PEPERIKSAAN SIJIL TINGGI PERSEKOLAHAN MALAYSIA PHYSICS

Transcription

PEPERIKSAAN SIJIL TINGGI PERSEKOLAHAN MALAYSIA PHYSICS
STPM/S(E)960
MAJLIS PEPERIKSAAN MALAYSIA
(MALAYSIAN EXAMINATIONS COUNCIL)
PEPERIKSAAN
SIJIL TINGGI PERSEKOLAHAN MALAYSIA
(MALAYSIA HIGHER SCHOOL CERTIFICATE EXAMINATION)
PHYSICS
Syllabus and Specimen Papers
This syllabus applies for the 2012/2013 session and thereafter until further notice.
NATIONAL EDUCATION PHILOSOPHY
“Education in Malaysia is an on-going effort towards further
developing the potential of individuals in a holistic and
integrated manner, so as to produce individuals who are
intellectually, spiritually, emotionally and physically
balanced and harmonious, based on a belief in and devotion
to God. Such effort is designed to produce Malaysian
citizens who are knowledgeable and competent, who possess
high moral standards, and who are responsible and capable
of achieving a high level of personal well-being as well as
being able to contribute to the betterment of the family, the
society and the nation at large.”
FOREWORD
This revised Physics syllabus is designed to replace the existing syllabus which has been in use since
the 2001 STPM examination. This new syllabus will be enforced in 2012 and the first examination
will also be held the same year. The revision of the syllabus takes into account the changes made by
the Malaysian Examinations Council (MEC) to the existing STPM examination. Through the new
system, the form sixth study will be divided into three terms, and candidates will sit for an
examination at the end of each term. The new syllabus fulfils the requirements of this new system.
The main objective of introducing the new examination system is to enhance the teaching and
learning orientation of form six so as to be in line with the orientation of teaching and learning in
colleges and universities.
The revision of the Physics syllabus incorporates current developments in physics studies and syllabus
design in Malaysia. The syllabus will give candidates exposure to pre-university level of Physics that
includes mechanics and thermodynamics, electricity and magnetism, oscillations and waves, optics,
and modern physics.
The syllabus contains topics, teaching periods, learning outcomes, examination format, grade
description and specimen papers.
The design of this syllabus was undertaken by a committee chaired by Professor Dato’ Dr. Mohd.
Zambri bin Zainuddin from Universiti Malaya. Other committee members consist of university
lecturers, representatives from the Curriculum Development Division, Ministry of Education
Malaysia, and experienced teachers who are teaching Physics. On behalf of MEC, I would like to
thank the committee for their commitment and invaluable contribution. It is hoped that this syllabus
will be a guide for teachers and candidates in the teaching and learning process.
Chief Executive
Malaysian Examinations Council
CONTENTS
Syllabus 960 Physics
Page
Aims
1
Objectives
1
Content
First Term: Mechanics and Thermodynamics
2–9
Second Term: Electricity and Magnetism
10 – 15
Third Term: Oscillations and Waves, Optics, and Modern Physics
16 – 22
Practical Syllabus (School-based Assessment of Practical)
23 – 24
Written Practical Test
24
Scheme of Assessment
25 – 26
Performance Descriptions
Summary of Key Quantities and Units
27
28 – 30
Values of constants
31
Reference Books
32
Specimen Paper 1
33 – 54
Specimen Paper 2
55 – 78
Specimen Paper 3
79 – 100
Specimen Experiment Paper 4
101 – 103
Specimen Paper 5
105 – 131
SYLLABUS
960 PHYSICS
Aims
This syllabus aims to enhance candidates’ knowledge and understanding of physics to enable them to
either further their studies at institutions of higher learning or assist them to embark on a related
career and also to promote awareness among them of the role of physics in the universe.
Objectives
The objectives of this syllabus are to enable candidates to:
(a)
use models, concepts, principles, theories, and laws of physics;
(b)
interpret and use scientific information presented in various forms;
(c)
solve problems in various situations;
(d)
analyse, synthesise, and evaluate information and ideas logically and critically;
(e)
use techniques of operation and safety aspects of scientific equipment;
(f)
plan and carry out experiments scientifically and make conclusions;
(g)
develop proper attitudes, ethics, and values in the study and practice of physics.
1
FIRST TERM: MECHANICS AND THERMODYNAMICS
Topic
1
Teaching
Period
Learning Outcome
Physical Quantities and
Units
6
Candidates should be able to:
1.1
1
(a) list base quantities and their SI units:
mass (kg), length (m), time (s), current (A),
temperature (K) and quantity of matter (mol);
Base quantities and
SI units
(b) deduce units for derived quantities;
1.2
Dimensions of
physical quantities
1
(c) use dimensional analysis to determine the
dimensions of derived quantities;
(d) check the homogeneity of equations using
dimensional analysis;
(e) construct empirical equations using
dimensional analysis;
1.3
Scalars and vectors
2
(f)
determine the sum, the scalar product and
vector product of coplanar vectors;
(g) resolve a vector to two perpendicular
components;
1.4
Uncertainties in
measurements
2
(h) calculate the uncertainty in a derived quantity
(a rigorous statistical treatment is not
required);
(i)
2
write a derived quantity to an appropriate
number of significant figures.
Kinematics
6
Candidates should be able to:
2.1
2
(a) derive and use equations of motion with
constant acceleration;
Linear motion
(b) sketch and use the graphs of displacementtime, velocity-time and acceleration-time for
the motion of a body with constant
acceleration;
2.2
Projectiles
4
(c) solve problems on projectile motion without
air resistance;
(d) explain the effects of air resistance on the
motion of bodies in air.
2
Topic
3
Dynamics
Teaching
Period
Learning Outcome
12
Candidates should be able to:
3.1
Newton’s laws of
motion
4
(a) state Newton’s laws of motion;
dv
dm
v
(b) use the formula F m
for constant
dt
dt
m or constant v only;
3.2
Linear momentum and
its conservation
3
(c) state the principle of conservation of
momentum, and verify the principle using
Newton’s laws of motion;
(d) apply the principle of conservation of
momentum;
(e) define impulse as F dt ;
(f)
3.3
Elastic and inelastic
collisions
2
solve problems involving impulse;
(g) distinguish between elastic collisions and
inelastic collisions (knowledge of coefficient
of restitution is not required);
(h) solve problems involving collisions between
particles in one dimension;
3.4
3.5
Centre of mass
Frictional forces
1
2
(i)
define centre of mass for a system of particles
in a plane;
(j)
predict the path of the centre of mass of a twoparticle system;
(k) explain the variation of frictional force with
sliding force;
(l)
4
define and use coefficient of static function
and coefficient of kinetic friction.
Work, Energy and Power
5
Candidates should be able to:
4.1
2
(a) define the work done by a force dW
Work
F ds ;
(b) calculate the work done using a forcedisplacement graph;
(c) calculate the work done in certain situations,
including the work done in a spring;
4.2
Potential energy and
kinetic energy
2
(d) derive and use the formula: potential energy
change = mgh near the surface of the Earth;
(e) derive and use the formula: kinetic energy
1
2
3
mv 2 ;
Topic
Teaching
Period
Learning Outcome
(f)
state and use the work-energy theorem;
(g) apply the principle of conservation of energy
in situations involving kinetic energy and
potential energy;
4.3
Power
1
(h) derive and use the formula P
(i)
5
Fv ;
use the concept of efficiency to solve
problems.
Circular Motion
8
Candidates should be able to:
5.1
1
(a) express angular displacement in radians;
Angular displacement
and angular velocity
(b) define angular velocity and period;
(c) derive and use the formula v
5.2
Centripetal
acceleration
2
r ;
(d) explain that uniform circular motion has an
acceleration due to the change in direction of
velocity;
(e) derive and use the formulae for centripetal
acceleration a =
5.3
Centripetal force
5
(f)
v2
and a = r
r
2
;
explain that uniform circular motion is due to
the action of a resultant force that is always
directed to the centre of the circle;
(g) use the formulae for centripetal force
mv 2
F
and F mr 2 ;
r
(h) solve problems involving uniform horizontal
circular motion for a point mass;
(i)
6
Gravitation
solve problems involving vertical circular
motions for a point mass (knowledge of
tangential acceleration is not required).
