TESIS DOCTORAL BIOLOGÍA TRÓFICA DEL ATÚN ROJO
Transcription
TESIS DOCTORAL BIOLOGÍA TRÓFICA DEL ATÚN ROJO
7(6,6'2&725$/ %,2/2*Ë$75Ï),&$'(/$7Ò152-27KXQQXV WK\QQXV(1(/$7/È17,&225,(17$/< 0(',7(55È1(2 -RVp/XLV9DUHOD)XHQWHV 8QLYHUVLGDGGH&iGL] )DFXOWDGGH&LHQFLDVGHO0DU\$PELHQWDOHV 'HSDUWDPHQWRGH%LRORJtD &iGL] %LRORJtDWUyILFDGHODW~QURMR7KXQQXVWK\QQXVHQHO $WOiQWLFR2ULHQWDO\0HGLWHUUiQHR 0HPRULD SUHVHQWDGD SRU ' -RVp /XLV 9DUHOD )XHQWHV SDUD RSWDU DO JUDGR GH 'RFWRU SRU OD 8QLYHUVLGDGGH&iGL] )GR-RVp/XLV9DUHOD)XHQWHV /RVGLUHFWRUHV 'U'$0HGLQD*XHUUHUR'U'(5RGUtJXH]0DUtQ5HLPDW &DWHGUiWLFRGH=RRORJtD,QYHVWLJDGRU7LWXODU 8QLYHUVLGDGGH&iGL],QVWLWXWR(VSDxROGH2FHDQRJUDItD ' $1721,2 0(',1$ *8(55(52 \ ' (15,48( 52'5Ë*8(=0$5Ë1 5(,0$7 &DWHGUiWLFRGHO'HSDUWDPHQWRGH%LRORJtDGHOD)DFXOWDGGH&LHQFLDVGHO0DU\$PELHQWDOHVGH OD 8QLYHUVLGDG GH &iGL] H ,QYHVWLJDGRU 7LWXODU GHO ,QVWLWXWR (VSDxRO GH 2FHDQRJUDItD ,(2 UHVSHFWLYDPHQWH +$&(1&2167$5 4XH HOWUDEDMR UHFRJLGR HQ OD SUHVHQWH PHPRULD GH7HVLV 'RFWRUDO WLWXODGD ³%LRORJtD WUyILFDGHODW~QURMR7KXQQXVWK\QQXVHQHO$WOiQWLFR2ULHQWDO\0HGLWHUUiQHR´SUHVHQWDGRSRU HOOLFHQFLDGRHQ&LHQFLDVGHO0DU'-RVp/XLV9DUHOD)XHQWHVSDUDRSWDUDO*UDGRGH'RFWRUHQ &LHQFLDV GHO 0DU KD VLGR UHDOL]DGD EDMR QXHVWUD GLUHFFLyQ \ DXWRUL]DPRV VX SUHVHQWDFLyQ \ GHIHQVD 3DUDTXHDVtFRQVWHDORVHIHFWRVRSRUWXQRVILUPRODSUHVHQWHHQ3XHUWR5HDODGHMXQLR GH )GR$QWRQLR0HGLQD*XHUUHUR)GR(QULTXH5RGUtJXH]0DUtQ5HLPDW La presente Tesis Doctoral ha sido subvencionada por el Ministerio de Ciencia e Innovación (MICINN, CTM2007-65178-C02-01/MAR, CTM2011-29525-C04-01 y CTM2011-27505), Junta de Andalucía (RNM-02469), Comunidad Europea (GA no. 212797), Secretaría General del Mar, Ministerio de Medio Ambiente, Rural y Marino y Red Eléctrica de España - Fundación Migres. À ǥ±ͶÓ Ǥ Ǥ Ó À× À ǡÓ ǥ À ǡ Ǥǡ× ×Ͳǡ Ǥ ǡÀȋÀȌǡ ǡ ǥǤ Ǥ À ȋ Ǧ ȌǤ Ǥ Ǥ ǡ ǡ ǡ ×ǡ ǡ × ȋȌǡ Ǥ Ǥ ïÀ ǡǡǡǡǡ ǡ ǡ ǡ À ±ǡ ǡ ǥ Ǥ ǡ Ó Ǥ Ó Dz dzǡ Ǥ ÓǤ ïÓǤ× Ǥ Dz dz ÓǤ ï ǡ Ǥ À Ǥ ÍNDICE ,QWURGXFFLyQ 7D[RQRPtDGLVWULEXFLyQ\VLWXDFLyQGHOVWRFN %LRORJtDWUyILFD$QWHFHGHQWHV 8WLOL]DFLyQGHDQiOLVLVGHLVyWRSRVHVWDEOHV $SOLFDFLyQGHPRGHORVGHPH]FODLVRWySLFRV 2EMHWLYRV 5HIHUHQFLDV &KDSWHU 3UH\PXVFOH FDUERQ DQG QLWURJHQ VWDEOHLVRWRSH GLVFULPLQDWLRQIDFWRUVLQ$WODQWLFEOXHILQWXQD7KXQQXVWK\QQXV ,QWURGXFWLRQ 0DWHULDODQGPHWKRGV 5HVXOWV 'LVFXVVLRQ 5HIHUHQFHV &KDSWHU & DQG 1 DQDO\VLV LQ PXVFOH DQG OLYHU RI ZLOG DQG UHDUHG\RXQJRIWKH\HDU<2<$WODQWLFEOXHILQWXQD ,QWURGXFWLRQ 0DWHULDODQGPHWKRGV 5HVXOWV 'LVFXVVLRQ 5HIHUHQFHV &KDSWHU(VWLPDWLQJGLHWVRISUHVSDZQLQJ$WODQWLFEOXHILQWXQD IURPVWRPDFKFRQWHQWDQGVWDEOHLVRWRSHDQDO\VHV ,QWURGXFWLRQ 0DWHULDODQGPHWKRGV 5HVXOWV 'LVFXVVLRQ 5HIHUHQFHV &KDSWHU 6WXG\ RI WKH WURSKLF HFRORJ\ RI \RXQJRIWKH\HDU EOXHILQWXQD7KXQQXVWK\QQXVFDSWXUHGLQWKHZHVWHUQ0HGLWHUUDQHDQ 6HD ,QWURGXFWLRQ 0DWHULDODQGPHWKRGV 5HVXOWV 'LVFXVVLRQ 5HIHUHQFHV 'LVFXVLyQJHQHUDO\FRQFOXVLRQV 'LVFXVLyQJHQHUDO &RQFOXVLRQHV )XWXUDVLQYHVWLJDFLRQHV 5HIHUHQFLDV ,QWURGXFFLyQ 1. INTRODUCCIÓN 1.1. Taxonomía, distribución y situación del stock El atún rojo atlántico, Thunnus thynnus (L., 1758), es el mayor de todos los túnidos, pudiendo alcanzar más de 3 m de longitud y 600 kg de peso (Mather et al., 1995). Es considerado como uno de los depredadores por excelencia de los ecosistemas pelágicos. Posee un cuerpo fusiforme y robusto perfectamente adaptado para la natación (Fig. 1.1), tratándose de una especie altamente migratoria que puede llegar a alcanzar una velocidad media de 5.9 km/h y una máxima de entre 13 y 31 km/h (Lutcavage et al., 2000; Wilson et al., 2005). Desde la antigüedad es una especie muy apreciada, debido a su gran tamaño, excelente calidad y sabor de su carne y, en los últimos años, ha alcanzado elevados precios, sobre todo en el mercado japonés (Lioka et al., 2000). Figura 1.1. Atún rojo. Hasta hace poco se aplicaba la hipótesis de que el atún rojo atlántico ocupaba principalmente las aguas superficiales y subsuperficiales de las zonas costeras y alta mar, pero la telemetría mediante marcas electrónicas de archivo (tanto internas como ϯ externas por satélite) y acústicas han revelado que, tanto los juveniles como los adultos de atún rojo, descienden con frecuencia a profundidades de 500 m a 1000 m (Lutcavage et al., 2000). Aunque se trata de una especie de aguas abiertas, estacionalmente puede acercarse a la costa, tolerando una amplia gama de temperaturas (Collette y Nauen, 1983). Una de las principales características de esta especie, que comparte con algunos de sus congéneres y con ciertos escualos (Dickson y Graham, 2004), es su capacidad para elevar y mantener la temperatura corporal por encima de la temperatura ambiente, en ocasiones más de 20 ºC. Esto lo consigue mediante un sistema de intercambio de calor contracorriente, la rete mirabile. Este sistema consiste en una extensa red de vasos sanguíneos formada por capilares que impiden que el calor metabólico se escape. Esto permite al pez mantener un metabolismo elevado y constante, parecido al de los homeotermos, así como habitar zonas del océano con un rango de temperaturas muy amplio (Graham y Dickson, 2004; Dickson y Graham, 2004). Según la clasificación establecida por Collete et al. (2001), el atún rojo atlántico pertenece a la sublclase Actinopterygii, orden Perciformes y familia Scombridae, la cual comprende 15 géneros y alrededor de 55 especies de peces marinos epipelágicos. Inicialmente, Gibbs y Collete (1967) diferenciaron dos subespecies de atún rojo del norte, el del Pacífico, Thunnnus thynnus orientalis (Temminck y Schelegel, 1844), presente en el noroeste del océano Pacífico, y el del Atlántico, Thunnus thynnus thynnus (L., 1758). Actualmente, son consideradas como dos especies distintas, Thunnus orientalis y Thunnus thynnus . En la zona oriental, la especie atlántica se distribuye desde las costas de Noruega hasta las Islas Canarias, llegando hasta las aguas de Sudáfrica, y entrando también en el Mediterráneo (Lee, 1998). En la zona occidental se distribuye desde la Península de Labrador y Terranova hasta el Golfo de México y el Mar Caribe y frente a las costas de Venezuela y Brasil (Fig. 2.1). ϰ Figura 2.1. Área de distribución del atún rojo atlántico (Fuente: www.fishbase.org) Actualmente, se cree que el atún rojo alcanza la madurez sexual con aproximadamente 25 kg (edad 4) en el Mediterráneo (Corriero et al., 2005) y con aproximadamente 145 kg (edad 9) en el Golfo de México (Diaz y Turner, 2007). Los juveniles y adultos de atún rojo se alimentan de forma oportunista, como la mayoría de los depredadores. Sin embargo, en general, los juveniles se alimentan de crustáceos, peces y cefalópodos, mientras los adultos se alimentan sobre todo de peces pelágicos como arenque (Clupea arengus), boquerón (Engraulis encrasicolus), sardina (Sardina pilchardus), lanzón (Ammodytes spp.) y caballa (Scomber scomburs) (Rooker et al., 2007). El crecimiento de los juveniles es rápido para un teleósteo (unos 30 cm al año), pero más lento que otros túnidos y marlines. Los ejemplares nacidos en junio alcanzan una talla aproximada de 30-40 cm y un peso de 1 kg en octubre (Mather et al., 1995). El crecimiento en longitud tiende a ser menor en los adultos que en los juveniles, pero el crecimiento en peso se incrementa (Fromentin y Powers, 2005). El atún rojo es una especie longeva, con un ciclo vital de 35 años, tal y como han indicado estudios recientes a partir de depósitos de radiocarbono en otolitos (Neilson y Campana, 2008) Desde 1982, la Comisión Internacional para la Conservación de los Atunes Atlánticos (CICAA o ICCAT) considera a las poblaciones oriental y occidental de forma ϱ separada, y, en consecuencia, son evaluadas y gestionadas de forma independiente. El límite regional entre las dos unidades espaciales se encuentra en el meridiano 45º W (Fig. 1.3). No obstante, actualmente se acepta el hecho de que tiene lugar un cierto grado de mezcla entre ambos stocks (ICCAT, 2002; Rooker et al., 2007). Figura 1.3. Delimitación geográfica de los stocks oriental y occidental en el atún rojo atlántico (ICCAT, 2007). La separación de los dos stocks se realiza principalmente bajo la premisa de la existencia de dos zonas de puesta; el stock occidental, cuya única zona de puesta conocida se sitúa en el Golfo de México y Sur de Florida (Nemerson et al., 2000), teniendo lugar desde mediados de abril a mediados de junio (Richards, 1976; Baglin, 1982; Block et al., 2001), y la población oriental, cuyos reproductores migran desde el Atlántico Norte a las áreas de puesta del Mediterráneo (Fig. 1.4) (Mather et al., 1995; Ravier y Fromentin, 2001) desde mayo a Julio (Susca et al., 2001; Medina et al., 2002; Corriero et al., 2003). ϲ Figura 1.4. Zonas de puesta del atún rojo en el área del Mediterráneo según datos de distribución larvaria. Los círculos de menor tamaño indican capturas de 1-4 larvas (por neuston o bongo), los círculos medianos indican una abundancia de 5-10 larvas y los de mayor tamaño una cantidad de 10 o más larvas (revisado por Rooker et al., 2007). A pesar de la gestión independiente de ambos sotcks, los datos procedentes de campañas de marcado ponen de manifiesto la capacidad del atún rojo de realizar migraciones transatlánticas desde ambas zonas de reproducción (Lutcavage et al., 1999; Block et al., 2001, 2005; Rooker et al., 2003; Walli et al., 2009) y cuestionan todas las asunciones anteriores sobre migraciones, zonas de puesta y estructura de los stocks. A partir de datos de marcas convencionales se han estimado tasas de mezcla de entre el 1 y 10% dependiendo del tamaño de los atunes marcados y de la zona de origen (Mather et al., 1995; Rooker et al., 2007). Sin embargo, la información proporcionada por marcas electrónicas en los últimos años sugiere que los esquemas de migración y desplazamiento del atún rojo varían considerablemente entre individuos, años y zonas, y la tasa de mezcla puede ser mayor a la estimada inicialmente. El marcado electrónico ha mejorado de forma considerable la comprensión sobre la dinámica espacial del atún rojo. Por ejemplo, Block et al. (2005) apoyan la existencia de una distribución solapada en las áreas tróficas del Atlántico norte, una hipótesis ya planteada anteriormente por diversos autores, tales como Tiews (1963) o Mather et al. (1995). Los estudios de marcado, sin embargo, no proporcionan información sobre el lugar de nacimiento de los peces, una información que sin duda es clave para comprender la estructura de la población. El análisis de ϳ elementos traza en el otolito, en particular el uso de isótopos estables de oxígeno y carbono depositados durante los primeros años de vida, ha resultado útil para distinguir entre las regiones natales de atún rojo en el Golfo de México y el Mediterráneo (Rooker et al., 2003). Su análisis ha proporcionado datos referentes al grado de mezcla o conectividad que existe entre ambos stocks (Rooker et al., 2007, 2008a). Los resultados obtenidos demuestran que una importante proporción (~4364%) de atún rojo atlántico capturado en la pesquería del Atlántico occidental (formada sobre todo por peces de categoría mediana a juveniles) procedía de las zonas de cría del Este. Igualmente, los atunes rojos de gran tamaño y medianos del Mediterráneo eran en su mayor parte (~82-86%) de origen oriental. Por tanto, la evidencia inicial sugiere que la pesquería occidental recibe un flujo considerable de la población del Mediterráneo. Los últimos análisis realizados señalan una elevada tasa de atunes adultos que regresan a sus zonas de origen, siendo muy similares en ambas zonas de puesta; 95.8% para el Mediterráneo y 99.3% para el Golfo de México (Rooker et al., 2008a). Estos resultados corroboran las hipótesis planteadas a partir de los datos procedentes de las marcas electrónicas y parecen confirmar que los atunes adultos muestran una conducta de retorno al lugar de nacimiento y de fidelidad a la zona de reproducción, tanto en el Mediterráneo (Block et al., 2005) como en el Golfo de México (Block et al., 2005, Teo et al., 2007). Al contrario que los estudios de marcado electrónico y de isótopos estables que muestran que hay una importante contribución de la unidad de población del Atlántico oriental sobre la del Atlántico occidental, los estudios genéticos muestran una clara diferenciación entre las zonas de reproducción del Golfo de México (área de reproducción del stock occidental), del Mediterráneo oriental y, sorprendentemente, del Mediterráneo occidental (Boustany et al., 2008). Fromentin y Powers (2005) consideran que el atún rojo atlántico podría observarse como una metapoblación; es decir, un conjunto de poblaciones locales separadas que ocuparían hábitats diversos, y que exhiben su propia dinámica ϴ (incluyendo la migración), pero con un cierto grado de influencia demográfica de otras poblaciones locales. Esta hipótesis supone una alternativa menos rígida que el actual concepto de dos stocks, de manera que probablemente las poblaciones influyen entre sí mediante interacciones de tipo ecológico más que genético. Los últimos análisis realizados a partir de las series históricas de las principales pesquerías de atún rojo del siglo XX (incluyendo capturas totales y composición por tallas de la captura) plantean la estructura de la población del atún rojo atlántico como una unión de al menos tres subpoblaciones: una muy migratoria en todo el Atlántico norte (que desovaría en el Mediterráneo occidental y central), otra más residente en el Mediterráneo, que desova en el Mediterráneo central y oriental, y una tercera más residente en el Atlántico occidental, que desova en el Golfo de México (Fromentin, 2009). Históricamente, el atún rojo atlántico ha sido explotado de forma sostenible en el Mediterráneo durante miles de años hasta finales del siglo XX (Mather et al., 1995; Doumengue, 1998). Sin embargo, en las últimas décadas el esfuerzo pesquero se ha incrementado notablemente, con lo que la biomasa de los stocks occidental y oriental está descendiendo de forma alarmante, lo que pone en riesgo la supervivencia de un recurso que desde 1980 está considerado como sobreexplotado, en el caso del stock occidental, y desde mediados de los años 90 en el oriental (Sissenwine et al., 1998; ICCAT, 2008). Esta situación de sobreexplotación pesquera llevó a la ICCAT a establecer sendos Planes de Recuperación para ambos stocks, estableciéndose en 1998 y 2006 para la población occidental y oriental, respectivamente. Los resultados de la última evaluación realizada por el Comité Científico Permanente para la Investigación y las Estadísticas (SCRS) en 2010 para el atún rojo del Atlántico oriental y Mediterráneo indicaron que la biomasa del stock reproductor había descendiendo rápidamente en los últimos años, mientras que la mortalidad por pesca había aumentado a un ritmo elevado, especialmente en los atunes grandes, si bien en los últimos años hay una clara disminución. Las estimaciones del estado del ϵ stock respecto del objetivo de lograr el Rendimiento Máximo Sostenible (MSY) son inciertas, pero se puede concluir que a pesar de que la mortalidad por pesca ha disminuido recientemente para los grandes adultos, esta permanece demasiado elevada y la SSB demasiado baja, alrededor del 36 %, del nivel necesario para obtener el MSY (Fig. 1.5). &ϮͲϱ Ϭ͘ϰ &ϭϬн Ϭ͘ϰ ZƵŶϭϯ ZƵŶϭϯ ZƵŶϭϱ ZƵŶϭϱ Ϭ͘ϯ Ϭ͘ϯ Ϭ͘Ϯ Ϭ͘Ϯ Ϭ͘ϭ Ϭ͘ϭ Ϭ Ϭ ϭϵϱϬ ϭϵϲϬ ϭϵϳϬ ϭϵϴϬ ϭϵϵϬ ϮϬϬϬ ϭϵϱϬ ϭϵϲϬ ϭϵϳϬ ^^;ƚͿ ϭϵϴϬ ϭϵϵϬ ϮϬϬϬ ZĞĐƌƵŝƚƐ;EͿ ϰϬϬϬϬϬ ϱϬϬϬϬϬϬ ZƵŶϭϯ ZƵŶϭϱ ϯϬϬϬϬϬ ZƵŶϭϯ ϰϬϬϬϬϬϬ ZƵŶϭϱ ϯϬϬϬϬϬϬ ϮϬϬϬϬϬ ϮϬϬϬϬϬϬ ϭϬϬϬϬϬ ϭϬϬϬϬϬϬ Ϭ ϭϵϱϬ Ϭ ϭϵϲϬ ϭϵϳϬ ϭϵϴϬ ϭϵϵϬ ϮϬϬϬ ϭϵϱϬ ϭϵϲϬ ϭϵϳϬ ϭϵϴϬ ϭϵϵϬ ϮϬϬϬ Figura 1.5. Estimaciones de mortalidad por pesca F2-5: para edades de 1 a 5 años y F10+: para edades 10+, SSB: biomasa del stock reproductor en toneladas y Recruits: reclutamiento del stock oriental de atún rojo atlántico. Las líneas gris y negra corresponden a los dos escenarios más plausibles (ICCAT, 2010). Análisis recientes de capturas por talla y edad muestran importantes cambios en los patrones de selectividad en los tres últimos años para varias flotas que operan en el mar Mediterráneo o en el Atlántico este. Esto podría ser en parte el resultado de la puesta en práctica de las regulaciones sobre talla mínima establecidas en la Rec. 06-05 que ha conducido a una captura declarada de peces más jóvenes mucho menor y, por consiguiente, a un aumento en el peso medio anual en la captura por talla desde 2007. Además, la mayor abundancia y mayores concentraciones de atún rojo pequeño en el Mediterráneo noroccidental detectadas mediante prospecciones aéreas podrían ϭϬ también ser un reflejo de los resultados positivos de la regulación sobre el incremento de la talla mínima (ICCAT, 2011). Estas estimaciones deben ser consideradas con precaución, ya que, a pesar de las mejoras en la cantidad y calidad de los datos para la evaluación de 2010, existen ciertas limitaciones, incluyendo una pobre cobertura espacial y temporal para las estadísticas detalladas de talla y de captura-esfuerzo en muchas pesquerías, especialmente en el Mediterráneo. También era evidente una infradeclaración en las capturas totales, especialmente durante los años 1998-2007 (ICCAT, 2011). 1.2. Biología trófica. Antecedentes Como base para la regulación de los stocks y para habilitar medidas que permitan una adecuada gestión y conservación del atún rojo, se hace imprescindible un profundo conocimiento tanto de los movimientos migratorios como de la biología trófica y reproductora. Los esfuerzos de los científicos dedicados al estudio del atún rojo se han centrado fundamentalmente en el conocimiento de las migraciones mediante el uso de marcas electrónicas (ej.: Block et al., 2005; Lutcavage et al., 2000), en su actividad reproductora (ej.: Medina et al., 2002, 2007; Mylonas et al., 2007). Por el contrario, los esfuerzos dedicados al estudio de su biología trófica han sido menos significativos, a pesar de que es sabido que la drástica disminución de este predador apical puede producir un efecto en cascada muy perjudicial en la estabilidad de los ecosistemas pelágicos. La biología trófica es la disciplina encargada de relacionar los aspectos biológicos y fisiológicos de las especies con su hábitat, régimen alimentario, tipo de dieta y relaciones bióticas, tales como depredación y competencia. En el caso de los peces, mediante este tipo de estudios es posible comprender la dinámica de las relaciones ecológicas que existen entre especies, además de proporcionar algunas bases para poder establecer métodos adecuados que contribuyan a una correcta administración de los recursos pesqueros. No sólo es importante generar este tipo de ϭϭ conocimiento para especies de valor económico, sino también para todas aquellas con las que se relacionan ecológicamente, ya que una alteración en su dinámica podría afectar directamente o indirectamente la supervivencia de cualquier especie asociada. Los estudios que determinan la biología trófica de las especies y el conocimiento de los hábitos alimenticios de éstas aportan información básica y necesaria para comprender el papel biológico y ecológico que desempeña un organismo dentro del ecosistema, ya que el alimento constituye uno de los factores intrínsecos más importantes, al influir directamente en el crecimiento y la reproducción, así como en la forma en la que se desarrolla su ciclo de vida, proceso que se da a expensas de la energía que el organismo recibe del exterior (Nikolsky, 1963; Wootton, 1999). Asimismo, el conocimiento de los hábitos alimenticios de las especies permite evaluar su estatus en la comunidad, es decir su nivel trófico, posibles relaciones con otras especies o grupos, y proporcionar una idea aproximada de su entorno y, por tanto, el efecto que puede producirse en cualquier tipo de uso y gestión del mismo. Las fuentes bibliográficas sobre biología trófica de Thunnus thynnus son escasas. En trabajos precedentes, el atún rojo es definido como un depredador que presenta un comportamiento oportunista y generalista, se alimenta de una gran variedad de peces e invertebrados (Chase, 2002; Estrada et al., 2005; Sarà y Sarà, 2007; Karakulak et al., 2009; Logan et al., 2011) y tiene la capacidad de producir un impacto importante en el funcionamiento de los ecosistemas (Hinke et al., 2004; Overholtz, 2006;Frank et al., 2005, 2007) (Fig. 1.6). ϭϮ Figura 1.6. Diagrama simplificado de la red de alimentación de un ecosistema pelágico (reproducido de Olson y Waters, 2003). Estudios basados en análisis de contenidos estomacales revelan que la dieta del atún rojo atlántico está constituida principalmente por teleósteos, seguida por cefalópodos y, en menor medida, crustáceos Crane, 1936; Dragovich, 1969; Eggleston y Bochenek, 1990; Sanz Brau, 1990). En estudios de la dieta mediante el análisis del contenido estomacal realizados en las otras dos especies de atún rojo, Thunnus orientalis (Pinkas, 1971), y Thunnus macoyii (Young et al., 1997), encontramos un patrón similar al observado en T. thynnus. La reconstrucción de la dieta del atún rojo a partir de análisis de contenido estomacal tiene, no obstante, una serie de limitaciones, tales como: i) la gran eficacia del proceso digestivo (Aloncle y Delaporte, 1973), favorecida por el calentamiento visceral (Carey et al., 1984; Graham y Dickson, 2001; Itoh et al., 2003), ii) la desigual velocidad en la digestión de los diferentes tipos de alimento, que puede dar lugar a errores al determinar las proporciones en la que las distintas presas son ingeridas, y iii) la regurgitación frecuente de comida, inducida por el estrés causado durante la captura (Chase, 2002). Como consecuencia de ello, en muchas ocasiones los estómagos aparecen vacíos o contienen sólo partes duras difíciles de digerir, como otolitos de ϭϯ peces o picos de cefalópodos. Teniendo en cuenta estos inconvenientes, es de suma utilidad complementar los estudios de contenidos estomacales con análisis de isótopos estables de carbono (į13C) y nitrógeno (į15N) en diferentes tejidos. 1.3. Utilización de análisis de isótopos estables Los análisis de isótopos estables (SIA) están emergiendo como una herramienta importante para identificar la dieta animal y determinar posiciones tróficas (Peterson y Fry, 1987; Hobson, 1999). Los isótopos son átomos de un elemento común que tienen el mismo número de protones y electrones, pero difieren en el número de neutrones (Thomson et al., 1921). Diferencias en el número de neutrones generan diferencias en la masa atómica, que pueden ser medidas con un espectrómetro de masas. Los isótopos estables tienen una combinación de protones y neutrones que no se alteran a lo largo del tiempo. Los isótopos estables pesados son una pequeña proporción en la abundancia natural de un elemento siendo muy valiosos para su uso como trazadores de procesos ecológicos. Los isótopos pesados del carbono y el nitrógeno (13C y 15 N) suponen un 1,11% y 0,37%, respectivamente, en el total de la abundancia natural de estos elementos, mientras los porcentajes restantes lo componen los isótopos ligeros (Sulzman, 2007). Los valores de los isótopos estables se expresan en partes por mil a partir de un estándar de referencia, según la siguiente ecuación: į = [(Rsample/Restándar)-1] × 103, siendo R la razón entre los isótopos pesado y ligero (15N/14N y 13 C/12C). Como estándares se usan VPDB (Vienna Pee Dee Belemnite) y nitrógeno atmosférico. En estudios de biología trófica, los isótopos estables proporcionan a menudo una información más representativa, aunque menos específica, que la aportada por el análisis del contenido estomacal, ya que reflejan una integración de todas las presas asimiladas en los tejidos del depredador (Abend y Smith, 1997). La abundancia relativa de los isótopos estables de carbono y nitrógeno presentes en los tejidos de organismos depredadores está directamente relacionada con la existente en sus ϭϰ presas, transfiriéndose dichos isótopos a lo largo de la cadena trófica mediante procesos de enriquecimiento (DeNiro y Epstein, 1978, 1981; Fry, 1988). En la práctica, existe un enriquecimiento de 13 C en torno al 1‰ por nivel trófico (DeNiro y Epstein, 15 1978; Peterson y Fry, 1987); en cambio, el enriquecimiento isotópico para N es del 3%-4‰ (Minegawa y Wada, 1984; Fry, 1988; Post, 2002). De este modo, los niveles de 13 C informan sobre la fuente primaria de carbono, mientras que los valores de į15N permiten establecer la posición trófica (Post, 2002). Los isótopos estables se transfieren a lo largo de la cadena trófica con incrementos constantes entre los diferentes niveles tróficos. La “separación” isotópica entre en el tejido de consumidor y su dieta se conoce como factor de discriminación (Martínez del Río y Wolf, 2004) o factor de enriquecimiento (Fry, 1988). Los isótopos estables nos proporcionan información de la dieta de un depredador a una escala de tiempo determinada en función de la actividad metabólica de tejido y del organismo analizado (Peterson y Fry, 1987). Concretamente, los SIA proporcionan información sobre la dieta y la posición trófica a una escala de tiempo mayor que los análisis de contenido estomacal (SCA), que, aunque permiten identificaciones más detalladas, están limitados por la velocidad de digestión de la especie sometida a estudio. En ocasiones, el SCA no es un método viable, puesto que requiere la identificación de las presas encontradas en los estómagos, lo que en muchas ocasiones no es posible debido al avanzado estado de digestión en el que se encuentran. La combinación de SCA y SIA genera datos de la dieta en dos escalas de tiempo diferentes. Por otra parte, si se llevan a cabo SIA en diferentes tejidos, con tasas de renovación distintas, se puede obtener la integración de los isótopos en tejido a diferentes escalas de tiempo. Para el ratio isotópico del carbono (į13C), el incremento isotópico por nivel trófico es muy pequeño (0-1‰) y se debe a la perdida preferencial de 12 CO2 en la respiración (DeNiro y Epstein, 1978; Checkley y Entzeroth, 1985). El isótopo del carbono es usado para determinar fuentes de producción primaria (DeNiro y Epstein, ϭϱ 1978; Fry y Sherr, 1984) y muestra variaciones entre regiones bentónicas y pelágicas, entre zonas de costa y en mar abierto (Hobson et al., 1994; France, 1995), y a través de gradientes latitudinales (Rau et al., 1989; Graham et al., 2010). El enriquecimiento trófico del isótopo del nitrógeno (į15N) es debido, probablemente, a la eliminación preferente de isótopos ligeros (14N) en los productos de excreción nitrogenados (Steele y Daniel, 1978). De manera general, el factor de discriminación para el į15N (ǻ15N) es más elevado que para el į13C (ǻ13C), por lo que el isótopo del nitrógeno es una medida más robusta de la posición trófica, con un enriquecimiento trófico comprendido entre el 2 y el 4‰ (DeNiro y Epstein, 1981; Minewaga y Wada, 1984; Gannes et al., 1998; Post, 2002). La posición trófica (TP) puede calcularse en función de į15N, según la siguiente ecuación: TP = Ȝ + (į15Nconsumidor secundario - į15Nbase)/ ǻn, donde į15Nbase es el valor de į15N del organismo del nivel trófico más bajo usado en la comparación, Ȝ es el TP del organismo de base, y ǻn es el factor de discriminación para el consumidor secundario (Post 2002). Los isótopos estables, junto con otros trazadores químicos, se han utilizado para llevar a cabo diversos estudios en atún rojo, relacionados con la fisiología (Radtke et al., 1987), estructura del stock (Secor y Zdanowicz, 1988; Rooker et al., 2008a, 2008b; Dickhut et al., 2009) y ecología trófica (Estrada et al., 2005; Sarà y Sarà, 2007; Logan et al., 2011). Los primeros análisis isotópicos (į13C y į18O) realizados en otolitos de atunes demostraron que los valores de į18O se veían afectados por la temperatura del cerebro y se podían utilizar para reconstruir su historia fisiológica (Radtke et al., 1987). No obstante, estimar parámetros fisiológicos a partir de los valores isotópicos puede ser erróneo, puesto que la temperatura del agua puede alterar estos valores (Campana, 1999; Rooker et al., 2008a). Más adelante, los valores isotópicos del carbono y oxígeno se utilizaron para identificar las zonas de nacimiento del atún rojo, obteniéndose diferencias entre los individuos nacidos en el Golfo de México y aquéllos que nacían en el Mar Mediterráneo. Así, se comprobó que ϭϲ para determinar estructuras en el stock del atún rojo, la variabilidad geográfica que muestran los valores isotópicos analizados en otolitos es una herramienta más determinante que otros trazadores usados con anterioridad (Secor y Zdanowicz, 1988; Rooker et al., 2001). Posteriormente, se llevaron a cabo análisis isotópicos en tejidos blandos de atún rojo con el objetivo de definir patrones tróficos (Estrada et al., 2005; Sarà y Sarà, 2007; Logan et al., 2010). Los incrementos en los valores de į15N en los tejidos de organismos consumidores en función de la dieta se utilizaron para estimar la posición trófica del atún rojo atlántico en zonas de alimentación del Atlántico NW y el Mar Mediterráneo (Estrada et al., 2005; Sarà y Sarà, 2007). Los trazadores químicos muestran, claramente, un gran potencial para el estudio de diversos aspectos de la ecología del atún rojo, aunque también presentan dificultades. Estimar el movimiento y la estructura del stock a partir de trazadores químicos conlleva una serie de dificultades debido al alto comportamiento migratorio que muestra el atún rojo atlántico. Los valores isotópicos analizados en otolitos pueden mostrar sesgos debido a las diferencias fisiológicas causadas por la edad de los individuos y la región habitada (Radtake et al., 1987). En los tejidos blandos, que presentan tasas de renovación metabólica generalmente elevadas, las señales químicas que reflejan las zonas habitadas a lo largo de la vida del organismo se pierden y se equilibran hacia los valores de los últimos lugares ocupados. Para aplicar los análisis isotópicos a los estudios de biología trófica, deben tenerse en cuenta ciertas consideraciones: i) la escala temporal de la información incorporada en los tejidos de los consumidores, ii) las diferencias isotópicas existentes entre el organismo consumidor y la dieta, iii) la variabilidad de los valores isotópicos entre los principales componentes de los tejidos (Ej.: lípidos y proteínas) (Gannes et al., 1997). Una vez considerados estos factores, la combinación de análisis de contenidos estomacales y de isótopos estables en distintos tejidos de atún rojo, permite obtener una aproximación de la dieta de esta especie en diferentes escalas de tiempo. ϭϳ Si se desconoce la tasa de renovación de un determinando tejido al que se le han realizado análisis de isótopos, los resultados pueden confundir debido a los cambios temporales en la dieta o en el hábitat. Estos problemas son particularmente relevantes en peces pelágicos de vida larga como el atún rojo, que puede ocupar una amplia distribución geográfica durante el período de tiempo en el que un determinado tejido incorpora un valor isotópico. Se asume que el factor de discriminación es en torno al 0,4‰ para el į13C y del 3,4‰ para el į15N (DeNiro y Epstein, 1978; DeNiro y Epstein, 1981; Minegawa y Wada, 1984; Peterson y Fry, 1987), aunque varía entre especies y tejidos (Macko et al, 1982; Pinnegar y Polunin, 1999, Vanderklift y Ponsard, 2003). En el caso de partir de factores de discriminación incorrectos, se pueden obtener errores sustanciales en la estimación de la posición trófica (Post, 2002) y de la dieta (Philips y Gregg, 2003), por lo que es recomendable la realización de estudios experimentales que permitan determinarlos con la mayor exactitud posible. En muchos tejidos de grandes pelágicos, es necesario realizar correcciones en los valores de į13C debido a los errores introducidos por los lípidos contenidos en ellos (Logan et al., 2011; Varela et al., 2011, 2012). Tales errores pueden ser corregidos mediante extracción lipídica, siendo el método modificado de Bligh y Dyer (1959) el más eficaz para tejidos de teleósteos (Logan et al., 2008) Sin embargo, las extracciones lipídicas pueden alterar los valores de į15N (Pinnegar y Polunnin, 1999; Sotiropoulus et al., 2004; Sweeting et al., 2006). Existen correcciones de tipo matemático, pero su aplicabilidad a un diverso rango de especies y de tejidos ha sido puesto en duda (Kiljunen et al., 2006; Post et al., 2007; Preum, 2011). 