Lecture 1
Transcription
Lecture 1
Homoclinic Bifurcations to Equilibria I. Theory and applications Alan Champneys University of Bristol Department of Engineering Mathematics MRI Master Class Utrecht – p. 1 Outline: Lecture 1 1. Introduction: solitary waves & global bifurcations 2. Tame and chaotic homoclinic bifurcations to equilibria Shil’nikov’s theorems application: excitable systems 3. Reversible and Hamiltonian systems hyperbolic cases ⇒ one codimension less saddle-centre homoclinics 4. Simple strategies for continuation of homoclinic orbits in AUTO-07P. MRI Master Class Utrecht – p. 2 1. solitary waves. 1834 J Scott-Russell observed barge on aqueduct . . . a boat drawn along a narrow channel . . . suddenly stopped . . . the mass of water in the channel . . . accumulated around the prow [and] rolled forward with great velocity, assuming the form of a large solitary elevation, a rounded, smooth heap of water, which continued its course along the channel [at 8 or 9 miles an hour for 1.5 miles] preserving its original feature some thirty feet long and a foot and a half high . . . Explanation: 1870s Bousinesq & Lord Rayleigh, theory of wall of water = ‘solitary waves’ MRI Master Class Utrecht – p. 3 The ‘soliton’ 1895 Korteweg & de Vries derived KdV equation ∂u ∂u ∂3u + 6u = solution speed c 3 ∂t ∂x ∂x 2 √ u(x, t) = (−c/2)sech ( c/2)(x − ct) sech 2 (x) x 1960s Zabusky & Kruskal showed its ‘completely’ stable ⇒ New name for particle-like solitary waves; solitons 1970s because KdV equation is integrable (Lax, Gardner, Zakarov . . . & the ‘Clarkson mafia’) MRI Master Class Utrecht – p. 4 The ‘soliton’ 1895 Korteweg & de Vries derived KdV equation ∂u ∂u ∂3u + 6u = solution speed c 3 ∂t ∂x ∂x 2 √ u(x, t) = (−c/2)sech ( c/2)(x − ct) sech 2 (x) x 1960s Zabusky & Kruskal showed its ‘completely’ stable ⇒ New name for particle-like solitary waves; solitons 1970s because KdV equation is integrable (Lax, Gardner, Zakarov . . . & the ‘Clarkson mafia’) Nb. ‘Solitary killer’ waves e.g. Tsunami MRI Master Class Utrecht – p. 4 Optical solitons Optical fibres; means of transatlantic communication. Pulses travel at speed of light c MRI Master Class Utrecht – p. 5 Optical solitons Optical fibres; means of transatlantic communication. Pulses travel at speed of light c Problem: denigration due to dispersion One idea (Hasegawa & Tappert 1973) use natural Kerr nonlinearity to self-focus the light MRI Master Class Utrecht – p. 5 ⇒ Nonlinear Schrödinger (NLS) equation ∂2v ∂v i ∂t + ∂x2 + Q|v|2 v = 0 also integrable & explicit ‘envelope of waves’ soliton p v(x, t) = Vm eikt sech(Vm |Q|/2U (x − ct)) envelope of wave oscillating wave Use solitons as bits of information 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 MRI Master Class Utrecht – p. 6 . . . but KdV and NLS are leading-order approximations: ‘Most’ (probability 1) nonlinear wave equations NOT integrable can exist a ‘zoo of solitary waves’: u(x, t) = U (x − ct) ⇒ ODE for U (ξ) How big is the zoo? their dynamics? (not these lectures) MRI Master Class Utrecht – p. 7 Another motivation: global bifurcation Ed Lorenz 1963 discovered chaos in simple system ẋ = σ(y − x) ẏ = x(ρ − z) − y ż = xy − βz σ = 10, β = 8/3, ρ increasing homoclinic bifurcation triggers chaos at ρ ≈ 24 ( Sparrow 1982 ) MRI Master Class Utrecht – p. 8 Application: Chua’s electronic circuit smooth version (due to A. Khibnik 93) U̇ = α(V − (1/6)(U − U 3 )) V̇ = U − V + W Ẇ = −βV (α, β) = (0, 0): Z2 -symmetric Takens Bogdanov point at 0: σ(0) = {0, 0, −λ} ⇒ tame homoclinic bifurcation. Large enough α, β ‘double scroll’ chaotic attractor 3 2 1 z(t) 0 –1 –2 –3 –2 –1 0 y(t) 0 1 0.2 0.4 2 x(t) MRI Master Class Utrecht – p. 9 tame and chaotic homoclinic orbits 1. at (α, β) = (1.13515, 1.07379), neutral saddle; 2. at (α, β) = (1.20245, 1.14678), double real leading eigenvalue (with respect to stable eigenspace, which is non-determining); 4. at (α, β) = (1.74917, 1.76178), neutral saddle-focus; δ = 1 ⇒ transition to chaotic bifurcation 5. at (α, β) = (6.00000, 7.191375), neutrally-divergent saddle-focus δ = 1/2 ⇒ divDf (0)x < 0 ⇒ attracting (strange attractor) MRI Master Class Utrecht – p. 10 Later we will study a similar simple electronic circuit due to Friere et al 1993 ... MRI Master Class Utrecht – p. 11 2. Homoclinic orbits to equilibria Heteroclinic orbit Γ connecting equilibria x1 , x2 ∈ Rn ẋ(t) = f (x(t), α) x(t) → x1 , x2 as t → ±∞. ‘generic’ system: no symmetry or first integrals Homoclinic orbit special case x1 = x2 = x0 x0 hyperbolic ⇒ codim 1, i.e. at isolated α = α0 Γ Wu p Ws Γ Wu p Ws Z Z O q W ss O q W ss (a) (b) MRI Master Class Utrecht – p. 12 Homoclinic bifurcation as α varies Suppose ∃ Hom orbit Γ at α = α0 . Linearisation at x0 : σ(x0 ) Im determining Re leading Theorem 1 (Shil’nikov’s tame homoclinic bifurcation) Real determining eigenvalue ⇒ unique periodic orbit destroyed at infinite period as α → α0 . Theorem 2 (Shil’nikov’s chaotic homoclinic bifurcation) Complex determining eigenvalue ⇒ ∞-many high-period periodic orbits in neighbourhood of Γ and α0 . MRI Master Class Utrecht – p. 13 Exercise Proof of tame homoclinic bifurcation in 2D system using Poincaré maps. Consider ẋ = λx + nonlinear ẏ = −µy + nonlinear Make assumption that at parameter value α = 0, there is a homoclinic orbit that connects this equilibrium to itself. MRI Master Class Utrecht – p. 14 In chaotic case ∃ ∞-many N -pulse homoclinic orbits at nearby α-values. For each N Γ W W u s O e.g. 2-pulse homoclinic orbits Gaspard more recently: Turaev , Sandstede 00 see (Shil’nikov et al 1992, 1998) Theorem 3 (Homoclinic ‘centre manifold’ theorem) There exists a C 0 manifold of dimension of the leading eigenspace in the neighbourhood of Γ that captures all nearby recurrent dynamics. MRI Master Class Utrecht – p. 15 Sketch proof of Shil’nikov chaotic case saddle focus case in R3 (Glendinning & Sparrow 84) assume ∃ α0 = 0 at which hom orbit Γ to x0 = 0 WLOG σ(0) = {−µ ± iω, λ} (WLOG reverse time if nec.) Construct Poincaré map close to Γ in α and x Fixed points ⇒ periodic orbits MRI Master Class Utrecht – p. 16 construct Poincaré map Γ Wu Ws Step 1: Set up Poincaré sections Σin = {θ = 0}, Σout = {z = h} MRI Master Class Utrecht – p. 17 Σout z θ r Σin Step 2 Linearise flow near 0 to compute Πloc : Σin → Σout ż = λz θ̇ = ω ṙ = −µr + h.o.t MRI Master Class Utrecht – p. 18 Σout Πloc Σin Step 3 z(T ) = z0 eλT , r(T ) = r0 e−µT , θ(T ) = θ0 + ωt z0 1 ‘time of flight’ T = λ ln h . δ = µ/λ < 1 for chaotic case δ h ω r ,h , ln ⇒ Πloc : (r, θ, z) 7→ r h λ z0 MRI Master Class