10
Candidates should be able to:
6.1
Newton’s law of
universal gravitation
1
(a) state Newton’s law of universal gravitation and
GMm
use the formula F
;
r2
6.2
Gravitational field
2
(b) explain the meaning of gravitational field;
(c) define gravitational field strength as force of
gravity per unit mass;
4
Topic
Teaching
Period
Learning Outcome
(d) use the equation g
GM
for a gravitational
r2
field;
6.3
Gravitational potential
3
(e) define the potential at a point in a gravitational
field;
(f)
derive and use the formula V
GM
;
r
(g) use the formula for potential energy
GMm
U
;
r
(h) show that U mg r mgh is a special case
GMm
of U
for situations near to the
r
surface of the Earth;
6.4
Satellite motion in a
circular orbit
3
use the relationship g
(j)
explain, with graphical illustrations, the
variations of gravitational field strength and
gravitational potential with distance from the
surface of the Earth;
(k) solve problems involving satellites moving in
a circular orbit in a gravitational field;
(l)
6.5
7
Escape velocity
dV
;
dr
(i)
explain the concept of weightlessness;
1
(m) derive and use the equation for escape
2GM
2 gR .
velocity ve
and ve
R
Statics
6
Candidates should be able to:
7.1
1
(a) define centre of gravity;
Centre of gravity
(b) state the condition in which the centre of mass
is the centre of gravity;
7.2
Equilibrium of
particles
1
(c) state the condition for the equilibrium of a
particle;
(d) solve problems involving forces in equilibrium
at a point;
7.3
Equilibrium of rigid
bodies
4
(e) define torque as
(f)
5
r F;
state the conditions for the equilibrium of a
rigid body;
Topic
Teaching
Period
Learning Outcome
(g) sketch and label the forces which act on a
particle and a rigid body;
(h) use the triangle of forces to represent forces in
equilibrium;
(i)
8
solve problems involving forces in
equilibrium.
Deformation of Solids
5
Candidates should be able to:
8.1
Stress and strain
1
(a) define stress and strain for a stretched wire or
elastic string;
8.2
Force-extension graph
and stress-strain graph
2
(b) sketch force-extension graph and stress-strain
graph for a ductile material;
(c) identify and explain proportional limit, elastic
limit, yield point and tensile strength;
(d) define the Young’s modulus;
(e) solve problems involving Young’s modulus;
(f)
distinguish between elastic deformation and
plastic deformation;
(g) distinguish the shapes of force-extension
graphs for ductile, brittle and polymeric
materials;
8.3
Strain energy
2
(h) derive and use the formula for strain energy;
(i)
9
calculate strain energy from force-extension
graphs or stress-strain graphs.
Kinetic Theory of Gases
14
Candidates should be able to:
9.1
Ideal gas equation
2
(a) use the ideal gas equation pV
9.2
Pressure of a gas
2
(b) state the assumptions of the kinetic theory of
an ideal gas;
nRT ;
(c) derive and use the equation for the pressure
exerted by an ideal gas p
9.3
Molecular kinetic
energy
2
1
3
c2 ;
(d) state and use the relationship between the
Boltzmann constant and molar gas constant
k
6
R
;
NA
Topic
Teaching
Period
Learning Outcome
(e) derive and use the expression for the mean
translational kinetic energy of a molecule,
1
2
9.4
The r.m.s. speed of
molecules
2
(f)
mc 2
3
2
kT ;
calculate the r.m.s. speed of gas molecules;
(g) sketch the molecular speed distribution graph
and explain the shape of the graph (description
of the experiment is not required);
(h) predict the variation of molecular speed
distribution with temperature;
9.5
Degrees of freedom
and law of
equipartition of energy
3
(i)
define the degrees of freedom of a gas
molecule;
(j)
identify the number of degrees of freedom of a
monatomic, diatomic or polyatomic molecule
at room temperature;
(k) explain the variation in the number of degrees
of freedom of a diatomic molecule ranging
from very low to very high temperatures;
(l)
9.6
Internal energy of an
ideal gas
3
state and apply the law of equipartition of
energy;
(m) distinguish between an ideal gas and a real gas;
(n) explain the concept of internal energy of an
ideal gas;
(o) derive and use the relationship between the
internal energy and the number of degrees of
freedom.
10 Thermodynamics of Gases
10.1 Heat capacities
14
Candidates should be able to:
2
(a) define heat capacity, specific heat capacity and
molar heat capacity;
(b) use the equations:
Q CΔ , Q mcΔ , Q nCV,m Δ
Q
10.2 Work done by a gas
1
and
nCp,m Δ ;
(c) derive and use the equation for work done by
p dV ;
a gas W
7
Topic
10.3 First law of
thermodynamics
Teaching
Period
5
Learning Outcome
(d) state and apply the first law of
thermodynamics Q
U W;
(e) deduce the relationship
U
nCV, m T from
the first law of thermodynamics;
(f)
derive and use the equation Cp,m
CV,m
R;
(g) relate CV,m and Cp,m to the degrees of
freedom;
Cp, m
(h) use the relationship
CV, m
to identify the
types of molecules;
10.4 Isothermal and
adiabatic changes
6
(i)
describe the isothermal process of a gas;
(j)
use the equation pV
changes;
constant for isothermal
(k) describe the adiabatic process of a gas;
(l)
use the equations pV γ
TV γ
1
constant and
constant for adiabatic changes;
(m) illustrate thermodynamic processes with p-V
graphs;
(n) derive and use the expression for work done in
the thermodynamic processes.
11 Heat Transfer
11.1 Conduction
10
Candidates should be able to:
5
(a) explain the mechanism of heat conduction
through solids, and hence, distinguish between
conduction through metals and non-metals;
(b) define thermal conductivity;
dQ
d
kA
for heat
dt
dx
conduction in one dimension;
(c) use the equation
(d) describe and calculate heat conduction through
a cross-sectional area of layers of different
materials;
(e) compare heat conduction through insulated
and non-insulated rods;
11.2 Convection
1
(f)
describe heat transfer by convection;
(g) distinguish between natural and forced
convection;
8
Topic
11.3 Radiation
11.4 Global warming
Teaching
Period
3
1
Learning Outcome
(h) describe heat transfer by radiation;
(i)
use Stefan-Boltzmann equation
(j)
define a black body;
dQ
dt
e AT 4 ;
(k) explain the greenhouse effect and thermal
pollution;
(l)
9
suggest ways to reduce global warming.
SECOND TERM: ELECTRICITY AND MAGNETISM
Topic
Teaching
Period
Learning Outcome
12
Candidates should be able to:
12.1 Coulomb’s law
2
(a) state Coulomb’s law, and use the formula
Qq
;
F
4 0r 2
12.2 Electric field
3
(b) explain the meaning of electric field, and
sketch the field pattern for an isolated point
charge, an electric dipole and a uniformly
charged surface;
12 Electrostatics
(c) define the electric field strength, and use the
F
formula E
;
q
(d) describe the motion of a point charge in a
uniform electric field;
12.3 Gauss’s law
4
(e) state Gauss’s law, and apply it to derive the
electric field strength for an isolated point
charge, an isolated charged conducting sphere
and a uniformly charged plate;
12.4 Electric potential
3
(f)
define electric potential;
(g) use the formula V
Q
4
0r
;
(h) explain the meaning of equipotential surfaces;
(i)
use the relationship E
(j)
use the formula U = qV.
dV
dr
;
12
Candidates should be able to:
13.1 Capacitance
1
(a) define capacitance;
13.2 Parallel plate
capacitors
2
(b) describe the mechanism of charging a parallel
plate capacitor;
13 Capacitors
Q
0A
to derive C
for
d
V
the capacitance of a parallel plate capacitor;
(c) use the formula C
10
Topic
13.3 Dielectrics
Teaching
Period
2
Learning Outcome
(d) define relative permittivity
constant);
r
(dielectric
(e) describe the effect of a dielectric in a parallel
plate capacitor;
(f)
use the formula C
r 0A
d
;
13.4 Capacitors in series
and in parallel
2
(g) derive and use the formulae for effective
capacitance of capacitors in series and in
parallel;
13.5 Energy stored in a
charged capacitor
1
(h) use the formulae
U
1
1
QV , U
Q2
and U
2
2 C
(derivations are not required);
13.6 Charging and
discharging of a
capacitor
4
1
CV 2
2
(i) describe the charging and discharging process
of a capacitor through a resistor;
(j)
define the time constant, and use the formula
RC ;
(k) derive and use the formulae
t
Q
Q0 1 e
t
,V
V0 1 e
and
t
for charging a capacitor through a
I I 0e
resistor;
t
(l)
derive and use the formulae Q Q0 e
t
,
t
V V0e and I I 0e for discharging a
capacitor through a resistor;
(m) solve problems involving charging and
discharging of a capacitor through a resistor.