1.4. Aplicación de modelos de mezcla isotópicos Los modelos de mezcla isotópicos permiten estimar la contribución de diferentes fuentes (presas) a una mezcla (consumidor). Estos modelos sólo pueden generar soluciones únicas cuando el número de fuentes es al número de isótopos analizados +1. Por ejemplo, supongamos que la dieta está compuesta por tan sólo 3 ϭϴ fuentes de alimento (x, y, z) y hemos medido la razón isotópica de 2 elementos (į13C y į15N), tanto en el consumidor como en las fuentes de alimento; así, podemos definir las siguientes ecuaciones: 1. į13Cconsumidor = fXį13CX + fYį13CY + fZį13CZ + ǻį13C 2. į15Nconsumidor = fXį15NX + fYį15NY + fZį15NZ + ǻį15N 3. fX + fY + fz = 1; se trata de un sistema de 3 ecuaciones con 3 incógnitas, donde fi (fx,fy,fz) es la contribución de la fuente i (x,y,z) a la mezcla, į13C es la firma isotópica del carbono, į15N es la firma isotópica del nitrógeno, ǻį13C es el factor de discriminación presadepredador para el isótopo del carbono y ǻį15N es el factor de discriminación presadepredador para el isótopo del nitrógeno (normalmente se asume que los factores de discriminación son constantes para todas las presas). No obstante, si aumentamos el número de fuentes, la incertidumbre en la contribución de las fuentes también aumenta, ya que al aumentar el número de incógnitas existirían múltiples soluciones posibles para el sistema (Phillips y Gregg, 2003; Moore y Semmens, 2008), de modo que la solución aportada por estos modelos se basaría en cálculos de probabilidades. Los modelos de mezcla bayesianos, como el aquí utilizado (SiaR; Parnell et al., 2010), reducen las incertidumbres asociadas al uso de modelos, ya que permiten incorporar las variaciones en las firmas isotópicas de presas, consumidor y de factores de discriminación isotópicos. Sin embargo, estos modelos son muy sensibles a pequeñas variaciones en los factores de discriminación (Bond y Diamond, 2011), por lo que es de gran importancia realizar ensayos experimentales que permitan determinarlos con la mayor exactitud posible. 1.5. Objetivos de la Tesis Para lograr una gestión y explotación sostenible de las poblaciones del atún rojo atlántico es de suma importancia obtener un amplio conocimiento sobre la biología de esta especie. A pesar de los progresos realizados recientemente, aún es escasa la ϭϵ información disponible sobre el comportamiento trófico del atún rojo. Por ello, con objeto de ampliar nuestro conocimiento en esta materia en las poblaciones orientales, se plantean los siguientes objetivos 1. Caracterización de la dieta mediante análisis de contenidos estomacales. Se procederá a la identificación (hasta el nivel taxonómico mas bajo posible) y cuantificación de las presas a partir de la observación de tejidos blandos reconocibles. Estos análisis serán completados mediante el análisis de las partes duras que pueden permanecer en el estómago una vez que el material blando ha sido digerido por completo (otolitos de peces, picos de cefalópodos o pinzas de cangrejos). 2. Reconstrucción de la dieta mediante análisis de isótopos estables de carbono y nitrógeno (į13C y į15N). - Obtención de las correspondientes firmas isotópicas en tejido muscular y hepático de los individuos muestreados. - Estimación de los factores de discriminación isotópicos entre la presa y los tejidos analizados (músculo e hígado). Este objetivo requerirá mantener atunes en cautividad alimentados con un solo tipo de presa. - Reconstrucción de dietas mediante la aplicación de modelos de mezcla (“mixing models”). Un paso previo para la aplicación de los modelos será la caracterización de las presas más frecuentes en cada clase de edad considerada, así como la obtención de sus correspondientes firmas isotópicas específicas. Utilizando estos datos junto con los factores de discriminación estimados, se realizará el análisis mediante “SiaR mixing model”. 3. Con el fin de observar variaciones anuales, espaciales y ontogénicas, estos análisis se llevarán a cabo en muestras obtenidas durante varios años consecutivos en: i) individuos de edad 0+ capturados en el Mar Mediterráneo ϮϬ mediante curricán y ii) individuos adultos capturados por almadrabas situadas en el Estrecho de Gibraltar. La estimación de los factores de discriminación isotópicos entre la presa y los tejidos del atún (músculo e hígado) se realizarán tanto en individuos juveniles como en adultos. De esta manera podremos observar si existen variaciones en los factores de discriminación en función de la edad. 1.6. Referencias Abend AG, Smith TD (1997) Differences in stable isotope ratios of carbon and nitrogen between long-finned pilot whales (Globicephala melas) and their primary prey in the western north Atlantic. ICES J Mar Sci 54:500-503 Aloncle H, Delaporte F (1970) Rythmes alimentaires et circadiens chez le germon Thunnus alalunga (Bonnaterre 1788). Rev Trav Inst Pêches Mar 34:171-188 Baglin REJr (1982) Reproductive biology of western Atlantic bluefin tuna. Fish Bull 80:121-134 Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911-917 Block BA, Dewar H, Blackwell SB, Williams TD, Prince ED, Farwell CJ, Boustany A, Teo SLH, Seitz A, Walli A, Fudge D (2001) Migratory movements, depth preferences, and thermal biology of Atlantic bluefin tuna. Science 293:1310-1314 Block BA, Teo SLH, Walli A, Boustany A, Stokesbury MJW, Farwell CJ, Weng KC, Dewar H, Williams TD (2005) Electronic tagging and population structure of Atlantic bluefin tuna. Nature 434:1121-1127 Bond AL, Diamond AW (2011) Recent Bayesian stable-isotope mixing models are highly sensitive to variation in discrimination factors. Ecol Applic 21:1017-1023 Ϯϭ Boustany AM, Reeb CA, Block BA. 2008. Mitochondrial DNA and electronic tracking reveal population structure of Atlantic bluefin tuna (Thunnus thynnus). Marine Biology 156: 13-24. Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar Ecol Prog Ser 188:263-297 Carey FG, Kanwisher JW, Stevens ED (1984) Bluefin tuna warm their viscera during digestion. J Exp Biol 109:1-20 Chase BC (2002) Differences in diet of Atlantic bluefin tuna (Thunnus thynnus) at five seasonal feeding grounds on the New England continental shelf. Fish Bull 100:168180 Checkley DMJr, Entzeroth LC (1985) Elemental and isotopic fractionation of carbon and nitrogen by marine, planktonic copepods and implications to the marine nitrogen cycle. J Plankton Res 7:553-568 Collette BB, Nauen CE (1983) Scombrids of the world. An annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date. FAO Fish Synop 125:137 pp Collette BB, Reeb C, Block BA (2001) Systematics of the tunas and mackerels (Scombridae). En: Block BA, Stevens ED (eds.) Tuna: Physiology, Ecology, and Evolution. Academic Press, San Diego, pp. 1-33 Corriero A, Desantis S, Deflorio M, Acone F, Bridges CR, De la Serna JM, Megalofonou P, De Metrio G (2003) Histological investigation on the ovarian cycle of the bluefin tuna in the western and central Mediterranean. J Fish Biol 63:108-119 Crane J (1936) Notes on the biology and ecology of giant tuna Thunnus thynnus, L., observed at Portland, Maine. Zoologica 212:207-212 DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495-506 ϮϮ DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341-351 Diaz, GA, Turner SC (2007) Size frequency distribution analysis, age composition, and maturity of western bluefin tuna in the Gulf of Mexico from the U.S. (1981–2005) and Japanese (1975–1981) longline fleets. Collec Vol Sci Pap ICCAT 60(4): 1160-1170 Dickhut RM, Deshpande AD, Cincinelli A, Cochran MA, Corsolini S, Brill RW, Secor DH, Graves JE (2009) Atlantic bluefin tuna (Thunnus thynnus) population dynamics delineated by organochlorine tracers. Enviro Sci Technol ASAP, Publication Date (Web): September 28, 2009 Dickson KA, Graham JB (2004) Evolution and Consequences of Endothermy in Fishes. Physiol Biochem Zool 77:998-1018 Doumengue F (1998) L´Histoire des Peches Thonieres. Collect Vol Sci Pap ICCAT 50:753-803 Dragovich A (1970) The food of bluefin tuna (Thunnus thynnus) in the western North Atlantic Ocean Trans Am Fish Soc 99:726-731 Eggleston DB, Bochenek EA (1990) Stomach contents and parasite infestation of school bluefin tuna Thunnus thynnus collected from the Middle Atlantic Bight, Virginia. Fish Bull 88:389-395 Estrada JA, Lutcavage M, Thorrold SR (2005) Diet and trophic position of Atlantic bluefin tuna (Thunnus thynnus) inferred from stable carbon and nitrogen isotopes. Mar Biol 147:37-45 Frank KT, Petrie B, Choi JS, Leggett WC (2005) Trophic cascades in a formerly coddominated ecosystem. Science 308:1621-1623 Frank KT, Petrie B, Shackell NL (2007) The ups and downs of trophic control in continental shelf ecosystems. Trends Ecol Evol 22:236-242 Ϯϯ Fry B (1988) Food web structure on Georges Bank from stable C, N and S isotopic composition. Limnol Oceanogr 33:1182-1190 Fry B, Sherr EB (1984) į13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib Mar Sci 27:13-47 France RL (1995) Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Mar Ecol Prog Ser 124:307-312 Fromentin JM, Powers JE (2005) Atlantic bluefin tuna: population dynamics, ecology, fisheries and management. Fish Fish 6:281-306 Fromentin JM (2009) Lessons from the past: investigating historical data from bluefintuna fisheries. Fish Fish 10:197-216 Gannes LZ, O'Brien DM, Martínez del Rio C (1997) Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments. Ecology 78:12711276 Gannes LZ, Martínez del Rio C, Koch P (1998) Natural abundance variations in stable isotopes and their potential uses in animal physiological ecology. Comp Biochem Physiol 119:725-737 Gibbs RH, Collete BB (1967) Comparative anatomy and systematics of the tunas, genus Thunnus. US Fish Wildlife Serv 66:65-130 Graham JB Dickson KA (2004) Tuna comparative physiology. J Exp Biol 207:40154024 Graham BS, Koch, PL, Newsome SD, McMahon KW, Aurioles D (2010) Using isoscapes to trace the movements and foraging behavior of top predators in oceanic ecosystems. En: West JB, Bowen G, Dawson T, Tu K (eds.) Isoscapes: understanding movement, pattern, and process on Earth through isotope mapping. Chapter 14. Springer-Verlag, New York, pp 299-318 Ϯϰ Hinke JT, Kaplan IC, Aydin K, Watters GM, Olson RJ, Kitchell JF (2004) Visualizing the food-web effects of fishing for tunas in the Pacific Ocean. Ecol Soc 9:10 [online] URL:http://www.ecologyandsociety.org/vol9/iss1/art10/ Hobson KA (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120:314-326 Hobson KA, Piatt JF, Pitocchelli J (1994) Using stable isotopes to determine seabird trophic relationships. J Anim Ecol 63:786-798 ICCAT (2002). ICCAT workshop on bluefin tuna mixing. Collect Vol Sci Pap ICCAT 54: 261-352 ICCAT (2007). Report of the 2006 Atlantic bluefin tuna stock assessment session. Collect Vol Sci Pap ICCAT 60:652-880 ICCAT (2008) Report of the 2008 Meeting of the Standing Committee on Research & Statistics (SCRS) Madrid, Spain, October, 2008. ICCAT (2009) Report of the standing committee on research and statistics (SCRS) Madrid, Spain, October 5-9, 2009. 270 p ICCAT (2010) Report of the 2010 Meeting of the Standing Committee on Research & Statistics (SCRS) Madrid, Spain, October, 2010. ICCAT (2011) Report of the standing committee on research and statistics (SCRS) Madrid, Spain, October 3-7, 2009. 264 p Itoh T, Tsuji S, Nitta A (2003) Swimming depth, ambient water temperature preference, and feeding frequency of young Pacific bluefin tuna (Thunnus orientalis) determined with archival tags. Fish Bull 101:535-544 Karakulak FS, Salman A, Oray IK (2009) Diet composition of bluefin tuna (Thunnus thynnus L. 1758) in the Eastern Mediterranean Sea, Turkey. J Appl Ichthyol 25:757761 Ϯϱ Kiljunen M, Grey J, Sinisalo T, Harrod C, Immonen H, Jones RI (2006) A revised model for lipid-normalizing į13C values from aquatic organisms, with implications for isotope mixing models. J Appl Ecol 43:1213-1222 Lee CL (1998). A study on the feasibility of the aquaculture of the southern bluefin tuna Thunnus maccoyii, in Australia. Rep Agricul Fishe Fores Austral (AFFA). Fisheries, Government of Western Australia, Broome, Australia, 91 pp Lioka C, Kani K, Nhhala H (2000) Present status and prospects of technical development of tuna sea-farming. Cah Opt Méditerr 47:275-286 Logan JM, Jardine TD, Miller TJ, Bunn SE, Cunjak RA, Lutcavage ME (2008) Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. J Anim Ecol 77:838-846 Logan JM, Rodríguez-Marín E, Goñi N, Barreiro S, Arrizabalaga H, Golet W, Lutcavage M (2011) Diet of young Atlantic bluefin tuna (Thunnus thynnus) in eastern and western Atlantic foraging grounds. Mar Biol 158:73-85 Lutcavage ME, Brill RW, Skomal GB, Chase BC, Howey PW (1999) Results of pop-up satellite tagging of spawning size class fish in the Gulf of Maine: do North Atlantic bluefin tuna spawn in the mid-Atlantic? Can J Fish Aquat Sci 56:173-177 Lutcavage ME, Brill RW, Skomal GB, Chase BC, Goldstein JL, Tutein J (2000) Tracking adult North Atlantic bluefin tuna (Thunnus thynnus) in the northwestern Atlantic using ultrasonic telemetry. Mar Biol 137:347-358 Macko SA, Helleur R, Hartley G, Jackman P (1990) Diagenesis of organic matter - A study using stable isotopes of individual carbohydrates. Organic Geochem 16:11291137 Martínez del Rio C, Wolf BO (2004) Mass-balance models for animal isotopic ecology. En: Starck JM, Wang T (eds.) Physiological consequences of feeding. Springer, Berlin Heidelberg New York Ϯϲ Mather FJ, Mason JM, Jones AC (1995) Historical document: Life History and Fisheries of Atlantic Bluefin Tuna NOAA Technical Memorandum NMFSSEFSC- 370: 165 pp. Medina A, Abascal FJ, Megina C, García A (2002) Stereological assessment of the reproductive status of female Atlantic northern bluefin tuna during migration to Mediterranean spawning grounds through the Strait of Gibraltar. J Fish Biol 60:203217 Medina A, Abascal FJ, Aragón L, Mourente G., Aranda G, Galaz JM, Belmonte A, De la Serna JM, García S (2007). Influence of sampling gear in assessment of reproductive parameters for bluefin tuna in the western Mediterranean. Mar Ecol Prog Ser 337:221-230 Minagawa M, Wada E (1984) Stepwise enrichment of į15N along food chains: further evidence and the relation between į15N and animal age. Geochim Cosmochim Acta 48:1135-1140 Mylonas CC, Bridges CR, Gordin H, Belmonte Ríos A, García A, de la Gándara F, Fauvel C, Suquet M, Medina A, Papadaki M, Heinisch G, De Metrio G, Corriero A, Vassallo-Agius R, Guzmán JM, Mañanos E, Zohar Y (2007) Preparation and administration of gonadotropin-releasing hormone agonist (GnRHa) implants for the artificial control of reproductive maturation in captive-reared Atlantic bluefin tuna (Thunnus thynnus). Rev Fish Sci 15:183-210 Neilson JD y Campana SE (2008) A validate description of age and growth of western Atlantic bluefin tuna (Thunnus thynnus). Can J Fish Aquat Sci 65:1523-1527 Nemerson D, Berkeley S, Safina C (2000) Spawning site fidelity in Atlantic bluefin tuna, Thunnus thynnus: the use of size-frequency analysis to test for the presence of migrant east Atlantic bluefin tuna on Gulf of Mexico spawning grounds. Fish Bull 98:118-126 Nikolsky CV (1963) The ecology of fishes. Academic Press, London, 352 pp Ϯϳ Olson RJ, Waters JM (2003) A model of the pelagic ecosystem in the eastern tropical Pacific Ocean. Inter Amer Trop Tuna Comm Bull 22:133-217 Overholtz WJ (2006) Estimates of consumption of Atlantic herring (Clupea harengus) by bluefin tuna (Thunnus thynnus) during 1970–2002: an approach incorporating uncertainty. J Northwest Atl Fish Sci 36:55-63 Parnell A, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5:e9672 Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Ann Rev Ecol Syst 18:293-320 Phillips DL, Gregg JW (2003) Source portioning using stable isotopes: coping with too many sources. Oecologia 136:261-269 Pinkas L (1971) Bluefin tuna food habits. En: Pinkas L, Oliphant MS, Iverson ILK, (eds.) Food habits of albacore, bluefin tuna, and bonito in California waters. Dep Fish Game Fish Bull 152:47-63 Pinnegar JK, Polunin NVC (1999) Differential fractionation of į13C and į15N among fish tissues: implications for the study of trophic interactions. Funct Ecol 13:225-231 Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703-718 Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montaña CG (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179-189 Preum JCP (2011) Lipid correction model of carbon stable isotopes for a cosmopolitan predator, spiny dogfish Squalus acanthias. J Fish Biol 79:2060-2066 Radtke RL, Williams DF, Hurley PCF (1987) The stable isotopic composition of bluefin tuna (Thunnus thynnus) otoliths: evidence for physiological regulation. Comp Biochem Physiol 87:797-801 Ϯϴ Rau GH, Takahashi T, Marais DJD (1989) Latitudinal variations in plankton į13C: implications for CO2 and productivity in past oceans. Nature 341:516-518 Richards WJ (1976) Spawing of Bluefin tuna (Thunnus thynnus) in the Atlantic Ocean and adjacent seas. ICCAT. Tunas, Collect Vol Sci Pap ICCAT 5:267-278 Rooker J, Secor D, Zdanowicz V, Itoh T (2001) Discrimination of northern bluefin tuna from nursery areas in the Pacific Ocean using otolith chemistry. Mar Ecol Prog Ser 218:275-282 Rooker JR, Secor DH, Zdanowicz VS, De Metrio G, Orsi-Relini L (2003) Identification of Atlantic bluefin tuna (Thunnus thynnus) stocks from putative nurseries using otolith chemistry. Fish Oceanogr 12:75-84 Rooker JR, Bremer JR, Block BA, Dewar H, De Metrio G, Corriero A, Kraus RT, Prince, ED, Rodríguez-Marín E, Secor DH (2007) Life history and stock structure of Atlantic bluefin tuna (Thunnus thyunnus). Rev Fish Sci 15:265-310 Rooker JR, Secor DH, DeMetrio G, Kaufman JA, Belmonte Rios A, Ticina A (2008a) Evidence of trans-Atlantic mixing and natal homing of bluefin tuna. Mar Ecol Prog Ser 368:231-239 Rooker JR, Secor DH, DeMetrio G, Schloesser R, Block BA, Neilson JD (2008b) Natal homing and connectivity in Atlantic bluefin tuna populations. Science 322:742-744 Sanz Brau A (1990) Sur la nourriture des jeunes thons rouge Thunnus thynnus (L. 1758) des côtes du golfe de Valence. Rapp Comm Int Médit 32:274 Sarà G, Sarà R (2007) Feeding habits and trophic levels of bluefin tuna Thunnus thynnus of different size classes in the Mediterranean Sea. J Appl Ichthyol 23:122127 Secor DH, Zdanowicz VS (1998) Otolith microconstituent analysis of juvenile bluefin tuna (Thunnus thynnus) from the Mediterranean Sea and Pacifc Ocean Fish Res 36:251-256 Ϯϵ Semmens, BX, Moore JW (2008) MixSIR: A Bayesian stable isotope mixing model. Version 1.0 Sissenwine MP, Mace PM, Powers JE, Scott GP (1998) A commentary on Western Atlantic Bluefin Tuna Assessments. Trans Am Fish Soc 127: 838-855 Sotiropoulos MA, Tonn WM, Wassenaar LI (2004) Effects of lipid extraction on stable carbon and nitrogen isotope analyses of fish tissues: potential consequences for food web studies. Ecol Freshw Fish 13:155-160 Steele KW, Daniel RM (1978) Fractionation of nitrogen isotopes by animals - a further complication to use of variations in natural abundance of 15 N for tracer studies. J Agric Sci 90:7-9 Sulzman EW (2007) Stable isotope chemistry and measurement: a primer. En: Michener R, Lajtha K (eds.) Stable isotopes in ecology and environmental science, 2nd edition, Malden, MA, pp 1-21 Susca V, Deflorio M, Corriero A, Bridges CR, De Metrio G (2000). Sexual maturation in the bluefin tuna (Thunnus thynnus) from the central Mediterranean Sea. En: Noberg B, Kjesbu OS, Taranger GL, Andersson E, Stefansson SO (eds.) Proceedings of the 6th International Symposium on the Reproductive Physiology of Fish, Bergen Sweeting CJ, Polunin NVC, Jennings S (2006) Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rap Commun Mass Spectr 2:595-601 Teo SLH, Boustany A, Dewar H, Stokesbury MJW, Weng KC, Beemer S, Seitz AC, Farwell CJ, Prince ED, Block BA (2007). Annual migrations, diving behavior, and thermal biology of Atlantic bluefin tuna, Thunnus thynnus, on their Gulf of Mexico breeding grounds. Mar Biol 238:1-18 Thomson JJ, Aston FW, Soddy F, Merton TR, Lindemann FA (1921) Discussion on isotopes. Proc Royal Soc Lond Series 99:87-104 ϯϬ Tiews K (1963) An attempt to estimate the rate of transatlantic exchange of large bluefin tuna from German tuna catches by means of the feeding condition factor K. ICES Scombriform Fish Committee 9:59-67 Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet į15N enrichment: a meta-analysis. Oecologia 136:169-182 Varela JL, Larrañaga A, Medina A (2011) Prey-muscle carbon and nitrogen stable isotope discrimination factors in Atlantic bluefin tuna (Thunnus thynnus) J Exp Mar Biol Ecol 406:21-28 Varela JL, de la Gándara F, Ortega A, Medina A (2012) 13C and 15N analysis in muscle and liver of wild and reared young-of-the-year (YOY) Atlantic bluefin tuna. Aquaculture. doi:10.1016/j.aquaculture.2012.04.040 Walli A, Teo SLH, Boustany A, Farwell CJ, Williams T, Dewar H, Prince E, Block BA (2009) Seasonal movements, aggregations and diving behavior of Atlantic bluefin tuna (Thunnus thynnus) Revealed with Archival Tags. PLoS ONE 4:e6151 Wilson SG, Lutcavage ME, Brill RW, Genovese MP, Cooper AB, Everly AW (2005) Movements of bluefin tuna (Thunnus thynnus) in the nortwestern Atlantic Ocean recorded by pop-up satellite archival tags. Mar Biol 146:409-423 Wootton R J (1999) Ecology of Teleost Fishes. London: Kluwer Academic Publishers Young JW, Lamb TD, Le D, Bradford RW, Whitelaw AW (1997) Feeding ecology and interannual variations in diet of southern bluefin tuna, Thunnus maccoyii, in relation to coastal and oceanic waters off eastern Tasmania Australia. Environ Biol Fish 50: 275-291 ϯϭ ϯϮ &+$37(5Prey-muscle carbon and nitrogen stable-isotope discrimination factors in Atlantic bluefin tuna (Thunnus thynnus) &KDSWHUĵ&DQGĵ1GLVFULPLQDWLRQIDFWRUVLQEOXHILQWXQD 2. CHAPTER 1. Prey-muscle carbon and nitrogen stable-isotope discrimination factors in Atlantic bluefin tuna (Thunnus thynnus) Abstract Analyses of carbon and nitrogen stable isotopes naturally occurring in animal tissues prove useful in trophic ecology investigations. The correct interpretation of field stable-isotope data should be supported by previous experimental work, but the development of isotopic models is frequently based on untested assumptions. This study was conducted to provide reference isotopic data that may be of application in further studies designed to reconstruct diets and elucidate trophic relationships of Atlantic bluefin tuna, Thunnus thynnus. The influence of the fat content on carbon and nitrogen isotope ratios (į13C and į15N), as well as prey-predator discrimination factors (ǻ13C and ǻ15N), were assessed in white-muscle samples of wild-caught bluefin tuna reared on chub mackerel for approximately five months. Lipid extraction resulted in significantly lower values of C:N ratio, and higher values of į13C and į15N. Four significantly different ǻ13C and ǻ15N estimates were obtained using all possible combinations of bulk and lipid-extracted muscle data from predator and prey. Removal of lipids from bluefin tuna muscle resulted in significantly different ǻ13C and ǻ15N estimates, whereas lipid extraction from prey samples did not significantly change the results. We suggest that, where specific experimental data are not available, the values proposed here for ǻ13C (-0.16‰) and ǻ15N (1.64‰) be used in diet reconstruction and food-web investigations on bluefin tuna and other closely related species. Key-words: diet-tissue discrimination, lipid extraction, stable isotopes, Thunnus thynnus, trophic markers ϯϱ &KDSWHUĵ&DQGĵ1GLVFULPLQDWLRQIDFWRUVLQEOXHILQWXQD 2.1. Introduction The Atlantic bluefin tuna, Thunnus thynnus (Linnaeus, 1758), is a large migratory fish that occurs throughout the North Atlantic and the Mediterranean Sea, and exhibits physiological and morphological adaptations that enable it to exploit a wide range of pelagic environments (Mather et al., 1995; Collette et al., 2001; Fromentin and Powers, 2005). Bluefin tunas, in general, and the Atlantic bluefin tuna, in particular, are currently the focus of intense scientific (and popular) debate due to the concerning stock depletion that has occurred in the last two decades (Mather et al., 1995; Sissenwine et al., 1998; Fromentin, 2001; Fromentin and Powers, 2005; MacKenzie et al., 2009). In spite of recent significant advances in the understanding of tuna biology and ecology, there still exists a lack of knowledge on key processes of the population dynamics that are essential for an effective stock assessment and the implementation of ecosystem-based management strategies (Fromentin and Powers, 2005). Thunnus thynnus is a key apex predator that feeds on a variety of fish and invertebrates, and so has been regarded as an opportunistic and generalist feeder (Chase, 2002; Estrada et al., 2005; Sarà and Sarà, 2007; Karakulak et al., 2009; Logan et al., 2011). Consequently, T. thynnus, like other tunas, play a key role in pelagic ecosystems, since they may exert an important influence on the food-web dynamics through top-down predatory control and can cause shifts in the trophic interactions between species (Hinke et al., 2004; Overholtz, 2006; Frank et al., 2005; Frank et al., 2007). Reports on foraging habits based on stomach content analysis have revealed that T. thynnus feed mainly on teleosts, though also squid and, to a lesser extent, crustaceans (Chase, 2002; Sarà and Sarà, 2007; Karakulak et al., 2009; Logan et al., 2011). A similar feeding pattern has been found in the two co-generic bluefin tuna species, T. orientalis (Pinkas, 1971) and T. maccoyii (Young et al., 1997). The accurate determination of diet composition in Thunnus from direct stomach content analyses is hampered by a number of constraints: i) the efficient and rapid ϯϲ &KDSWHUĵ&DQGĵ1GLVFULPLQDWLRQIDFWRUVLQEOXHILQWXQD digestion process (Aloncle and Delaporte, 1970), favoured by visceral warming (Carey et al., 1984; Graham and Dickson, 2001; Itoh et al., 2003), which often results in a high percentage of empty, or nearly empty, stomachs (Chase, 2002); ii) the uneven digestion rates of different prey, which may bias final conclusions, and iii) the stressinduced regurgitation that sometimes happens during capture (Chase, 2002). For these reasons, the analysis of carbon and nitrogen stable-isotope ratios (į13C and į15N) as dietary markers is a powerful complementary tool to the study of bluefin tuna feeding ecology. Furthermore, isotopic analyses allow a long-term integrated measure of diet compared to the extremely short timescale provided by direct prey identification from gut contents (McKechnie, 2004; Logan et al., 2011). The natural abundance of carbon and nitrogen stable isotopes present in the tissues of animals allow researchers to investigate the origin and pathways of organic matter from primary producers to intermediate and top-level consumers, since isotopes are transferred throughout the food web following a stepwise pattern of enrichment (DeNiro and Epstein, 1978, 1981; Minagawa and Wada, 1984; Fry, 1988), usually referred to as discrimination factor (Martínez del Río et al., 2009). In practice, the overall relative increase in nitrogen stable isotope values between consumers and their diet (ǻ15N) is usually assumed to be 3-4‰ per trophic level (DeNiro and Epstein, 1981; Minagawa and Wada, 1984; Fry, 1988; Sweeting et al., 2007a), while the į13C value changes much less as carbon moves through food webs, the average ǻ13C being estimated as < 1‰ (DeNiro and Epstein, 1978; Peterson and Fry, 1987; Post, 2002). Hence, į13C signatures are typically used to infer primary sources of carbon, whereas į15N provides a more robust measure of the relative trophic position of an organism (Fry, 1988; Vander Zanden and Rasmussen, 1999; Post, 2002). Nevertheless, the isotopic signatures should be referred to appropriate isotopic baselines to reliably identify dietary carbon sources or positions in food chains (Post, 2002). Reliable estimations of discrimination factors are also required to calculate trophic position in the food web (Caut et al., 2009). The stable-isotope methodology may help resolve ϯϳ &KDSWHUĵ&DQGĵ1GLVFULPLQDWLRQIDFWRUVLQEOXHILQWXQD complex questions in animal trophic ecology, but its application is often based on assumptions that are not tested previously; therefore, the