Mobile and ubiquitous learning technologies

Transcription

Mobile and ubiquitous learning technologies
Mobile and ubiquitous
learning technologies
prof. dr. marcus specht
Open Universiteit Nederland,
Centre of Learning Sciences and
Technologies CELSTEC
celstec.org, http://portal.ou.nl/en/web/
topic-mobile-learning
[email protected],
social media: marcuspecht
1
#FTI2012 #Context #CELSTEC
#OpenUniversiteit
#researchGroup TEL
2
Some Facts:
- 20.000 Students
- 60 Mio Budget
- 15 Study Centers
CELSTEC
- 120 fte, 7 Mio budget
Research Lines and topics
#1 Mobile and ubiquitous learning content
Ubiquitous access to learning support and distributed multi-format learning
content.
– Mobile Video and Audio Content (Youtube EDU, iTunes U), Cloudbased learning content, Mobile data collection and aggregation,
eBooks and tablet content.
#2 Orchestration of seamless learning support
Instructional design of nomadic and seamless learning support.
– Ubiquitous LMS access, Mixed Reality Games, Excursions and Field
Trip systems, Mobile Augmented Reality, Mobile Learning Games,
Object and location-based service access.
#3 Situated learning experiences
Connect the Learning and the real World, context-aware learning systems,
sensor-based learning support.
– Experience sampling apps, Sensor-based learning apps, Situated and
ambient displays, Context-aware social media, Tangible and smartobjects for learning
Mobile Learning Applications Domains
• eHealth and healthcare
EMURGENCY: performance support and notification system,
Handover procedures, Reference apps for daily practice
• Law and Management education
OpenScout, OUNL iPad pilots, UNHCR mobile simulated games
• Architecture and creative industries
MACE location-based content and social media, Cloud-based
cooperation methods in design and architecture
• Cultural Heritage
Mixed reality field trips with Cultural Sciences
• Logistics
SALOMO: Situation Awareness and Mobile data collection
• Language learning
ELENA, PhD projects
• Teacher education and networking
mobile social networking apps
b
a
L
tion
n
i
n
r
a
Le
a
v
o
n
g In
#mobilelearning
#ContextAwareComputing
#challenges
7
ontological challenge:
what is context and
how can we
conceptualize it to
better understand
learning in context ?
context is multi-displinary
body network sensors, rooms
intelligent carpets, wall colour, or
gesture tracking, building ,
architects already create completely
new facades for buildings, public
places and city planning new
artefacts will enable dynamic
routing and highlighting of space
Sybren A. Stüvel, “Colours and bricks” via Flickr, Creative Commons Attribution.
context is always ...
context is dynamic ...
context is social ...
context is connecting ...
engineering challenge:
what are the
opportunities for
technology to enhance
learning in context ?
#sensor technology can
record data in a scalable way.
http://quantifiedself.com/
#cloud technology can support
seamless learning trajectories.
d i s a p p e a ri n g
Wong, L.-H., & Looi, C.-K. (2011). What Seams Do We Remove in
Mobile Assisted Seamless Learning? A Critical Review of the Literature.
Computers & Education, 57(4), 2364-2381. Elsevier Ltd. doi:10.1016/
j.compedu.2011.06.007
#AR technology can augment your
perception of a context ...
http://www.designbynotion.com/metamirror-next-generation-tv/
#display technology can create
feedback loops ...
Goetz, T. (2011). Harnessing the Power of Feedback Loops | Magazine.
wired.com. Retrieved August 22, 2011, from http://www.wired.com/magazine/
2011/06/ff_feedbackloop/5/
#display tech. can support
awareness and reflection.
Bachour, K., Kaplan, F., & Dillenbourg, P. (2008). Reflect : An Interactive Table for Regulating
Face-to-Face Collaborative Learning. Technology, 39-48. Retrieved from http://dx.doi.org/
10.1007/978-3-540-87605-2_5
#visualisation and LA can
support personal sense making.
Heer, J., Shneiderman, B. (2012). Interactive Dynamics for Visual Analysis. Communications of
the ACM. Vol 55. No 04. pp. 45-54.
Lo c a t i o n
ID
Tim e
ati
.
Rel
on
Env
# the plan:
how to model and design this:
Ambient Information CHannEls
AICHE
Ti m
n
o
i
at
Artefact
Lo c a t i o n
Tim e
Ti me
ID
ID
Artefact
Re
lat
v.
User
n
E n v.
Channel
Lo c at
i
o
n
ion
En
n
o
i
t
a
l
Re
ID
e
L
o
c
E
.
v
n
Re latio
Ti
ID
me
Relation
ati
c
o
L
on
Env
.
Aggregation
Sensor
Sensor
Sensor
AICHE Processes
Sensor
Sensor
Re
Re
Tim e
Artefact
Lo c a t i o n
Re
Env
Lo c a t i o n
Tim e
Channel
on
i
t
la
ID
Tim e
Env
ID
ID
User
on
i
t
la
.
.
Env
.
on
i
t
la
Lo c a t i o n
Enrichment
Ti
Lo c
AICHE Processes
ID
me
Relation
ation
Env
.
Aggregation
Sensor
Sensor
Sensor
Sensor
Sensor
e
Ti m
Rel
on
Artefact
Env
n
Lo c a t i o n
l
on
Re
e
ati
Tim
Lo c at i o
User
ati
Ti m
e
ID
Channel
Loc
on
i
t
a
ID
Re l atio
n
E n v.
E n v.
.
ID
Channel
Re
Tim e
Re
Tim e
Env
lat
ion
Env
Artefact
ID
Lo c a t i o n
Tim e
ion
ID
ID
User
lat
.