14 Electric Current
14.1 Conduction of
electricity
10
Candidates should be able to:
2
(a) define electric current, and use the equation
dQ
;
I
dt
(b) explain the mechanism of conduction of
electricity in metals;
11
Topic
14.2 Drift velocity
Teaching
Period
2
Learning Outcome
(c) explain the concept of drift velocity;
(d) derive and use the equation I
14.3 Current density
2
(e) define electric current density and
conductivity;
(f)
14.4 Electric conductivity
and resistivity
4
Anev ;
use the relationship J
E;
(g) derive and use the equation
ne 2t
;
m
(h) define resistivity, and use the formula
RA
;
l
(i)
show the equivalence between Ohm’s law and
the relationship J
E;
(j)
explain the dependence of resistivity on
temperature for metals and semiconductors by
ne 2t
;
using the equation
m
(k) discuss the effects of temperature change on
the resistivity of conductors, semiconductors
and superconductors.
14
Candidates should be able to:
15.1 Internal resistance
1
(a) explain the effects of internal resistance on the
terminal potential difference of a battery in a
circuit;
15.2 Kirchhoff’s laws
4
(b) state and apply Kirchhoff’s laws;
15.3 Potential divider
2
(c) explain a potential divider as a source of
variable voltage;
15 Direct Current Circuits
(d) explain the uses of shunts and multipliers;
15.4 Potentiometer and
Wheatstone bridge
7
(e) explain the working principles of a
potentiometer, and its uses;
(f)
explain the working principles of a Wheatstone
bridge, and its uses;
(g) solve problems involving potentiometer and
Wheatstone bridge.
12
Topic
Teaching
Period
Learning Outcome
18
Candidates should be able to:
16.1 Concept of a magnetic
field
1
(a) explain magnetic field as a field of force
produced by current-carrying conductors or by
permanent magnets;
16.2 Force on a moving
charge
3
(b) use the formula for the force on a moving
charge F qv B ;
16 Magnetic Fields
(c) use the equation F qvB sin
magnetic flux density B;
to define
(d) describe the motion of a charged particle
parallel and perpendicular to a uniform
magnetic field;
16.3 Force on a currentcarrying conductor
3
(e) explain the existence of magnetic force on a
straight current-carrying conductor placed in a
uniform magnetic field;
(f)
16.4 Magnetic fields due to
currents
4
derive and use the equation F
(g) state Ampere’s law, and use it to derive the
0I
magnetic field of a straight wire B
;
2πr
(h) use the formulae B
and B
16.5 Force between two
current-carrying
conductors
3
16.6 Determination of the
e
ratio
m
2
IlB sin
0 NI
for a circular coil
2r
0 nI for a solenoid;
μ0 I1I 2l
for the
2πd
force between two parallel current-carrying
conductors;
(i)
derive and use the formula F
(j)
describe the motion of a charged particle in the
presence of both magnetic and electric fields
(for v, B and E perpendicular to each other);
(k) explain the principles of the determination of
e
the ratio
for electrons in Thomson’s
m
experiment (quantitative treatment is required);
16.7 Hall effect
2
(l)
explain Hall effect, and derive an expression
for Hall voltage VH ;
(m) state the applications of Hall effect.
13
Topic
Teaching
Period
17 Electromagnetic Induction
18
Candidates should be able to:
17.1 Magnetic flux
1
(a) define magnetic flux as Φ B A;
17.2 Faraday’s law and
Lenz’s law
8
(b) state and use Faraday’s law and Lenz’s law;
17.3 Self induction
5
Learning Outcome
(c) derive and use the equation for induced e.m.f.
in linear conductors and plane coils in uniform
magnetic fields;
(d) explain the phenomenon of self-induction, and
define self-inductance;
(e) use the formulae E
(f)
L
dI
and LI
dt
NΦ ;
derive and use the equation for the self2
0N A
;
inductance of a solenoid L
l
17.4 Energy stored in an
inductor
2
(g) use the formula for the energy stored in an
1 2
inductor U
LI ;
2
17.5 Mutual induction
2
(h) explain the phenomenon of mutual induction,
and define mutual inductance;
(i)
18 Alternating Current
Circuits
18.1 Alternating current
through a resistor
derive an expression for the mutual inductance
between two coaxial solenoids of the same
0 N p Ns A
cross-sectional area M
.
lp
12
Candidates should be able to:
3
(a) explain the concept of the r.m.s. value of an
alternating current, and calculate its value for
the sinusoidal case only;
(b) derive an expression for the current from
V V0 sin t ;
(c) explain the phase difference between the
current and voltage for a pure resistor;
(d) derive and use the formula for the power in an
alternating current circuit which consists only
of a pure resistor;
14
Topic
18.2 Alternating current
through an inductor
Teaching
Period
3
Learning Outcome
(e) derive an expression for the current from
V V0 sin t ;
(f)
explain the phase difference between the
current and voltage for a pure inductor;
(g) define the reactance of a pure inductor;
(h) use the formula X L
18.3 Alternating current
through a capacitor
3
L;
(i)
derive and use the formula for the power in an
alternating current circuit which consists only
of a pure inductor;
(j)
derive an expression for the current from
V V0 sin t ;
(k) explain the phase difference between the
current and voltage for a pure capacitor;
(l)
define the reactance of a pure capacitor;
(m) use the formula X C
1
;
C
(n) derive and use the formula for the power in an
alternating current circuit which consists only
of a pure capacitor;
18.4 R-C and R-L circuits in
series
3
(o) define impedance;
(p) use the formula Z
R2
(X L
X C )2 ;
(q) sketch the phasor diagrams of R-C and R-L
circuits.
15
THIRD TERM: OSCILLATIONS AND WAVES, OPTICS, AND MODERN PHYSICS
Topic
Teaching
Period
Learning Outcome
12
Candidates should be able to:
19.1 Characteristics of
simple harmonic
motion
1
(a) define simple harmonic motion;
19.2 Kinematics of simple
harmonic motion
4
(b) show that x
19 Oscillations
a
2
Asin t is a solution of
x;
(c) derive and use the formula v
A2
x2 ;
(d) describe, with graphical illustrations, the
variation in displacement, velocity and
acceleration with time;
(e) describe, with graphical illustrations, the
variation in velocity and acceleration with
displacement;
19.3 Energy in simple
harmonic motion
2
(f)
derive and use the expressions for kinetic
energy and potential energy;
(g) describe, with graphical illustrations, the
variation in kinetic energy and potential energy
with time and displacement;
19.4 Systems in simple
harmonic motion
3
(h) derive and use expressions for the periods of
oscillations for spring-mass and simple
pendulum systems;
19.5 Damped oscillations
1
(i)
describe the changes in amplitude and energy
for a damped oscillating system;
(j)
distinguish between under damping, critical
damping and over damping;
19.6 Forced oscillations and
resonance
1
(k) distinguish between free oscillations and
forced oscillations;
(l)
20 Wave Motion
20.1 Progressive waves
state the conditions for resonance to occur.