proper interpretation of stable-isotope patterns in the field demands comparative laboratory experiments to assess their validity (Gannes et al., 1997; Martínez del Río et al., 2009). In earlier research on T. thynnus feeding ecology, based on estimates published for other species, Estrada et al. (2005) and Sarà and Sarà (2007) assumed a į15N discrimination factor of 3.4‰ per trophic level for white muscle, whereas Logan et al. (2011) used isotopic discrimination factors of 1.4‰ (ǻ13C) and 1.3‰ (ǻ15N) for liver tissue. Vizzini et al. (2010) measured stable-isotope composition (į13C and į15N) with the purpose of investigating the transfer of pollutants from the diet to muscle and liver tissues of wild and farmed bluefin tuna. However, no experimental research has been conducted specifically to determine carbon and nitrogen stable-isotope discrimination factors between bluefin tuna and their prey, though such reference values could be useful in future trophic ecology studies. As į13C values are generally lower in samples that are rich in fat tissue, lipid extraction or mathematical corrections are commonly, but not always, performed to reduce variability due to differences in the lipid content of the samples (Sotiropoulos et al., 2004; Trueman et al.; 2005; Murry et al., 2006; Sweeting et al., 2006; Ingram et al., 2007; Post et al., 2007; Logan et al., 2008; Logan, 2009; Hoffman and Sutton, 2010). Pretreatment of samples to remove lipids seems to be particularly relevant in the case of migratory fishes such as the bluefin tuna, because their fat reserves are known to vary markedly depending on seasonality, migratory patterns, foraging success and life cycle stages (Medina et al., 2002; Mourente et al., 2002; Abascal et al., 2004; Goldstein et al., 2007; Golet et al., 2007; Goñi and Arrizabalaga, 2010), so that fluctuations of the lipid content can significantly affect the results of stable-isotope analyses (Logan, 2009). The present study was undertaken to determine the discrimination factors for carbon and nitrogen stable-isotope ratios (į13C and į15N) in Atlantic bluefin tuna (T. ϯϴ &KDSWHUĵ&DQGĵ1GLVFULPLQDWLRQIDFWRUVLQEOXHILQWXQD thynnus) relative to a common prey in the east Atlantic and Mediterranean Sea, the Atlantic chub mackerel (Scomber colias Gmelin, 1789). We analyzed samples of white muscle, which is the most commonly used (Vanderklift and Ponsard, 2003; Sotiropoulos et al., 2004; Post et al., 2007), and probably the most suitable (Pinnegar and Polunin, 1999), tissue for ecological studies based on stable-isotope analysis in fishes. In addition, we assessed the impact of the fat content on į13C and į15N values. Our main goal was to provide reference isotopic data that may be of use in further studies designed to reconstruct diets and elucidate trophic relationships of bluefin tuna. 2.2. Material and methods 2.2.1. Animals and sampling Wild-caught Atlantic bluefin tuna (Thunnus thynnus) were maintained in a sea cage of a commercial farm located off the coast of Almería, Southeast of Spain. The tuna were captured by purse seine around the Balearic Islands, Spain, in late Mayearly June, 2009, and transferred into towing cages where they were transported over 11-25 days to the farm facility. The fish were not fed during the transportation. Upon arrival, approximately 1000 individuals were herded into one of the grow-out cages of the farm, which measured about 90 m in diameter and 25 m in depth. Over a period of 3 to 5 months, the fish were fed baitfish to satiation once a day, six days a week. The only baitfish species used throughout the rearing was Atlantic chub mackerel, Scomber colias. The chub mackerel (averaging 22 cm in straight fork length and 130 g in body mass) were caught from nearby fishing grounds in the Alborán Sea and Gulf of Cádiz (southern coast of Spain). Samples of white muscle from tuna and prey were frozen and stored at -20 ºC until isotopic analysis. Two samples of mackerel were collected from each of the 12 different bait batches supplied throughout the experiment. Tuna muscle samples were removed from the caudal peduncle of nine fish (average body mass, 117 kg) that died in the purse seine during capture on May 25 and June 11, 2009 (hereafter referred to ϯϵ &KDSWHUĵ&DQGĵ1GLVFULPLQDWLRQIDFWRUVLQEOXHILQWXQD as June samples). Afterwards, ten samples were taken from farm-reared fish (averaging 280 kg in body mass) on September 29, 2009, and another 14 samples from farmed fish (average body mass 200 kg) were collected on November 23, 2009. The sampling dates were subjected to commercial slaughters scheduled according to market demands. 2.2.2. Sample treatment The white muscle samples were thawed, rinsed with distilled water, transferred to glass vials and freeze-dried for at least 48 h. Each lyophilized sample was ground to powder and then split into two subsamples, one of which (bulk muscle sample) was prepared directly for į13C and į15N analysis as indicated below. The other subsample (lipid-extracted muscle sample) was subjected to total lipid extraction prior to the isotopic analysis, according to a modification of the method of Bligh and Dyer (1959). The subsample was placed in 5 ml of a chloroform-methanol solution (2:1 v/v) for 10 min, and then centrifuged at 1500 g for 5 min. Afterwards, the supernatant was removed with a glass Pasteur pipette and placed in glass vials. After evaporation of the solvent at 40 ºC for 24-48 h, the lipid fraction was weighed to the nearest 0.0001 g. The lipid content (%) was then calculated on a dry weight basis (lipid mass × 100 / total lyophilized muscle mass). Finally, the lipid-extracted fraction of each sample was dried for 24 h at 40ºC for further į13C and į15N analysis. 2.2.3. Stable isotope analysis Aliquots (0.9-1.1 mg) of bulk and lipid-extracted samples were placed into tin capsules. The content of 13 C and 15 N was measured by continuous gas flow system using a Thermo Finnigan Elementary Analyzer Flash EA 1112 coupled to a Finnigan MAT Delta Plus mass spectrometer. The relative abundances of 13 C and 15 N were reported as isotopic ratios (parts per thousands, ‰) relative to standards: įX = [(Rsample / Rstandard) – 1] × 1000 ϰϬ &KDSWHUĵ&DQGĵ1GLVFULPLQDWLRQIDFWRUVLQEOXHILQWXQD where X is 13 C or 15 N, R is the ratio 13 C/12C or 15 N/14N, and standard refers to Vienna Pee Dee Belemnite carbonate for į13C and atmospheric nitrogen for į15N (Peterson and Fry, 1987). Values for C:N are reported as the percent weight ratio corrected for element atomic mass (14 %C / 12 %N). The carbon and nitrogen stable isotopic ratio discrimination for each bluefin tuna muscle sample in relation to the prey (ǻX i) was calculated (eq. 1) as: ǻX i = įXi Tt – (ȈįXi Sc / 24) where įXi Tt (1) represents the stable isotopic ratio (carbon or nitrogen) of the tuna (T. thynnus) muscle samples and ȈįXi Sc / 24 corresponds to the mean isotopic ratio of the prey (S. colias). The average discrimination factor for each stable isotope was then Q determined as ¦ ǻX . i L= 2.2.4. Statistical analysis Values of į13C, į15N and C:N were compared between bulk and lipid-extracted samples using paired-sample t-tests. The strength of relationships between two variables was measured by Pearson’s correlation coefficient, r, and simple regression analyses were used to evaluate these relationships. Comparisons of means of the different variables throughout the duration of the experiment were carried out by oneway analysis of variance (ANOVA) followed, where relevant, by Gabriel's post-hoc test. When data did not meet the assumption of variance homogeneity (Levene’s test), the Kruskal-Wallis test was applied to analyse differences among samplings; MannWhitney U-test was used to locate differences between pairs of sample groups. Differences in ǻ13C and ǻ15N between the samples of September and November were analysed by Student’s t-test. A repeated measures ANOVA was used to test for potential differences among the four discrimination factors that were obtained for each experimental subject depending on whether consumer and prey muscle tissues were treated for lipid removal; it was then followed by paired t-tests with Bonferroni ϰϭ &KDSWHUĵ&DQGĵ1GLVFULPLQDWLRQIDFWRUVLQEOXHILQWXQD corrections. A significance level of Į = 0.05 was considered in all statistical tests. Statistical analyses were performed using SPSS version 15.0 (SPSS. Inc, Chicago, IL). 2. 3. Results In all bluefin tuna sample groups, extraction of lipids from muscle resulted in significantly increased values of į13C and į15N (Table 2.1) (paired-sample t-test, P < 0.01). In the wild-caught tuna, the mean (±SD) increments were 0.98‰ (±0.63‰) for į13C and 0.38‰ (±0.12‰) for į15N, whereas in the farmed tuna (pooled data of September and November) the differences were higher: 2.33‰ (±0.67‰) and 0.63‰ (±0.18‰), respectively. C:N ratio values were significantly lower in the lipid-extracted samples (Table 2.1) (paired-sample t-test, P < 0.01), with mean differences of 0.73 (±0.59) in wild fish and 2.64 (±1.10) in farmed fish. Table 2.1. Carbon and nitrogen isotopic and elemental ratio analysis of bluefin tuna white muscle samples. Lipid content (%) 13 į C 13 į CB 13 (‰) 15 į N į CLE 13 13 į CLE - į CB 15 į NB C:N į NLE 15 September (n = November (n = Statistical 9) 10) 14) tests 12.39 32.57 (±8.65) b AN, GT a K-W, M-W -20.89 (±0.71) -20.52 (±0.57) -18.25 -18.23 (±0.29) -18.42 (±0.64) 0.98 2.66 (±0.50) b 11.11 (±0.30) a,b 11.83 (±0.28) b b a,b į NLE - į NB C:NB 0.38 4.57 0.72 (±0.16) b 7.15 (±1.37) C:NLE 3.84 4.13 (±0.14) C:NB - C:NLE 27.38 (±4.32) -19.23 10.89 15 b a 10.51 15 (‰) June (n = 0.73 3.03 (±1.26) b 2.10 (±0.70) b AN AN, GT 11.27 (±0.20) b K-W, M-W 11.83 (±0.23) b K-W, M-W b 0.57 (±0.18) b 6.81 (±0.90) AN, GT AN, GT 4.45 (±0.52) b AN, GT 2.36 (±0.92) b AN, GT Carbon and nitrogen stable-isotope and elemental ratio analysis (mean (±SD)) of bulk (subscript B) and lipid-extracted (subscript LE) muscle samples from wild tuna (June) and captive tuna reared on chub mackerel for ~3 months (September) and ~5 months (November). The only variable that remained unchanged was į13CLE (ANOVA, P=0.67). Mean values within the same row bearing different superscript letters (abb) are significantly different (Pb0.05). AN, analysis of variance (ANOVA); GT, Gabriel's post-hoc test; K–W, Kruskal–Wallis test; M–W, Mann–Whitney U-test. ϰϮ &KDSWHUĵ&DQGĵ1GLVFULPLQDWLRQIDFWRUVLQEOXHILQWXQD Lipid contents increased significantly between June and September, but did not change significantly from September to November (even though a decreasing trend was observed between these months). Significant increases were also observed between June and September in į15NLE, į13CLE- į13CB and į15NLE- į15NB, whereas į13CLE was the only isotopic variable that remained unchanged in the course of the experiment. Likewise, the isotopic data were found to be statistically indistinguishable between the samplings of September and November (Table 2.1). C:N and į13C were strongly correlated in bulk (r = 0.96, P < 0.001) and lipidextracted muscle samples (r = 0.93, P < 0.001). Thus, C:N became a good predictor of į13C through linear functions (P < 0.001) in both bulk (į13CB = -0.56 C:NB – 16.77, r2 = 0.92, P < 0.001) and lipid-extracted (į13CLE = -1.13 C:NLE – 13.48, r2 = 0.86, P < 0.001) samples (Fig. 2.1A,B). No significant correlation was found, however, between C:N and į15N either in untreated or lipid-extracted samples (P > 0.1) (Fig. 2.1C,D). A significant linear relationship (r2 = 0.41, P < 0.001) was also observed between C:NB and the increase in į13C following lipid extraction (į13CLE – į13CB = 0.39 C:NB – 0.39) (Fig. 2.1E). Nevertheless, the relationship between data of C:NB and į15NLE – į15NB showed a poor fit to the linear model (r2 = 0.17, P = 0.04) (Fig. 2.1F). The regression between non-extracted and lipid-extracted muscle isotopic ratios (Fig. 2.1G,H) was not significant for į13C (P = 0.09) but was significant for į15N (į15NLE = 0.71 į15NB + 3.83, r2 = 0.53, P < 0.001). The lipid content did not correlate with į15NB (P = 0.06) (Fig. 2.2C), but was correlated positively with C:NB and negatively with į13CB (P < 0.01), though the regression analyses produced poor fits (Fig. 2.2A,B). The į13C and į15N discrimination factors (ǻ13C and ǻ15N) from prey to bluefin tuna muscle were estimated using data of isotope ratios of both lipid-extracted and bulk tuna samples collected in September and November (Table 2.2). Similarly, untreated as well as lipid-extracted muscle samples of Atlantic chub mackerel were used in the calculations. The mean (± SD) lipid content of the prey samples was 6.88% (± 3.91%), and the mean (± SD) values obtained for į13CB, į15NB and C:NB were, respectively, ϰϯ &KDSWHUĵ&DQGĵ1GLVFULPLQDWLRQIDFWRUVLQEOXHILQWXQD -18.55‰ (±0.59‰), 9.63‰ (±0.36‰) and 3.84 (±0.24) (data not shown on tables). Significant differences were observed in these variables after chloroform-methanol treatment (paired-sample t-test, P < 0.01), with measurements of -18.26‰ (±0.46‰), 9.77‰ (±0.37‰) and 3.71 (±0.13) for į13CLE, į15NLE and C:NLE, respectively. For the calculation of discrimination factors, the expression “ȈįXi / 24” in eq. 1 was Sj substituted by the relevant į13C and į15N above values. A B -17 į CLE (‰) y = -0,56x - 16,77 R2 = 0,92 -20 -21 -18 -19 13 13 į C B (‰) -19 -22 -23 5 6 7 9 -21 10 3,5 4 4,5 C:NB C 12 8 y = -1,13x - 13,48 R2 = 0,86 -20 5 5,5 6 5 5,5 6 C:NLE D 12,4 į NLE (‰) į NB (‰) 11,6 12 15 15 11,2 10,8 11,6 11,2 10,4 5 6 7 8 9 3,5 10 4 4,5 C:NLE C:NB į NLE- į NB (‰) 15 3 2 y = 0,39x - 0,39 R2 = 0,41 1 15 13 13 į C LE- į C B (‰) F 1 E 4 0,8 0,6 y = 0,07x + 0,15 R2 = 0,17 0,4 0,2 0 5 6 7 8 9 5 10 7 8 9 10 C:NB C:NB F 12,8 -17 G y = 0,71x + 3,83 R2 = 0,53 12,4 į NLE (‰) -18 12 15 -19 13 į C LE (‰) 6 11,6 -20 -21 -22,5 -22 -21,5 -21 13 į C B (‰) -20,5 -20 -19,5 11,2 10,6 10,8 11 11,2 11,4 11,6 11,8 15 į NB (‰) Figure. 2.1. Relationships between different isotopic variables, and between isotopic variables and C:N ratios. Subscripts B and LE refer to bulk and lipid-extracted samples, respectively. Non-significant regressions are not shown in the plots. ϰϰ &KDSWHUĵ&DQGĵ1GLVFULPLQDWLRQIDFWRUVLQEOXHILQWXQD A B -19 11,0 y = -5,27x - 19,12 R2 = 0,31 -20 -21 13 C:NB į CB (‰) 9,0 7,0 y = 8,67x + 4,39 R2 = 0,29 -22 -23 5,0 0,1 0,2 0,3 0,4 0,5 0,1 0,2 0,3 Lipid fraction 0,4 0,5 Lipid fraction C 12 11,2 15 į NB (‰) 11,6 10,8 10,4 0,1 0,2 0,3 0,4 0,5 Lipid fraction 13 15 Fig. 2.2. Relationships of C:N ratio, į C and į N of bulk samples with lipid fraction. Only the significant regressions are shown. Four distinct discrimination factor estimates for carbon (ǻ13C) and nitrogen (ǻ15N) stable isotopes were calculated using all possible combinations of bulk and lipidextracted muscle data from predator and prey (Table 2.2). None of the mean ǻ13C and ǻ15N estimates were found to be significantly different between the samples of September and November (Student’s t-test, P > 0.1). Considering the pooled data of both months, repeated-measures ANOVA revealed significant differences among the different estimates of the discrimination factor for both į13C and į15N (P < 0.001). Subsequent pairwise comparisons showed that the lipid-extracted bluefin tuna samples yielded significantly higher ǻ13C and ǻ15N values, but the pretreatment of prey samples for lipid removal did not significantly affect the resulting discrimination factors of either į13C or į15N (Table 2.2). The mean ǻ13C value obtained from lipid-extracted samples in November was -0.16‰ and the ǻ15N estimated from untreated samples was 1.64‰. These values could be used as estimates of bluefin tuna muscle discrimination factors. ϰϱ &KDSWHUĵ&DQGĵ1GLVFULPLQDWLRQIDFWRUVLQEOXHILQWXQD Table 2.2. Prey-muscle 13C and 15N discrimination factor estimates. 13 15 ǻ C (‰) 13 13 ǻ N (‰) 13 13 15 15 15 15 Sampling ǻ CB-b ǻ CB-le ǻ CLE-b ǻ CLE-le ǻ NB-b ǻ NB-le ǻ NLE-b ǻ NLE-le September (n = 10) -2.34 (±0.71) -2.63 (±0.71) 0.33 (±0.29) 0.03 (±0.29) 1.48 (±0.30) 1.34 (±0.30) 2.20 (±0.28) 2.06 (±0.28) November (n = 14) -1.96 (±0.57) -2.26 (±0.57) 0.13 (±0.64) -0.16 (±0.64) 1.64 (±0.20) 1.49 (±0.20) 2.20 (±0.23) 2.06 (±0.23) Pooled data (n = 24) -2.12 (±0.65) a -2.42 (±0.65) a 0.21 (±0.52) b -0.08 (±0.52) b 1.57 (±0.25) a 1.43 (±0.25) a 2.20 (±0.25) b 2.06 (±0.25) b Distinct discrimination factor values (ǻ13C and ǻ15N), expressed as means (±SD), were calculated using the four possible combinations of bulk (subscripts B and b) and lipid-extracted (subscripts LE and le) muscle samples from tuna (capital subscripts) and chub mackerel (lower-case subscripts). Bold values are considered the most suitable estimations for each isotope discrimination factor. Repeated measures ANOVA performed on the pooled data (lower row) revealed significant differences among the discrimination factors obtained for each experimental subject (P < 0.001); significant differences between means (values bearing different superscript letters, a < b) were subsequently located by paired t-test procedure applying Bonferroni correction of the significance level. ϰϲ &KDSWHUĵ&DQGĵ1GLVFULPLQDWLRQIDFWRUVLQEOXHILQWXQD 2.4. Discussion In recent years there has been a growing use of stable-isotope analysis in animal diet reconstructions, but the accurate interpretation of trophic ecology based on isotopic models requires laboratory experiments to validate the technique and determine key parameters such as diet-tissue discrimination factors (Gannes et al., 1997; Caut et al., 2008, 2009; Martínez del Río et al., 2009). Although laboratory-based feeding experiments with Atlantic bluefin tuna (Thunnus thynnus) are impractical, the farming industry allows specimens to be maintained in sea cages under semicontrolled conditions, thus offering the opportunity to conduct comparative experimental research. Rearing tuna specimens on a single prey enabled us to assess the impact of the fat content on the measured levels of carbon and nitrogen stable isotopes and estimate their diet-consumer muscle discrimination factors. 2.4.1. Lipid extraction Because lipids are naturally depleted in 13 C compared to proteins and carbohydrates, significant variations in lipid content result in biased carbon stableisotope analyses (DeNiro and Epstein, 1978). To counteract the effect of lipid content variability, either direct lipid extraction or mathematical normalization are frequently applied in į13C analyses (Pinnegar and Polunin, 1999; Sweeting et al., 2006; Post et al., 2007; Logan et al., 2008; Logan, 2009; Martínez del Río et al., 2009; Hoffman and Sutton, 2010). In some instances, however, the relevance of applying mathematical corrections has been questioned (Kiljunen et al., 2006; Post et al., 2007). In fishes, removal of lipids from white muscle samples does frequently cause significant increases in į13C (Pinnegar and Polunin, 1999; Sotiropoulos et al., 2004; Murry et al., 2006; Logan et al., 2008; Logan, 2009; Hoffman and Sutton, 2010). The mean differences (ranging from 0.3 to 2.0‰) between lipid-extracted and bulk muscle samples reported for a variety of fish species (Pinnegar and Polunin, 1999; ϰϳ &KDSWHUĵ&DQGĵ1GLVFULPLQDWLRQIDFWRUVLQEOXHILQWXQD Sotiropoulos et al., 2004; Logan et al., 2008; Elsdon et al., 2010) are consistent with the į13C shift we observed in wild bluefin tuna (0.98‰). Nevertheless, this range is lower than the mean į13C change obtained following lipid extraction in samples from cage-reared tuna (2.33‰). This finding is not surprising because the lipid content measured in the samples of September and November (i.e., farmed fish fed to satiation for 3-5 months) was much higher than that recorded in samples from wild-caught specimens. The efficacy of lipid extraction in reducing the į13C variability associated with varying fat content is reflected by the fact that į13CLE remained consistent throughout the three samplings, while į13CB decreased markedly in association with the lipid content between the first sampling (wild fish) and the two subsequent ones (cagereared fish). Similar variations in muscle lipid content were reported by other authors in cage-reared bluefin tuna between June-July and September (Giménez-Casalduero and Sánchez-Jerez, 2006; YerlȚkaya et al., 2009). It is well known that bluefin tuna lipid stores are depleted during spring-summer as a result of high energy expenditure linked to long-distance reproductive migration and gametogenesis (Medina et al., 2002; Mourente et al., 2002; Abascal et al., 2004; Goldstein et al. 2007). After the breeding season, bluefin tuna move to energy-rich foraging grounds to restore lipid reserves (Rodríguez-Roda, 1964; Cort, 1990; Mather et al., 1995; Block et al., 2001), part of which are accumulated in fat tissue between muscle myomeres (Mourente and Tocher, 2009). C:N was a good predictor of į13C in both bulk (r2 = 0.92) and lipid-extracted (r2 = 0.86) samples. However, although C:N is generally highly correlated with the į13C positive shift due to lipid extraction in aquatic animals (Post et al., 2007; Logan et al., 2008; Hoffman and Sutton, 2010), in the present study the regression analysis showed that C:NB accounted for only 41% of the interindividual variance of į13CLE - į13CB. In addition, while C:N is thought to be highly dependent on the lipid content of muscle samples, the muscle lipid fraction of our cage-reared Atlantic bluefin tuna explained ϰϴ &KDSWHUĵ&DQGĵ1GLVFULPLQDWLRQIDFWRUVLQEOXHILQWXQD only 29% of the C:NB variation. In contrast, Logan (2009) observed a strong linear relationship between C:NB and % lipid (r2 = 0.966) in wild Atlantic bluefin tuna. In view of these results, the application of regression models in our experimental design does not appear to be as reliable for predictions of lipid extraction-dependent į13C differences as it has been found in previous interspecific studies (Sweeting et al., 2006; Pinnegar and Polunin, 1999; Post et al., 2007; Logan et al., 2008; Logan, 2009; Hoffman and Sutton, 2010). Although Fagan et al. (2011) report results similar to ours for lake whitefish, the unexpected poor correlation between tissue C:NB and lipid content could also indicate incomplete lipid removal. Iverson et al. (2001) showed that the effectiveness of different chloroform-methanol extraction methods may significantly differ in samples containing >2% lipid. Incomplete lipid removal would also explain the clear correlation found between C:NLE and į13CLE values (Fig. 2.1B) as opposite to the expected slope close to zero in the regression C:NLE vs. į13CLE; such a bias would influence the carbon discrimination factor values, thus causing artificially low estimates in extracted samples. Lipid-extraction treatments commonly used in analyses of į13C in fish muscle samples may also cause significant (though generally weak: 0.36‰-1‰) shifts in į15N (Pinnegar and Polunin, 1999; Sotiropoulos et al., 2004; Murry et al., 2006; Sweeting et al., 2006; Ingram et al., 2007; Elsdon et al., 2010). Logan (2009) calculated the alteration of į15N linked to chemical lipid extraction to be 0.7‰ in Atlantic bluefin tuna muscle. Our results are consistent with all the above observations, as we measured mean į15N increments of 0.38‰ in the June samples (wild fish) and 0.63 ‰ in the pooled samples of September and November (cage-reared fish). C:N showed no significant linear relationship with į15N in bulk or lipid-extracted samples, and the lipid content did not correlate with į15NB. These results seem to indicate that the measurements of į15N ratios are less dependent on the amount of lipid than those of į13C. ϰϵ &KDSWHUĵ&DQGĵ1GLVFULPLQDWLRQIDFWRUVLQEOXHILQWXQD Unlike the processes responsible for increased į13C following lipid extraction, the mechanisms involved in the positive shifts of į15N values resulting from lipid extraction treatments are not yet fully understood. Solvents that are commonly used to extract polar lipids, such as methanol, can also remove proteins attached to structural fats, thus leading to altered į15N measurements (Sotiropoulos et al., 2004, Sweeting et al., 2006; Ingram et al., 2007). As argued by Ingram et al. (2007), extraction of structural polar proteins along with membrane lipids would lead to increased į15N only if such proteins are significantly depleted in 15 N in relation to other nitrogenous compounds, in which case į15NLE - į15NB and C:NB would be positively correlated. In support of this, and unlike Ingram et al. (2007), we found a weak but significant positive correlation (P = 0.02, r = 0.42) between those variables. Another plausible cause for increases in į15N with lipid extraction is that nitrogenous waste products of protein metabolism (namely, ammonia and ammonium), which are soluble in lipids, can be leached by organic solvents (Murry et al., 2006; Ingram et al., 2007). Given the unpredictable effects of chemical lipid extraction on į15N as well as the uncertainties about their underlying biological causes, we take on here the recommendation of many authors (Sotiropoulos et al., 2004; Murry et al., 2006; Sweeting et al., 2006; Logan et al., 2008; Elsdon et al., 2010) and believe that lipid-extracted samples should be used for the estimation of the į13C discrimination factor from prey to bluefin tuna muscle, whereas bulk samples are more suitable for the analysis of į15N fractionation. 2.4.2. Discrimination factors A turnover of ~94% in 5 months has been estimated for white muscle of juvenile yellowfin tuna, Thunnus albacares (Olson et al., 2010). Therefore, though we were not able to design programmed samplings to make accurate calculations of isotopic turnover rates for bluefin tuna muscle, a rearing time of approximately 5 months appears to be long enough to allow reliable estimations of stable-isotope discrimination factors. Our study did reveal significant differences in the data of isotopic composition ϱϬ &KDSWHUĵ&DQGĵ1GLVFULPLQDWLRQIDFWRUVLQEOXHILQWXQD between June (wild tuna) and September (cage-reared tuna fed chub mackerel), but these values were statistically indistinguishable between the tuna sampled in September and November. This appears to indicate that the isotopic data recorded three months after the diet switch were close to the isotopic equilibrium with the prey. Removal of lipids from bluefin tuna muscle resulted in significantly different ǻ13C and ǻ15N estimates in relation to untreated samples. However, the extraction of lipids from prey samples did not significantly change the results obtained with bulk samples. Therefore, in the present case where prey showed low lipid contents compared to tuna, lipid extraction from prey samples was apparently not as critical as lipid extraction from consumer samples for į13C discrimination factor calculations, but this result should not be generalized across taxa. Our best estimate of the į13C discrimination factor between prey and bluefin tuna muscle was -0.16‰, which was calculated from lipidextracted samples 5 months after the diet switch. The discrimination factor calculated for į 13 N was 1.64‰, which was obtained using bulk samples. A į13C trophic fractionation per trophic level near to zero is widespread in animals (DeNiro and Epstein, 1978; Peterson and Fry, 1987; Post, 2002), though recent studies have suggested higher į13C discrimination factor for fishes (Sweeting et al., 2007b). In contrast, the discrimination factors reported for į15N are more variable (DeNiro and Epstein, 1981; Minagawa and Wada, 1984; Vanderklift and Ponsard, 2003). As experimental measurements of discrimination factors are difficult to perform in many species like tunas, estimates made in other species are often taken from published reviews. This can lead to strongly biased results in isotopic studies (Caut et al., 2009). In a trophic study on bluefin tuna, Estrada et al. (2005) applied the widely assumed 3.4‰ discrimination factor for į15N reported by Minagawa and Wada (1984) in white muscle. Olson et al. (2010) assumed a diet-muscle į15N discrimination factor of 2.4‰ for yellowfin tuna, based on the mean value of marine fishes as reviewed by Vanderklift and Ponsard (2003). Logan et al. (2011), based on data from other fish species (Sweeting et al., 2007a), used a discrimination factor of 1.3‰ for young bluefin ϱϭ &KDSWHUĵ&DQGĵ1GLVFULPLQDWLRQIDFWRUVLQEOXHILQWXQD tuna liver, which is closer to our estimated ǻ15N value of 1.64‰. In farmed bluefin tuna reared on round sardinella, Sardinella aurita, Vizzini et al. (2010) found a remarkably similar į15N discrimination factor (1.7‰) of tuna muscle in relation to the diet. The dietmuscle į15N discrimination factor (1.6‰) obtained by Bode et al. (2007) in tank-reared sardine (Sardina pilchardus) was also similar to our estimates. These estimations are far lower than the 3-4‰ value that is commonly used when experimental species- and tissue-specific assessments of ǻ15N are unavailable. The discrimination factors derived from this study likely do not reflect the total variability occurring in natural populations. Rapid growth rates in captive fish can potentially result in decreased ǻ15N (Trueman et al., 2005), while other factors like temperature (Barnes et al., 2007), diet (Gaye-Siessegger et al., 2003) and metabolic rate (Gaye-Siessegger et al., 2004) have been found to affect į13C and į15N values. Nevertheless, we believe that, unless experimental assessments suited to the specific field data are available, the diet-white muscle discrimination factor values obtained here (ǻ13C = -0.16‰, ǻ15N = 1.64‰) should be applied in diet and food-web investigations involving stable-isotope analysis of bluefin tuna and other phylogenetically related tuna species. Studies using other tissue types (e.g., liver, scales, blood, etc.) would require further experimental research to determine tissuespecific discrimination factors. Acknowledgments The authors are deeply indebted to Antonio Bode (Spanish Institute of Oceanography, A Coruña, Spain) and John Logan (Massachusetts Division of Marine Fisheries, U.S.A.) who helped us assimilate isotopic techniques and principles. We also wish to thank Ángel Luis Fernández (Nature Pesca, S.L., Garrucha, Spain) for graciously providing farm facilities and valuable assistance in samplings, Grup Balfegó for wild tuna samples, and María Lema (Unidad de Técnicas Instrumentales de Análisis, Universade da Coruña) for isotopic analysis. This work was granted by the Spanish ϱϮ &KDSWHUĵ&DQGĵ1GLVFULPLQDWLRQIDFWRUVLQEOXHILQWXQD Ministry of Science and Innovation (MICINN, CTM2007-65178-C02-01/MAR), Junta de Andalucía (RNM-02469) and Red Eléctrica de España - Fundación Migres. 