Utrecht – p. 19 Σ Πglob out Σin Step 4: Computation of Πglob : Σout → Σin Assume diffeomorphism; expand as Taylor series c d r cos θ a r r θ 7→ 0 + 0 α + 0 0 0 + h.o.t e f r sin θ b 0 h MRI Master Class Utrecht – p. 20 Πglob Πloc Σin Step 5 Poincaré map Π : Σin → Σin = Πglob ◦ Πloc ! ! ! ! r a c1 rz δ cos(k1 ln z + φ1 ) r + α+ 7→ 0 b c2 rz δ cos(k2 ln z + φ2 ) z MRI Master Class Utrecht – p. 21 dynamics of the Poincaré map search for fixed points: r-dynamics slaved to z ⇒ 1D map for z (nb. period ∼ − ln z ) (z − bα) = Φ(z) = Kz δ cos(k ln z + φ) + h.o.t MRI Master Class Utrecht – p. 22 dynamics of the Poincaré map search for fixed points: r-dynamics slaved to z ⇒ 1D map for z (nb. period ∼ − ln z ) (z − bα) = Φ(z) = Kz δ cos(k ln z + φ) + h.o.t δ > 1 (tame case) period α=0 α<0 α>0 ⇒ Φ(z) z α z − bα unique periodic orbit bifurcates MRI Master Class Utrecht – p. 22 dynamics of the Poincaré map search for fixed points: r-dynamics slaved to z ⇒ 1D map for z (nb. period ∼ − ln z ) (z − bα) = Φ(z) = Kz δ cos(k ln z + φ) + h.o.t δ < 1 (chaotic case) z period ⇒ Φ(z) z α infinitely many periodic orbits for α = 0 MRI Master Class Utrecht – p. 22 dynamics of the Poincaré map search for fixed points: r-dynamics slaved to z ⇒ 1D map for z (nb. period ∼ − ln z ) (z − bα) = Φ(z) = Kz δ cos(k ln z + φ) + h.o.t δ < 1 (chaotic case) period S.N. P.D. ⇒ z α ∞-many saddle-node & period-doubling as α → α0 MRI Master Class Utrecht – p. 22 dynamics of the Poincaré map search for fixed points: r-dynamics slaved to z ⇒ 1D map for z (nb. period ∼ − ln z ) (z − bα) = Φ(z) = Kz δ cos(k ln z + φ) + h.o.t δ < 1 (chaotic case) Φ(z) period ⇒ z z − bα α single ‘wiggly curve’ of periodic orbits. Also symbolic dynamics on ∞-many symbols MRI Master Class Utrecht – p. 22 Multi-pulses (2) αi , Infinitely many parameter values i = 1, . . . ∞, converging as α → α0 from both sides at which there exist 2-pulse homoclinic orbits. . . . and N -pulses for all N . . . MRI Master Class Utrecht – p. 23 A word about rigour Linearisation to compute Πloc cannot be rigorously justified in general. Hartman-Grobman Theorem gives only C 0 topological equivalence Three rigorous approaches: Sometimes (non-resonance) can justify linearisation C 1 linearisation theorems (e.g. Belitskii) MRI Master Class Utrecht – p. 24 A word about rigour Linearisation to compute Πloc cannot be rigorously justified in general. Hartman-Grobman Theorem gives only C 0 topological equivalence Three rigorous approaches: Sometimes (non-resonance) can justify linearisation C 1 linearisation theorems (e.g. Belitskii) Set up Πloc as BVP. Use Imp. Fun. Theorem. Shil’nikov co-ordinates ( see Shil’nikov et al 92, 98) MRI Master Class Utrecht – p. 24 A word about rigour Linearisation to compute Πloc cannot be rigorously justified in general. Hartman-Grobman Theorem gives only C 0 topological equivalence Three rigorous approaches: Sometimes (non-resonance) can justify linearisation C 1 linearisation theorems (e.g. Belitskii) Set up Πloc as BVP. Use Imp. Fun. Theorem. Shil’nikov co-ordinates ( see Shil’nikov et al 92, 98) Use normal vector to homoclinic centre manifold (adjoint) to project Lin’s method or HLS: ‘Homoclinic Lyanpunov-Schmidt’ ‘Hale, Lin, Sandstede’ (Lin 2008) MRI Master Class Utrecht – p. 24 Application: excitable systems Small input ⇒ gradual relaxation Large enough ⇒ burst + gradual relaxation MRI Master Class Utrecht – p. 25 Application: excitable systems Small input ⇒ gradual relaxation Large enough ⇒ burst + gradual relaxation A key feature of many electrophysical systems heart tissue neurons cell signalling (calcium dynamics) MRI Master Class Utrecht – p. 25 Application: excitable systems Small input ⇒ gradual relaxation Large enough ⇒ burst + gradual relaxation A key feature of many electrophysical systems heart tissue neurons cell signalling (calcium dynamics) the ‘pendulum equation’ of excitable systems: Fitz-Hugh Nagumo (FHN) system (1961-2) vt = Dvxx + fα (v) − w + c wt = ε(v − γw) fα (v) = v(v − 1)(α − v), e.g. α = 0.1, γ = 1.0, ε = 0.001. MRI Master Class Utrecht – p. 25 example FitzHugh Nagumo equations A. spatially homogeneous (D = 0) dynamics vt = fα (v) − w + p wt = ε(v − γw) isoclines: v = γw, fα (v) + p = w. ⇒ excitable 0.15 w 0.1 0.05 –0.2 0 0.2 0.4 0.6 0.8 v MRI Master Class Utrecht – p. 26 B. travelling structures (for D > 0) z = x + st (· = d/dz ) v̈ − sv̇ = −fα (v) + w − p ẇ = (ε/s)(v − γw) node → saddle: 2 kinds of travelling wave: periodic wave trains ⇐ Hopf bifurcation pulse solution ⇐ homoclinic orbit to saddle s v1 1.4 0.8 0.6 0.4 1.2 0.2 0 1 -0.2 0.8 (b) -0.4 0 Hom 200 400 600 800 T 1000 200 400 600 800 T 1000 0.07 v 0.6 Hopf 0.4 0.068 () (a) 0 0.1 0.2 0.3 0.4 0.5 p 0.066 0.6 0 MRI Master Class Utrecht – p. 27 This C U structure common for excitable models But how does the Hom curve end as it approaches Hopf? More details: (p vs. wavespeed s) 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0 0.05 0.1 0.15 0.2 (see Champneys, Kirk et al 07) MRI Master Class Utrecht – p. 28 The hom curve doubles back on itself(!) and gains an extra large loop in so doing (p vs. ‘norm’) 0.11 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 -0.01 0 0.01 0.02 0.11 0.03 0.04 0.05 0.06 0.07 0.08 0.11 0.1 0.1 0.09 0.09 0.08 0.08 0.07 0.07 0.06 0.4 0.06 0.4 0.3 0.05 -0.06 0.2 -0.04 0.1 -0.02 0 0 0.02 -0.1 0.3 0.05 -0.06 0.2 -0.04 0.1 -0.02 0 0 0.04 -0.2 two homoclinics for p ≈ 0.06, s ≈ 0.894386. 0.02 -0.1 0.04 -0.2 MRI Master Class Utrecht – p. 29 example 2: 8-variable Ca 2+ model Sneyd, Yule et al Calcium waves in pancreatic acinar cell ∂c ∂t dce dt dG dt ∂2c D ∂x2 = + k1 (G)(c − ce ) + J1 (c, G) = −k2 (G)(ce − c) + J2 (c, G) = k3 (p, c)G c(x, t) concentration of Ca2+ . ce (t) concentration in boundary. G(t) ∈ R6 receptor variables. Travelling waves ξ = x − st ⇒ 9D ODE system Bif. pars: wavespeed s, IP3 concentration p MRI Master Class Utrecht – p. 30 Similar C -U bifn diagram. SL s 14 Hom 12 Hopf - 10 8 6 4 0 1 2 3 4 p 5 at upper end: Hom curve passes straight through Hopf!? MRI Master Class Utrecht – p. 31 And at lower end, the homoclinic curve doubles back on itself ∞ many times. 