12
Candidates should be able to:
3
(a) interpret and use the progressive wave
equation y = A sin ( t kx) or
y = A cos ( t kx);
(b) sketch and interpret the displacement-time
graph and the displacement-distance graph;
16
Topic
Teaching
Period
Learning Outcome
2 x
;
λ
(d) derive and use the relationship v
(c) use the formula
20.2 Wave intensity
2
f ;
(e) define intensity and use the relationship
I A2 ;
(f)
describe the variation of intensity with distance
of a point source in space;
20.3 Principle of
superposition
1
(g) state the principle of superposition;
20.4 Standing waves
4
(h) use the principle of superposition to explain
the formation of standing waves;
20.5 Electromagnetic waves
2
(i)
derive and interpret the standing wave
equation;
(j)
distinguish between progressive and standing
waves;
(k) state that electromagnetic waves are made up
of electrical vibrations E = E0 sin ( t kx)
and magnetic vibrations B = B0 sin ( t kx);
(l)
state the characteristics of electromagnetic
waves;
(m) compare electromagnetic waves with
mechanical waves;
1
(n) state the formula c
0
, and explain its
0
significance;
(o) state the orders of the magnitude of
wavelengths and frequencies for different
types of electromagnetic waves.
21 Sound Waves
21.1 Propagation of sound
waves
14
Candidates should be able to:
2
(a) explain the propagation of sound waves in air
in terms of pressure variation and
displacement;
(b) interpret the equations for displacement
y y0 sin ( t kx) and pressure
p = p0 sin
17
t kx
2
;
Topic
Teaching
Period
Learning Outcome
(c) use the standing wave equation to determine
the positions of nodes and antinodes of a
standing wave along a stretched string;
21.2 Sources of sound
4
T
(d) use the formula v
to determine the
frequencies of the sound produced by different
modes of vibration of the standing waves
along a stretched string;
(e) describe, with appropriate diagrams, the
different modes of vibration of standing waves
in air columns, and calculate the frequencies of
sound produced, including the determination
of end correction;
21.3 Intensity level of
sound
2
(f)
define and calculate the intensity level of
sound;
21.4 Beat
2
(g) use the principle of superposition to explain
the formation of beats;
(h) use the formula for beat frequency
f f1 f2 ;
21.5 Doppler effect
4
(i)
22 Geometrical Optics
8
Candidates should be able to:
3
(a) use the relationship f
22.1 Spherical mirrors
describe the Doppler effect for sound, and use
the derived formulae (for source and/or
observer moving along the same line).
r
for spherical
2
mirrors;
(b) draw ray diagrams to show the formation of
images by concave mirrors and convex
mirrors;
1 1 1
(c) use the formula
for spherical
u
v
f
mirrors;
22.2 Refraction at spherical
surfaces
2
n 1 n 2 n 2 n1
for
u
v
r
refraction at spherical surfaces;
(d) use the formula
18
Topic
22.3 Thin lenses
Teaching
Period
3
Learning Outcome
n 2 n 2 n1
to derive
v
r
1 1 1
the thin lens formula
and
u v f
(e) use the formula
n1
u
lensmaker’s equation
(f)
23 Wave Optics
23.1 Huygens’s principle
nl
1
1
nm
r1
1
fm
1
;
r2
use the thin lens formula and lensmaker’s
equation.
16
Candidates should be able to:
1
(a) state the Huygens’s principle;
(b) use the Huygens’s principle to explain
interference and diffraction phenomena;
23.2 Interference
2
(c) explain the concept of coherence;
(d) explain the concept of optical path difference,
and solve related problems;
(e) state the conditions for constructive and
destructive interferences;
23.3 Two-slit interference
pattern
2
(f)
explain Young’s two-slit interference pattern;
λD
for the
a
fringe separation in Young’s interference
pattern;
(g) derive and use the formula x
23.4 Interference in a thin
film
2
(h) explain the phenomenon of thin film
interference for normal incident light, and
solve related problems;
23.5 Diffraction by a single
slit
2
(i)
explain the diffraction pattern for a single slit;
(j)
use the formula sin θ
λ
for the first
a
minimum in the diffraction pattern for a single
slit;
(k) use the formula sin
power of an aperture;
19
=
a
as the resolving
Topic
Teaching
Period
23.6 Diffraction gratings
3
Learning Outcome
(l)
explain the diffraction pattern for a diffraction
grating;
(m) use the formula d sin θ
grating;
mλ for a diffraction
(n) describe the use of a diffraction grating to form
the spectrum of white light, and to determine
the wavelength of monochromatic light;
23.7 Polarisation
2
(o) state that polarisation is a property of
transverse waves;
(p) explain the polarisation of light obtained by
reflection or using a polariser;
(q) use the Brewster’s law tan
B
n;
(r) use the Malus’s law I = I0 cos2 ;
23.8 Optical waveguides
2
(s) explain the basic principles of fibre optics and
waveguides;
(t)
state the applications of fibre optics and
waveguides.
24 Quantum Physics
20
Students should be able to:
24.1 Photons
8
(a) describe the important observations in
photoelectric experiments;
(b) recognise the features of the photoelectric
effect that cannot be explained by wave theory,
and explain these features using the concept of
quantisation of light;
(c) use the equation E
hf for a photon;
(d) explain the meaning of work function and
threshold frequency;
(e) use Einstein’s equation for the photoelectric
1 2
mvmax ;
effect hf W
2
(f)
20
explain the meaning of stopping potential, and
1 2
mvmax ;
use eVs
2
Topic
24.2 Wave-particle duality
Teaching
Period
2
Learning Outcome
(g) state de Broglie’s hypothesis;
(h) use the relation
h
to calculate de Broglie
p
wavelength;
24.3 Atomic structure
4
(i)
interpret the electron diffraction pattern as an
evidence of the wave nature of electrons;
(j)
explain the advantages of an electron
microscope as compared to an optical
microscope;
(k) state Bohr’s postulates for a hydrogen atom;
(l)
derive an expression for the radii of the orbits
in Bohr’s model;
(m) derive the formula E n
Z 2e4m
8
2
0
h2n2
for
Bohr’s model;
(n) explain the production of emission line spectra
with reference to the transitions between
energy levels;
(o) explain the concepts of excitation energy and
ionisation energy;
24.4 X-rays
5
(p) interpret X-ray spectra obtained from X-ray
tubes;
(q) explain the characteristic line spectrum and
continuous spectrum including min in X-rays;
(r) derive and use the equation
min
hc
;
eV
(s) describe X-ray diffraction by two parallel
adjacent atomic planes;
(t)
24.5 Nanoscience
1
derive and use Bragg’s law 2d sin
=m ;
(u) explain the basic concept of nanoscience;
(v) state the applications of nanoscience in
electronics devices.
21
Topic
Teaching
Period
Learning Outcome
25 Nuclear Physics
14
Candidates should be able to:
25.1 Nucleus
4
(a) describe the discovery of protons and neutrons
(experimental details are not required);
(b) explain mass defect and binding energy;
(c) use the formula for mass-energy equivalence
E = mc2;
(d) relate and use the units u and eV;
(e) sketch and interpret a graph of binding energy
per nucleon against nucleon number;
25.2 Radioactivity
6
(f)
explain radioactive decay as a spontaneous and
random process;
(g) define radioactive activity;
(h) state and use the exponential law
dN
dt
N
for radioactive decay;
(i)
define decay constant;
(j)
derive and use the formula N
N 0e
t
;
(k) define half-life, and derive the relation
ln 2
;
t1
2
(l)
25.3 Nuclear reactions
4
solve problems involving the applications of
radioisotopes as tracers in medical physics;
(m) state and apply the conservation of nucleon
number and charge in nuclear reactions;
(n) apply the principle of mass-energy
conservation to calculate the energy released
(Q – value) in a nuclear reaction;
(o) relate the occurrence of fission and fusion
to the graph of binding energy per nucleon
against nucleon number;
(p) explain the conditions for a chain reaction to
occur;
(q) describe a controlled fission process in a
reactor;
(r) describe a nuclear fusion process which occurs
in the Sun.