2.5. References Abascal FJ, Megina C, Medina A (2004) Testicular development in migrant and spawning bluefin tuna (Thunnus thynnus (L.)) from the eastern Atlantic and Mediterranean. Fish Bull 102:407-417 Aloncle H, Delaporte F (1970) Rythmes alimentaires et circadiens chez le germon Thunnus alalunga (Bonnaterre 1788). Rev Trav Inst Pêches Mar 34:171-188 Barnes C, Sweeting CJ, Jennings S, Barry JT, Polunin NVC (2007) Effect of temperature and ration size on carbon and nitrogen stable isotope trophic fractionation. Funct Ecol 21:356-362 Block BA, Dewar H, Blackwell SB, Williams TD, Prince ED, Farwell CJ, Boustany A, Teo SLH, Seitz A, Walli A, Fudge D (2001) Migratory movements, depth preferences, and thermal biology of Atlantic bluefin tuna. Science 293:1310-1314 Bode A, Alvarez-Ossorio MT, Cunha ME, Garrido S, Peleteiro JB, Porteiro C, Valdés L, Varela M (2007) Stable nitrogen isotope studies of the pelagic food web on the Atlantic shelf of the Iberian Peninsula. Prog Oceanogr 74:115-131 Carey FG, Kanwisher JW, Stevens ED (1984) Bluefin tuna warm their viscera during digestion. J Exp Biol 109:1-20 Caut S, Angulo E, Courchamp F (2008) Discrimination factors (ǻ15N and ǻ13C) in an omnivorous consumer: effect of diet isotopic ratio. Funct Ecol 22:255-263 Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (ǻ15N and ǻ13C): the effect of diet isotopic values and applications for diet reconstruction. J Appl Ecol 46:443-453 Chase BC (2002) Differences in diet of Atlantic bluefin tuna (Thunnus thynnus) at five seasonal feeding grounds on the New England continental shelf. Fish Bull 100: 168-180 ϱϯ &KDSWHUĵ&DQGĵ1GLVFULPLQDWLRQIDFWRUVLQEOXHILQWXQD Collette BB, Reeb C, Block BA (2001) Systematics of the tunas and mackerels (Scombridae) In: Block BA, Stevens ED (eds.) Tuna: Physiology, Ecology, and Evolution. Academic Press, San Diego, pp. 1-33 Cort JL (1990) Biología y pesca del atún rojo, Thunnus thynnus (L.), del mar Cantábrico. PhD dissertation, Instituto Español de Oceanografía DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495-506 DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341-351 Elsdon TS, Ayvazian S, McMahon KW, Thorrold SR (2010) Experimental evaluation of stable isotope fractionation in fish muscle and otoliths. Mar Ecol Prog Ser 408:195205 Estrada JA, Lutcavage M, Thorrold SR (2005) Diet and trophic position of Atlantic bluefin tuna (Thunnus thynnus) inferred from stable carbon and nitrogen isotopes. Mar Biol 147:37-45 Fagan KA, Koops MA, Arts MT, Power M (2011) Assessing the utility of C:N ratios for predicting lipid content in fishes. Can J Fish Aquat Sci 68:374-385 Frank KT, Petrie B, Choi JS, Leggett WC (2005) Trophic cascades in a formerly coddominated ecosystem. Science 308:1621-1623 Frank KT, Petrie B, Shackell NL (2007) The ups and downs of trophic control in continental shelf ecosystems. Trends Ecol Evol 22:236-242 Fromentin JM (2001) The East Atlantic and Mediterranean bluefin tuna stock management: uncertainties and alternatives. Sci Mar 67:51-62 Fromentin JM, Powers JE (2005) Atlantic bluefin tuna: population dynamics, ecology, fisheries and management. Fish Fish 6:281-306 Fry B (1988) Food web structure on Georges Bank from stable C, N and S isotopic composition. Limnol Oceanogr 33:1182-1190 ϱϰ &KDSWHUĵ&DQGĵ1GLVFULPLQDWLRQIDFWRUVLQEOXHILQWXQD Gannes LZ, O’Brien DM, Martínez del Río C (1997) Stable isotopes in animal ecology: Assumptions, caveats, and a call for more laboratory experiments. Ecology 78:1271–1276 Gaye-Siessegger J, Focken U, Abel HJ, Becker K (2003) Feeding level and diet quality influence trophic shift of C and N isotopes in Nile tilapia (Oreochromis niloticus (L.)). Isotopes Environ. Health Stud 39:125-134 Gaye-Siessegger J, Focken U, Muetzel S, Abel H, Becker K (2004) Feeding level and individual metabolic rate affect į13C and į15N values in carp: implications for food web studies. Oecologia 138:175-183 Giménez-Casalduero F, Sánchez-Jerez P (2006) Fattening rate of bluefin tuna Thunnus thynnus in two Mediterranean fish farms. Cybium 30:51-56 Goldstein J, Heppell S, Cooper A, Brault S, Lutcavage M (2007) Reproductive status and body condition of Atlantic bluefin tuna in the Gulf of Maine, 2000–2002. Mar Biol 151:2063-2075 Golet WJ, Cooper AB, Campbell B, Lutcavage M (2007) Decline in condition of northern bluefin tuna (Thunnus thynnus) in the Gulf of Maine. Fish Bull 105:390395 Goñi N, Arrizabalaga H (2010) Seasonal and interannual variability of fat content of juvenile albacore (Thunnus alalunga) and bluefin (Thunnus thynnus) tunas during their feeding migration to the Bay of Biscay. Prog Oceanog 86:115-123 Graham JB, Dickson KA (2001) Anatomical and physiological specializations for endothermy. In: Block BA, Stevens ED (eds.) Tuna: Physiology, Ecology, and Evolution. Academic Press, San Diego, pp. 121-165 Hinke JT, Kaplan IC, Aydin K, Watters GM, Olson RJ, Kitchell JF (2004) Visualizing the food-web effects of fishing for tunas in the Pacific Ocean. Ecol Soc 9:10. [online] URL:http://www.ecologyandsociety.org/vol9/iss1/art10/ Hoffman JC, Sutton TT (2010) Lipid correction for carbon stable isotope analysis of deep-sea fishes. Deep-Sea Res Part I 57:956-964 ϱϱ &KDSWHUĵ&DQGĵ1GLVFULPLQDWLRQIDFWRUVLQEOXHILQWXQD Ingram T, Matthews B, Harrod C, Stephens T, Grey J, Markel R, Mazumde A (2007) Lipid extraction has little effect on the į15N of aquatic consumers. Limnol Oceanogr Methods 5:338-343 Itoh T, Tsuji S, Nitta A (2003) Swimming depth, ambient water temperature preference, and feeding frequency of young Pacific bluefin tuna (Thunnus orientalis) determined with archival tags. Fish Bull 101:535-544 Iverson SJ, Lang SLC, Cooper MH (2001) Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipids 36:1283-1287 Karakulak FS, Salman A, Oray IK (2009) Diet composition of bluefin tuna (Thunnus thynnus L. 1758) in the Eastern Mediterranean Sea, Turkey. J Appl Ichthyol 25:757-761 Kiljunen M, Grey J, Sinisalo T, Harrod C, Immonen H, Jones RI (2006) A revised model for lipid-normalizing į13C values from aquatic organisms, with implications for isotope mixing models. J Appl Ecol 43:1213-1222 Logan J (2009) Tracking diet and movement of Atlantic bluefin tuna (Thunnus thynnus) using carbon and nitrogen stable isotopes. PhD dissertation, University of New Hampshire, Durham, NH Logan JM, Jardine TD, Miller TJ, Bunn SE, Cunjak RA, Lutcavage ME (2008) Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. J Anim Ecol 77:838-846 Logan JM, Rodríguez-Marín E, Goñi N, Barreiro S, Arrizabalaga H, Golet W, Lutcavage M (2011) Diet of young Atlantic bluefin tuna (Thunnus thynnus) in eastern and western Atlantic foraging grounds. Mar Biol 158:73-85 MacKenzie BR, Mosegaard H, Rosenberg AA (2009) Impending collapse of bluefin tuna in the northeast Atlantic and Mediterranean. Conser Let 2:25-34 Martínez del Río C, Wolf N, Carleton SA, Gannes LZ (2009) Isotopic ecology ten years after a call for more laboratory experiments. Biol Rev 84:91-111 ϱϲ &KDSWHUĵ&DQGĵ1GLVFULPLQDWLRQIDFWRUVLQEOXHILQWXQD Mather FJ, Mason JM, Jones AC (1995) Historical document: life history and fisheries of Atlantic bluefin tuna. US Departament of Commerce, NOAA Technical Memorandum. NMFS-SEFSC 370, 165 pp McKechnie AE (2004) Stable isotopes: powerful new tools for animal ecologists. S Afr J. Sci 100:131-134 Medina A, Abascal FJ, Megina C, García A (2002) Stereological assessment of the reproductive status of female Atlantic northern bluefin tuna during migration to Mediterranean spawning grounds through the Strait of Gibraltar. J Fish Biol 60:203217 Minagawa M, Wada E (1984) Stepwise enrichment of 15 N along food chains: further evidence and the relation between į15N and animal age. Geochim Cosmochim Acta 48:1135-1140 Mourente G, Megina C, Díaz-Salvago E (2002) Lipids in female northern bluefin tuna (Thunnus thynnus thynnus L.) during sexual maturation. Fish Physiol Biochem 24:351-363 Mourente G, Tocher DR (2009) Tuna Nutrition and Feeds: Current Status and Future Perspectives. Rev Fish Sci 17:374-391 Murry BA., Farrell JR, Teece MA, Smyntek PM (2006) Effect of lipid extraction on the interpretation of fish community trophic relationships determined by stable carbon and nitrogen isotopes. Can J Fish Aquat Sci 63:2167-2172 Olson RJ, Popp BN, Graham BS, López-Ibarra GA, Galván-Magaña F, Lennert-Cody CE, Bocanegra-Castillo N, Wallsgrove NJ, Gier E, Alatorre-Ramírez V, Balance LT, Fry B (2010) Food-web inferences of stable isotope spatial patterns in copepods and yellowfin tuna in the pelagic eastern Pacific Ocean. Prog. Oceanogr 86:124138 Overholtz WJ (2006) Estimates of consumption of Atlantic herring (Clupea harengus) by bluefin tuna (Thunnus thynnus) during 1970–2002: an approach incorporating uncertainty. J Northwest Atl Fish Sci 36:55-63 ϱϳ &KDSWHUĵ&DQGĵ1GLVFULPLQDWLRQIDFWRUVLQEOXHILQWXQD Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Ann Rev Ecol Syst 18:293-320 Pinkas L (1971) Bluefin tuna food habits. En: Pinkas L, Oliphant MS, Iverson ILK, (eds.) Food habits of albacore, bluefin tuna, and bonito in California waters. Dep Fish Game Fish Bull 152:47-63 Pinnegar JK, Polunin NVC (1999) Differential fractionation of į13C and į15N among fish tissues: implications for the study of trophic interactions. Funct Ecol 13:225-231 Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703-718 Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montaña CG (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179-189 Rodríguez-Roda J (1964) Biología del atún (Thunnus thynnus L.) de la costa sudatlántica española. Invest Pesq 25:33-146 Sarà G, Sarà R (2007) Feeding habits and trophic levels of bluefin tuna Thunnus thynnus of different size classes in the Mediterranean Sea. J Appl Ichthyol 23:122127 Sissenwine MP, Mace PM, Powers E, Scott GP (1998) A commentary on western Atlantic bluefin tuna assessments. Trans Am Fish Soc 127:838-855 Sotiropoulos MA, Tonn WM, Wassenaar LI (2004) Effects of lipid extraction on stable carbon and nitrogen isotope analyses of fish tissues: potential consequences for food web studies. Ecol Freshw Fish 13:155-160 Sweeting CJ, Polunin NVC, Jennings S (2006) Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rap Commun Mass Spectr 2:595-601 Sweeting CJ, Barry J, Barnes C, Polunin NVC, Jennings S (2007a) Effects of body size and environment on diet-tissue į15N fractionation in fishes. J Exp Mar Biol Ecol 340:1-10 ϱϴ &KDSWHUĵ&DQGĵ1GLVFULPLQDWLRQIDFWRUVLQEOXHILQWXQD Sweeting CJ, Barry J, Polunin NVC, Jennings S (2007b) Effects of body size and environment on diet-tissue į13C fractionation in fishes. J Exp Mar Biol Ecol 352: 165-176 Trueman CN, McGill RAR, Guyard PH (2005) The effect of growth rate on tissue-diet isotopic spacing in rapidly growing animals. An experimental study with Atlantic salmon (Salmo salar). Rap Commun Mass Spectr 19:3239–3247 Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet į15N enrichment: a meta-analysis. Oecologia 136:169-182 Vander Zanden MJ, Rasmussen JB (1999) Primary consumer į13C and į15N and the trophic position of aquatic consumers. Ecology 8:1395-1404 Vizzini S Tramati C, Mazzola A (2010). Comparison of stable isotope composition and inorganic and organic contaminant levels in wild and farmed bluefin tuna, Thunnus thynnus, in the Mediterranean Sea. Chemosphere 78:1236-1243 YerlȚkaya P, Gokoglu N, Topuz OK, Gokoglu M (2009) Changes in the proximate composition of bluefin tuna (Thunnus thynnus) reared in the cages located on the Gulf of Antalya (Turkey’s Western Mediterranean coast) during the fattening period. Aquac Res 40:1731-1734 Young JW, Lamb TD, Le D, Bradford RW, Whitelaw AW (1997) Feeding ecology and interannual variations in diet of southern bluefin tuna, Thunnus maccoyii, in relation to coastal and oceanic waters off eastern Tasmania, Australia. Environ Biol Fish 50:275-291 ϱϵ ϲϬ &+$37(5&DQG1DQDO\VLVLQPXVFOHDQGOLYHURI ZLOGDQGUHDUHG\RXQJRIWKH\HDU<2<$WODQWLFEOXHILQ WXQD &KDSWHU&DQG1RIZLOGDQGUHDUHGDJHEOXHILQWXQD 3. CHAPTER 2. 13 C and 15 N analysis in muscle and liver of wild and reared young-of-the-year (YOY) Atlantic bluefin tuna Abstract Stable isotope analysis (SIA) has become a useful tool in trophic ecology research, but experimental studies are essential for their correct application in field studies. Young-of-the-year (YOY) Atlantic bluefin tuna (ABFT) caught in the Mediterranean Spanish coast were reared on a common natural prey to determine prey-muscle and prey-liver discrimination factors. Significantly increased isotopic values were found in lipid-extracted tuna samples of muscle and liver versus bulk samples, while C:N values decreased following lipid extraction. Such isotopic differences were paralleled by differences in the discrimination factors estimated for į13C (ǻ13C) in muscle and liver, though ǻ15N was apparently unaffected by lipid removal. Isotopic differences were observed between muscle and liver for wild ABFT, which was probably due to different turnover rates. The ǻ13C estimates obtained from lipid-extracted samples of muscle and liver were 0.32±0.04 and 0.39±0.23, respectively. ǻ15N values estimated from bulk samples were 1.46±0.06 for muscle and 1.62±0.22 for liver. Key words: stable isotope analysis, juvenile Thunnus thynnus, trophic markers, diet-tissue discrimination factors, lipid extraction ϲϯ &KDSWHU&DQG1RIZLOGDQGUHDUHGDJHEOXHILQWXQD 3.1. Introduction In the last decades stable isotope analysis (SIA) is emerging as an important tool in ecology studies. In particular, stable isotope ratios of carbon (13C/12C, į13C) and nitrogen (15N/14N, į15N) are often used to solve questions related to trophic ecology. SIA can provide trophic information over several weeks or months, depending on the tissue turnover rate (Gannes et al., 1998). In fishes, slow turnover tissues like muscle (Hesslein et al., 1993; MacAvoy et al., 2001) may provide information on feeding at mid-time scale (months), whereas SIA performed in liver, which has a faster metabolic rate (Suzuki et al., 2005; Guelinckx et al., 2007), may give information at a shorter time scale (Logan et al., 2006; MacNeil et al., 2006). Therefore, knowing the isotopic signatures of juvenile tuna tissues and their most common preys, dietary proportions can be estimated using mixing models (Phillips and Gregg, 2001; Moore and Semmens, 2008). Variations in feeding patterns can thus be traced between the Balearic breeding ground and the Spanish Mediterranean coast. For the calculation of dietary proportions from mixing models, prey-consumer tissue discrimination factors should be accurately estimated a priori. A į15N increase of 3-4‰ is generally assumed per trophic level (DeNiro and Epstein, 1981; Minagawa and Wada, 1984; Fry, 1988; Sweeting et al., 2007a), while į13C is assumed to rise around 1‰ (DeNiro and Epstein, 1978; Peterson and Fry, 1987; Post, 2002). In earlier research on Atlantic bluefin tuna (ABFT) feeding ecology, Estrada et al. (2005) assumed a į15N enrichment rate of 3.4‰ per trophic level in muscle tissue, whereas Logan et al. (2011) used isotopic discrimination factors of 1.4‰ (ǻ13C) and 1.3‰ (ǻ15N) in ABFT liver based on estimates made for other fish species by Sweeting et al. (2007a,b). Varela et al. (2011) reported diet-muscle discrimination factors of 1.64‰ for 15N and -0.16‰ for 13C in adult ABFT, but no experimental research has been conducted thus far to determine stableisotope discrimination factors between juvenile ABFT and their prey. The main aim of this study was to provide reference data of į13C and į15N discrimination factors in ϲϰ &KDSWHU&DQG1RIZLOGDQGUHDUHGDJHEOXHILQWXQD muscle and liver of young-of-the-year (YOY) ABFT, which can be useful in trophic ecology studies at early stages of the species’ life span. 3.2. Material and methods 3.2.1. Animals and sampling YOY ABFT (n = 350), averaging 35 cm in fork length and 830 g in body mass, were caught by trolling using barbless hooks off the coast of Cartagena (Murcia, SE Spain) in September and October, 2009 (Fig. 3.1). Live fish (n = 254) were placed into 1200-L cylindrical plastic tanks and transported onboard to El Gorguel (Cartagena, SE Spain), where they were transferred to a circular off-shore cage measuring 25 m in diameter and 20 m in depth. 50% of the fish died during capture and transport operations (Fig 4.1) Figure 3.1. Young-of-the-year (YOY) Atlantic bluefin tuna (ABFT) were collected and reared off Cartagena, SE Spain (Ɣ) in September and October, 2009 Over a period of 3 months, the fish were fed baitfish to satiation once a day, six days a week. The bait supplied consisted of only round sardinella, Sardinella sp. (averaging 8.87 cm in fork length and 5.98 g in body mass), which were collected from ϲϱ &KDSWHU&DQG1RIZLOGDQGUHDUHGDJHEOXHILQWXQD the same area as the YOY ABFT were captured (Fig. 1). A previous study showed that Sardinella accounted for over 50% by mass of the stomach contents from YOY ABFT sampled in September-October, 2009 (Varela et al., 2010). Samples of white muscle removed from the caudal peduncle and liver were taken from ten tuna that died on capture. Sardinella sp. muscle samples were collected from the different bait batches supplied throughout the experiment. Upon completion of the experiment (January 23, 2010) samples were taken from five cage-reared juvenile tuna (averaging 45.76 cm in fork length and 1891.60 g in body mass). All samples were frozen and stored at -20 ºC until analysis. Figure 3.2. Capture and transport of Young-of-the-year (YOY) Atlantic bluefin tuna (ABFT) collected and reared off Cartagena. 3.2.2. Sample treatment Tissue samples were thawed, rinsed thoroughly with distilled water, transferred to glass vials and lyophilized for 48 h. Each frozen-dried sample was ground to powder and then separated into two subsamples, one of which (bulk sample) was used as such ϲϲ &KDSWHU&DQG1RIZLOGDQGUHDUHGDJHEOXHILQWXQD for C:N analysis (C:NB) and SIA (į13CB and į15NB). The other subsample (lipidextracted sample) was subjected to three cycles of lipid extraction with chloroformmethanol prior to the analyses (C:NLE, į13CLE and į15NLE) and the lipid content was determined by gravimetric methods as described in Varela et al. (2011). 3.2.3. Stable isotope analysis (SIA) Aliquots (~1 mg) of bulk and lipid-extracted samples were placed into tin 13 capsules. The relative abundances of C and 15 N were measured as į13C and į 15N (Peterson and Fry, 1987) by continuous gas flow system using a Thermo Finnigan Elementary Analyzer Flash EA 1112 coupled to a Finnigan MAT Delta Plus mass spectrometer. The relative abundances of 13 C and 15 N were reported as isotopic ratios (parts per thousands, ‰) relative to standards: įX = [(Rsample / Rstandard)-1] x 1000 where X is 13 C or 15 N, R is the ratio 13 C/12C or 15 N/14N, and standard refers to Vienna Pee Dee Belemnite carbonate for į13C and atmospheric nitrogen for į15N (Peterson and Fry, 1987). Precision of either C or N isotopic determinations was better than 0.03 ‰. C:N values are reported as the percent weight ratio corrected for element atomic mass (14% for C and 12 % for N). The prey-tissue carbon and nitrogen stable isotopic ratio discrimination was calculated as the difference of į13C and į 15N values between the tuna tissues and the bait muscle. 3.2.4. Statistical analysis Potential significant differences in the values of į13C, į15N and C:N between bulk and lipid-extracted samples were tested by paired-sample t-tests. Student’s t-test was used to assess whether the differences between white muscle and liver data means were statistically different from each other. Repeated measures analysis of variance (ANOVA) was performed to test the occurrence of differences among the four ϲϳ &KDSWHU&DQG1RIZLOGDQGUHDUHGDJHEOXHILQWXQD discrimination factors calculated per individual combining the lipid-extracted and bulk samples from consumer and diet; where relevant, significant differences between means were identified by paired-t tests with Bonferroni corrections. A significance level of Į = 0.05 was chosen for all statistical tests. Statistical analyses were performed using SPSS v. 15.0 (SPSS Inc, Chicago). Data are expressed as mean ± 1SD. 3.3. Results After rearing for 90 days on Sardinella sp., YOY ABFT experienced weight and length increases of 125% and 30%, respectively. Concomitantly, the total lipid content in muscle and liver increased from 8.48±0.02% to 13.34±0.02% and from 14.36±1.97% to 41.27±6.27%, respectively. The mean lipid content of round sardinella muscle was 5.67±0.85%. No significant differences between lipid-extracted and bulk bait muscle (Table 3.1) were observed in į13C and į15N values (paired-sample t-test, P > 0.05). However, a significant decrease was observed in the C:N ratio following lipid extraction (pairedsample t-test, P = 0.017). Table 3.1. Comparison of stable isotopic analysis (SIA) and elemental (C:N) analysis (corrected for element atomic mass) between bulk and lipid-extracted bait (Sardinella sp.) samples. Paired-sample t-test, Bulk muscle Lipid-extracted muscle P-value (n = 5) (n = 5) 13 -17.85±0.13 -17.59±0.04 =0.066 15 į N (‰) 8.67±0.41 8.89±0.50 =0.117 C:N 3.64±0.01 3.56±0.05 =0.017 į C (‰) Significantly increased į13C and į15N values were found in lipid-extracted muscle tuna samples as compared to bulk samples (Table 3.2), with the only exception of į15N in reared tuna (paired-sample t-test, P = 0.815). C:N values significantly decreased after lipid extraction (paired-sample t-test, P < 0.05). ϲϴ &KDSWHU&DQG1RIZLOGDQGUHDUHGDJHEOXHILQWXQD Table 3.2. Variations of the isotopic signatures and C:N values (means ± SD) in bulk (subscript B) and lipid-extracted (subscript LE) muscle samples of wild-caught and 3-month reared YOY ABFT. 13 13 į C (‰) į CB 13 į CLE Paired-sample t-test, P-value 15 į NB 15 į NLE Paired-sample t-test, P-value C:NB C:N C:NLE Paired-sample t-test, P-value 15 į N (‰) Wild fish (n = 10) -17.71±0.18 -17.51±0.23 Reared fish (n = 5) -18.70±0.65 -17.27±0.09 =0.011 =0.007 9.01±0.50 9.65±0.46 <0.001 3.57±0.02 3.52±0.03 <0.001 10.13±0.14 10.16±0.21 =0.815 4.83±0.54 3.88±0.07 =0.013 Student’s t-test, Pvalue =0.026 =0.043 <0.001 =0.057 =0.006 <0.001 The values of į13CLE, į15NB, CNB and CNLE measured in muscle samples of reared fish were significantly higher than in wild fish (t-test, P < 0.05), whereas į13CB was higher in wild fish (t-test, P = 0.026). į15NLE was the only isotopic variable that remained unchanged (t-test, P > 0.057) (Table 3.2). Lipid extraction also caused significant increases in į13C and į15N values in all liver samples, except į15N in reared fish (paired-sample t-test, P = 0.628). However, C:N significantly decreased following lipid extraction (paired-sample t-test, P < 0.001), the difference between C:NB and C:NLE being much greater in reared tuna than in wild individuals (Table 3.3). Significantly higher values were found in all the variables measured in liver of reared fish compared to wild fish (t-test, P < 0.01), with the exception of į13CB, which was higher in wild individuals (t-test, P <0.001). Table 3.3. Variations of the isotopic signatures and C:N values (means ± SD) in bulk (subscript B) and lipid-extracted (subscript LE) liver samples of wild-caught and 3-month reared YOY ABFT. Student’s t-test, Wild fish Reared fish P-value (n = 10) (n = 5) 13 į CB -18.88±0.17 -21.28±0.37 <0.001 13 į C (‰) 13 į CLE -17.92±0.12 -17.20±0.23 <0.001 <0.001 Paired-sample t-test, P-value <0.001 15 į NB 8.65±0.32 10.29±0.22 <0.001 15 į N (‰) 15 į NLE 8.71±0.31 10.26±0.16 <0.001 Paired sample t-test, P-value =0.003 0.628 C:NB 4.64±0.23 10.90±1.23 <0.001 C:N 3.93±0.07 4.82±0.29 =0.002 C:NLE <0.001 Paired sample t-test, P-value <0.001 ϲϵ &KDSWHU&DQG1RIZLOGDQGUHDUHGDJHEOXHILQWXQD Statistical analyses detected significant differences in į13CB, į13CLE and į15NLE between muscle and liver tissues from wild YOY ABFT (compare tables 3.2 and 3.3; results of these statistical analyses are not shown on tables), with lower values corresponding to liver (t-test, P < 0.001); however, į15NB values did not differ between both tissues (t-test, P > 0.142). In the reared fish samples, significant differences between tissues were observed only for į13CB (t-test, P < 0.001). The C:N ratios measured in liver were lower than those obtained in muscle (t-test, P < 0.01) in all tissue samples (both untreated and lipid-extracted) from wild and reared individuals. Discrimination factors for carbon (ǻ13C) and nitrogen (ǻ15N) stable isotopes were estimated using combinations of bulk and lipid-extracted tissue data from consumer and prey (Table 3.4). In both muscle and liver tissues, significant differences were observed among the different discrimination factor values estimated for į13C (repeated measures ANOVA, P < 0.01), but ǻ15N was not apparently affected by the sample treatment (P > 0.05). Subsequent pairwise comparisons (Table 3.4) indicated that lipid extraction from the tuna samples led to significantly higher values of ǻ13C (paired t-test with Bonferroni correction, P < 0.05). 13 15 Table 3.4. Prey-tissue C and N discrimination factor estimates (means ± SD) obtained for YOY ABFT muscle and liver from combinations of bulk (subscripts B and b) and lipid-extracted (subscripts LE and le) samples from tuna (capital subscripts) and round sardinella (lower-case subscripts). Bold values are considered the most suitable estimations for each isotope discrimination factor. 0XVFOH ǻ&%E DE ǻ&Å ǻ&%OH ǻ&/(E E F ǻ&/(OH DF ǻ1%E ǻ1Å ǻ1%OH ǻ1/(E ǻ1/(OH /LYHU ǻ&Å ǻ1Å ǻ&%E ǻ&%OH ǻ&/(E ǻ1%OH ǻ1/(E ǻ1/(OH ǻ&/(OH ǻ1%E D E F G Repeated measures ANOVA detected significant differences among the discrimination factors 13 calculated for į C in both tissues; significant differences between means (values bearing different superscript letters) were identified by paired t-test procedure applying Bonferroni corrections of the significance level (P < 0.05). ϳϬ &KDSWHU&DQG1RIZLOGDQGUHDUHGDJHEOXHILQWXQD 3.4. Discussion YOY ABFT reared on round sardinella underwent weight and length increases comparable to those reported by Kataviü et al. (2003) and Tiþina et al. (2007) for farmed juvenile ABFT averaging ~10 kg in body mass. Their fat content in muscle was relatively low in comparison with wild-caught (Mourente et al., 2002) and reared adults (Varela et al., 2011). Previous studies have correlated the fat content of the samples with differences in į13C values, showing that lipid extraction often causes a rise in į13C values as a result of the naturally lower content of 13 C in lipids compared to proteins and carbohydrates (Murry et al., 2006; Logan and Lutcavage, 2008; Hoffman and Sutton, 2010; Varela et al., 2011). In this study, significant į13C increases were observed in all tuna samples following lipid extraction. The effect of lipid removal on į13C was higher in liver than in white muscle, which was probably due to the higher lipid content of that organ. Similarly, in reared Atlantic salmon (Salmo salar) Trueman et al. (2005) found that į13C increases following lipid extraction were higher in liver than in muscle. Unlike tuna samples, lipid removal did not result in significantly different į13C values in samples of the baitfish supplied to reared ABFT, e. g., round sardinella (present study) or chub mackerel (Varela et al., 2011). The lower lipid content of these samples (< 7%) is the most likely reason for these discrepant results (Pinnegar and Polounin, 1999). It is known that chloroform-metanol lipid extraction can alter į15N values of bluefin tuna samples (Logan and Lutcavage, 2008, Logan, 2009, Varela et al., 2011). Therefore, bulk samples may be more suitable for the calculation of ǻ15N, whereas lipid-extracted samples should be used for ǻ13C estimations. Several authors have suggested that the increase in į15N values following lipid extraction with chloroformmethanol can be caused by removal of some proteins or amino acids bound to polar lipids (Sotiropoulos et al., 2004, Sweeting et al., 2006, Elsdon et al., 2010). In contrast, Murry et al. (2006) proposed that į15N shifts after lipid extraction may be due to ϳϭ &KDSWHU&DQG1RIZLOGDQGUHDUHGDJHEOXHILQWXQD leaching of nitrogenous metabolites (ammonia and ammonium) remaining in the tissue. As į15N shifts induced by lipid extractions are generally weak (0.3‰-1‰), some authors have questioned the need to analyze į15N and į13C from untreated and lipidextracted samples separately (Ingram et al., 2007). A good comprehension of the feeding ecology of fish larvae and juveniles is essential for the understanding of the early life-history and recruitment variability in fishes (Young and Davis, 1990), since the ability of a fish to find food resources at early life-history stages can be a major determinant of its recruitment success (Hjort, 1914; May, 1974; Lasker, 1975). In recent years, the use of SIA in animal diet reconstructions has experienced a remarkable increase due to the improvement of mixing models (Phillips and Gregg, 2003; Semmens and Moore, 2008; Erhardt, 2009). Stable isotope mixing models are based on the potential contribution of different isotopic sources (i.e., diet) to an isotopic mixture (i.e., consumer), and require previous knowledge of the species-, tissue- and diet-specific discrimination factors (Hussey et al., 2010). Some SIA-based studies on tuna trophic ecology have used discrimination factors from published data of other species (Estrada et al., 2005; Olson et al., 2010; Vizzini et al., 2010; Logan et al., 2011). This may cause significant biases in diet estimations, whereby laboratory experiments have been encouraged in order to accurately determine specific diet-tissue discrimination factors (Gannes et al, 1997; Caut et al., 2008, 2009; Wolf et al., 2009). The discrimination factor values estimated in the present paper for į13C (from lipid-extracted samples) and į15N (from bulk samples) in muscle (ǻ13C = 0.32±0.04 and ǻ15N = 1.46±0.06) and liver (ǻ13C = 0.39±0.23 and ǻ15N = 1.62±0.22) are lower than others previously used in adult tunas (Estrada et al., 2005; Sarà and Sarà 2007; Olson et al., 2010; Vizzini et al., 2010; Logan et al., 2011). A very similar nitrogen discrimination factor (ǻ15N = 1.48±0.30) was estimated in muscle of adult ABFT reared on chub mackerel (Scomber colias) for three months (Varela et al., 2011). ϳϮ &KDSWHU&DQG1RIZLOGDQGUHDUHGDJHEOXHILQWXQD The differences observed in most isotopic measures between muscle and liver in wild YOY ABFT may be due to the occurrence of different turnover rates in these organs (Suzuki et al., 2005; Guelinckx et al., 2007). In this regard, liver and muscle could provide information about feeding patterns at two different time-scales (Gannes et al., 1998; Logan, 2009). The rearing conditions of experimental YOY ABFT in the present study implied feeding to satiation, which led to fast growth of the fish. These and other unnatural circumstances could have affected the resulting isotopic values of the analysed tissues with respect to wild individuals (Gaye-Siessegger et al., 2003, 2004; Trueman et al., 2005 ), introducing artificial bias in the discrimination factors obtained. In spite of this fact, our data provide the first estimate of ǻ15N and ǻ13C values determined under semi-controlled conditions for white muscle and liver tissues of juvenile ABFT. This data may be useful in further investigations on the foraging ecology of juvenile bluefin tuna during their transition from breeding ground to foraging coastal waters. Acknowledgements We thank María Lema (Unidad de Técnicas Instrumentales de Análisis, Universade da Coruña) for isotopic analysis. This work was granted by the Spanish Ministry of Science and Innovation (CTM2007-65178-C02-01/MAR), Junta de Andalucía (RNM02469) and the European Community (GA no. 212797). 