mean Zonal Ocean Continental 3 2,5 2 1,5 1 0,5 0 -90 -70 -50 -30 -10 10 30 50 70 90 -0,5 Latitude Regensburg16 Prof. Dr. Dieter F. Ihrig 8 Robustness and precision of the method Difference between given and calculated trend Simulated Time Series 10 0,06 9,5 0,04 9 0,02 8 0 diffe r e nce in K temperature in oC 8,5 7,5 7 0 50 100 6 200 250 300 350 0,025 -0,02 Spalte Spalte Spalte Spalte Spalte -0,04 Spalte H Spalte I Spalte E 6,5 150 0,02 F K P U Z 0,015 0,01 0,005 0 -0,06 -0,005 0 50 100 150 200 250 300 350 -0,01 5,5 -0,015 -0,08 -0,02 5 -0,025 0 50 100 150 200 250 300 350 -0,1 year ye ar Difference betw een given and calculated trend functions Simulated Time Series (exponential increase) 10 0,18 9,5 0,16 0,08 0,06 0,04 9 0,02 0,14 0 -0,02 0 0,12 8 50 100 150 200 250 300 350 -0,04 -0,06 difference in K temperature in oC 8,5 7,5 7 6,5 -0,08 run 1 run 2 0,08 run 3 0,06 Spalte H Spalte I Spalte E 6 0,1 run 4 0,04 run 5 0,02 5,5 5 0 50 100 150 200 250 300 350 0 0 year Regensburg16 50 100 150 200 250 300 350 year Prof. Dr. Dieter F. Ihrig 9 Robustness and precision of the method Comparison: Trend of Annual Mean vs. Mean of Monthly Trends Annual Trend vs. Mean of Monthly Trends Te m perature in °C Nantes 47,2N 1,6W 13,0 12,8 12,6 12,4 12,2 12,0 11,8 11,6 11,4 11,2 11,0 1880 Standard Deviation of 25 Stations: 0,27 K Confidence Limit: 0,077 K 3,5 1900 1920 1940 1960 1980 2000 2020 3 Ye ar Annual Mean Mean Trend 2,5 Annual Trend vs. Mean of Monthly Trends 2 Godthab Nuuk 64,2N 51,8W 0,0 -0,5 1,5 Te m perature in °C -1,0 -1,5 1 -2,0 -2,5 0,5 -3,0 -3,5 -4,0 1880 0 1900 1920 1940 1960 1980 2000 2020 -90 -70 -50 -30 -10 10 30 50 70 90 Year Annual Mean -0,5 Mean Trend Latitude Regensburg16 Prof. Dr. Dieter F. Ihrig 10 Precipitation Regensburg16 Prof. Dr. Dieter F. Ihrig 11 Conclusion and Outlook • The Process calculates trend functions as new time series (Standard Deviation: 0,27 K; Confidence Limit: 0,077 K) • 400 time series were processed • Recently the most successful solution of the border problem is the use of regression lines. (In future: higher order or irrational functions? ) • But it’s necessary to optimize the field length processed by calculation of regression lines using a Monte-Carlo-process. • The algorithm cannot decide whether the calculated trend is man-made! • There is a significant tendency of higher temperature (Up to 3.2 K at higher latitudes) I thank you for your attention! Regensburg16 Prof. Dr. Dieter F. Ihrig 12
Similar documents
name description manufacturer year genre
Bubble Memories: The Story Of Bubble Bobble III (Ver 2.4O 1996/02/15) Bubble Trouble (Japan, Rev C) Bubbles Buccaneers (set 1) Buck Rogers: Planet of Zoom Bucky O'Hare (ver EAB) Buggy Boy/Speed Bug...
More information