22
The Practical Syllabus
School-based Assessment of Practical
School-based assessment of practical work is carried out throughout the form six school terms for
candidates from government schools and private schools which have been approved by MEC to carry
out the school-based assessment.
MEC will determine 13 compulsory experiments and one project to be carried out by the
candidates and to be assessed by the subject teachers in the respective terms. The project will be
carried out during the third term in groups of two or three candidates. Details of the title, topic,
objective, theory, apparatus and procedure of each of the experiments and project will be specified in
the Teacher’s and Student’s Manual for Practical Physics which can be downloaded from MEC’s
Portal (http://www.mpm.edu.my) by the subject teachers during the first term of form six.
Candidates should be supplied with a work scheme before the day of the compulsory experiment
so as to enable them to plan their practical work. Each experiment is expected to last one school
double period. Assessment of the practical work is done by the subject teachers during the practical
sessions and also based on the practical reports. The assessment should comply with the assessment
guidelines prepared by MEC.
A repeating candidate may use the total mark obtained in the coursework for the subsequent
STPM examination. Requests to carry forward the moderated coursework mark should be made
during the registration of the examination.
The Physics practical course for STPM should achieve its objective to improve the quality of
candidates in the aspects as listed below.
(a)
The ability to follow a set or sequence of instructions.
(b)
The ability to plan and carry out experiments using appropriate methods.
(c)
The ability to choose suitable equipment and use them correctly and carefully.
(d)
The ability to determine the best range of readings for more detailed and careful
measurements.
(e)
The ability to make observations, to take measurements and to record data with attention
given to precision, accuracy and units.
(f)
The awareness of the importance of check readings and repeat readings.
(g)
The awareness of the limits of accuracy of observations and measurements.
(h)
The ability to present data and information clearly in appropriate forms.
(i)
The ability to interpret, analyse and evaluate observations, experimental data, perform error
analysis and make deductions.
(j)
The ability to make conclusions.
(k)
The awareness of the safety measures which need to be taken.
23
The objective of the project work is to enable candidates to acquire knowledge and integrate
practical skills in Physics with the aid of information and communications technology as well as to
develop soft skills as follows:
(a)
communications,
(b)
teamwork,
(c)
critical thinking and problem solving,
(d)
flexibility/adaptability,
(e)
leadership,
(f)
organising,
(g)
information communications and technology,
(h)
moral and ethics.
Written Practical Test
The main objective of the written practical test is to assess the candidates’ understanding of practical
procedures in the laboratory.
The following candidates are required to register for this paper:
(a)
individual private candidates,
(b)
candidates from private schools which have no permission to carry out the school-based
assessment of practical work,
(c)
candidates who repeat upper six (in government or private schools),
(d)
candidates who do not attend classes of lower six and upper six in two consecutive years
(in government or private schools).
(e)
candidates who take Physics other than the package offered by schools.
Three structured questions on routine practical work and/or design of experiments will be set.
MEC will not be strictly bound by the syllabus in setting questions. Where appropriate, candidates
will be given sufficient information to enable them to answer the questions. Only knowledge of theory
within the syllabus and knowledge of usual laboratory practical procedures will be expected.
The questions to be set will test candidates’ ability to:
(a)
record readings from diagrams of apparatus,
(b)
describe, explain, suggest, design or comment on experimental arrangements, techniques
and procedures,
(c)
complete tables of data and plot graphs,
(d)
interpret, draw conclusions from, and evaluate observations and experimental data,
(e)
recognise limitations of experiments and sources of results,
(f)
explain the effect of errors on experimental results,
(g)
suggest precautions or safety measures,
(h)
explain theoretical basis of experiments,
(i)
use theory to explain or predict experimental results,
(j)
perform simple calculations and error analysis based on experiments.
24
Scheme of Assessment
Term of
Study
Paper Code
and Name
First
Term
960/1
Physics
Paper 1
Theme/Title
Mechanics and
Thermodynamics
Type of Test
Written Test
Mark
(Weighting)
Duration
Administration
1½ hours
Central
assessment
1½ hours
Central
assessment
60
(26.67%)
Section A
15 compulsory
multiple-choice
questions to be
answered.
15
Section B
2 compulsory
structured questions
to be answered.
15
Section C
2 questions to be
answered out of 3
essay questions.
30
All questions are
based on topics 1 to
11.
Second
Term
960/2
Physics
Paper 2
Electricity and
Magnetism
Written Test
60
(26.67%)
Section A
15 compulsory
multiple-choice
questions to be
answered.
15
Section B
2 compulsory
structured questions
to be answered.
15
Section C
2 questions to be
answered out of 3
essay questions.
30
All questions are
based on topics 12
to 18.
25
Term of
Study
Paper Code
and Name
Third
Term
960/3
Physics
Paper 3
Theme/Title
Oscillations and
Waves, Optics
and Modern
Physics
Type of Test
Written Test
Mark
(Weighting)
Duration
Administration
1½ hours
Central
assessment
1½ hours
Central
assessment
Throughout
the three
terms
School-based
assessment
60
(26.67%)
Section A
15 compulsory
multiple-choice
questions to be
answered.
15
Section B
2 compulsory
structured questions
to be answered.
15
Section C
2 questions to be
answered out of 3
essay questions.
30
All questions are
based on topics 19
to 25.
960/5
Physics
Paper 5
Physics Practical
Written Practical
Test
45
(20%)
3 compulsory
structured questions
to be answered.
First,
Second
and
Third
Terms
960/4
Physics
Paper 4
Physics Practical
School-based
Assessment of
Practical
13 compulsory
experiments and
one project to be
carried out.
26
225
to be
scaled to
45
(20%)
Performance Descriptions
A Grade A candidate is likely able to:
(a)
recall the fundamental knowledge of Physics from the syllabus with few significant
omissions;
(b)
show good understanding of the fundamental principles and concepts;
(c)
identify the appropriate information and apply the correct techniques to solve problems;
(d)
communicate effectively using logical sequence based on physics fundamentals, including
usage of mathematical expressions, schematic diagrams, tables and graph;
(e)
synthesise information from fundamental principles of different content areas in problem
solving;
(f)
show good understanding of the underlying working principles and carry out extensive
calculation in numerical-type questions;
(g)
make adaptations, appropriate assumptions and use the fundamental knowledge of Physics
in analyzing an unfamiliar situation;
(h)
identify causes, factors or errors in questions involving experiments;
(i)
shows good knowledge relating precision of data to the accuracy of the final result;
(j)
interpret and evaluate critically the numerical answer in calculations.
A Grade C candidate is likely able to:
(a)
recall the knowledge of Physics from most parts of the syllabus;
(b)
show some understanding of the main principles and concepts in the syllabus;
(c)
present answer using common terminology and simple concepts in the syllabus;
(d)
demonstrate some ability to link knowledge between different areas of Physics;
(e)
perform calculation on familiar numerical-type or guided questions;
(f)
show some understanding of the underlying Physics principles when carrying out numerical
work;
(g)
identify causes, factors or errors in questions involving experiments;
(h)
shows good knowledge relating precision of data to the accuracy of the final result;
(i)
interpret and evaluate critically the numerical answer in calculations.
27
Summary of Key Quantities and Units
Candidates are expected to be familiar with the following quantities, their symbols, their units, and
their interrelationships. They should also be able to perform calculations and deal with questions
involving these quantities as indicated in the syllabus. The list should not be considered exhaustive.
Quantity
Usual symbols
Units
Base quantities
Amount of matter
Electric current
Length
Mass
Temperature
Time
n
I
l
m
T
t
mol
A
m
kg
K
s
a
g
A
A
ms 2
ms 2
s 1, Bq
m
, rad
rad s 1
kg m2 rad s
rad s 1
rad s 1
m2
kg
Other quantities
Acceleration
Acceleration of free fall
Activity of radioactive source
Amplitude
Angular displacement
.