3.5. References Caut S, Angulo E, Courchamp F (2008) Discrimination factors (ǻ15N and ǻ13C) in an omnivorous consumer: effect of diet isotopic ratio. Funct Ecol 22:255-263 Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (ǻ15N and ǻ13C): the effect of diet isotopic values and applications for diet reconstruction. J Appl Ecol 46:443-453 DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495-506. ϳϯ &KDSWHU&DQG1RIZLOGDQGUHDUHGDJHEOXHILQWXQD DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341-351 Elsdon TS, Ayvazian S, McMahon KW, Thorrold SR (2010) Experimental evaluation of stable isotope fractionation in fish muscle and otoliths. Mar Ecol Prog Ser 408:195205 Erhardt EB (2009) Stable Isotope Sourcing using Sampling. PhD dissertation, University of New Mexico Estrada JA, Lutcavage M, Thorrold SR (2005) Diet and trophic position of Atlantic bluefin tuna (Thunnus thynnus) inferred from stable carbon and nitrogen isotopes. Mar Biol 147:37-45 Fry B (1988) Food web structure on Georges Bank from stable C, N and S isotopic composition. Limnol Oceanogr 33:1182-1190 Gannes LZ, O'Brien DM, Martínez del Rio C (1997) Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments. Ecology 78:12711276 Gannes LZ, Martínez del Rio C, Koch P (1998) Natural abundance variations in stable isotopes and their potential uses in animal physiological ecology. Comp Biochem Physiol 119:725-737 Gaye-Siessegger J, Focken U, Abel HJ, Becker K (2003) Feeding level and diet quality influence trophic shift of C and N isotopes in Nile tilapia (Oreochromis niloticus (L.)). Isotopes Environ. Health Stud 39:125-134 Gaye-Siessegger J, Focken U, Muetzel S, Abel H, Becker K (2004) Feeding level and individual metabolic rate affect į13C and į15N values in carp: implications for food web studies. Oecologia 138:175-183 Guelinckx J, Maes J, Van Den Driessche P, Geysen B, Dehairs F, Ollevier F (2007) Changes in į13C and į15N in different tissues of juvenile sand goby Pomatoschistus minutus: a laboratory diet-switch experiment. Mar Ecol Prog Ser 341:205-215 ϳϰ &KDSWHU&DQG1RIZLOGDQGUHDUHGDJHEOXHILQWXQD Hesslein RH, Hallard KA, Ramlal P (1993) Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by į34S, į13C, and į15N. Can J Fish Aquat Sci 50:2071-2076 Hjort J (1914) Fluctuations In the great fisheries of northern Europe viewed in the light of biological research. Rapp p-v Réun Cons Int Explor Mer 20:1-228 Hoffman JC, Sutton TT (2010) Lipid correction for carbon stable isotope analysis of deep-sea fishes. Deep-Sea Res Part I 57:956-964 Hussey NE, Brush J, McCarthy ID, Fisk AT (2010) į15N and į13C diet–tissue discrimination factors for large sharks under semi-controlled conditions. Comp Biochem Physiol - Part A 155:445-453 Ingram T, Matthews B, Harrod C, Stephens T, Grey J, Markel R, Mazumde A (2007) Lipid extraction has little effect on the į15N of aquatic consumers. Limnol Oceanogr Methods 5:338-343 Kataviü I, Tiþina V, Franiþeviü V (2003) Rearing of small bluefin tunas (Thunnus thynnus L.) in the Adriatic Sea — preliminary study. In: Bridges CR, Gordin H, García A (eds.) Proceedings of the Symposium on Domestication of the Bluefin Tuna, Thunnus thynnus thynnus. Cahiers Options Méditerranéennes, Cartagena (Spain), pp. 95-99 Lasker R (1975) Field criteria for survival of anchovy larvae: the relation between inshore chlorophyll maximum layers and successful first feeding. Fish Bull US 73:453-462 Logan J (2009) Tracking diet and movement of Atlantic bluefin tuna (Thunnus thynnus) using carbon and nitrogen stable isotopes. PhD dissertation, University of New Hampshire, Durham, NH Logan J, Haas H, Deegan L, Gaines E (2006) Turnover rates of nitrogen stable isotopes in the salt marsh mummichog, Fundulus heteroclitus, following a laboratory diet switch. Oecologia 147:391-395 ϳϱ &KDSWHU&DQG1RIZLOGDQGUHDUHGDJHEOXHILQWXQD Logan JM, Lutcavage ME (2008) A comparison of carbon and nitrogen stable isotope ratios of fish tissues following lipid extraction with non-polar and traditional chloroform/methanol solvent systems. Rap Comm Mass Spec 22:1081-1086 Logan JM, Rodríguez-Marín E, Goñi N, Barreiro S, Arrizabalaga H, Golet W, Lutcavage M (2011) Diet of young Atlantic bluefin tuna (Thunnus thynnus) in eastern and western Atlantic foraging grounds. Mar Biol 158:73-85 MacAvoy SE, Macko SA, Garman GC (2001) Isotopic turnover in aquatic predators: quantifying the exploitation of migratory prey. Can J Fish Aquat Sci 58:923-932 MacNeil MA, Drouillard KG, Fisk AT (2006) Variable uptake and elimination of stable nitrogen isotopes between tissues in fish. Can J Fish Aquat Sci 63:345-353 May RC (1974) Larval mortality in marine fishes and the critical period concept In: Blaxter JHS (ed.) The early history of fish. Springer-Verlag, New York, pp 1-19 Minagawa M, Wada E (1984) Stepwise enrichment of į15N along food chains: further evidence and the relation between į15N and animal age. Geochim Cosmochim Acta 48:1135-1140 Moore JW, Semmens B X (2008) Incorporating uncertainty and prior information into stable isotope mixing models. Ecol Let 11:470-480 Mourente G, Megina C, Díaz-Salvago E (2002) Lipids in female northern bluefin tuna (Thunnus thynnus thynnus L.) during sexual maturation. Fish Physiol Biochem 24: 351-363 Murry BA., Farrell JR, Teece MA, Smyntek PM (2006) Effect of lipid extraction on the interpretation of fish community trophic relationships determined by stable carbon and nitrogen isotopes. Can J Fish Aquat Sci 63:2167-2172 Olson RJ, Popp BN, Graham BS, López-Ibarra GA, Galván-Magaña F, Lennert-Cody CE, Bocanegra-Castillo N, Wallsgrove NJ, Gier E, Alatorre-Ramírez V, Balance LT, Fry B (2010) Food-web inferences of stable isotope spatial patterns in copepods and yellowfin tuna in the pelagic eastern Pacific Ocean. Prog Oceanogr 86:124-138 ϳϲ &KDSWHU&DQG1RIZLOGDQGUHDUHGDJHEOXHILQWXQD Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Ann Rev Ecol Syst 18:293-320 Phillips DL, Gregg J.W (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127:171-179 Phillips DL, Gregg JW (2003) Source portioning using stable isotopes: coping with too many sources. Oecologia 136:261-269 Pinnegar JK, Polunin NVC (1999) Differential fractionation of į13C and į15N among fish tissues: implications for the study of trophic interactions. Funct Ecol 13:225-231 Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703-718 Sarà G, Sarà R (2007) Feeding habits and trophic levels of bluefin tuna Thunnus thynnus of different size classes in the Mediterranean Sea. J Appl Ichthyol 23:122127 Semmens BX, Moore JW (2008) MixSIR: A Bayesian stable isotope mixing model. Version 1.0 Sotiropoulos MA, Tonn WM, Wassenaar LI (2004) Effects of lipid extraction on stable carbon and nitrogen isotope analyses of fish tissues: potential consequences for food web studies. Ecol Freshw Fish 13:155-160 Suzuki K, Kasai A, Nakayama K, Tanaka M (2005) Differential isotopic enrichment and half-life among tissues in Japanese temperate bass (Lateolabrax japonicus) juveniles: implications for analyzing migration. Can J Fish Aquat Sci 62:671-678 Sweeting CJ, Polunin NVC, Jennings S (2006) Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rap Commun Mass Spectr 2:595-601 Sweeting CJ, Barry J, Barnes C, Polunin NVC, Jennings S (2007a) Effects of body size and environment on diet-tissue į15N fractionation in fishes. J Exp Mar Biol Ecol 340:1-10 ϳϳ &KDSWHU&DQG1RIZLOGDQGUHDUHGDJHEOXHILQWXQD Sweeting CJ, Barry J, Polunin NVC, Jennings S (2007b) Effects of body size and environment on diet-tissue į13C fractionation in fishes. J Exp Mar Biol Ecol 352: 165-176 Tiþina V, Kataviü I, Grubišiü L (2007) Growth indices of small northern bluefin tuna (Thunnus thynnus, L.) in growth-out rearing cages. Aquaculture 269:538-543 Trueman CN, McGill RAR, Guyard PH (2005) The effect of growth rate on tissue-diet isotopic spacing in rapidly growing animals. An experimental study with Atlantic salmon (Salmo salar). Rap Commun Mass Spectr 19:3239–3247 Varela JL, de la Gándara F, Ortega A, Belmonte A, Esteban F, Medina A (2010) Alimentación del atún rojo atlántico (Thunnus thynnus) de edad 0+ en la costa mediterránea española. “XIV Seminario Nacional de Ciencias y Tecnologías del Mar”. Cali (Colombia) Varela JL, Larrañaga A, Medina A (2011) Prey-muscle carbon and nitrogen stableisotope discrimination factors in Atlantic bluefin tuna (Thunnus thynnus). J Exp Mar Biol Ecol 406:21-28 Vizzini S Tramati C, Mazzola A (2010) Comparison of stable isotope composition and inorganic and organic contaminant levels in wild and farmed bluefin tuna, Thunnus thynnus, in the Mediterranean Sea. Chemosphere 78:1236-1243 Wolf N, Carleton SA, Martinez del Rio C (2009) Ten years of experimental animal isotopic ecology. Funct Ecol 23:17-26 Young JW, Davis TLO (1990) Feeding ecology of larvae of southern bluefin, albacore and skipjack tunas (Pisces: Scombridae). Mar Ecol Prog Ser 61:17-29 ϳϴ &+$37(5(VWLPDWLQJGLHWVRISUHVSDZQLQJ$WODQWLF EOXHILQWXQDIURPVWRPDFKFRQWHQWDQGVWDEOHLVRWRSH DQDO\VHV &KDSWHU'LHWRISUHVSDZQLQJEOXHILQWXQD 4. CHAPTER 3. Estimating diets of pre-spawning Atlantic bluefin tuna from stomach content and stable isotope analyses Abstract Stomach content analysis (SCA) and stable isotope analysis (SIA) coupled with isotopic mixing model analysis were used to estimate diet composition of pre-spawning Atlantic bluefin tuna (ABFT), Thunnus thynnus, caught by trap in the Strait of Gibraltar area. SCA provided poor information on diet as most of the stomachs appeared empty or contained only hard remains. Mixing model diet compositions estimated from muscle tissue SIA data did not show clear inter-annual variations and suggested that ABFT fed on prey that occupy high and intermediate level positions of the food web. Otherwise, diet compositions estimated from liver tissue SIA showed greater inter-annual variations and appeared to indicate that ABFT fed on prey located at lower trophic levels. The different dietary compositions inferred from muscle and liver samples were most probably due to the different turnover rates of these organs, which would provide trophic information at two distinct time scales. Our findings suggest that a combination of SCA and SIA is more suitable than using SCA alone to determine temporal and regional variations in ABFT diet composition. Key words: Thunnus thynnus, bluefin tuna, diet, stomach contents, stable isotopes, mixing models ϴϭ &KDSWHU'LHWRISUHVSDZQLQJEOXHILQWXQD 4.1. Introduction The Atlantic bluefin tuna (ABFT), Thunnus thynnus (Linnaeus, 1758), is a large migratory fish that occurs throughout the North Atlantic Ocean and the Mediterranean Sea and exhibits physiological and morphological adaptations that enable it to exploit a wide range of pelagic environments (Mather et al., 1995; Collette et al., 2001; Fromentin and Powers, 2005). Since the 1990s ABFT stocks have become heavily depleted because of overfishing. ABFT stock assessment is currently hampered by an incomplete knowledge of the species’ life history and ecology, including foraging habits. Based on stomach content analysis (SCA), studies of diet composition have been carried out in ABFT from foraging areas of the Atlantic Ocean and Mediterranean Sea (Crane, 1936; Bigelow and Schroeder, 1953; Krumholz, 1959; Dragovich, 1970; Ortiz de Zárate and Cort, 1986; Eggleston and Bochenek, 1990; Chase, 2002; Karakulak, et al., 2009; Butler et al., 2010; Logan et al., 2011). These studies describe the ABFT as a key apex predator that feeds on a great variety of fish and invertebrates, and so has been regarded as an opportunistic and generalist feeder. Spanish traps (Fig. 4.1) are set in the Atlantic coast at the entrance of the Strait of Gibraltar and have been used since ancient times to catch tuna that swim close to the coastline in their “arrival” and “return” seasonal migrations in and out of the Mediterranean Sea. An eastward or "arrival" run of pre-spawning fish takes place in April and May, and a westward or "return" run of spent fish occurs in July and August (Rodríguez-Roda, 1964; Mather et al., 1995). A prior SCA of specimens captured on eastward migration in the Strait of Gibraltar area indicated that the stomachs are most often empty (Rodríguez-Roda, 1964), which has led to the conclusion that ABFT do not feed during their migration to Mediterranean spawning grounds. However, no further foraging studies have been made that support this assumption. ϴϮ &KDSWHU'LHWRISUHVSDZQLQJEOXHILQWXQD Fig 4.1. Scheme of the ABFT trap off Barbate (Cadiz, South of Spain). SCA provides useful but incomplete information of ABFT diets due to fast digestion, uneven digestion rates of different food items, and probable food regurgitation during fishing operations, which may result in a high percentage of empty, or nearly empty, stomachs (Carey, 1984; Chase, 2002). Furthermore, as SCA reveals only the composition of recently ingested food, tracking diet throughout a broad geopraphic and temporal scale requires a large number of samples across space and time. Stable isotope analysis (SIA) has been used to reconstruct ABFT diets as a suitable complement to SCA (Estrada et al., 2005; Sarà and Sarà, 2006; Logan 2009; Logan et al., 2011). The carbon stable isotope composition (į13C) is regarded as a dietary source indicator (Pinnegar and Polunin, 2000), while nitrogen isotopic ratios (į15N) serve as appropriate indicators of consumer trophic position (Minagawa and Wada, 1984; McCutchan et al., 2003; Jennings et al., 2008). Both į13C and į15N can provide trophic information over weeks or months, depending on the tissue turnover rate (Gannes et al., 1998). In fishes, slow turnover tissues like muscle (Hesslein et al., 1993; MacAvoy et al., 2001) produce information on feeding at mid-time scale (months), whereas tissues with faster metabolic rates such as liver (Suzuki et al., 2005; Guelinckx et al., 2007) give information at a shorter time scale (Logan et al., 2006; MacNeil et al., 2006). Knowing the isotopic signatures of ABFT tissues and their most common prey, dietary proportions can be estimated applying mixing models (Phillips ϴϯ &KDSWHU'LHWRISUHVSDZQLQJEOXHILQWXQD and Gregg, 2001, 2003; Semmens and Moore, 2008; Erhardt, 2009; Parnell et al., 2010). Stable isotope mixing models are based on the potential contribution of different isotopic sources (i.e., diet components) to a mixture (i.e., consumer), and require previous knowledge of diet-tissue discrimination factors (Hussey et al., 2009). In this study, SCA, SIA and stable isotope mixing model analysis were performed to estimate the diet composition of ABFT prior to spawning in the Mediterranean Sea, using muscle and liver tissues as distinct time-scale diet markers. 4.2. Material and methods 4.2.1. SCA ABFT (n = 189), ranging between 143 and 262 cm in straight fork length (SFL), were sampled by trap off Barbate (Gulf of Cádiz, southern Spain) in 2009 (May, 11-21), 2010 (May, 4-13) and 2011 (June, 15) as they moved to the Mediterranean Sea to spawn (Fig. 4.2). The stomachs were removed and stored at -20ºC until analysis. In the laboratory, every stomach was thawed and cut open, and all the contents washed through a 1-mm mesh size sieve. Identification of taxa was carried out to the lowest possible taxonomic level. The wet weight of prey items was recorded to the nearest 0.1g, and the fish size (SFL) measured to the nearest 0.1cm. Hard part remains (fish otoliths, cephalopod beaks and crab claws) were used for identification of fully digested prey using specific taxonomic keys (Clarke, 1986; Harkönen, 1986; Campana, 2004; Tuset et al., 2008). ϴϰ &KDSWHU'LHWRISUHVSDZQLQJEOXHILQWXQD 20º 15º 10º 5º 0º 5º 10º 15º 45º 50º Atlantic Ocean 40º 45º Iberian Peninsula 35º 30º 40º Mediterranean Sea Gulf of Cadiz Africa 10º 5º 0º 35º 5º 10º 15º Fig. 4.2. Atlantic bluefin tuna (ABFT) were collected by trap off Barbate (Gulf of Cadiz, southern Spain) (Ɣ) 4.2.2. SIA White muscle and liver tissue samples were collected from 116 ABFT. Muscle samples (or the whole organism when the prey size was small) from 2-9 specimens of each of 13 potential prey species were also taken to predict ABFT diet composition using SIA followed by stable isotope mixing model analysis. The list of prey chosen for SIA was primarily based on the identification of hard remains in the stomach contents, and was completed with known common ABFT prey in the Iberian Atlantic (Ortiz de Zárate and Cort, 1986; Logan et al. 2011). It consisted of 9 fish species (Trachurus trachurus, T. mediterraneus, T. picturatus, Micromesistius poutassou, Sardina pilchardus, Engraulis encrasicolus, Myctophum punctatum, Scomber scombrus and S. colias), 3 crustaceans (Polybius henslowii, Meganyctiphanes norvegica and Pasiphaea sivado) and 1 cephalopod (Illex coindetii). Prey were collected from the Gulf of Cádiz (Fig. 4.2.) during a research cruise carried out in March, 2009, and stored at -20ºC until use. ϴϱ &KDSWHU'LHWRISUHVSDZQLQJEOXHILQWXQD In the laboratory, ABFT and prey samples were thawed, rinsed thoroughly with distilled water, transferred into glass vials and freeze-dried for 48 h. Then, they were ground to powder and then separated into two subsamples, one of which was used for į15N analysis, while the other was treated three times with chloroform-methanol for lipid extraction prior to į13C analysis. Total lipid contents were calculated as described by Varela et al. (2011, 2012). Aliquots (~1 mg) of bulk and lipid-extracted samples were placed into tin capsules. The relative abundances of 13 C and 15 N (respectively, į13C and į15N) were measured by continuous gas flow system using a Thermo Finnigan Elementary Analyzer Flash EA 1112 coupled to a Finnigan MAT Delta Plus mass spectrometer and expressed as parts per thousand (‰) relative to standards (Peterson and Fry, 1987). 4.2.3. Mixing model A Bayesian mixing model (multiple sources, dual-isotope linear mixing-model SIAR; Parnell et al., 2010) was used to estimate the relative proportion of multiple prey. Mixing model analyses require accurate estimates of isotopic discrimination factors between sources (prey) and mixture (consumer) tissues to reliably ascertain quantitative diet estimates (Bond and Diamond, 2011). Here we applied the preymuscle discrimination factors previously estimated for ABFT (ǻ13C (‰) = -0.16 ± 0.64, ǻ15N (‰) = 1.64 ± 0.20; Varela et al., 2011). The prey-liver discrimination factors used were ǻ13C (‰) = 0.42 ± 0.34 and ǻ15N (‰) = 0.68 ± 0.42, based on an experimental trial carried out on farmed ABFT (unpublished data). 4.2.4. Statistical analysis To test statistically significant differences among years, mean values of į13C, į15N and % lipid content were analyzed using one-way analysis of variance (ANOVA) followed, where relevant, by Tukey’s post hoc test. When data did not meet the assumption of variance homogeneity (Levene's test), a Kruskal–Wallis test was ϴϲ &KDSWHU'LHWRISUHVSDZQLQJEOXHILQWXQD performed to assess differences among years; differences between pairs of sample groups were then assessed by a Mann–Whitney U-test. Significant differences in į13C, į15N and lipid content between liver and muscle tissues were analyzed by a Student’s t-test or a Mann-Whitney U-test. Simple regression analyses were used to evaluate the relationship between į15N and % lipid content of muscle and liver tissues. A significance level of Į = 0.05 was considered in all statistical tests. Statistical analyses were performed using Statgraphic Plus version 5.1. 4.3. Results 4.3.1. SCA Stomach contents provided poor information on ABFT diet as most of the stomachs appeared empty or contained only hard remains. In 2009, only 3 (3.70%) of the 81 stomachs analyzed showed recognizable prey in their soft contents (Sarda sarda, Auxis rochei and Polybius henslowii). In 9 of the 91 stomachs collected in 2010 (9.89%) the analysis of soft contents allowed the identification of 6 fish species (Sardina pilchardus, Sardinella sp., Trachinatus ovatus, Pagellus acarne, Exocoetus volitans and Scomber japonicus). Of these prey, S. sarda, A. rochei, T. ovatus, P. acarne and E. volitans are typical bycatches of southern Spanish traps, but are uncommon natural ABFT prey; hence, they were not considered in mixing model analyses. No soft stomach contents were observed in the 2011 sample. Some of the stomachs sampled in 2009 (n = 18, 22.22%) showed identifiable hard parts (otoliths of Trachurus trachurus, beaks of Illex coindetii and claws of Polybius henslowii) (Table 4.1). In the sample of 2010, 8 stomachs (8.79%) contained the same types of hard parts as those found in 2009, while only a single otolith of Micromesistius poutassou was found among the 21 stomachs from 2011 (Table 4.1). ϴϳ &KDSWHU'LHWRISUHVSDZQLQJEOXHILQWXQD Table 4.1. Hard remains identified from stomach contents of Atlantic bluefin tuna captured in traps off Barbate (Gulf of Cadiz, Southern Spain), 2009-2011. Years 2009 (N = 81) 2010 (N = 91) 2011 (N = 21) Prey groups Hard remains Preys Fishes Otoliths Cephalopods Crustaceans Beaks Claws Fishes Otoliths Cephalopods Beaks Crustaceans Claws Trachurus sp. Scomber colias Micomesistius poutassou Phycidae Labridae Illex coindetii Polyboius henslowii Trachurus sp. Scomber colias Micomesistius poutassou Illex coindetii Octopoidae Polybius henslowii Fishes Otoliths Micomesistius poutassou No. of stomachs 4 2 2 1 2 8 3 1 1 1 6 1 1 1 4.4.2. SIA Stable isotope signatures were determined in muscle samples or whole specimens of 13 common prey items of ABFT, which were collected from the Gulf of Cádiz, near the Strait of Gibraltar, in 2009. The three species of Trachurus and the two species of Scomber were grouped into single generic prey items (Table 4.2, Fig.4.3). 13 15 Table 4.2. Mean ± SD values of į C, į N, and weight of Atlantic bluefin tuna preys collected from the Gulf of Cadiz in 2009. Isotopic values bearing asterisk were obtained by gathering several individuals into a single sample. Preys Trachurus spp. (n=9) Scomber spp. (n=6) Micromesistius poutassou (n=3) Sardina pilchardus (n=3) Engraulis encrasicolus (n=3) Myctophum punctatum (n=3) Illex coindetii (n=3) Polybius henslowii (n=1) Meganyctiphanes norvegica* (n=4) Pasiphaea sivado* (n=2) 13 ǻ C (к) -17.77±1.47 -18.77±0.73 -17.99±0.51 -18.05±0.87 -18.24±0.81 -19.70±0.36 -17.480.75 -19.20±0.00 -18.60±0.00 -20.18±0.00 15 į N (к) 9.69±1.47 9.89±0.94 10.38±0.26 10.09±0.79 9.35±1.42 8.28±0.11 9.64±1.21 9.00±0.00 5.57±0.00 6.17±0.00 Weight (g) 129.27±136.03 109.33±66.10 165.67±12.34 40.33±19.73 14.00±12.17 3.23±0.68 187.67±148.08 0.30±0.06 0.76±0.18 Source Present study Present study Present study Present study Present study Present study Present study Logan 2009 Present study Present study ϴϴ &KDSWHU'LHWRISUHVSDZQLQJEOXHILQWXQD Isotopic values of ABFT were measured in white muscle and liver tissues (Table 4.3). While ABFT muscle į15N values did not significantly differ among years, significant differences in į13C values were found to occur between 2010 and 2011 (Kruskal-Wallis followed by Mann-Whitney U-test, p < 0.001). Liver į13C and į15N values showed significant differences among years (ANOVA followed by Tukey’s test, p < 0.005), except for į13C between 2010 and 2011 (p > 0.05). Significant inter-annual differences were also identified in muscle-liver į15N separation (Table 4.3). In all years, the į13C and į15N values obtained from muscle tissue were significantly higher than those observed in liver (Student’s t-test or Mann-Whitney U-test, p < 0.005, statistical analysis not shown on table). į13C and į15N values of prey and ABFT are plotted in Fig. 4.3. While ABFT muscle į15N values are highest, the liver isotope values are intermediate among prey sources. Table 4.3. . Atlantic bluefin tuna fork length (cm), body mass (kg), lipid content (%), 13 15 į C and į N values (mean ± SD) by tissue type in specimens collected in 2009-2011. Values within the same row bearing different superscript letters are significantly different (p < 0.05). AN, analysis of variance (ANOVA); K-W, Kruskal-Wallis test; M-W, Mann-Whitney U-test, TK, Tukey’s test. Sampling 2009 (n=48) 2010 (n=47) 2011 (n=21) Statistical tests Fork length (cm) 204.87±21.76 205.02±15.75 202.81±25.06 KW Body mass (kg) 170.73±56.30 180.58±44.13 179.16±61.30 KW a Muscle 22.93±5.80 Liver 41.73±11.48 Muscle -18.01±0.44 18.11±7.20 b 17.35±6.09 b KW+MW ab 30.78±9.21 b AN+TK b -18.11±0.19 a KW+MW b AN+TK Lipid content (%) 13 į C (‰) 15 į N (‰) a 37.19±11.94 a -18.52±0.41 a b Liver -18.26±0.37 Muscle-liver 0.24±0.53 0.32±0.49 0.71±0.25 KW+MW Muscle 11.14±0.54 10.94±0.54 11.02±0.48 KW Liver 8.57±0.76 b 10.12±0.92 Muscle-liver 2.60±0.66 b 0.89±1.10 a -18.85±0.37 a a 9.09±0.79 a 1.81±0.87 -18.82±0.46 b c c AN+TK AN+TK ϴϵ &KDSWHU'LHWRISUHVSDZQLQJEOXHILQWXQD 12 TTM09 TTM10 11 TTM11 MP TTL11 10 SP Tspp Sspp EE IC PH 9 į15N TTL10 MyP TTL09 8 7 PS 6 MN 5 -20,5 -19,5 -18,5 -17,5 -16,5 13 į C 13 15 Fig. 4.3. Mean į C and į N values of prey and Atlantic bluefin tuna (Thunnus thynnus, ABFT) liver and muscle. EE, Engraulis encrasicolus; IC, Illex coindetii; MN, Meganyctiphanes norvegica; MP, Micromesistius poutassou; MyP, Myctophum punctatum; PH, Polybius henslowii; PS, Pasiphaea sivado; SP, Sardina pilchardus; Sspp, Scomber spp.; Tspp, Trachurus spp.; TTL09, TTL10, TTL11, Thunnus thynnus liver (years 2009, 2010, 2011); TTM09, TTM10, TTM11, Thunnus thynnus muscle (years 2009, 2010, 2011). Error bars represent SD. The highest lipid contents in muscle and liver were observed in 2009 (Table 4.3). No significant relationship was found between nitrogen stable isotope ratios and % lipid content for either muscle or liver samples (p > 0.05) (Fig. 4.4). ϵϬ &KDSWHU'LHWRISUHVSDZQLQJEOXHILQWXQD 13,0 10,5 12,0 10,0 11,5 9,5 11,0 9,0 į15N į 15 N 11,0 A 12,5 10,5 8,5 10,0 8,0 9,5 7,5 9,0 7,0 8,5 6,5 6,0 15,0 8,0 7,0 12,0 17,0 22,0 27,0 32,0 D 20,0 25,0 30,0 35,0 40,0 45,0 50,0 55,0 60,0 65,0 Lipid content (%) Lipid content (%) B E 13,0 12,0 12,5 11,0 12,0 11,5 10,0 į 15N į15N 11,0 10,5 9,0 10,0 8,0 9,5 9,0 7,0 8,5 6,0 15,0 8,0 5,0 10,0 15,0 20,0 25,0 30,0 35,0 40,0 20,0 25,0 30,0 40,0 45,0 50,0 55,0 60,0 65,0 F C 13,0 35,0 Lipid content (%) Lipid content (%) 12,0 12,5 11,0 12,0 11,5 10,0 į 15 N į15N 11,0 10,5 9,0 10,0 8,0 9,5 9,0 7,0 8,5 8,0 9,0 14,0 19,0 24,0 Lipid content (%) 29,0 34,0 6,0 10,0 15,0 20,0 25,0 30,0 35,0 40,0 45,0 50,0 Lipid content (%) 15 Figure 4.4. Relationships between į N and lipid content (%) for muscle (A, B and C; years 2009, 2010 and 2011, respectively) and liver (E, F and G; years 2009, 2010 and 2011, respectively) samples. 4.4.3. Mixing model Mixing-model estimations of dietary contributions of the 13 prey species were made for the three years of the study using data from ABFT muscle and liver isotopic data (Table 4.4). The diet compositions estimated from muscle tissue showed slight ϵϭ 55,0 &KDSWHU'LHWRISUHVSDZQLQJEOXHILQWXQD differences among years. Fishes represented the most abundant prey group in all years, 2009, 2010 and 2011 (55.56%, 67.79% and 62.47%, respectively), whereas the squid Illex coindetii appeared to be the predominant prey species (30.83%, 13.75% and 23.18%, respectively). The diets reconstructed from liver tissue varied more markedly among years. Fishes proved the dominant prey group in 2010 and 2011 (48.17% and 56.00%, respectively), while crustaceans predominated in 2009 (68.44%). 