76.5 (a) L2 -norm 76 75.5 75 74.5 74 1.4 (b) e 1.6 1.8 2 2.2 () e 74.8 74.7 2.4 2.6 p 2.8 75 74 74.6 74.5 73 74.4 72 74.3 74.2 71 74.1 70 74 73.9 0.03 0.04 0.05 0.06 0.07 0.08 0.09 69 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 MRI Master Class Utrecht – p. 32 4. Reversible and Hamiltonian systems Reversible systems ẋ = f (x), x ∈ R2n , Rf (x) = −f (Rx), R2 = Id, S = fix(R) ∼ = Rn . ⇒ symmetric homoclinic orbits are codim 0 (Devaney) γ(t) → x0 as t → ±∞, γ(0) ∈ S, where f (x0 ) = 0, x0 ∈ S. Hamiltonian systems ẋ = f (x) = J∇H(x), x ∈ R2n , ⇒ H(x(t)) = const. ⇒ W u & W s live in H −1 (x0 ) ⇒ codim 0 In either case, σ(x0 ) symmetric w.r.t. Im-axis Everything happens with one codimension less MRI Master Class Utrecht – p. 33 a fourth-order example Buffoni, C. & Toland 96 uiv + P u′′ + u − u2 = 0 norm Belyakov− Devaney P Ham. Hopf +2 −2 saddle bi−focus centre MRI Master Class Utrecht – p. 34 Application 1: wobbly bridges Goldern gate bridge 1938, Chief Engineer R.G. Cone a wind of unusual high velocity was blowing . . . normal to the axis of the bridge . . . The suspended structure of the bridge was undulating vertically in a wave-like motion of considerable amplitude, . . . a running wave similar to that made by cracking a whip. The truss would be quiet for a second, and then in the distance one could see a running wave of several nodes approaching . . . C. & McKenna 96 asymmetric beam model Stable multi-humped solitary waves (Buryak & C 96) U ′ (s) U (s) 0. 000030 0. 000020 0. 000010 2(1) 2(2) 2(3) 2(4) 2(5) 2(7) 2(8) 2(9) 0. 000000 2(6) - 0. 000010 - 0. 000020 0. 5. 10. 15. 20. 25. 30. 35. s 40. seperation s MRI Master Class Utrecht – p. 35 De ck Am pli tud e Nb. R.G. Cone was sacked for ‘disloyalty to the bridge’ 150 5 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 0 450 t 400 -50 350 0 50 Span time u 500 u -5 100 -10 50 -50 0 50 100 100 x x 150 150 5 0 100 -5 -10 -15 -50 50 0 50 100 150 0 t -15 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -100 150 0 100 50 -50 0 50 100 150 200 250 0 MRI Master Class Utrecht – p. 36 . . . add competing nonlinearity (Woods & C. 99) uxxxx + P uxx + u − u2 + bu3 = 0 2 9 <b< 38 27 . b = 0.29: 2.5 u 3 1 2 2 1.5 u2.5 primary 2(2) 2 L 1 1.5 1 0.8 0.5 0.5 x 0 -1 -0.5 -60 -40 -20 0 20 40 -1 60 2.5 u x 0 -0.5 -60 -40 -20 0 20 40 60 3 u2.5 0.4 2 2 1.5 1.5 1 1 0.5 0.5 x 0 -1 -0.5 -60 -40 -20 0 20 40 -1 60 0 1.3 2.5 1.4 1.5 1.6 2.5 2 2 u2 1.5 1.5 1.5 1 1 u 1.8 P u 1.9 2 3 u1.5 u2.5 1 1.5 -0.5 x 0 -60 -40 -20 0 20 40 60 -1 -60 -40 -20 0 20 40 60 -1 -20 0 20 40 60 0.5 0.5 1 x 0 x 0 -0.5 -0.5 -40 2 1 0.5 x 0 -60 2 0.5 0.5 -1 x 0 -0.5 x 0 -0.5 -60 -40 -20 0 20 40 60 -0.5 -60 -40 -20 0 20 40 60 -1 -60 -40 -20 0 20 40 60 MRI Master Class Utrecht – p. 37 a small amplitude limit b → (38/27) ⇒ narrow snake (a) (b) 1.2 0.7 2 L 2 2-pulse primary L 1 primary 2-pulse 0.6 0.5 0.8 0.4 0.3 0.4 0.2 0.2 0 1.3 0.1 1.4 1.5 1.6 1.7 1.8 1.9 0 1.9 2 1.91 1.92 1.93 1.94 1.95 1.96 p 1.97 1.98 1.99 2 p For P ≈ 2, b ≈ (38/27) normal form theory envelope "spatial dyanamics" decrease P FRONT ...AND BACK HUMP But misses beyond-all-orders effects. MRI Master Class Utrecht – p. 38 a related problem Similar results for uxxxx + P uxx + u − αu3 + u5 = 0 α = 3/10 (Hunt et al 00) 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 See also Burke & Knobloch 07 MRI Master Class Utrecht – p. 39 spatial dynamics explanation of snake Woods & C. 99 (cf. Coullet et al 2000) Hamiltonian case. Take 2D Poincaré section within {H = 0}: (a) Wu(O) O (b) Ws(L) S L (c) (d) (e) (f) Ws(L) u W (O) O S L cf. Poincaré “heteroclinic tangle” MRI Master Class Utrecht – p. 40 norm (a) (b) (c) (d) (e) (f) λ See Burke & Knobloch 06, Beck et al 09 for application