Angular frequency
Angular momentum
Angular speed
Angular velocity
Area
Atomic mass
Atomic number (proton number)
Capacitance
Change of internal energy
Charge carrier density
Coefficient of friction
Conductivity
Critical angle
Current density
Decay constant
Density
Displacement
Distance
Electric charge
Electric field strength
Electric flux
Electric potential
Electric potential difference
Electromotive force
Electron mass
Elementary charge
Emissivity
Energy
Focal length
Force
L
, 
, 
A
ma
Z
C
U
n
F
J
m
3
1
m
1
c
J
s, x
d
Q, q
E
Φ
V
V, V
,E
me
e
e
E, U
f
F
28
Am 2
s1
kg m 3
m
m
C
NC 1
N C 1 m2
V
V
V
kg, u
C
J
m
N
1
Quantity
Usual symbols
Force constant
Frequency
Gravitational field strength
Gravitational potential
Half-life
Heat
Heat capacity
Image distance
Impedance
Intensity
Internal energy
Latent heat
Magnetic flux
Magnetic flux density
Magnification power
Mass number (nucleon number)
Mass per unit length
Molar heat capacity
Molar mass
Molecular speed
Momentum
Mutual inductance
Neutron mass
Neutron number
Object distance
Period
Permeability
Permeability of free space
Permittivity
Permittivity of free space
Phase difference
Potential energy
Power
Pressure
Principal molar heat capacities
Radius
Ratio of heat capacities
Reactance
Refractive index
Relative atomic mass
Relative molecular mass
Relative permeability
Relative permittivity
Resistance
Resistivity
Self-inductance
Specific heat capacity
Specific latent heat
Speed
Speed of electromagnetic waves
k
f
g
V
t½
Q
C
v
Z
I
U
L
Φ
B
m
A
Cm
M
c
p
M
mn
N
u
T
0
0
U
P
p
CV,m; Cp,m
r
Units
Nm 1
Hz
N kg 1
J kg 1
s
J
JK 1
m
Wm
J
J
Wb
T
2
kg m 1
J K 1 mol
kg mol 1
ms 1
Ns
H
kg, u
m
s
Hm 1
Hm 1
Fm 1
Fm 1
, rad
J
W
Pa
J K 1 mol
m
X
n
Ar
Mr
r
r
R
m
L
c
l
u, v
c
29
H
J K 1 kg
J kg 1
ms 1
ms 1
1
1
1
Quantity
Usual symbols
Stress
Surface charge density
Temperature
Tension
Thermal conductivity
Time constant
Torque
Velocity
Volume
Wavelength
Wave number
Weight
Work
Work function
Young’s modulus
T,
T
k
u, v
V
k
W
W
,W
E, Y
30
Units
Pa
Cm 2
K, C
N
Wm 1K 1
s
Nm
ms 1
m3
m
m1
N
J
J
Pa, N m 2
960 PHYSICS
Values of constants
2
Acceleration of free fall
g
=
9.81 m s
Avogadro’s constant
NA
=
6.02
1023 mol
1
Boltzmann’s constant
k, kB
=
1.38
10
23
JK
1
Gravitational constant
G
=
6.67
10
11
N m2 kg
Magnitude of electronic charge
e
=
1.60
10
19
C
24
Mass of the Earth
ME
=
5.97
10 kg
Mass of the Sun
MS
=
1.99
1030 kg
Molar gas constant
R
=
8.31 J K 1 mol
1
10 7 H m
1
Permeability of free space
0
=
4
Permittivity of free space
0
=
8.85
=
Planck’s constant
h
=
12
10
1
Fm
10
36
6.63
34
10
9
1
Fm
1
Js
6
Radius of the Earth
RE
=
6.38
10 m
Radius of the Sun
RS
=
6.96
108 m
Rest mass of electron
me
=
9.11
10
31
kg
Rest mass of proton
mp
=
1.67
10
27
kg
Speed of light in free space
c
=
3.00
108 m s
=
5.67
10 8 W m 2 K
=
1.66
10
Stefan-Boltzmann constant
Unified atomic mass unit
u
31
2
27
kg
1
4
Reference Books
Teachers and candidates may use books specially written for the STPM examination and other
reference books such as those listed below.
1.
Adam, S. and Allday, J., 2000. Advanced Physics. New York: Oxford.
2.
Breithaupt, J., 2000. Understanding Physics for Advanced Level. 4th edition. Cheltenham:
Nelson Thornes.
3.
Duncan, T., 2000. Advanced Physics. 5th edition. London: John Murray.
4.
Giancoli, D.C., 2008. Physics for Scientists and Engineers with Modern Physics. 4th edition.
New Jersey: Pearson Prentice Hall.
5.
Giancoli, D.C., 2008. Physics-Principles with Application. 6th edition. New Jersey: Pearson
Prentice Hall.
6.
Halliday, D., Resnick, R., and Walker, J., 2008. Fundamentals of Physics. 8th edition. New
Jersey: John Wiley & Sons.
7.
Hutchings, R., 2000. Physics. 2nd edition. London: Nelson Thornes.
8.
Jewett Jr, J.W. and Serway, R.A., 2006. Serway’s Principles of Physics. 4th edition. California:
Thomson Brooks/Cole.
9.
Jewett Jr, J.W. and Serway, R.A., 2008. Physics for Scientists and Engineers. 7th edition.
California: Thomson Brooks/Cole.
10.
Nelkon, M. and Parker, P., 1995. Advanced Level Physics. 7th edition. Oxford: Heinemann.
11.
Young, H.D. and Freedman, R.A., 2011. University Physics with Modern Physics. 13th edition.
California: Pearson Addison Wesley.
32
SPECIMEN PAPER
960/1
STPM
PHYSICS (FIZIK)
PAPER 1 (KERTAS 1)
One and a half hours (Satu jam setengah)
MAJLIS PEPERIKSAAN MALAYSIA
(MALAYSIAN EXAMINATIONS COUNCIL)
SIJIL TINGGI PERSEKOLAHAN MALAYSIA
Please tear off along the perforated line.
(Sila koyakkan di sepanjang garis putus-putus ini.)
(MALAYSIA HIGHER SCHOOL CERTIFICATE)
Instructions to candidates:
DO NOT OPEN THIS QUESTION PAPER UNTIL YOU ARE
TOLD TO DO SO.
There are fifteen questions in Section A. For each question, four choices
of answers are given. Choose one correct answer and indicate it on the
Multiple-choice Answer Sheet provided. Read the instructions on the
Multiple-choice Answer Sheet very carefully. Answer all questions. Marks
will not be deducted for wrong answers.
Answer all questions in Section B. Write your answers in the spaces
provided.
Answer any two questions in Section C. All essential working should be
shown. For numerical answers, unit should be quoted wherever appropriate.
Begin each answer on a fresh sheet of paper and arrange your answers in
numerical order.
Tear off the front page of this question paper and your answer sheets of
Section B, and tie both of them together with your answer sheets of Section C.
Values of constants are provided on page in this question paper.
Answers may be written in either English or Bahasa Malaysia.
For examiner’s use
(Untuk kegunaan
pemeriksa)
Section B
(Bahagian B)
16
17
Section C
(Bahagian C)
Total
(Jumlah)
Arahan kepada calon:
JANGAN BUKA KERTAS SOALAN INI SEHINGGA ANDA DIBENARKAN BERBUAT
DEMIKIAN.
Ada lima belas soalan dalam Bahagian A. Bagi setiap soalan, empat pilihan jawapan diberikan.
Pilih satu jawapan yang betul dan tandakan jawapan itu pada Borang Jawapan Aneka Pilihan yang
dibekalkan. Baca arahan pada Borang Jawapan Aneka Pilihan itu dengan teliti. Jawab semua soalan.
Markah tidak akan ditolak bagi jawapan yang salah.