4.4. Discussion 4.4.1. SIA The į15N values measured in muscle tissue of ABFT spawners sampled in the Strait of Gibraltar are higher than the į15N values obtained from ABFT captured in the Mediterranean Sea (Sarà and Sarà, 2007; Vizzini et al., 2010; Varela et al., 2011, 2012). In contrast, they are lower than those measured from western ABFT muscle tissue (Estrada et al., 2005; Logan et al., 2011) and similar to those reported for juvenile ABFT captured in the Cantabrian Sea (Logan et al., 2011). Since muscle and liver turnover rates have not been thus far determined for ABFT, the present results of SIA should be interpreted with caution. In a close species, the yellowfin tuna, Graham (2008) estimated half-life turnover rates of 63 and 12 days for muscle and liver, respectively. Therefore, as muscle tissue shows a rather slow turnover rate, it seems unlikely that our muscle tissue į15N values reflect only local sources, but they also incorporate nitrogen isotope values from more distant prey from offshore feeding grounds, which are expected to show lower values than prey inhabiting feeding grounds (Logan, 2009). ϵϮ &KDSWHU'LHWRISUHVSDZQLQJEOXHILQWXQD Table 4.4. Mixing model estimates of prey contributions for ABFT muscle and liver. Values are presented as mean proportion estimates with upper and lower 95% confidence intervals. Muscle Preys Trachurus spp. Scomber spp. Micromesistius poutassou Fishes Sardina pilchardus Engraulis encrasicolus Myctophum punctatum Cephalopods Illex coindetii Polybius henslowii Crustaceans Meganyctiphanes norvegica Pasiphaea sivado 2009 Low95% 0,98 0,00 1,32 0,00 0,00 0,00 15,36 0,00 0,06 0,00 Liver Preys Trachurus spp. Scomber spp. Micromesistius poutassou Fishes Sardina pilchardus Engraulis encrasicolus Myctophum punctatum Cephalopods Illex coindetii Polybius henslowii Crustaceans Meganyctiphanes norvegica Pasiphaea sivado ϵϯ High95% 26,89 11,92 29,46 26,43 21,28 6,42 45,19 8,96 8,94 4,81 2010 Mean 14,58 4,65 15,54 12,94 9,45 2,40 30,83 3,22 4,60 1,79 Low95% 0,37 0,00 0,28 0,00 0,00 0,00 0,38 0,00 0,00 0,00 2009 Low95% 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 17,10 1,48 High95% 19,95 15,62 15,36 16,77 21,88 18,17 19,04 18,59 37,58 25,24 High95% 21,65 21,99 25,23 24,61 24,91 16,44 25,85 20,44 9,81 10,59 2011 mean 11,54 11,11 13,43 12,51 12,10 7,09 13,75 9,25 4,70 4,51 Low95% 0,64 0,00 2,30 0,29 0,00 0,00 9,75 0,00 0,82 0,00 2010 Mean 8,79 6,09 5,81 6,57 8,44 7,72 8,41 7,08 27,27 13,82 Low95% 0,00 0,00 0,00 0,00 0,00 3,44 0,00 0,00 0,00 9,65 High95% 10,83 25,43 12,93 13,89 13,64 47,47 8,10 31,47 8,52 36,55 High95% 21,60 15,98 31,66 24,96 22,11 8,75 36,73 12,85 12,61 6,48 mean 11,08 6,97 17,39 12,87 10,92 3,24 23,18 5,02 6,87 2,47 2011 mean 4,04 11,07 4,91 5,30 5,20 25,48 3,05 14,79 3,14 23,01 Low95% 0,00 0,00 0,00 0,00 0,00 1,93 0,00 0,17 0,00 0,00 High95% 14,00 34,72 19,47 18,93 18,01 39,07 10,98 34,72 7,23 21,67 mean 5,10 17,44 7,99 7,90 7,06 20,95 3,86 17,05 2,56 10,08 &KDSWHU'LHWRISUHVSDZQLQJEOXHILQWXQD In liver tissue, similar į15N values were reported for ABFT from Mediterranean (Vizzini et al., 2010; Varela et al., 2012) and eastern Atlantic (Logan et al., 2011) locations, while the 15 N ratios were higher in ABFT captured close to the Virginia coast (USA) (Logan et al., 2011). Such disparities between western and eastern ABFT populations can be explained by geographical gradients in stable isotope values across the Atlantic Ocean (Graham et al., 2010). Spatial and temporal variations in į15N data may be caused by two factors (Graham et al., 2007), the trophic position of prey and the isotopic values of nitrogenous compounds that serve as nutrients to organisms located at low trophic levels. The similar (or even slightly lower) į15N values of large bluefin from the studied area compared to juveniles from the Cantabrian Sea could reflect a lower position prey base for the Strait of Gibraltar. Basal isotope levels in these regions can be compared using the isotopic signatures of the krill, Meganyctiphanes norvegica, which is an important zooplankton component of the food web in both ecosystems. While the mean į15N of M. norvegica in the Cantabrian Sea was 8.3‰ (Logan, 2009; Logan et al., 2011), we obtained a mean value of 5.6‰ in krill collected west of the Strait of Gibraltar area. Considering average liver į15N values of 10.41‰ for Cantabrian juveniles (estimated from Logan et al., 2011) and 9.06‰ for breeders sampled in the Strait of Gibraltar (present data), and a discrimination factor ǻ15N = 0.68‰, such a difference in the isotopic baselines would result in a separation of approximately two trophic positions (1.99) between young and adult bluefin tuna from the respective areas (calculated from the equation of Post, 2002). Unlike N isotope ratios, our muscle and liver į13C estimates are close to those published previously for both western and eastern ABFT (Estrada et al., 2005; Sarà and Sarà, 2007; Vizzini et al., 2010; Logan et al., 2011; Varela et al., 2011), though in several of these studies į13C values were not corrected for lipid content, which limits the accuracy of comparisons. The small differences between the present values and those reported by Varela et al. (2011) from bluefin captured in the Balearic Islands can be explained by the fact that these migrating fish reach the spawning ground shortly ϵϰ &KDSWHU'LHWRISUHVSDZQLQJEOXHILQWXQD after crossing the Strait of Gibraltar, whereby the isotopic signature is not expected to change substantially. Rodríguez-Roda (1964) found that most of the stomachs from ABFT captured by trap in the Strait of Gibraltar were empty. This observation has led to the assumption that bluefin tuna do not feed significantly during the pre-spawning migration. It is known that food deprivation may cause increased į15N values (Hobson et al., 1993; Gannes et al., 1997) and decreased somatic condition (Morais et al., 2011; Ortega and Mourente, 2011). If pre-spawning ABFT were undernourished, a negative relationship between į15N and % lipid content would be expected similar to what Doucett et al. (1999) reported for Atlantic salmon (Salmo salar), which cease feeding during the reproductive migration. However, no significant relationship between į15N and % lipid content was found in ABFT muscle and liver, suggesting that either foraging does occur or the stored lipid reserves can cope with energy costs associated with the reproductive migration. In connection with this, conventional tagging has shown that ABFT concentrates on the region west of Gibraltar, and electronic tag data indicate they may spend weeks west of the Strait of Gibraltar before moving into the Mediterranean Sea, suggesting that this area is a foraging ground (Block et al., 2005; Rooker et al., 2007; Stockesbury et al., 2007). 4.4.2. SCA and multiple-source SIAR model As in previous work (Rodríguez-Roda, 1964), the poor information withdrawn from SCA in trap-caught ABFT evidences limitations of this method in diet assessments when used alone. The fact that ABFT often spend a long time (>24 h) swimming in trap facilities before being slaughtered, together with their high digestive efficiency (Aloncle and Delaporte, 1970) as well as likely regurgitations induced by stressful fishing operations (Chase, 2002), result in stomachs that are empty or retain only hard remains. ϵϱ &KDSWHU'LHWRISUHVSDZQLQJEOXHILQWXQD When prior information on prey species composition is limited, employing representative prey sources in isotope mixing models can provide useful information on diets (Polito et al., 2011). For the parameterization of the multi-source SIAR model, pertinent prey sources were identified mainly from the analysis of hard remains removed from the stomach contents, as well as previous SCAs carried out in Spanish Atlantic waters (Ortiz de Zárate and Cort, 1986; Logan et al., 2011). The analysis of stable isotope data across years 2009 to 2011 allowed us to investigate inter-annual trophic variability. In 2009 and 2011, mixing model results obtained from muscle tissue suggested that ABFT preyed mainly on species with high į15N values, thus located in high trophic levels of the food web. In contrast, prey items located in intermediate trophic levels appeared to contribute more significantly to ABFT diet in 2010. The mixing-model performed from liver SIA data estimated that ABFT fed primarily on prey located in lower trophic levels (crustaceans and myctophids). These results agree with the observations of Logan et al. (2011) on ABFT sampled in the eastern Atlantic Ocean. The different dietary compositions inferred from muscle and liver samples are probably due to the different turnover rates of these organs (Tieszen et al., 1983; MacNeil et al., 2005), which, therefore, would provide information at two distinct time scales (Gannes et al., 1998). Since the turnover rate of ABFT liver appears to be faster than that of muscle, the results of the mixing model analysis using isotopic data of this organ are thought to be more representative of the prey consumed near the Strait of Gibraltar. Significant muscle-liver į15N separations are believed to reflect recent dispersal from offshore feeding areas (Logan et al., 2011). According to this, the lowest difference between muscle and liver į15N found in ABFT sampled in 2011 might indicate a lengthier residency near the Strait of Gibraltar, which is consistent with the later date of sampling in this year (June, 15). In conclusion, our data might indicate dietary variations during the reproductive migration and would identify an opportunistic feeding behaviour. Although a possible bias in these results is to be considered with regard to potential among-year variations ϵϲ &KDSWHU'LHWRISUHVSDZQLQJEOXHILQWXQD in prey isotopic values (Kurle et al., 2011; Chouvelon et al., 2012), earlier studies performed in the Atlantic Spanish coast (Bode et al., 2006; Logan et al., 2011) have reported similar isotopic values for most of the ABFT prey species dealt with in this paper. The present observations suggest SIA coupled with mixing models is more suitable than SCA to track inter-annual and spatial variations in diet composition of ABFT. By employing tissues that integrate diets over long and medium periods of time, isotopic mixing models can avoid biases inherent to SCA. Thus, when the identified prey items are isotopically distinct or can be combined into biologically meaningful groups, SIA may help resolve trophic relationships in combination with SCA. Acknowledgements We thank María Lema (Unidad de Técnicas Instrumentales de Análisis, Universade da Coruña) for isotopic analysis and David Macías and his team (Instituto Español de Oceanografía at Fuengirola, Málaga) for assisting in ABFT samplings. This study has been granted by research projects RNM-02469 (Junta de Andalucía), CTM201127505, CTM2011-29525-C04 (Spanish Ministry of Science and Innovation, MICINN), and Secretaría General del Mar, Spanish Ministry of Environment, Rural and Marine Affairs. 4.6. References Aloncle H, Delaporte F (1970) Rythmes alimentaires et circadiens chez le germon Thunnus alalunga (Bonnaterre, 1788). Rev Trav Inst Pêches Mar 34:171-188 Bigelow HB, Schroeder WC (1953) Fishes of the Gulf of Maine. U.S. Fish Wildl Serv, Fish Bull 74:577 p Block BA, Teo SLH, Walli A, Boustany A, Stokesbury MJW, Farwell CJ, Weng KC, Dewar H, Williams TD (2005) Electronic tagging and population structure of Atlantic bluefin tuna. Nature, 434:1121-1127 ϵϳ &KDSWHU'LHWRISUHVSDZQLQJEOXHILQWXQD Bode A, Carrera P, Porteiro C (2006) Stable nitrogen isotopes reveal weak dependence of trophic position of planktivorous fish on individual size: A consequence of omnivorism and mobility. Rad Environ 8:281-293 Bond AL, Diamond AW (2011) Recent Bayesian stable-isotope mixing models are highly sensitive to variation in discrimination factors. Ecol Applic 21:1017-1023 Butler CM, Rudershausen PJ, Buckel JA (2010) Feeding ecology of Atlantic bluefin tuna (Thunnus thynnus) in North Carolina: diet, daily ration, and consumption of Atlantic menhaden (Brevoortia tyrannus). Fish Bull 108:56-69 Campana SE (2004) Photographic atlas of fish otoliths of the northwest Atlantic Ocean. Can Spec Pub Fish Aquat Sci 133:1-284 Carey FG, Kanwisher JW, Stevens ED (1984) Bluefin tuna warm their viscera during digestion. J Exp Biol 109:1-20 Chase BC (2002) Differences in diet of Atlantic bluefin tuna (Thunnus thynnus) at five seasonal feeding grounds on the New England continental shelf. Fish Bull 100:168180 Chouvelon T, Spitz J, Caurant F, Mèndez-Fernandez P, Chappuis A, Laugier F, Le Goff E, Bustamante P (2012) Revisiting the use of į15N in meso-scale studies of marine food webs by considering spatio-temporal variations in stable isotopic signatures – The case of an open ecosystem: The Bay of Biscay (North-East Atlantic). Prog Oceanogr 101:92-105 Clarke MR (1986) A handbook for the identification of cephalopod beaks. Clarendon Press, Oxford Collette BB, Reeb C, Block BA (2001) Systematics of the tunas and mackerels (Scombridae). In: Block BA, Stevens ED (eds.) Tuna: Physiology, Ecology, and Evolution. Academic Press, San Diego, pp. 1-33 Crane J (1936) Notes on the biology and ecology of giant tuna Thunnus thynnus, L., observed at Portland, Maine. Zoologica 212:207-212 ϵϴ &KDSWHU'LHWRISUHVSDZQLQJEOXHILQWXQD Dragovich A (1970) The food of bluefin tuna (Thunnus thynnus) in the western North Atlantic Ocean Trans Am Fish Soc 99:726-731 Doucett RR, Booth RK, Power G, McKinley RS (1999) Effects of the spawning migration on the nutritional status of anadromous Atlantic salmon (Salmo salar): insights from stable-isotope analysis. Can J Fish Aquat Sci 56:2172-2180 Eggleston DB, Bochenek EA (1990) Stomach contents and parasite infestation of school bluefin tuna Thunnus thynnus collected from the Middle Atlantic Bight, Virginia. Fish Bull 88:389-395 Erhardt EB (2009) Stable Isotope Sourcing using Sampling. PhD dissertation, University of New Mexico Estrada JA, Lutcavage M, Thorrold SR (2005) Diet and trophic position of Atlantic bluefin tuna (Thunnus thynnus) inferred from stable carbon and nitrogen isotopes. Mar Biol 147:37-45 Fromentin JM, Powers JE (2005) Atlantic bluefin tuna: population dynamics, ecology, fisheries and management. Fish Fish 6:281-306 Gannes LZ, O'Brien DM, Martínez del Rio C (1997) Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments. Ecology 78:1271-1276 Gannes LZ, Martínez del Rio C, Koch P (1998) Natural abundance variations in stable isotopes and their potential uses in animal physiological ecology. Comparative Biochem Physiol 119:725-737 Graham BS, Grubbs D, Holland K, Popp BN (2007) A rapid ontogenetic shift in the diet of juvenile yellowfin tuna from Hawaii. Mar Biol 150:647-658 Graham BS (2008) Trophic dynamics and movements of tuna in the tropical Pacific Ocean inferred from stable isotope analyses. PhD dissertation, University of Hawaii, Manoa, Hawaii, USA Graham BS, Koch, PL, Newsome SD, McMahon KW, Aurioles D (2010) Using isoscapes to trace the movements and foraging behavior of top predators in ϵϵ &KDSWHU'LHWRISUHVSDZQLQJEOXHILQWXQD oceanic ecosystems. In: West JB, Bowen G, Dawson T, Tu K (eds) Isoscapes: understanding movement, pattern, and process on Earth through isotope mapping. Chapter 14. Springer-Verlag, New York, p 299-318 Guelinckx J, Maes J, Van Den Driessche P, Geysen B, Dehairs F, Ollevier F (2007) Changes in į13C and į15N in different tissues of juvenile sand goby Pomatoschistus minutus: a laboratory diet-switch experiment. Mar Ecol Prog Ser 341: 205-215 Härkönnen T (1986) Guide to the Otoliths of the Bony Fishes of the Northeast Atlantic. Danbiu ApS. Biological consultants Hesslein RH, Hallard KA, Ramlal P (1993) Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by į34S, į13C, and į15N. Can J Fish Aquat Sci 50:2071-2076 Hobson KA, Alisauskas RT, Clark RG (1993) Stable-nitrogen isotope enrichment in avian tissues due to fasting and nutritional stress: implications for isotopic analysis of diet. Condor 95:388-394 Hussey NE, Brush J, McCarthy ID, Fisk AT (2010) į15N and į13C diet-tissue discrimination factors for large sharks under semi-controlled conditions. Com Biochem Physiol Part A 155:445-453 Jennings S, Maxwell TAD, Schratzberger M, Milligan SP (2008) Body-size dependent temporal variations in nitrogen stable isotope ratios in food webs. Mar Ecol Prog Ser 370: 199-206 Karakulak FS, Salman A, Oray IK (2009) Diet composition of bluefin tuna (Thunnus thynnus L. 1758) in the Eastern Mediterranean Sea, Turkey. J Appl Ichthyol 25:757761 Krumholz LA (1959) Stomach contents and organ weights of some bluefin tuna, Thunnus thynnus (Linnaeus), near Bimini, Bahamas. Zoologica 44:127-131 Kurle CM, Sinclair EH, Edwards AE, Gudmundson CJ (2011) Temporal and spatial variation in the į15N and į13C values of fish and squid from Alaskan waters. Mar Biol 158:2389 ϭϬϬ &KDSWHU'LHWRISUHVSDZQLQJEOXHILQWXQD Logan J, Haas H, Deegan L, Gaines E (2006) Turnover rates of nitrogen stable isotopes in the salt marsh mummichog, Fundulus heteroclitus, following a laboratory diet switch. Oecologia 147:391-395 Logan J (2009) Tracking diet and movement of Atlantic bluefin tuna (Thunnus thynnus) using carbon and nitrogen stable isotopes. PhD dissertation, University of New Hampshire, Durham, NH Logan JM, Rodríguez-Marín E, Goñi N, Barreiro S, Arrizabalaga H, Golet W, Lutcavage M (2011) Diet of young Atlantic bluefin tuna (Thunnus thynnus) in eastern and western Atlantic foraging grounds. Mar Biol 158:73-85 MacAvoy SE, Macko SA, Garman GC (2001) Isotopic turnover in aquatic predators: quantifying the exploitation of migratory prey. Can J Fish Aquat Sci 58:923-932 MacNeil MA, Gregory B, Skomal GB, Fisk AT (2005) Stable isotopes from multiple tissues reveal diet switching in sharks. Mar Ecol Prog Ser 302:199-206 MacNeil MA, Drouillard KG, Fisk AT (2006) Variable uptake and elimination of stable nitrogen isotopes between tissues in fish. Can J Fish Aquat Sci 63:345-353 McCutchan JrJH, Lewis JrWM, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378-390 Mather FJ, Mason JM, Jones AC (1995) Historical document: life history and fisheries of Atlantic bluefin tuna. US Departament of Commerce, NOAA Technical Memorandum. NMFS-SEFSC 370:165 pp Minagawa M, Wada E (1984) Stepwise enrichment of į15N along food chains: further evidence and the relation between į15N and animal age. Geochim Cosmochim Acta 48: 1135-1140 Morais S, Mourente G, Ortega A, Tocher JA, Tocher DR (2011) Expression of fatty acyl desaturase and elongase genes, and evolution of DHA:EPA ratio during development ofunfed larvae of Atlantic bluefin tuna (Thunnus thynnus L.) Aquaculture 313:129-139 ϭϬϭ &KDSWHU'LHWRISUHVSDZQLQJEOXHILQWXQD Ortega A, Mourente G (2009) Comparison of the lipid profiles from wild caught eggs and unfed larvae of two scombroid fish: northern bluefin tuna (Thunnus hynnus L., 1758) and Atlantic bonito (Sarda sarda Bloch, 1793). Fish Physiol Biochem 36:461471 Ortiz de Zárate V, Cort JL (1986) Stomach contents study of immature bluefin tuna in the Bay of Biscay. ICES-CM H 26:10 pp Parnell A, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5:e9672 Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293-320 Phillips DL, Gregg JW (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127:171-179 Phillips DL, Gregg JW (2003) Source portioning using stable isotopes: coping with too many sources. Oecologia 136:261-269 Pinnegar JK, Polunin NVC (2000) Contributions of stable isotope data to elucidating food webs of Mediterranean rocky littoral fishes. Oecologia 122:399-409 Polito MJ, Trivelpiece WZ, Karnovsky NJ, Ng E, Patterson WP, Emslie SD (2011) Integrating Stomach Content and Stable Isotope Analyses to Quantify the Diets of Pygoscelid Penguins. PLoS ONE 6:e26642 Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703-718 Rodríguez-Roda J (1964) Biología del Atún, Thunnus thynnus (L.), de la costa sudatlántica de España. Inv Pesq 25:33-146 Rooker JR, Alvarado JR, Block BA, Dewar H, de Metrio G, Corriero A, Kraus RT, Prince ED, Rodríguez-Marín E, Secor DH (2007) Life History and Stock Structure of Atlantic Bluefin Tuna (Thunnus thynnus). Rev Fish Sci 15:265-310 ϭϬϮ &KDSWHU'LHWRISUHVSDZQLQJEOXHILQWXQD Sara G, Sara R (2007) Feeding habits and trophic levels of bluefin tuna Thunnus thynnus of different size classes in the Mediterranean Sea. J Appl Ichthyol 23:122127 Semmens BX, Moore JW (2008) MixSIR: A Bayesian Stable Isotope Mixing Model, Version 1.04. http://www.ecologybox.org Stokesbury MJW, Cosgrove R, Boustany A, Browne D, Teo SLH, O’Dor RK, Block BA (2007) Results of satellite tagging of Atlantic bluefin tuna, Thunnus thynnus, off the coast of Ireland. Hydrobiologia 582:91-97 Suzuki K, Kasai A, Nakayama K, Tanaka M (2005) Differential isotopic enrichment and half life among tissues in Japanese temperate bass (Lateolabrax japonicus) juveniles: implications for analyzing migration. Can J Fishs Aquat Sci 62:671-678 Tieszen LL, Boutton TW, Tesdahl KG, Slade NA (1983) Fractionation and turnover of stable carbon isotopes in animal tissues: implications for į15N analysis of diet. Oecologia 57:32–37 Tuset VM, Lombarte A, Assis CA (2008) Otolith atlas for the western Mediterranean, north and central eastern Atlantic. Sci Mar 72: 1-203 Varela JL, Larrañaga A, Medina A (2011) Prey-muscle carbon and nitrogen stable isotope discrimination factors in Atlantic bluefin tuna (Thunnus thynnus). J Exp Mar Biol Ecol 406:21-28 Varela JL, de la Gándara F, Ortega A, Medina A (2012) 13C and 15N analysis in muscle and liver of wild and reared young-of-the-year (YOY) Atlantic bluefin tuna. Aquaculture doi:10.1016/j.aquaculture.2012.04.040 Vizzini S, Tramati C, Mazzola A (2010) Comparison of stable isotope composition and inorganic and organic contaminant levels in wild and farmed bluefin tuna, Thunnus thynnus, in the Mediterranean Sea. Chemosphere 78:1236-1243 ϭϬϯ ϭϬϰ &+$37(5Study of the trophic ecology of young-of-the-year bluefin tuna (Thunnus thynnus) captured in the western Mediterranean Sea &KDSWHU'LHWRI<2<EOXHILQWXQD 5. Chapter 4. Study of the trophic ecology of young-of-the-year bluefin tuna (Thunnus thynnus) captured in the western Mediterranean Sea Abstract Diet composition of young-of-the-year (YOY) Atlantic bluefin tuna (ABFT) foraging in nearshore waters of the Iberian Mediterranean coast was estimated by integrating data from stomach content analysis (SCA) and stable isotope analysis (SIA) coupled to mixing models. SCA revealed that YOY ABFT diets comprise at least 28 taxa, including 13 fishes, 9 crustaceans and 6 cephalopods. The composition of stomach contents was highly variable among years. Overall, stable isotope (į13C and į15N) data also showed significant differences between years 2009 and 2010. While mixing-model analysis from muscle tissue yielded differences between years, the dietary contribution of the prey groups estimated from liver SIA data was similar in both years. In all cases, the mixing model estimated that Notolepis rissoi was the most abundant prey species. Key-words: juvenile Thunnus thynnus, diet, stomach content analysis, stable isotope analysis, isotopic mixing models ϭϬϳ &KDSWHU'LHWRI<2<EOXHILQWXQD 5.1. Introduction Atlantic bluefin tuna (ABFT), Thunnus thynnus (Linnaeus, 1758), perform longdistance reproductive migrations from the Atlantic Ocean to Mediterranean spawning grounds. Roule (1917) first assumed that the waters around the Balearic archipelago represented an important spawning ground for the species, based on the finding of ABFT larvae. This was later confirmed from ichthyoplankton surveys carried out in the 1970’s (Duclerc et al., 1973; Dicenta et al., 1975; Rodríguez-Roda, 1975; Dicenta, 1977). More recent studies (García et al., 2002; Alemany et al., 2010) have shown, in fact, that all scombrid species occurring in the Mediterranean Sea spawn in Balearic waters. The maximum standard length of ABFT larvae ever sampled in the Balearic spawning ground in June-July is approximately 9 mm (García et al., 2002, 2007; Catalán et al., 2011; Reglero et al., 2011), which suggests that once this critical size is reached, ABFT larvae move away and become inaccessible to planktonic surveys over the spawning area. A few months after hatching (August-November), ABFT juveniles become apparent nearshore along the Spanish Mediterranean coast (Sanz-Brau, 1990). A good comprehension of the juvenile feeding ecology is essential for the understanding of the early life-history and recruitment variability in fishes (Young and Davis, 1990). While the available information on feeding habits of young and larval ABFT in Spanish Mediterranean waters is scarce, nothing is yet known about the foraging activity of juvenile ABFT during their short migration from the Balearic Sea to the Iberian Peninsula coastline. Stomach content analysis (SCA) of specimens captured off the coast of Valencia (E Spain) showed that YOY ABFT mainly prey on sardine (Sardina pilchardus), anchovy (Engraulis encrasicolus) and southern shortfin squid (Illex coindetii) (Sanz-Brau, 1990). Catalan et al. (2007, 2011) found that ABFT and albacore larvae (Thunnus alalunga) primarily feed on copepod larvae and cladocerans in the Balearic breeding ground, though a diet composed of only zooplankton does not appear enough to support larval growth (Reglero et al., 2011). ϭϬϴ &KDSWHU'LHWRI<2<EOXHILQWXQD The natural abundance of carbon (13C/12C, į13C) and nitrogen (15N/14N, į15N) stable isotopes are often used to elucidate trophic interactions. Thus, į13C values are a reliable indicator of a consumer’s primary carbon source (DeNiro and Epstein, 1978; Fry and Sherr, 1984), whereas į15N values are indicative of its relative trophic position (Minagawa and Wada, 1984; McCutchan et al., 2003; Jennings et al., 2008). Both į13C and į15N are transferred throughout the food webs in stepwise processes. It is known that stable isotope analysis (SIA) can provide trophic information at different time scales depending on the turnover rate of the tissue analyzed (Tieszen et al., 1983; Macneil et al., 2005). In tuna, muscle provides information on feeding over several months, while liver, which shows a faster incorporation rate, reflects more recent foraging (Graham, 2008). The objective of this study was to combine SCA with muscle and liver SIA data from YOY ABFT to gain insight into the feeding ecology of bluefin tuna at early life stages. By integrating SCA data with SIA coupled to mixing models, we aim to a) determine the diet composition of YOY ABFT foraging in nearshore waters of the Iberian Mediterranean coast, and b) tentatively reconstruct past diets encompassing the journey of juvenile ABFT from breeding grounds to the continental coastline. 5.2. Material and methods 5.2.1. SCA YOY ABFT (n = 210) were caught by trolling off Cartagena (Murcia, SE Spain) in September-October, 2008-2010 (Fig. 5.1). The fish size ranged from 21 to 43 cm straight fork length, and the weight varied between 180.35 and 1330.00 g. ϭϬϵ &KDSWHU'LHWRI<2<EOXHILQWXQD Figure 5.1. Young-of-the-year (YOY) Atlantic bluefin tuna (ABFT) were captured off Cartagena SE Spain (Ɣ). In a previous study (Sanz-Brau, 1990) YOY ABFT were sampled for SCA in a close area (Ƈ). Stomachs were removed and stored at -20ºC. In the laboratory, they were thawed, cut open and the contents washed through a sieve of 1000 µm mesh size. Identification of taxa was carried out to the lowest possible taxonomic level. The size and colour of the gall bladder and texture of the stomach inner lining were visually checked to ascertain whether the stomach contents had been ingested during fishing operations (Talbot and Higgins, 1982). The wet weight of prey items was recorded to the nearest 0.01g, and the fish size (straight fork length, SFL) measured to the nearest 0.01cm. Hard part remains (fish otoliths, cephalopod beaks and crab claws) were used for identification of fully digested prey using specific taxonomic keys (Clarke, 1986; Harkönen, 1986; Campana, 2004; Tuset et al., 2008). The dietary importance of each food item was assessed by the following indices: – percentage of frequency of occurrence %Oi (= number of stomachs containing prey item i × 100/total number of non-empty stomachs); – percentage of abundance %Ni (= number of individuals of prey item i × 100/total number of all prey items); – percentage of weight %W i (= weight of prey item i × 100/total weight of all prey items). ϭϭϬ &KDSWHU'LHWRI<2<EOXHILQWXQD Although these three dietary indices are often used in feeding studies in fishes (Hyslop, 1980), they present disadvantages when used alone as indicators of dietary importance. %O ignores the relative importance of preys in number and weight, while %N confers a higher significance on the number of preys, which may be, however, small and little representative in terms of mass. Otherwise, %W may overestimate the importance of larger, but poorly represented preys. To compensate for these limitations, we used the index of relative importance (IRI), which incorporates percentages of number, weight and frequency of occurrence, and is defined by the equation: IRIi = (%Ni + %W i) x %Oi (Pinkas, 1971). To determine the relative importance of the different preys observed, IRI was expressed as percent: Q %IRIi =ҏIRIi / ¦IRI ) × 100. i L= 5.2.2. SIA White muscle and liver samples (n = 23 and n = 16, respectively) were collected from YOY ABFT in 2009 and 2010. To reconstruct ABFT diet composition from SIA coupled with a stable isotope mixing model, samples (whole organisms) of major prey species, according to the present SCA results and previous studies, were also taken. Preys of similar small sizes of those found in ABFT stomachs were collected in summer, 2011 off the coast of Murcia (SE Spain) during a research cruise. The selected list of representative prey species consisted of 4 fishes (Trachurus picturatus, Ceratoscopelus maderensis, Sardinella aurita and Notolepis rissoi), 3 crustaceans (Pasiphaea sivado, hyperiid amphipods and Meganyctiphanes norvegica) and 1 cephalopod (Illex coindetii), which represent the most common prey species. The prey guts were removed prior to SIA to avoid possible bias due to contamination with stomach contents. All samples were stored at -20ºC until use. ϭϭϭ &KDSWHU'LHWRI<2<EOXHILQWXQD In the laboratory, samples were thawed, rinsed with distilled water, introduced into glass vials and freeze-dried for at least 48h. Subsequently, the tissues were ground to fine powder using pestle and mortar. Part of the resulting sample was used as such for į15N analysis, while lipids were removed from the remaining sample following a modified protocol after Bligh and Dyer (1959) to avoid the effects of lipid contents on į13C measurements. Aliquots of ~1 mg were placed into tin cups for SIA using a Thermo Finnigan Elementary Analyzer Flash EA 1112 coupled to a Finnigan MAT Delta Plus mass spectrometer. The carbon and nitrogen isotopic ratios are given as į13C and į15N (Peterson and Fry, 1987), expressed in parts per thousand (‰), relative to standards: įX = [(Rsample / Rstandard)-1] × 1000, where X is 13 C or 15 N, R is the ratio 13 C/12C or 15 N/14N, and standard refers to Vienna Pee Dee Belemnite carbonate for į13C and atmospheric nitrogen for į15N (Peterson and Fry, 1987). 