to localised patterns in Swift-Hohenberg eqns. (snakes and ladders!) MRI Master Class Utrecht – p. 41 4. Computing homoclinic/heteroclinics - 3 simple special cases approaches in AUTO compute a periodic orbit to large period case of 1D unstable manifold reversible case Next lecture: HomCont — general AUTO-07P method for computing homoclinic orbits & detecting codimension-two points MRI Master Class Utrecht – p. 42 Computing large-period periodic orbits AUTO solves for periodic orbits via boundary-value problem Z 1 ˙ ẋ = T f (x, α), x(0) = x(1), x(0) (u(t)T ũ)dt 0 for x(t) in Rn , parameter α ∈ R, T ∈ R. Homoclinic bifurcation ⇒ T → ∞ To compute homoclinic; fix T (large), solve for α1 , α2 ∈ R2 . Can show not the optimal choice (see next lecture) this afternoon: AUTO demo pp2. MRI Master Class Utrecht – p. 43 1D unstable manifold homoclinics case Suppose A = Df (x0 , 0) has ns = 1 unstable eigenvalue λ (and nu = n − 1 stable eigs) Let Av1 = λv1 , AT w1 = λw1 . Compute boundary value problem ẋ = 2T f (x, α) x(0) = x0 + εv1 0 = w1T (x(1) − x0 ) can show convergence as 2T → ∞ (see next lecture) ⇒ continuation problem with n + 1 boundary conditions for n + 2 unknowns x(t) α1 , α2 . MRI Master Class Utrecht – p. 44 Reversible case Consider reversible homoclinic x(t) ẋ = f (x, α), x ∈ R2n , x(0) ∈ fix(R), x(±∞) → x0 Truncate to [−T, 0] and solve the two-point BVP with n B.C.s: ẋ = f (x, α) Lu x(−T ) − x0 = 0 Dfix(R)⊥ x(0) = 0 where Lu is projection onto unstable eigenspace of A (using stable eigenspace of AT e.g. for 4th -order example x = (u, u′ , u′′ , u′′′ ), fix R = (u, 0, u′′ , 0). D fix (R)⊥ = (0, 1, 0, 1). ⇒ computes a curve of solutions in one parameter α1 MRI Master Class Utrecht – p. 45 What we have learnt so far: Homoclinic orbits to equilibria can be tame or chaotic Chaotic case leads to birth of multi-pulses Everything depends on linearisation (+ twistedness see next lecture) Topological ideas can be posed rigorously analytically Hamiltonian (and reversible) case drops a co-dimension Many applications MRI Master Class Utrecht – p. 46 References Beck, M., Knobloch, J., Lloyd, D., Sandstede B. and Wagenknecht, T. Snakes, ladders and isolas of localized patterns, SIAM J. Math. Anal. (2009) appeared online Burke, J. and Knobloch, E. Localized states in the generalized Swift-Hohenberg equation, Phys. Rev. E, 73, (2006) 056211 Burke, J. and Knobloch, E. Snakes and ladders: Localized states in the Swift-Hohenberg equation Phys. Lett. A, 360 (2007) 681-688. Freire, E. Rodriguez-Luis, A.J., Gamero E. and Ponce E. A case study for homoclinic chaos in an autonomous electronic circuit Physica D 62 (1993) 230-253. Glendinning, P. and Sparrow, C. Local and Global Behaviour Near Homoclinic Orbits J. Stat. Phys. 35 (1984) 645-696. Hunt, GW; Peletier, MA; Champneys, AR, et al. Cellular buckling in long structures, Nonlinear Dynamics 21 (2000) 3-29. Lin, X.B. Lin’s method Scholarpedia, 3 (2008) 6972. www.scholarpedia.org/article/Lin’s method Sparrow, C. The Lorenz Equations: Bifurcations, Chaos and Strange Attractors. Springer-Verlag, (1982) Shilnikov, L.P., Shilnikov A.L., Turaev, D.V. and Chua, L.O. Methods of qualitative theory in nonlinear dynamics. World Scientific. Part I (1992), Part II (1998). MRI Master Class Utrecht – p. 47