Jawab semua soalan dalam Bahagian B. Tulis jawapan anda di ruang yang disediakan.
Jawab mana-mana dua soalan dalam Bahagian C. Semua jalan kerja yang sesuai hendaklah
ditunjukkan. Bagi jawapan berangka, unit hendaklah dinyatakan di mana-mana yang sesuai. Mulakan
setiap jawapan pada helaian kertas jawapan yang baharu dan susun jawapan anda mengikut tertib
berangka.
Koyakkan muka hadapan kertas soalan ini dan helaian jawapan anda bagi Bahagian B, dan ikatkan
kedua-duanya bersama-sama dengan helaian jawapan anda bagi Bahagian C.
Nilai pemalar dibekalkan pada halaman kertas soalan ini.
Jawapan boleh ditulis dalam bahasa Inggeris atau Bahasa Malaysia.
This question paper consists of
printed pages and
(Kertas soalan ini terdiri daripada halaman bercetak dan
© Majlis Peperiksaan Malaysia
STPM 960/1
33
blank page.
halaman kosong.)
BLANK PAGE
960/1
34
HALAMAN KOSONG
960/1
35
Section A [15 marks]
Answer all questions in this section.
1
Which formula does not have the same unit as work?
A Power
B Pressure
C Mass
time
volume
gravitational potential
D Specific heat capacity
temperature
2 A ball is thrown upwards several times with the same speed at different angles of projection.
Which graph shows the variation of the horizontal range R with the angle of projection ?
D
C
3 A body with mass 6 kg is acted by a force F which varies with time t as shown in the graph
below.
F/N
10
0
T t/s
If the change of the momentum of the body after time T is 30 N s, what is the value of T ?
A 3s
B 5s
C 6s
960/1
36
D 12 s
Bahagian A [15 markah]
Jawab semua soalan dalam bahagian ini.
1
Rumus yang manakah yang tidak mempunyai unit yang sama dengan kerja?
A Kuasa
B Tekanan
C Jisim
masa
isi padu
keupayaan graviti
D Muatan haba tentu
suhu
2 Sebiji bola dilontarkan ke atas beberapa kali dengan laju yang sama pada sudut pelontaran yang
berbeza. Graf yang manakah yang menunjukkan ubahan julat mengufuk R dengan sudut pelontaran
?
D
C
3 Satu jasad dengan jisim 6 kg ditindakkan oleh satu daya F yang berubah dengan masa t
ditunjukkan dalam graf di bawah.
F/N
10
0
T t/s
Jika perubahan momentum jasad itu selepas masa T ialah 30 N s, berapakah nilai T ?
A 3s
B 5s
C 6s
960/1
37
D 12 s
4
Which statement is true of the static friction between two surfaces?
A It is always constant.
B It depends on the surface area.
C It depends on the nature of the surfaces.
D It is always smaller than the kinetic friction.
5 A car of mass m with effective power P and initial velocity u climbs a hill of height h. The car
arrives at the peak of the hill at velocity v in time t. Which is true of the motion?
A
Pt
1
mu 2
2
1 2
mv
2
mgh
B
Pt
1 2
mv
2
1
mu 2
2
mgh
C
Pt
mgh
1
mu 2
2
1 2
mv
2
D
Pt
mgh
1 2
mv
2
1
mu 2
2
6 A car of mass 1000 kg moves along the corner of a level road having a radius of curvature 35.0 m.
If the limiting frictional force between the tyres and the road is 4.0 kN, the maximum speed of the car
without skidding at the corner is
A 4.0 m s
7
1
B 8.8 m s
1
C 11.8 m s
1
D 140.0 m s
1
If the gravitational field strength at a certain region is uniform,
A there is no work done on a mass displaced in that region
B the gravitational potential is the same at all points in that region
C the gravitational force on a mass is the same at all points in that region
D the gravitational potential energy is the same for all masses at all points in that region
8
A ladder PQ with the centre of mass R resting on a wall QS is shown in the diagram below.
T
Q
R
U
S
P
If the ladder is in equilibrium and the resultant forces at P and Q are FP and FQ respectively, FP
and FQ must act through point
A R
B S
C T
960/1
38
D U
4
Penyataan yang manakah yang benar tentang geseran statik antara dua permukaan?
A Ia sentiasa malar.
B Ia bergantung kepada luas permukaan itu.
C Ia bergantung kepada sifat permukaan itu.
D Ia sentiasa lebih kecil daripada geseran kinetik.
5 Sebuah kereta berjisim m dengan kuasa berkesan P dan halaju awal u mendaki sebuah bukit
setinggi h. Kereta itu tiba di puncak bukit pada halaju v dalam masa t. Yang manakah yang benar
tentang gerakan itu?
A
Pt
1
mu 2
2
1 2
mv
2
mgh
B
Pt
1 2
mv
2
1
mu 2
2
mgh
C
Pt
mgh
1
mu 2
2
1 2
mv
2
D
Pt
mgh
1 2
mv
2
1
mu 2
2
6 Sebuah kereta berjisim 1000 kg bergerak melalui satu selekoh jalan raya yang rata yang
mempunyai jejari kelengkungan 35.0 m. Jika had daya geseran antara tayar dengan jalan raya ialah
4.0 kN, laju maksimum tanpa tergelincir kereta pada selekoh itu ialah
A 4.0 m s
7
1
B 8.8 m s
1
C 11.8 m s
1
D 140.0 m s
1
Jika kekuatan medan graviti di suatu kawasan adalah seragam,
A tiada kerja dilakukan ke atas jisim yang tersesar di kawasan itu
B keupayaan graviti adalah sama di semua titik di kawasan itu
C daya graviti ke atas jisim adalah sama di semua titik di kawasan itu
D tenaga keupayaan graviti adalah sama bagi semua jisim di semua titik di kawasan itu
8 Satu tangga PQ dengan pusat jisim R yang bersandar pada dinding QS ditunjukkan dalam gambar
rajah di bawah.
T
Q
R
U
S
P
Jika tangga itu berada dalam keseimbangan dan daya paduan di P dan Q masing-masing ialah FP
dan FQ, FP dan FQ mesti bertindak melalui titik
A R
B S
C T
960/1
39
D U
9
Which of the following best shows the stiffness of a solid?
A Young’s modulus
B Elastic limit
C Yield point
D Tensile strength
10 The temperature of two moles of a diatomic gas is raised by 8.0 C from room temperature. The
increase in the internal energy of the gas is
A 2.0 × 102 J
B 3.3 × 102 J
C 7.0 × 103 J
D 1.2 × 104 J
11 The ratio of the molar heat capacity of an ideal gas is 1.4. What is the number of degrees of
freedom of the gas?
A 3
B 5
C 6
D 7
12 Molar heat capacity at constant pressure differs from molar heat capacity at constant volume
because
A the internal energy of the gas is higher at constant pressure
B extra heat is required to expand the gas at constant pressure
C extra heat is required to increase the degree of freedom of the gas at constant volume
D work is required to overcome the attractive force between molecules which is stronger at
constant pressure
13 An ideal gas in a cylinder is compressed isothermally. Which statement is true of the gas?
A No work is done on the gas.
B Heat is released from the gas.
C The internal energy of the gas increases.
D The potential energy of the gas molecules increases.
960/1
40
9
Yang manakah yang paling baik menunjukkan kekakuan suatu pepejal?
A Modulus Young’s
B Had kenyal
C Titik alah
D Kekuatan tegangan
10 Suhu dua mol gas dwiatom dinaikkan sebanyak 8.0 C dari suhu bilik. Pertambahan tenaga dalam
bagi gas itu ialah
A 2.0 × 102 J
B 3.3 × 102 J
C 7.0 × 103 J
D 1.2 × 104 J
11 Nisbah muatan haba molar suatu gas unggul ialah 1.4. Berapakah bilangan darjah kebebasan gas
itu?