5.2.3. Mixing model To estimate the dietary contribution of prey items, a Bayesian mixing model (multiple sources, dual-isotope linear mixing-model siaR, Parnell et al., 2010) was applied. Mixing models require appropriate isotopic prey-tissue discrimination factors to obtain accurate estimations. The prey-muscle discrimination factors applied to estimate diet compositions were those obtained from an experimental trial carried out on farmed YOY ABFT (Varela et al., 2012): ǻ13C (‰) = 0.32±0.09 and ǻ15N (‰) = for muscle, and ǻ13C (‰) = 0.39±0.23 and ǻ15N (‰) = 1.62±0.22 for liver. 5.2.4. Statistical analysis Significant differences in į13C and į15N values, either between tissues (white muscle and liver) or between years (2009 and 2010) were tested by Student’s t-test with Į = 0.05. Statistical analyses were performed using Statgraphic Plus version 5.1. ϭϭϮ &KDSWHU'LHWRI<2<EOXHILQWXQD 5.3. Results 5.3.1 SCA Stomach contents showed remarkable differences between years. Identification to the species level was not always possible due to the advanced stage of digestion of many specimens. Thus, a high percentage of the soft contents consisted of unidentifiable and/or unquantifiable remains that could not be used for the calculation of feeding indices (Fig. 5.2). The diet composition inferred from SCA comprised at least 28 taxa, including 13 fish, 9 crustaceans and 6 cephalopods (Table 5.1). In 2008, cephalopods appeared to be the most abundant prey group (%IRI=81.79%), Illex coindetii being the most representative species (%IRI = 90.51%). Fishes were the most abundant prey group in 2009 and 2010 (%IRI = 91.80% and %IRI = 48.45%, respectively). However, while Sardinella sp. was the predominant prey species in 2009 (%IRI = 83.77%), Illex coindetii (%IRI = 64.57%) was the most abundant prey item in 2010. Figure 5.2. Percent prey weight composition in stomach contents of YOY bluefin tuna. Fish, cephalopod, stomatopod and anomuran individuals found in the stomachs were all at an early life stage (either juvenile or larval), whereas the other crustaceans retrieved from the stomach contents were adult forms. ϭϭϯ &KDSWHU'LHWRI<2<EOXHILQWXQD Table 5.1. Stomach contents of YOY bluefin tuna captured off Cartagena (Murcia, SE Spain) in 2008, 2009 and 2010. YEAR 2008 YEAR 2009 YEAR 2010 Preys Fishes C. aper M. punctatum Callyonimus sp. Unidentifiable fishes Cephalopods I. coindeti Sepietta sp. Unident. cephalopods Crustaceans Hyperiid amphipod Caridea Pasiphaea sp. Gammarid amphipod %W %N %O 5,77 18,56 38,10 3,08 9,28 23,81 1,97 2,06 9,52 0,02 1,03 4,76 0,70 6,19 19,05 91,31 52,58 71,43 89,24 48,45 61,90 0,98 2,06 4,76 1,10 2,06 4,76 IRI 926,70 294,32 38,39 4,99 131,14 10277.80 8523,84 14,47 15,04 %IRI 7,37 3,13 0,41 0,05 1,39 81,79 90,51 0,15 0,16 Preys Fishes Sardinella sp. N. rissoi Myctophidae C. maderensis Trachurus sp. M. puncatum N. elongatus C. aper %W %N %O 76,23 44,23 46,99 49,01 16,35 16,87 16,09 6,25 0,10 2,80 5,77 9,64 1,58 1,44 2,41 1,27 1,44 3,61 1,13 0,48 1,20 0,81 1,44 1,20 0,27 0,96 2,41 2,92 2,37 0,10 0,28 0,03 28,87 42,86 15,46 14,29 7,22 9,52 1,03 4,76 4,12 14,29 1362,22 254,84 69,72 6,23 59,40 10,84 2,71 0,74 0,07 0,63 Sparidae Callyonimus sp. larvae G. argenteus Stomiidae Scorpaenidae 0,22 0,00 0,24 0,12 0,05 Unident. crustaceans 0,13 1,03 5,53 0,06 Sparidae larvae Unident. larvae Unident. fishes Cephalopods Illex coindetii T. sagittatus Bathypolypus sp. Sepiolidae T. eblanae Unident. cephalopods Crustaceans Pasiphaea sp. Hyperiid amphipod Sergestidae Caridea Gammarid amphipod Anomura Euphasiacea Stomatopodo larvae 0,01 0,48 1,20 0,03 2,40 7,23 2,61 3,85 8,43 17,36 11,06 20,48 8,84 3,85 8,43 2,38 0,96 2,41 1,31 0,48 1,20 0,37 2,88 4,82 0,35 1,44 3,61 4,10 1,44 3,45 6,40 44,71 38,55 4,47 2,88 4,82 1,11 18,75 21,69 0,52 5,77 3,61 0,20 8,17 13,25 0,04 1,92 2,41 0,03 1,92 2,41 0,01 0,96 2,41 0,02 4,33 3,61 ϭϭϰ 4,76 1,44 0,48 0,48 0,48 0,48 3,61 1,20 1,20 1,20 1,20 IRI 9183.51 3202.77 359,63 23,97 4,77 3,45 1,81 1,83 0,33 %IRI 91,80 83,77 9,41 0,63 0,12 0,09 0,05 0,05 0,01 Preys Fishes P. auriga C. aper C. maderensis Trachurus sp. N. rissoi M. punctatum Callyonimus sp. Unident. larvae %W %N %O IRI %IRI 32,81 63,47 31,13 2997,44 48,45 6,31 31,05 15,09 563,92 17,06 3,54 15,07 16,98 316,05 9,56 5,40 9,13 4,72 68,54 2,07 3,52 1,83 3,77 20,18 0,61 3,06 1,37 1,89 8,36 0,25 1,64 2,28 1,89 7,39 0,22 0,09 1,37 1,89 2,76 0,08 0,08 0,46 0,94 0,50 0,02 0,37 0,00 0,18 0,07 0,03 0,01 0,00 0,00 0,00 0,00 9,17 0,91 1,89 19,03 0,58 65,27 23,74 33,02 2939,24 47,51 61,17 19,63 26,42 2134,54 64,57 3,62 1,83 2,83 15,40 0,47 0,48 2,28 2,83 7,83 0,24 0,01 0,07 16,83 493,44 112,15 7,97 2,36 1,20 0,64 22,74 327,32 32,91 22,12 3,27 1,63 0,07 0,06 0,01 0,10 0,00 0,00 0,44 4,93 2,93 0,21 0,06 0,03 0,02 0,59 3,27 0,86 0,58 0,09 0,04 0,00 0,00 0,00 0,00 Unident. fishes Cephalopods I. coindetii Ommastrephidae Sepiloidae Crustáceans Hyperiid amphipod Stomatopoda larvae Pasiphaea sp. Palaemonidae 1,92 1,22 0,09 0,59 0,01 12,79 16,98 10,96 11,32 0,91 1,89 0,46 0,94 0,46 0,94 249,65 137,89 1,89 0,99 0,44 4,04 4,17 0,06 0,03 0,01 &KDSWHU'LHWRI<2<EOXHILQWXQD 5.3.2 SIA Carbon (į13C) and nitrogen (į15N) isotopic values of YOY ABFT were measured in white muscle and liver tissues (Table 5.2). į13C and į15N data showed significant differences between years (Student’s t-test, p <0.05), with the only exception of the į15N values obtained in liver (Student t-test, p = 0.281). In both 2009 and 2010, significant differences in į13C values were found between muscle and liver tissues (Student’s t-test, p < 0.05), whereas differences were not observed for į15N values (Student’s t-test, p > 0.05). The mean values in muscle were į13C2009 (-17.51 ±0.23) > į13C2010 (-18.03±0.12), and į15N2009 (9.01±0.50) > į15N2010 (8.29±0.69). The mean values for liver were į13C2009 (-17.92 ±0.12) > į13C2010 (-18.45 ±0.23), and į15N2009 (8.65±0.32) > į15N2010 (8.39±0.49) (Table 5.2). 13 15 Table 5.2. į C, į N, size (cm) and weight (g) values (mean±SD) of YOY bluefin tuna captured off Cartagena (Murcia, SE Spain) in 2009 and 2010. Sampling Fork lenght (cm) Body mass (g) Muscle Liver Student's t-test, P-value Muscle 15 į N Liver Student's t-test, P-value 13 į C Student's t-test, P-value -7 6.447·10 2009 2010 35.20±1.69 28.50±3.12 835.05±91.85 445.89±155.53 4.583·10 -17.51±0.23 -17.92±0.12 0.017 9.01±0.50 8.65±0.32 0.142 -18.03±0.12 -18.45±0.23 -5 1.487·10 8.29±0.69 8.39±0.49 0.692 2.955·10 -4 1.426·10 -6 -5 0.012 0.281 Values on the right column show P-values resulting from the comparisons between 2009 and 2010 (Student’s t-test). The P-values obtained from comparisons between muscle and liver samples by Student’s t-test are shown in rows beneath the relevant compared data. Isotopic values of most common prey species are shown in table 5.3. 13 15 Table 5.3. Values (mean±SD) of į C and į N of ABFT preys collected off Murcia coast (SE, Spain) Preys Notolepis rissoi (n=1) Cerastocopelus maderensis (n=3) Trachurus picturatus (n=6) Sardinella aurita (n=3) Illex coindetii (n=3) Pasiphaea sivado (n=3) Meganyctiphanes norvegica (n=1) Hyperiid amphipod (n=1) į C 13 į N 15 -19.30±0.00 -18.68±0.74 -19.13±0.19 -19.16±0.09 -18.19±0.10 -18.43±0.08 -20.04±0.00 -19.09±0.00 9,02±0.00 7.94±0.53 7.67±0.48 5.18±0.23 9.44±0.48 8.32±0.26 5,78±0,00 5.46±0.00 ϭϭϱ &KDSWHU'LHWRI<2<EOXHILQWXQD 5.3.3 Mixing model Mixing-model analysis of dietary contributions of the 8 selected prey species was made for muscle and liver isotopic data (Table 5.4). The diet compositions estimated from muscle tissue showed differences between years. Fishes contributed similarly to the YOY diet in both years (58.53% and 54.85% respectively), while substantial differences were observed in the relative contribution of crustaceans and cephalopods to the diet in 2009 as well as 2010. Table 5.4. Mixing model estimates of prey contributions for YOY ABFT muscle and liver. Values are presented as mean proportion estimates with upper and lower 95% confidence intervals. Muscle Year 2009 Low 95% Up 95% mean% Notolepis rissoi 10,29 52,74 31,82 Cerastocopelus maderensis 0,00 26,93 11,73 Fishes Trachurus picturatus 0,00 26,21 11,18 Sardinella sp. 0,00 11,09 3,80 CCephalopods Illex coindetii 2,81 37,16 20,04 Pasiphaea sivado 0,00 25,84 11,13 Crustaceans Meganyctiphanes norvegica 0,00 15,48 6,12 Hyperiid amphipod 0,00 11,66 4,18 Preys Year 2010 Low 95% Up 95% mean% 15,58 59,35 38,58 0,00 12,21 4,47 0,00 22,17 8,24 0,00 10,42 3,56 0,00 9,43 3,46 0,00 9,28 3,40 22,40 47,80 34,83 0,00 9,88 3,46 Liver Year 2009 Low 95% Up 95% mean% Notolepis rissoi 3,70 56,30 28,24 Cerastocopelus maderensis 0,00 26,69 10,84 Fishes Trachurus picturatus 0,00 29,09 13,08 Sardinella aurita 0,00 13,59 5,05 Cephalopods Illex coindetii 0,00 31,53 14,10 Pasiphaea sivado 0,00 25,83 10,68 Crustaceans Meganyctiphanes norvegica 0,00 33,74 12,58 Hyperiid amphipod 0,00 15,44 5,44 Preys Year 2010 Low 95% Up 95% mean% 3,31 44,48 22,65 0,00 26,01 12,10 0,00 29,02 13,78 0,00 14,94 5,97 0,05 27,79 14,67 0,00 25,00 12,05 0,00 25,80 12,19 0,00 16,76 6,60 Mixing-model estimations from liver tissue indicated that the dietary contribution of the prey groups was similar in both years. While fishes appeared to be the most abundant prey group in both 2009 and 2010 (57.20% and 54.49%, respectively), cephalopods proved the least represented prey category (14.10% and 14.67%, ϭϭϲ &KDSWHU'LHWRI<2<EOXHILQWXQD respectively). In all cases, the mixing model estimated that Notolepis rissoi was the most abundant prey species (Table 5.4). 5.4. Discussion In the present study, SCA and SIA were performed in YOY ABFT captured in the western Mediterranean Sea with the aim to improve our knowledge of their feeding habits during the first life stages. Determination of diet compositions from SCA requires thorough examination of a large number of individuals of different sizes collected over the distribution range of the species and encompassing as much as possible the seasonal variability (Bode et al., 2006). Our SCA study was performed on a limited number of samples (n = 210), which were, in addition, collected in the same season. Furthermore, the fast digestion rates of tuna (Aloncle and Delaporte, 1970; Chase, 2002) results in stomachs that are frequently empty, which may reduce the robustness of SCA data. SIA, which provides an integrated measure of energy flow through trophic pathways, coupled with isotopic mixing models, can solve some of the biases inherent to SCA (Logan et al., 2011; Mèndez-Fernandez et al., 2012; Varela et al., submitted). 5.4.1. SCA As in juvenile ABFT from the Tyrrhenian Sea (Piccinetti and Piccinetti-Manfrin, 1970; Sinopoli et al., 2004), our SCA shows that cephalopods represent an important constituent of YOY ABFT diet in the western Mediterranean Sea (years 2008 and 2010). The high contribution of juvenile Illex coindetii may be related to the reproductive season of ommastrephids, which occurs in the second half of the year (Gonzalez and Guerra, 1996; Quetglas et al., 1998). In comparison with other cephalopod species, Illex coindetii has high lipid and protein contents (Rosa et al., 2005) and represents a primary food source for large pelagic predators (Romeo et al., in press). The variability among years observed in the amount of cephalopods ϭϭϳ &KDSWHU'LHWRI<2<EOXHILQWXQD consumed by juvenile tuna is not unexpected, since their abundance can be highly affected by environmental changes, which cause large inter-annual variations (Vila et al., 2010; Silva et al., 2011). Otherwise, Sanz-Brau (1990) found that YOY ABFT caught off Valencia, nearby our sampling area, preyed mainly on pelagic fish species, similar to what we observed in the specimens sampled in 2009. The above observations indicate that the diet composition of juvenile ABFT is highly variable and depends on the abundance of potential preys in the exploited habitat (Salman and Karakulak, 2009). Some of fishes and crustaceans found in YOY ABFT stomachs are known to perform vertical migrations to shallow layers at dusk (see Onsrud and kaartvedt, 1998; Kaartvedt et al., 2002; Olivar et al., 2012). Sinopoli et al. (2004) suggested that the presence of mesopelagic fishes, such as myctophids or paralepidids, in the stomachs of YOY ABFT was related to vertical movements of tuna to deep waters. Although juvenile ABFT are capable of diving as down as 800 m deep, they spend the majority of their time swimming in shallow waters above 20 m (Galuardi and Lutcavage, 2012). We, therefore, concur with Mostarda et al. (2007) and Battaglia et al. (2012) that a most plausible hypothesis is that these mesopelagic fishes perform nocturnal migrations to the epipelagic zone, then becoming vulnerable to predators that occur in shallower depths from dusk to dawn. Our results may indicate that foraging occurs during the nighttime, as was suggested for adult ABFT captured in the Mediterranean Sea (Karakulak et al., 2009, Battaglia et al., 2012). However, this hypothesis should be explored by tracking vertical movement patterns. It is interesting that electronic tagging data suggest that immature Pacific bluefin tuna (50-70 cm in fork length) are less active foragers at night (Kitagama et al., 2004, 2007). 5.4.2 SIA Thus far, there is only one paper reporting natural abundances of 15 N and 13C in YOY ABFT (Sarà and Sarà, 2007). These authors found low į15N values in muscle and ϭϭϴ &KDSWHU'LHWRI<2<EOXHILQWXQD liver of young tuna captured in the Tyrrhenian Sea compared to the results of our isotopic analyses. In contrast, their į13C values were similar, though they did not perform lipid extraction prior to į13C analysis nor did they apply mathematical corrections to avoid the effects of lipids on į13C. Our SIA results can also be compared with those obtained from individuals of smaller tuna species captured in the western Mediterranean having similar sizes to our YOY ABFT, and hence presumably occupying the same trophic niche. Cardona et al. (2012) reported similar į13C values in muscle of little tunny (Euthynnus alletteratus) and Atlantic bonito (Sarda Sarda), but found higher 15N ratios. Yet, these analyses were performed on lipid-extracted samples and the impact of lipid removal on į15N values, which was estimated in an increase of 0.7‰ in ABFT tuna muscle (Logan, 2009), was not taken into account. In comparison with juvenile ABFT captured in the Cantabrian Sea (Logan et al., 2011), our muscle and liver samples showed lower į15N values and higher į13C values, which may reflect trophic shifts. Nevertheless, these differences can be also due to regional baseline differences. 5.4.3. Mixing model Mixing model analyses from muscle and liver stable isotope data estimated that the analyzed YOY ABFT had fed mainly on mesopelagic fish and crustaceans, corroborating SCA findings. Mesopelagic fish constitute an important component of the food web in these ecosystems, linking zooplankton (their main prey) to top predators (Olivar et al., 2012) andrepresents an important energy source for tunas as they show high lipid levels compared with other teleosteans (Sabatés et al., 2003). The differences in dietary compositions assessed from SCA and SIA are probably related to the fact that SCA provides detailed information of what was ingested in the previous hours, whereas SIA gives an indication of diet over a longer time period. Thus, the low proportion of krill inferred from SCA compared with SIA can ϭϭϵ &KDSWHU'LHWRI<2<EOXHILQWXQD be explained by the capture time, since the YOY ABFT were caught during the daytime when krill would have been digested. In conclusion, both SCA and SIA indicate that YOY ABFT show a low degree of feeding specialisation and qualify them as opportunistic and generalist feeders that can subsist on a wide range of preys. Acknowledgments The authors wish to thank María Lema (Unidad de Técnicas Instrumentales de Análisis, Universade da Coruña) for isotopic analysis. We also thank Maria José Meléndez (IEO Fuengirola), who collected prey samples. This work was funded by the European Community (contract no. 212797), Spanish government (contract nos. CTM2011-29525-C04-01 and CTM2011-27505) and Andalusian government (contract no. RNM-02469). 5.5. References Aloncle H, Delaporte F (1970) Rythmes alimentaires et circadiens chez le germon Thunnus alalunga (Bonnaterre 1788). Rev Trav Inst Pêches Mar 34:171-188 Alemany F, Quintanilla L, Velez-Belchí P, García A, Cortés D, Rodríguez JM, Fernández de Puelles ML, González-Pola C, López-Jurado JL (2010) Characterization of the spawning habitat of Atlantic bluefin tuna and related species in the Balearic Sea (western Mediterranean). Prog Oceanogr 86:21-38 Battaglia P, Franco Andaloro F, Consoli P, Esposito V, Malara D, Musolino S, Peda C, Romeo T (2012) Feeding habits of the Atlantic bluefin tuna, Thunnus thynnus (L. 1758), in the central Mediterranean Sea (Strait of Messina). Helgol Mar Res. DOI 10.1007/s10152-012-0307-2 Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911-917 ϭϮϬ &KDSWHU'LHWRI<2<EOXHILQWXQD Bode A, Carrera P, Porteiro C (2006) Stable nitrogen isotopes reveal weak dependence of trophic position of planktivorous fish on individual size: A consequence of omnivorism and mobility. Rad Environ 8:281-293 Catalán IG, Alemany F, Morillas A, Morales-Nin B (2007) Diet of larval albacore Thunnus alalunga (Bonnaterre, 1788) off Mallorca Island (NW Mediterranean) (Erratum). Sci Mar 71:347-354 Catalán IA, Tejedor A, Alemany F, Reglero (2011) Trophic ecology of Atlantic bluefin tuna Thunnus thynnus larvae. J Fish Biol 78:1545-1560 Campana SE (2004) Photographic atlas of fish otoliths of the northwest Atlantic Ocean. Can Spec Pub Fish Aquat Sci 133:1-284 Cardona L, Álvarez de Quevedo I, Borrell A, Aguilar,A (2012) Massive consumption of gelatinous plankton by Mediterranean apex predators. PLoS ONE 7:e31329 Chase BC (2002) Differences in diet of Atlantic bluefin tuna (Thunnus thynnus) at five seasonal feeding grounds on the New England continental shelf. Fish Bull 100:168180 Clarke MR (1986) A handbook for the identification of cephalopod beaks. Clarendon Press, Oxford DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495-506 Dicenta A (1975) Identificación de algunos huevos y larvas de túnidos en el Mediterráneo. Bol Inst Esp Oceanogr 198:1-21 Dicenta A (1977) Zonas de puesta del atún (Thunnus thynnus) y otros túnidos del Mediterráneo occidental y primer intento de evaluación del “stock” de reproductores de atún. Bol Inst Esp Oceanogr 234:109-135 Duclerc J, Sacchi J, Piccinetti C, Piccinetti-Manfrin G, Dicenta A, Barrois JM (1973) Nouvelles données sur la reproduction du thon rouge (Thunnus thynnus L.) et d´ autres espèces de thonidés en Mediterranée. Rev Trav Inst Pêch Marit 37:163-176 ϭϮϭ &KDSWHU'LHWRI<2<EOXHILQWXQD Fry B, Sherr EB (1984) į13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib Mar Sci 27:13-47 Galuardi B, Lutcavage M (2012) Dispersal Routes and Habitat Utilization of Juvenile Atlantic Bluefin Tuna, Thunnus thynnus, Tracked with Mini PSAT and Archival Tags. PLoS ONE 7:e37829 García A, Alemnay F, Rodríguez JM (2002) Distribution of tuna larvae off the Balearic Sea: Preliminary results of the Tunibal 0600 larval survey. Col Vol Sci Pap ICCAT 54:554-560 García A, Quintanilla J, Alvárez I, Carpena A, Cortés D, Alemany F, Rodríguez JM (2007) Interannual variability of bluefin larval growth observed Turing the spawning seasons 2003-2005. Vol Sci Pap ICCAT 60:1303-1311 Gonzalez AF, Guerra A (1996) Reproductive biology of the short-finned squid Illex coindetii (Cephalopoda, Ommastrephidae) of the Northeastern Atlantic. Sarsia 81:107-118 Graham (2008) Trophic dynamics and movements of tuna in the tropical Pacific Ocean inferred from stable isotope analyses. PhD dissertation, Hawaii University Härkönnen T (1986) Guide to the Otoliths of the Bony Fishes of the Northeast Atlantic. Danbiu ApS. Biological consultants Hyslop EJ (1980) Stomach content analysis: a review of methods and their application. J Fish Biol 17:411-429 Jennings S, Barnes C, Sweeting CJ, Polunin NVC (2008) Application of nitrogen stable isotope analysis in size-based marine food web and macroecological research. Rapid Commun Mass Sp 22:1673-1680 Kaartvedt S, Larsen T, Hjelmseth K, Onsrud MSR (2002) Is the omnivorous krill Meganyctiphanes norvegica primarily a selectively feeding carnivore? Deep-Sea Research I 62:53-69 ϭϮϮ &KDSWHU'LHWRI<2<EOXHILQWXQD Karakulak FS, Salman A, Oray IK (2009) Diet composition of bluefin tuna (Thunnus thynnus L. 1758) in the Eastern Mediterranean Sea, Turkey. J Appl Ichthyol 25:757761 Kitagawa T, Kimura S, Nakata H, Yamada H (2004) Diving behavior of immature, feeding Pacific bluefin tuna (Thunnus thynnus orientalis) in relation to season and area: the East China Sea and the Kuroshio-Oyashio transition region. Fish Oceanogr 13:161-180 Kitagama T, Boustany AM, Farwell CJ, Williams TD, Castleton MR, Block BA (2007) Horizontal and vertical movements of juvenile bluefin tuna (Thunnus orientalis) in relation to seasons and oceanographic conditions in the eastern Pacific Ocean. Fish.Oceanogr 16:409-421 Logan, JM, Rodríguez-Marín E, Goñi N, Barreiro S, Arrizabalaga H, Golet W, Lutcavage M (2011) Diet of young Atlantic bluefin tuna (Thunnus thynnus) in eastern and western Atlantic foraging grounds. Mar Biol 158:73-85 MacNeil MA, Gregory B, Skomal GB, Fisk AT (2005) Stable isotopes from multiple tissues reveal diet switching in sharks. Mar Ecol Prog Ser 302:199-206 McCutchan JrJH, Lewis Jr WM, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378-390 Mèndez-Fernandez P, Bustamante P, Bode A, Chouvelon T, Ferreira M, López A, Pierce GJ, Santos MB, Spitz J, Vingada JV, Caurant F (2012) Foraging ecology of five toothed whale species in the Northwest Iberian Peninsula, inferred using carbon and nitrogen isotope ratios. J Exp Mar Biol Ecol 413:150-158 Minagawa M, Wada E (1984) Stepwise enrichment of 15 N along food chains: further evidence and the relation between į15N and animal age. Geochim Cosmochim Acta 48:1135-1140 Mostarda E, Campo D, Castriota L, Esposito V, Scarabello MP, Andaloro F (2007) Feeding habits of the bullet tuna Auxis rochei in the southern Tyrrhenian Sea. J Mar Biol Ass UK 87:1007-1012 ϭϮϯ &KDSWHU'LHWRI<2<EOXHILQWXQD Olivar MP, Bernal A, Molí B, Peña M, Balbín R, Castellón A, Miquel J Massutí (2012) Vertical distribution,diversity and assemblages of mesopelagic fishes in the western Mediterranean. Deep-Sea Res I 62:53-69 Onsrud MSR, Kaartvedt S (1998) Diel vertical migration of the krill Meganyctiphanes norvegica in relation to physical environment, food and predators. Mar Ecol Prog Ser 171:209-219 Parnell A, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5:e9672 Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293-320 Piccinetti C, Piccinetti Manfrin G (1970) Osservazioni sulla biologia dei primi stadi giovanili del tonno (Thunnus thynnus L) Boll Pesca Piscic Idrobiol 25:223-247 Pinkas L (1971) Bluefin tuna food habits. In: Pinkas L, Oliphant MS, Iverson ILK, (eds.) Food habits of albacore, bluefin tuna, and bonito in California waters. Dep Fish Game Fish Bull 152:47-63 Quetglas A , Alemany F, Carbonell A, Merella P, Sánchez P (1998) Some aspects of the biology of Todarodes sagittatus (Cephalopoda: Ommastrephidae) from the Balearic Sea (Western Mediterranean). Sci Mar 62:73-82 Reglero P, Urtizberea A, Torres AP, Alemany F, Fiksen Ø (2011) Cannibalism among size classes of larvae may be a substantial mortality component in tuna. Mar Ecol Prog Ser 433:205-219 Rodriguez-Roda J (1975) Expedición científica para la identificación de zonas de puesta del atún, Thunnus thynnus (L.) (Campaña ‘‘Maroc-Iberia, 1” del Cornide de Saavedra). Result Exp Cient B/O Cornide 4 :113-130 Romeo T, Battaglia P, Peda C, Perzia P, Consoli P, Esposito V, Andaloro F (in press) Pelagic cephalopods of the central Mediterranean Sea determined by the analysis of the stomach content of large fish predators. Helgol Mar Res DOI 10.1007/s10152011-0270-3 ϭϮϰ &KDSWHU'LHWRI<2<EOXHILQWXQD Rosa R, Pereira J, Nunes ML (2005) Biochemical composition of cephalopods with different life strategies, with special reference to a giant squid, Architeuthis sp. Mar Biol 146:739-751 Roule L (1917) Etude sur les aires de ponte et les déplacements périodiques du thon commun (Orcynus thynnus L.) dans la méditerranée occidentale: conséquences quant à l´extension rationnelle de la pêche de ce poisson. Ann Inst Océanogr Paris Sabatés A, Rossi S, Reyes E (2003) Lipid content in the early life stages of three mesopelagic fishes. J Fish Biol 63:881-891 Salman A, Karakulak FS (2009) Cephalopods in the diet of albacore, Thunnus alalunga, from the eastern Mediterranean. J Mar Biol Assoc UK 89:635-640 Sanz Brau A (1990) Sur la nourriture des jeunes thons rouge Thunnus thynnus (L. 1758) des côtes du golfe de Valence. Rapp Comm Int Médit 32:274 Sarà G, Sarà R (2007) Feeding habits and trophic levels of bluefin tuna Thunnus thynnus of different size classes in the Mediterranean Sea. J Appl Ichthyol 23:122127 Silva L, Vila Y, Torres MA, Sobrino I, Acosta JJ (2011) Cephalopod assemblages, abundance and species distribution. Aquat Living Resour 24, 13–26 in the Gulf of Cadiz (SW Spain) Sinopoli M, Pipitone C, Campagnuolo S, Campo D, Castriota L, Mostarda E, Andaloro F (2004) Diet of young-of-the-year bluefin tuna, Thunnus thynnus (Linnaeus, 1758), in the southern Tyrrhenian (Mediterranean) Sea. J Appl Ichthyol 20:310-313 Talbot C, Higgins PJ (1982) Observations on the gall bladder of juvenile Atlantic salmon Salmo salar L., in relation to feeding. J Fish Biol 21:663-669 Tieszen LL, Boutton TW, Tesdahl KG, Slade NA (1983) Fractionation and turnover of stable carbon isotopes in animal tissues: implications for į15N analysis of diet. Oecologia 57:32–37 Tuset VM, Lombarte A, Assis CA (2008) Otolith atlas for the western Mediterranean, north and central eastern Atlantic. Sci Mar 72:1-203 ϭϮϱ &KDSWHU'LHWRI<2<EOXHILQWXQD Varela JL, de la Gándara F, Ortega A, Medina A (2012) 13C and 15N analysis in muscle and liver of wild and reared young-of-the-year (YOY) Atlantic bluefin tuna. Aquaculture 354-355:17-21 Varela JL, Rodríguez-Marín E, Medina A (submitted) Estimating diets of pre-spawning Atlantic bluefin tuna from stomach content and stable isotope analyses. J Sea Res Vila Y, Silva L, Torres MA, Sobrino I (2010) Fishery, distribution pattern and biological aspects of the common European squid Loligo vulgaris the Gulf of Cadiz. Fish Res 106:222-226 Young JW, Davis TLO (1990) Feeding ecology of larvae of southern bluefin, albacore and skipjack tunas (Pisces: Scombridae). Mar Ecol Progr Ser 61:17-29 ϭϮϲ 'LVFXVLyQJHQHUDO\FRQFOXVLRQHV 'LVFXVLyQ\FRQFOXVLRQHV 6. Discusión general y conclusiones 6.1. Discusión general Los análisis de contenido estomacal (SCA) llevados a cabo tanto en individuos adultos como juveniles indican que el atún rojo es un depredador que ocupa los niveles tróficos superiores dentro de los sistemas pelágicos oceánicos, con capacidad para consumir una gran variedad de especies de peces e invertebrados. Además, el atún rojo muestra una alta variabilidad espacial y temporal en su dieta, posiblemente asociada a la disponibilidad de las presas potenciales (Salman y Karakulak, 2009). A lo largo del desarrollo ontogénico, se observa un aumento de la talla máxima de la presa. Así, para los individuos juveniles de edad 0+ (21 cm < FL < 43 cm) y de edad 12 (65 cm < FL < 111 cm) se observaron tallas máximas de presa de 15,1 cm y 25,5 cm (observación personal), respectivamente. Por otra parte, en los especímenes adultos (143 cm < FL < 262 cm) la talla máxima de presa registrada fue 46 cm. A diferencia de los datos publicados en anteriores trabajos (Young et al., 1997; Chase, 2002), nuestros resultados indicarían que existe una clara relación entre la talla del atún rojo y la talla máxima de la presa ingerida, tal y como fue sugerido por Graham (2008). Este hecho podría relacionarse no sólo con el aumento de la apertura mandibular, sino también con el aumento de la capacidad natatoria a lo largo del desarrollo, lo cual le permitiría acceder a presas cada vez de mayor tamaño. La discrepancia entre nuestros resultados y los obtenidos por Young et al. (1997) y Chase (2002) podría deberse a que aquellos autores no realizaron SCAs en diferentes fases del ciclo vital. Young et al. (1997) sólo analizaron individuos inmaduros, mientras que Chase (2002) analizó únicamente individuos adultos. Su capacidad de alimentación en densas agregaciones de presas pequeñas puede explicar que un amplio rango de tallas de ABFT seleccionen el mismo tamaño de presas (Chase, 2002; Logan et al., 2011). El establecimiento de la relación talla predador-presa puede solventarse seleccionando grupos taxonómicos concretos como los peces o crustáceos decápodos. ϭϮϵ 'LVFXVLyQ\FRQFOXVLRQHV En cuanto al tipo de presa encontrada, el SCA aportó poca información en los individuos adultos, ya que la mayoría de las presas encontradas fueron probablemente ingeridas en las instalaciones de las almadrabas,si bien a partir del análisis de las piezas duras se determinó que el atún rojo adulto preda principalmente especies pelágicas, tal y como fue determinado en trabajos anteriores (Chase et al., 2002; Eggleston y Bochenek, 1990; Butler et al., 2010). Por otro lado, los individuos juveniles capturados en Cartagena (Murcia) mostraron una alta variabilidad interanual en la dieta. Así, en 2008 y 2010, los SCA revelaron que la presa principal fue Illex coindetii, mientras que en 2009 la presa más abundante fue Sardinella sp. La alta contribución de Illex coindetii a la dieta de los juveniles de atún rojo podría estar asociada a la época reproductora de los ommastréfidos, la cual se concentra en la segunda mitad del año (Gonzalez y Guerra, 1996; Quetglas et al., 1998). Además, en comparación con otras especies de cefalópodos, Illex coindetii muestra un alto contenido en lípidos y proteínas (Rosa et al., 2005), representado una importante fuente de energía para los atunes. El SCA aporta información muy detallada sobre la dieta, pero no ofrece más que una instantánea de la composición de la misma, pues sólo permite determinar el alimento ingerido en las 24 horas previas al análisis. Además, existen