Env
Lo c a t i o n
ion
.
lat
.
Re
Synchronisation
Lo c a t i o n
Enrichment
Ti
Lo c
AICHE Processes
ID
me
Relation
ation
Env
.
Aggregation
Sensor
Sensor
Sensor
Sensor
Sensor
n
Re l atio
e
on
Rel
on
ID
e
ati
Lo c at i o
User
Tim
Artefact
Env
n
Lo c a t i o n
l
Ti m
Ti m
e
Re
Channel
Loc
ati
ID
Artefact
E n v.
.
ID
E
n
v
.
Loc
n
ID
Re l atio
e
Ti m
n
Lo c a t i o n
on
E n v.
on
on
l
Rel
ati
ati
Re
E n v.
e
ati
Tim
Lo c at i o
User
Loc
Ti m
n
Channel
e
ID
ID
on
i
t
a
Re latio
Channel
Ti m
e
E n v.
on
i
t
a
E n v.
ID
Channel
Tim e
Re
Tim e
Env
lat
ion
Env
Artefact
ID
Lo c a t i o n
Tim e
ion
ID
ID
User
lat
.
Env
.
Re
ion
.
lat
Lo c a t i o n
Framing
Re
Synchronisation
Lo c a t i o n
Enrichment
Ti
Lo c
AICHE Processes
ID
me
Relation
ation
Env
.
Aggregation
Sensor
Sensor
Sensor
Sensor
Sensor
Loc
on
n
ID
Re l atio
n
Ti m
on
l
e
Rel
ati
Tim
Artefact
Env
n
Lo c a t i o n
on
Lo c at i o
User
ID
ati
Ti m
E n v.
e
Channel
Loc
Re
ID
on
Re latio
Channel
e
E n v.
.
ID
Framing
e
Rel
on
ID
e
ati
Lo c at i o
User
Tim
Artefact
Env
n
Lo c a t i o n
l
Re
Ti m
on
Ti m
ati
on
Channel
Loc
ati
ID
Re l atio
n
E n v.
e
E n v.
.
ID
Channel
Re
Env
Tim e
ion
lat
ion
Env
Artefact
ID
Lo c a t i o n
Tim e
lat
ID
ID
User
Tim e
Re
Env
Lo c a t i o n
ion
.
lat
.
Re
Synchronisation
.
Lo c a t i o n
AICHE brings together
context-aware computing,
semantic-web technologies,
instructional design for
adaptive and personal
learning, HCI aspects as
tangible computing and
IOThings.
ati
Ti m
e
E n v.
ati
Enrichment
Ti
Lo c
AICHE Processes
ID
me
Relation
ation
Env
.
Aggregation
Sensor
Sensor
Sensor
Sensor
Sensor
#research #Context #CELSTEC
#OpenUniversiteit
28
creation and management of iTunes U
channel and media workflows for the OU
o
i
d
u
a
/
o
m
e
d
i
v
e
l
i
b
o
t
n
e
t
n
co
29
Youtube Channel of the OU
30
Content Bundles via iBooks
e
s
k
Boo
31
Mooble LMS
s
s
cce
a
S
LM
Glahn, C., & Specht, M. (2010). Embedding Moodle into Ubiquitous Computing
Environments. In M. Montebello, et al. (Eds.), 9th World Conference on Mobile
and Contextual Learning. October, 19-22, 2010,Valletta, Malta.
http://hdl.handle.net/1820/2729
Blackboard
Mobile
Learn
c
a
l
B
d
r
a
kbo
e
l
i
b
o
M
,
e
r
u
t
c
u
r
t
s
,
a
)
r
f
R
n
Q
i
,
r
C
o
F
s
n
N
(
e
se
s
l
i
g
b
a
o
T
,
m
r
e
n
i
w
d
l
i
po
u
b
,
n
o
i
t
a
loc
h"p://www.plugwise.com/
Experiment 2
,
n
o
i
t
a
g
e
r
g
g
.
.
a
.
,
a
t
s
a
e
i
d
r
o
r
t
o
a
r
s
e
n
d
e
e
s
f
,
a
t
a
d
a
t
e
m
Experiment 3
o
s
r
pe
d
n
i
nal
s
r
o
icat
n
g
i
s
e
d
l
a
n
o
i
t
c
u
g
r
n
t
i
s
m
in
a
r
f
t
s
e
b
r
o
f
Context Indicators
a
t
n
e
i
b
m
s
y
a
l
p
s
i
t
i
s
d
n
a
d
d
e
t
a
u
Experiment 2
s
r
o
t
a
c
i
d
n
i
t
x
e
t
n
o
c
E+
IL
Reflection Amplifiers
mobile RA
d
n
a
g
n
i
l
p
m
a
s
n
e
o
c
i
t
n
c
e
i
e
l
r
l
e
o
p
c
a
ex
t
a
d
e
l
i
b
mo
EyeStop
s
s
e
n
e
r
a
w
a
r
s fo
d
e
t
a
u
t
i
y
a
l
p
s
i
d
s
Hello.Wall
Flower Lamp
Digital Retail
Ambient
Umbrella
UbiGreen
Power Aware Cord
Orb
BBC
Nuage Vert
ARLearn framework
http://code.google.com/p/arlearn/
• Augmented Reality Games,
• Excursions,
• Mixed Reality Games,
• Mobile Games and Simulations.
e
c
r
u
o
s
n
ope work
e
m
g
fra
n
i
r
o
h
t
Au
p
p
A
e
l
i
b
Mo
n
r
a
e
L
t
e
Stre
!
!
42
www.openU.nl,
celstec.org,
marcuspecht.de