una serie de factores que pueden conducir a la obtención de conclusiones sesgadas al utilizar este método. Entre ellos se encuentran: a) la gran eficacia del proceso digestivo (Aloncle y Delaporte, 1973), favorecida por el calentamiento visceral proporcionado por la rete mirabile (Carey et al., 1984; Graham y Dickson, 2001; Itoh et al., 2003), b) la desigual velocidad en la digestión de los diferentes tipos de alimento, que puede dar lugar a errores al determinar las proporciones en la que las distintas presas son ingeridas, y c) la regurgitación frecuente de comida, inducida por el estrés causado durante la captura (Chase, 2002), hecho que podría alterar los resultados obtenidos. Además de estos ϭϯϬ 'LVFXVLyQ\FRQFOXVLRQHV inconvenientes, el método de captura también puede provocar imprecisiones en lo resultados. Así, la flota del cebo vivo del Cantábrico emplea de forma mayoritaria jurel (Trachurus trchurus) y boga (Boops boops) (Rodríguez-Marín et al., 2003) para la pesca de túnidos juveniles, lo que dificulta la separación entre presa natural y cebo (Logan et al., 2011). Por otro lado, los individuos adultos capturados en las almadrabas de Cádiz son mantenidos en las instalaciones durante largos periodos de tiempo antes de ser sacrificados, haciendo que los estómagos examinados aparezcan vacíos o contengan sólo partes duras difíciles de digerir (ej.: otolitos de peces o picos de cefalópodos). Teniendo en cuenta estos inconvenientes, los análisis de isótopos estables (SIA) de carbono (į13C) y nitrógeno (į15N) en diferentes tejidos pueden ser utilizados como una herramienta complementaria a los SCAs de suma utilidad (Estrada et al. 2005; Cherel et al., 2007; Logan et al., 2011; Goñi et al., 2011). Debido al bajo contenido en 13 C de los lípidos en comparación con el de las proteínas e hidratos de carbono, es de gran importancia llevar a cabo extracciones lipídicas que eviten la subestimación de į13C en los tejidos analizados como consecuencia de su contenido lipídico (DeNiro y Epstein, 1978). En nuestro caso, se realizaron extracciones lipídicas usando el método modificado de Bligh y Dyer (1959). Alternativamente, en la literatura pertinente se pueden encontrar distintas ecuaciones matemáticas que estiman į13C a partir de la relación carbono-nitrógeno (C:N) (ver McConnaughey y McRoy, 1979; Fry, 2002; Kiljunen et al., 2006; Post et al., 2007; Logan et al., 2008). Kiljunen et al. (2006) mostraron que en músculo de vertebrados la normalización lipídica mediante aproximaciones matemáticas es robusta, aunque no es del todo válida para cualquier especie y tipo de tejido. Estudios más recientes (Preum, 2011; Abrantes et al., 2012) concluyen que los valores de į13C varían ostensiblemente en función de la ecuación usada. Además, la composición de ácidos grasos del atún rojo puede variar considerablemente incluso entre individuos capturados en la misma zona (Mourente et al., 2002), dificultando así la aplicación ϭϯϭ 'LVFXVLyQ\FRQFOXVLRQHV insesgada de correcciones matemáticas (Fagan et al., 2011). Por tanto, creemos que la solución más adecuada es realizar extracciones lipídicas, siendo el método de Bligh y Dyer (1959) el más utilizado y el más efectivo para tejidos de peces (Logan et al., 2008). No obstante, los procedimientos aplicados para las extracciones lipídicas pueden producir incrementos en los valores de į15N. Los disolventes comúnmente usados para las extracciones de lípidos polares (metanol) pueden también eliminar proteínas ligadas a grasas estructurales, causando alteraciones en los valores de į15N (Sotiropoulos et al., 2004, Sweeting et al., 2006). Otra posible explicación para el incremento de į15N tras las extracciones lipídicas es que los productos de excreción del metabolismo proteico (amoniaco y amonio), que son solubles en lípidos y con bajo contenido en 15 N, pueden ser extraídos por solventes orgánicos (cloroformo) (Ingram et al., 2007). Dado que los efectos de las extracciones lipídcas sobre į15N producen un elevado nivel de incertidumbre, hemos seguido las recomendaciones de diversos autores (Sotiropoulos et al., 2004; Murry et al., 2006; Sweeting et al., 2006; Logan et al., 2008; Elsdon et al., 2010) y los valores de į15N fueron obtenidos a partir de muestras no tratadas. Por tanto, cada muestra fue dividida en dos submuestras para el análisis de į13C y į15N por separado (ver Harrod et al., 2005), lo que implicó la duplicación de los costes analíticos y del tiempo de procesado de las muestras. La optimización de recursos, por consiguiente, parece una razón poderosa para fomentar la búsqueda de soluciones alternativas fiables, como podría ser el desarrollo de modelos matemáticos específicos que corrijan los efectos del contenido en grasa de diferentes órganos sobre los valores de į13C para diferentes especies procedentes de diversos hábitats (Post et al., 2007; Logan et al., 2008; Fagan et al., 2011). En el presente estudio, los datos de į15N obtenidos tanto en músculo como en hígado no mostraron una relación clara con la talla, tal como había sido publicado en anteriores trabajos (Estrada et al., 2005: Sarà y Sarà 2007). Una relación positiva entre ambas variables podría indicar que los individuos adultos consumieron presas situadas ϭϯϮ 'LVFXVLyQ\FRQFOXVLRQHV en niveles tróficos más altos con respecto a los juveniles. Sin embargo, hay que tener en cuenta las variaciones temporales y espaciales de los valores de į15N en organismos situados en los niveles tróficos más bajos (baseline) (Olson et al., 2010). Por tanto, podríamos concluir que la variabilidad espacial y temporal observada en los valores de į15N de músculo e hígado pueden estar asociados a dos factores: la posición trófica de la presa y los valores isotópicos de los compuestos nitrogenados que sirven como nutrientes de organismos situados en las posiciones tróficas inferiores y que pueden variar de manera temporal y espacial (entre áreas oceánicas y costeras) (Graham et al., 2007) Los valores de į13C en músculo e hígado también mostraron una alta variabilidad temporal y espacial. Estos resultados no son inesperados, ya que los valores de į13C de los consumidores dependen de los cambios en los valores de de į13C de los productores primarios (Graham 2009), que a su vez están afectados por la concentración de 13 CO2 disuelto en el agua (Popp et al., 1998) y la composición de la comunidad fitoplanctónica (Popp et al., 1999). El SIA aporta información sobre el comportamiento trófico del atún rojo en función de la tasa de renovación de los tejidos del órgano estudiado (Gannes et al., 1998). Tejidos animales con tasas de renovación baja, como el músculo (Hesslein et al., 1993; MacAvoy et al., 2001), aportan información sobre la alimentación en un periodo de tiempo de varios meses anterior a la captura (Graham, 2007), mientras que el hígado, que es un órgano con una tasa de renovación más alta (Suzuki et al., 2005; Guelinckx et al., 2007), ofrece información en una escala de tiempo menor (semanas) (Graham, 2007). Así pues, conociendo la firma isotópica del atún rojo y de sus presas potenciales, podemos estimar la composición de la dieta mediante el uso de modelos de mezcla isotópicos (Parnell et al., 2010), los cuales requieren el conocimiento previo de factores de enriquecimiento (o discriminación) isotópicos presa-depredador, ya que ϭϯϯ 'LVFXVLyQ\FRQFOXVLRQHV el uso de factores de discriminación inadecuados pueden generar errores importantes en la estimación de la dieta (Bond y Diamond, 2011). En la presente memoria, calculamos los factores de enriquecimiento para los isótopos estables del carbono (ǻ13C) y nitrógeno (ǻ15N) en músculo e hígado de individuos juveniles y adultos mantenidos en condiciones semicontroladas de alimentación. Nuestros resultados indican una cierta variabilidad entre los distintos factores de discriminación calculados que puede ser debida a diversos factores: a) diferencia de edad (Sweeting et al., 2007a,b), b) diferencias en la dinámica metabólica entre los tejidos analizados, y c) diferencias entre las dietas (Caut et al., 2008, 2009). En cualquier caso, las desviaciones típicas obtenidas en músculo mostraron valores más bajos, lo cual podría indicar que este tejido es más adecuado para la reconstrucción de dietas a partir del uso de modelo de mezcla isotópicos, tal y como ha sido sugerido en estudios anteriores (Pinnegar y Polunin 1999; Suzuki et al., 2005). Además, con objeto de evaluar el efecto de la composición lipídica sobre ǻ13C y ǻ15N, los factores de discriminación fueron calculados usando todas las posibles combinaciones entre muestras con y sin lípidos de depredador y presa. Los resultados obtenidos indicaron que la eliminación de los lípidos produjo alteraciones en los datos de ǻ13C y ǻ15N, siendo sus efectos más evidentes sobre los valores del isótopo del carbono. A tenor de estos resultados, creemos que en futuros trabajos sobre ecología trófica del atún rojo basados en SIA deberían utilizarse los valores de ǻ13C calculados tras las extracciones lipídicas (Sotiropoulos et al., 2004; Murry et al., 2006; Logan et al., 2008; Hoffman y Sutton, 2010). Por otro lado, deberían utilizarse valores de ǻ15N de muestras sin tratar, puesto que las extracciones lipídicas pueden generar errores en los valores de į15N, como ya se ha discutido anteriormente. A partir de factores de discriminación específicos, los modelos de mezcla isotópicos como SIAR (Parnell et al., 2010), el utilizado en la presente memoria, ϭϯϰ 'LVFXVLyQ\FRQFOXVLRQHV pueden aportar información útil sobre la dieta cuando los resultados obtenidos mediante SCA son limitados (Polito et al., 2011). Además, mediante el uso de SIAR es posible evitar muchos de los errores fisiológicos y temporales inherentes al SCA. Las presas utilizadas para la estimación de la dieta mediante SIAR fueron identificadas a partir del SCA, así como de los datos publicados en trabajos previos de alimentación llevados a cabo en atunes capturados alrededor de la península Ibérica (Ortiz de Zárate y Cort 1986; Sanz-Brau, 1990; Logan et al., 2011). La estimación de la dieta mediante SIAR indicó que tanto los adultos capturados en el Estrecho de Gibraltar (presente estudio) como los juveniles de edad 1-2 capturados en el Mar Cantábrico (observación personal) se alimentan de presas situadas en niveles bajos, medios y altos de las cadenas tróficas. Este hecho explicaría que, a pesar de haber sido definido como un “top predator” (Logan et al., 2011), el atún rojo muestra valores de į15N muy inferiores a los publicados en tiburones como Isurus oxyrinchus, Alopias vulpinus o Prionace glauca, situados en los niveles tróficos superiores de los sistemas pelágicos (Estrada et al., 2003; MacNeil et al., 2005). Por otro lado, el SIAR estimó que los juveniles de edad 0+ capturados en la costa de Cartagena (Murcia) se alimentan principalmente de especies que realizan movimientos verticales a la superficie durante la noche (peces mesopelágicos y crustáceos), lo que sugiere que los juveniles muestran un cierto comportamiento alimenticio nocturno, tal y como fue sugerido por Karakulak et al. (2009) y por Battaglia et al. (2012) en atunes adultos capturados en el mediterráneo oriental. Cabe destacar que los peces mesopelágicos tienen una alta importancia en las redes tróficas, ya que son el enlace entre zooplankton y predadores superiores de ecosistemas pelágicos (Olivar et al., 2012). Además, en muchas casos el contenido lipídico de estos peces es superior al de peces pelágicos, representando una importante fuente de energía para los atunes (Sabatés et al., 2003). Por otro lado, para aplicar los modelos de mezcla isotópicos es de suma importancia que exista un equilibrio entre los tejidos estudiados y la dieta. En nuestro ϭϯϱ 'LVFXVLyQ\FRQFOXVLRQHV estudio, la proximidad entre las firmas isotópicas de músculo e hígado indicaría que el atún se encuentra cerca del equilibrio con las presas de nuestras zonas de estudio (MacNeil et al., 2005). Sin embargo, para los individuos adultos existe una alta variabilidad entre las firmas isotópicas de ambos tejidos, lo que indicaría que el atún habría llegado recientemente al Golfo de Cádiz y por tanto habría que tomar con cautela los resultados obtenidos a partir de los análisis en músculo, ya que probablemente este tejido no se encuentra en equilibrio con las presas. Por otro lado, estudios de marcado electrónico (Block et al., 2005; Rooker et al., 2007; Stockesbury et al., 2007) indican que el atún rojo permanece varias semanas en el Golfo de Cádiz antes de cruzar el Estrecho de Gibraltar, lo que implicaría que el hígado sí estaría en equilibro con las presas de la zona. Para los individuos juveniles, las diferencias isotópicas músculo-hígado son mucho menores, lo que podría indicar que tanto músculo como hígado podría estar en equilibrio con las presas locales. No obstante, al tratarse de una zona costera, el isótopo de carbono puede verse influenciado por aportes de nutrientes de origen continental (Vinagre et al., 2012), lo que explicaría las diferencias significativas observados entre músculo e hígado. El presente trabajo sugiere que SIA y SCA son técnicas complementarias que son aplicables en estudios sobre el comportamiento trófico del atún rojo. Así, a pesar de que los resultados obtenidos a partir del SCA pueden estar limitados por varios factores, la información que aporta es de suma importancia para la ejecución de los modelos de mezcla isotópicos, ya que permite determinar las presas apropiadas. Por otro lado, aunque el SIAR aporta información sobre la dieta del atún rojo a una escala temporal mayor, desde el punto de vista cuantitativo no es tan exacta como la aportada por el SCA. Ambos métodos indican que el atún rojo muestra una alta variabilidad espacial, temporal y ontogénica en la dieta y definen a esta especie como un predador con un comportamiento trófico generalista y oportunista. ϭϯϲ 'LVFXVLyQ\FRQFOXVLRQHV 6.2. Conclusiones 1. Los análisis de contenidos estomacales (SCA) revelaron que el atún rojo es un depredador que ocupa niveles tróficos superiores dentro de los sistemas pelágicos oceánicos, con capacidad para consumir una amplia variedad de presas. 2. La dieta del atún rojo muestra una alta variabilidad espacial, temporal y ontogénica, posiblemente asociada a la disponibilidad y abundancia de las presas potenciales y a sus amplios movimientos migratorios horizontales y verticales en la columna de agua. 3. Con el fin de evitar los efectos del contenido lipídico sobre į13C en los tejidos analizados, es de suma importancia llevar a cabo extracciones lipídicas o aplicar modelos matemáticos correctores fiables. No obstante, la eliminación total de los lípidos provoca alteraciones en los valores de į15N, por lo que el análisis de į15N ha de realizarse en muestras no tratadas. 4. En futuros trabajos sobre ecología trófica del atún rojo basados en SIA deberían utilizarse los valores de ǻ13C calculados tras las extracciones lipídicas, mientras que deberían utilizarse valores de ǻ15N obtenidos de muestras sin tratar. 5. Los análisis de isótopos estables (SIA) de carbono (į13C) y nitrógeno (į15N) en diferentes tejidos acoplados a modelos de mezclas isotópicos pueden ser utilizados como una herramienta complementaria a los SCA evitando conclusiones sesgadas que se pueden producir si sólo se contemplan esto último análisis. Este sesgo puede ser de gran importancia, especialmente si los SCA están basados en un escaso número de muestras de estómagos o si se realizan en reducidos muestreos espaciotemporales. 6. Los valores de į13C y į15N obtenidos en músculo e hígado de atún rojo mostraron una alta variabilidad espacial y temporal en concordancia con su complejo ciclo vital. ϭϯϳ 'LVFXVLyQ\FRQFOXVLRQHV 7. Para reconstruir la dieta del atún rojo mediante la aplicación de modelos de mezcla (“mixing models”) es recomendable utilizar factores de discriminación específicos como los estimados en la presente memoria. 8. Los factores de discriminación para los isótopos estables de carbono (ǻ13C) y nitrógeno (ǻ15N) en músculo e hígado de individuos juveniles y adultos muestran variaciones que podrían estar asociadas a diferencias de edad de los individuos estudiados, diferencias en la dinámica metabólica entre los tejidos analizados, y diferencias entre las dietas. 6.3. Futuras investigaciones 1. En la literatura podemos encontrar diversos estudios que sugieren que los factores de discriminación isotópicos pueden variar en función de la dieta (Caut et al., 2008, 2009). Por ello, y con el fin de identificar estas posibles variaciones, estamos desarrollando ensayos experimentales donde se analizarán (ǻ13C y ǻ15N) en bonito atlántico (Sarda Sarda) alimentados con tres carnadas distintas: Sardina pilchardus, Loligo sp. y Parapanaeus longirostris. Además, el cálculo de estos factores de enriquecimiento nos permitirá realizar estimaciones más exactas de la dieta de pequeños túnidos mediante el uso de modelos de mezcla. 2. En el tercer capítulo de la presente tesis se ha sugerido que la inanición puede provocar un aumento en el isótopo de nitrógeno (į15N) y una disminución del contenido lipídico en músculo e hígado del atún rojo, tal y como fue observado por Doucett et al. (1999) en salmón atlántico (Salmo salar). Sin embargo, este hecho nunca ha sido corroborado en túnidos. Con este propósito, estamos realizando un ensayo experimental con bonitos atlánticos mantenidos en inanición durante un periodo de 60 días, en el cual se analizarán los efectos de una inanición prolongada sobre el contenido lipídico en músculo e hígado y se estudiará la evolución de la firma isotópica de ambos tejidos. ϭϯϴ 'LVFXVLyQ\FRQFOXVLRQHV 3. En el marco del proyecto ACEITUNA (Life cycle and spatial dynamics of bluefin tuna around the Iberian Peninsula) estamos realizando análisis isotópicos (į15N y į13C) en tejidos con tasas de renovación distintas (músculo e hígado) de atunes juveniles capturados en el Mar Cantábrico. En función de los resultados podremos dilucidar si todos los atunes rojos que realizan la migración trófica a este área provienen de un mismo hábitat o si, por el contrario, antes de realizar las respectivas migraciones, distintos atunes pueden seguir estrategias diferentes, utilizando diferentes hábitats y explotando nichos ecológicos diversos. 6.4. Referencias Abrantes KG, Semmes JM, Lyle JM, Nichols PD (2012) Normalisation models for accounting for fat content in stable isotope measurements in salmonid muscle tissue. Mar Biol 159:57-64 Aloncle H, Delaporte F (1970) Rythmes alimentaires et circadiens chez le germon Thunnus alalunga (Bonnaterre 1788). Rev Trav Inst Pêches Mar 34:171-188 Battaglia P, Franco Andaloro F, Consoli P, Esposito V, Malara D, Musolino S, Peda C, Romeo T (2012) Feeding habits of the Atlantic bluefin tuna, Thunnus thynnus (L. 1758), in the central Mediterranean Sea (Strait of Messina). Helgol Mar Res. DOI 10.1007/s10152-012-0307-2 Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911-917 Block BA, Teo SLH, Walli A, Boustany A, Stokesbury MJW, Farwell CJ, Weng KC, Dewar H, Williams TD (2005) Electronic tagging and population structure of Atlantic bluefin tuna. Nature, 434:1121-1127 Bond AL, Diamond AW (2011) Recent Bayesian stable-isotope mixing models are highly sensitive to variation in discrimination factors. Ecol Applic 21:1017-1023 ϭϯϵ 'LVFXVLyQ\FRQFOXVLRQHV Butler CM, Rudershausen PJ, Buckel JA (2010) Feeding ecology of Atlantic bluefin tuna (Thunnus thynnus) in North Carolina: diet, daily ration, and consumption of Atlantic menhaden (Brevoortia tyrannus). Fishery Bulletin 108:56-69 Carey FG, Kanwisher JW, Stevens ED (1984) Bluefin tuna warm their viscera during digestion. J Exp Biol 109:1-20 Caut S, Angulo E, Courchamp F (2008) Discrimination factors (ǻ15N and ǻ13C) in an omnivorous consumer: effect of diet isotopic ratio. Funct Ecol 22:255-263 Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (ǻ15N and ǻ13C): the effect of diet isotopic values and applications for diet reconstruction. J Appl Ecol 46:443-453 Chase BC (2002) Differences in diet of Atlantic bluefin tuna (Thunnus thynnus) at five seasonal feeding grounds on the New England continental shelf. Fish Bull 100:168180 Cherel Y, Hobson KA, Guinet C, Vanpe C (2007) Stable isotopes document seasonal changes in trophic niches and winter foraging individual specialization indiving predators from the Southern Ocean. J Anim Ecol 76: 826-836 DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495-506 Doucett RR, Booth RK, Power G, McKinley RS (1999) Effects of the spawning migration on the nutritional status of anadromous Atlantic salmon (Salmo salar): insights from stable-isotope analysis. Can J Fish Aquat Sci 56:2172-2180 Eggleston DB, Bochenek EA (1990) Stomach contents and parasite infestation of school bluefin tuna Thunnus thynnus collected from the Middle Atlantic Bight, Virginia. Fish Bull 88:389-395 Elsdon TS, Ayvazian S, McMahon KW, Thorrold SR (2010) Experimental evaluation of stable isotope fractionation in fish muscle and otoliths. Mar Ecol Prog Ser 408:195205 ϭϰϬ 'LVFXVLyQ\FRQFOXVLRQHV Estrada JA, Rice AN, Lutcavage ME, Skomal GB (2003) Predicting trophic position in sharks of the nort-west Atlantic Ocean using stable isotope analysis. J Mar Biol Ass UK 83:1347-1350 Estrada JA, Lutcavage M, Thorrold SR (2005) Diet and trophic position of Atlantic bluefin tuna (Thunnus thynnus) inferred from stable carbon and nitrogen isotopes. Mar Biol 147:37-45 Fagan, KA, Koops MA, Arts MT, Power M (2011) Assessing the utility of C:N ratios for predicting lipid content in fishes. Can J Fish Aquat Sci 68:374-385 Fry B (2002) Stable isotopic indicators of habitat use by Mississippi River fish. J N Am Benthol Soc 21:676-685 Gannes LZ, Martínez del Rio C, Koch P (1998) Natural abundance variations in stable isotopes and their potential uses in animal physiological ecology. Comp Biochem Physiol 119:725-737 Graham JB, Dickson KA (2001) Anatomical and physiological specializations for endothermy. In: Block BA, Stevens ED (eds.) Tuna: Physiology, Ecology, and Evolution. Academic Press, San Diego, pp. 121-165 Graham BS, Grubbs D, Holland K, Popp BN (2007) A rapid ontogenetic shift in the diet of juvenile yellowfin tuna from Hawaii. Mar Biol 150:647-658 Graham (2008) Trophic dynamics and movements of tuna in the tropical Pacific Ocean inferred from stable isotope analyses. PhD dissertation, Hawai University Gonzalez AF, Guerra A (1996) Reproductive biology of the short-finned squid Illex coindetii (Cephalopoda, Ommastrephidae) of the Northeastern Atlantic. Sarsia 81:107-118 Goñi N, Logan J, Arrizabalaga H, Jarry M, Lutcavage M (2011) Variability of albacore (Thunnus alalunga) diet in the Northeast Atlantic and Mediterranean Sea. Mar Biol 158:1057-1073 ϭϰϭ 'LVFXVLyQ\FRQFOXVLRQHV Guelinckx J, Maes J, Van Den Driessche P, Geysen B, Dehairs F, Ollevier F (2007) Changes in į13C and į15N in different tissues of juvenile sand goby Pomatoschistus minutus: a laboratory diet-switch experiment. Mar Ecol Prog Ser 341:205-215 Harrod C, Grey J, McCarthy TK, Morrissey M (2005) Stable isotope analyses provide new insights into ecological plasticity in a mixohaline population of European eel. Oecologia 144:673-683 Hesslein RH, Hallard KA, Ramlal P (1993) Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by į34S, į13C, and į15N. Can J Fish Aquat Sci 50:2071-2076 Hoffman JC, Sutton TT (2010) Lipid correction for carbon stable isotope analysis of deep-sea fishes. Deep-Sea Res Part I 57:956-964 Ingram T, Matthews B, Harrod C, Stephens T, Grey J, Markel R, Mazumde A (2007) Lipid extraction has little effect on the į15N of aquatic consumers. Limnol Oceanogr Methods 5:338-343 Itoh T, Tsuji S, Nitta A (2003) Swimming depth, ambient water temperature preference, and feeding frequency of young Pacific bluefin tuna (Thunnus orientalis) determined with archival tags. Fish Bull 101:535-544 Karakulak FS, Salman A, Oray IK (2009) Diet composition of bluefin tuna (Thunnus thynnus L. 1758) in the Eastern Mediterranean Sea, Turkey. J Appl Ichthyol 25:757-761 Kiljunen M, Grey J, Sinisalo T, Harrod C, Immonen H, Jones RI (2006) A revised model for lipid-normalizing į13C values from aquatic organisms, with implications for isotope mixing models. J Appl Ecol 43:1213-1222 Logan JM, Jardine TD, Miller TJ, Bunn SE, Cunjak RA, Lutcavage ME (2008) Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. J Anim Ecol 77: 838-846 ϭϰϮ 'LVFXVLyQ\FRQFOXVLRQHV Logan JM, Rodríguez-Marín E, Goñi N, Barreiro S, Arrizabalaga H, Golet W, Lutcavage M (2011) Diet of young Atlantic bluefin tuna (Thunnus thynnus) in eastern and western Atlantic foraging grounds. Mar Biol 158:73-85 MacAvoy SE, Macko SA, Garman GC (2001) Isotopic turnover in aquatic predators: quantifying the exploitation of migratory prey. Can J Fish Aquat Sci 58:923-932 MacNeil MA, Gregory B, Skomal GB, Fisk AT (2005) Stable isotopes from multiple tissues reveal diet switching in sharks. Mar Ecol Prog Ser 302:199-206 McConnaughey T, McRoy CP (1979) Food-web structure and the fractionation of carbon isotopes in the Bering Sea. Mar Biol 53:257–262 Mourente G, Megina C, Díaz-Salvago E (2002) Lipids in female northern bluefin tuna (Thunnus thynnus thynnus L.) during sexual maturation. Fish Physiol Biochem 24:351-363 Murry BA., Farrell JR, Teece MA, Smyntek PM (2006) Effect of lipid extraction on the interpretation of fish community trophic relationships determined by stable carbon and nitrogen isotopes. Can J Fish Aquat Sci 63:2167-2172 Olivar MP, Bernal A, Molí B, Peña M, Balbín R, Castellón A, Miquel J Massutí (2012) Vertical distribution,diversity and assemblages of mesopelagic fishes in the western Mediterranean. Deep-Sea Res I 62:53-69 Olson RJ, Popp BN, Graham BS, López-Ibarra GA, Galván-Magaña F, Lennert-Cody CE, Bocanegra-Castillo N, Wallsgrove NJ, Gier E, Alatorre-Ramírez V, Balance LT, Fry B (2010) Food-web inferences of stable isotope spatial patterns in copepods and yellowfin tuna in the pelagic eastern Pacific Ocean. Prog. Oceanogr 86:124138 Ortiz de Zárate V, Cort JL (1986) Stomach contents study of immature bluefin tuna in the Bay of Biscay. ICES-CM H 26:10 pp Parnell A, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5:e9672 ϭϰϯ 'LVFXVLyQ\FRQFOXVLRQHV Pinnegar JK, Polunin NVC (1999) Differential fractionation of į13C and į15N among fish tissues: implications for the study of trophic interactions. Funct Ecol 13:225-231 Parnell A, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5:e9672 Popp BN, Laws EA, Bidigare RR, Dore JE, Hanson KL, Wakeham SG (1998) Effect of phytoplankton cell geometry on carbon isotopic fractionation, Geochim Cosmochim Acta 62-69:77 Popp BN, Trull T, Kening F, Wakeham SG, Rust TM, Tilbrook B, Griffiths B, Wright SW, Marchant HJ, Bidigare RR, Laws EA (1999) Controls on the carbon isotopic composition of southern ocean phytoplankton. Glob Biogeochem Cycles 13:827-843 Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montanã CG (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179–189 Preum JCP (2011) Lipid correction model of carbon stable isotopes for a cosmopolitan predator, spiny dogfish Squalus acanthias. J Fish Biol 79:2060-2066 Quetglas A , Alemany F, Carbonell A, Merella P, Sánchez P (1998) Some aspects of the biology of Todarodes sagittatus (Cephalopoda: Ommastrephidae) from the Balearic Sea (Western Mediterranean). Sci Mar 62:73-82 Rodríguez-Marín E, Arrizabalaga H, Ortiz M, Rodríguez-Cabello C, Moreno G, Kell LT (2003) Standardization of bluefin tuna, Thunnus thynnus, catch per unit effort in the baitboat fishery of the Bay of Biscay (Eastern Atlantic). ICES J Mar Sci 60:12161231 Rooker JR, Alvarado JR, Block BA, Dewar H, de Metrio G, Corriero A, Kraus RT, Prince ED, Rodríguez-Marín E, Secor DH (2007) Life History and Stock Structure of Atlantic Bluefin Tuna (Thunnus thynnus). Rev Fish Sci 15:265-310 Rosa R, Pereira J, Nunes ML (2005) Biochemical composition of cephalopods with different life strategies, with special reference to a giant squid, Architeuthis sp. Mar Biol 146:739-751 ϭϰϰ 'LVFXVLyQ\FRQFOXVLRQHV Sabatés A, Rossi S, Reyes E (2003) Lipid content in the early life stages of three mesopelagic fishes. J Fish Biol 63:881-891 Salman A, Karakulak FS (2009) Cephalopods in the diet of albacore, Thunnus alalunga, from the eastern Mediterranean. J Mar Biol Assoc UK 89:635-640 Sanz Brau A (1990) Sur la nourriture des jeunes thons rouge Thunnus thynnus (L. 1758) des côtes du golfe de Valence. Rapp Comm Int Médit 32:274 Sarà G, Sarà R (2007) Feeding habits and trophic levels of bluefin tuna Thunnus thynnus of different size classes in the Mediterranean Sea. J Appl Ichthyol 23:122127 Sotiropoulos MA, Tonn WM, Wassenaar LI (2004) Effects of lipid extraction on stable carbon and nitrogen isotope analyses of fish tissues: potential consequences for food web studies. Ecol Freshw Fish 13:155-160 Stokesbury MJW, Cosgrove R, Boustany A, Browne D, Teo SLH, O’Dor RK, Block BA (2007) Results of satellite tagging of Atlantic bluefin tuna, Thunnus thynnus, off the coast of Ireland. Hydrobiologia 582:91-97 Suzuki K, Kasai A, Nakayama K, Tanaka M (2005) Differential isotopic enrichment and half-life among tissues in Japanese temperate bass (Lateolabrax japonicus) juveniles: implications for analyzing migration. Can J Fish Aquat Sci 62:671-678 Sweeting CJ, Polunin NVC, Jennings S (2006) Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rap Commun Mass Spectr 2:595-601 Sweeting CJ, Barry J, Barnes C, Polunin NVC, Jennings S (2007a) Effects of body size and environment on diet-tissue į15N fractionation in fishes. J Exp Mar Biol Ecol 340:1-10 Sweeting CJ, Barry J, Polunin NVC, Jennings S (2007b) Effects of body size and environment on diet-tissue į13C fractionation in fishes. J Exp Mar Biol Ecol 352: 165-176 ϭϰϱ 'LVFXVLyQ\FRQFOXVLRQHV Vinagre C, Máguas C, Cabral HN, Costa MJ (2012) Food web structure of the coastal area adjacent to the Tagus estuary revealed by stable isotope analysis. J Sea Res 67:21-26 Young JW, Lamb TD, Le D, Bradford RW, Whitelaw AW (1997) Feeding ecology and interannual variations in diet of southern bluefin tuna, Thunnus maccoyii, in relation to coastal and oceanic waters off eastern Tasmania, Australia. Environ Biol Fish 50:275-291 ϭϰϲ