A 3
B 5
C 6
D 7
12 Muatan haba molar pada tekanan malar berbeza daripada muatan haba molar pada isi padu molar
kerana
A tenaga dalam suatu gas adalah lebih tinggi pada tekanan malar
B haba tambahan diperlukan untuk mengembangkan gas pada tekanan malar
C haba tambahan diperlukan untuk meningkatkan darjah kebebasan gas pada isi padu malar
D kerja diperlukan untuk mengatasi daya tarikan antara molekul yang lebih kuat pada tekanan
malar
13 Suatu gas unggul dalam satu silinder dimampatkan secara isoterma. Penyataan yang manakah
yang benar tentang gas itu?
A Tiada kerja dilakukan ke atas gas.
B Haba dibebaskan daripada gas.
C Tenaga dalam gas itu meningkat.
D Tenaga keupayaan molekul gas meningkat.
960/1
41
14 Two perfectly insulated uniform rods R and S of the same material joined thermally is shown in
the diagram below.
Insulator
100 C
S
R
50 C
Insulator
The length of rod R is two times the length of rod S. The cross-sectional area of rod R is half the
cross-sectional area of rod S. If the free ends of R and S are fixed at 100 C and 50 C respectively,
what is the temperature at the junction of rod R and rod S?
A 55 C
B 60 C
C 75 C
D 90 C
15 The Sun continuously radiates energy into space, some of which is received by the Earth. The
average temperature on the surface of the Earth remains at about 300 K because
A the Earth reflects the Sun’s light
B the thermal conductivity of the Earth is low
C the Earth radiates an amount of energy into space equal to the amount it absorbed
D the energy only raises the temperature of the upper atmosphere and never reaches the
surface
960/1
42
14 Dua rod seragam R dan S yang bertebat dengan sempurna daripada bahan yang sama disambung
secara terma ditunjukkan dalam gambar rajah di bawah.
Penebat
100 C
S
R
50 C
Penebat
Panjang rod R adalah dua kali panjang rod S. Luas keratan rentas rod R adalah setengah luas
keratan rentas rod S. Jika hujung bebas R dan S masing-masing ditetapkan pada 100 C and 50 C,
berapakah suhu pada simpang rod R dan rod S?
A 55 C
B 60 C
C 75 C
D 90 C
15 Matahari secara berterusan menyinarkan tenaga ke dalam angkasa, sebahagian daripadanya
diterima oleh Bumi. Purata suhu pada permukaan Bumi kekal pada 300 K kerana
A Bumi memantulkan cahaya Matahari
B kekonduksian terma Bumi adalah rendah
C Bumi menyinarkan amaun tenaga yang sama dengan amaun tenaga yang diserapnya ke dalam
angkasa
D tenaga hanya meningkatkan suhu atmosfera atas dan tidak pernah sampai ke permukaan
960/1
43
BLANK PAGE
960/1
44
Sila koyakkan di sepanjang garis putus-putus ini.
HALAMAN KOSONG
960/1
45
Section B [15 marks]
Answer all questions in this section.
16 A wire with cross-sectional area 0.50 mm2 and length 20.0 cm is pulled at both ends by a force of
55 N as shown in the diagram below.
F = 55 N
F = 55 N
Wire
(a) Determine the stress in the wire.
[2 marks]
(b) If the extension is 0.40 cm, calculate the strain in the wire.
[2 marks]
(c) Determine the Young’s modulus of the wire.
[2 marks]
(d) Calculate the strain energy stored in the wire.
[2 marks]
17 (a) State two assumptions of an ideal gas.
[2 marks]
……………………………………………………………………………………………………………
……………………………………………………………………………………………………………
(b) State two physical conditions under which a gas behave as an ideal gas.
[2 marks]
……………………………………………………………………………………………………………
……………………………………………………………………………………………………………
(c) A 0.035 m3 gas tank contains 7.0 kg of butane gas. Assuming that the gas behaves as an ideal
gas, calculate its pressure at 27 C.
[3 marks]
[The molecular mass of butane is 58 g mol–1.]
960/1
46
Bahagian B [15 markah]
Jawab semua soalan dalam bahagian ini.
16 Satu dawai dengan luas kerata rentas 0.50 mm2 dan panjang 20.0 cm ditarik di kedua-dua hujung
oleh satu daya 55 N seperti ditunjukkan dalam gambar rajah di bawah.
Sila koyakkan di sepanjang garis putus-putus ini.
F = 55 N
F = 55 N
Dawai
(a) Tentukan tegasan dalam dawai itu.
[2 markah]
(b) Jika pemanjangan ialah 0.40 cm, hitung terikan dalam dawai itu.
[2 markah]
(c) Tentukan modulus Young dawai itu.
[2 markah]
(d) Hitung tenaga terikan yang tersimpan dalam dawai itu.
[2 markah]
17 (a) Nyatakan dua anggapan suatu gas unggul.
[2 markah]
……………………………………………………………………………………………………………
……………………………………………………………………………………………………………
(b) Nyatakan dua syarat fizikal yang mana satu gas bertindak sebagai satu gas unggul.
[2 markah]
……………………………………………………………………………………………………………
……………………………………………………………………………………………………………
(c) Sebuah tangki gas 0.035 m3 mengandungi 7.0 kg gas butana. Andaikan bahawa gas itu
bertindak sebagai satu gas unggul, hitung tekanannya pada 27 C.
[3 markah]
[Jisim molekul butana ialah 58 g mol–1.]
960/1
47
BLANK PAGE
960/1
48
HALAMAN KOSONG
960/1
49
Section C [30 marks]
Answer any two questions in this section.
18 (a)
(i) State the principle of conservation of linear momentum.
[2 marks]
(ii) In a perfect elastic collision, the total kinetic energy is conserved. Discuss a case where
the total kinetic energy is lost completely after a collision between two objects.
[2 marks]
(b) An object of mass M is moving with velocity u, and collides elastically with another object of
mass m at rest. After the collision, M and m move with velocities v1 and v2 respectively.
(i) Write the equations to show the conservation of the kinetic energy and the conservation
of the linear momentum.
[2 marks]
(ii) Using the equations in (b)(i), obtain a relationship between u, v1 and v2.
[3 marks]
(iii) Determine the condition required for the object of mass M to stop after the collision.
[3 marks]
(iv) If M = 40.0 g, m = 60.0 g and u = 8.0 m s–1, calculate the percentage change in kinetic
energy of the object of mass M after the collision.
[3 marks]
19 (a)
(i) State Newton’s law of universal gravitation.
[2 marks]
(ii) Explain why the force of gravity of the Earth on an object causes the object to
accelerate towards the Earth.
[2 marks]
(b) The weight of a satellite in a circular orbit around the Earth is half of its weight on the surface
of the Earth. The mass of the satellite is 8.0 102 kg.
space.
(i) Determine the altitude of the orbit.
[3 marks]
(ii) Determine the speed of the satellite.
[2 marks]
(iii) Determine the minimum energy required by the satellite to escape from its orbit to
[3 marks]
(iv) If the satellite is replaced with another satellite of mass 1.6
your answers for (i), (ii) and (iii).
.
960/1
50
103 kg, state the effect on
[3 marks]
Bahagian C [30 markah]
Jawab mana-mana dua soalan dalam bahagian ini.
18 (a)
(i) Nyatakan prinsip keabadian momentum linear.
[2 markah]
(ii) Dalam satu perlanggaran elastik yang sempurna, jumlah tenaga kinetik diabadikan.
Bincangkan satu kes dengan jumlah tenaga kinetik hilang sepenuhnya selepas perlanggaran antara dua
objek.
[2 markah]
(b) Satu objek berjisim M bergerak dengan halaju u, dan berlanggar secara elastik dengan objek
lain berjisim m yang berada dalam keadaan rehat. Selepas perlanggaran, M dan m bergerak masingmasing dengan halaju v1 dan v2.
(i) Tuliskan persamaan untuk menunjukkan keabadian tenaga kinetik dan keabadian
momentum linear.
[2 markah]
dan v2.
(ii) Dengan menggunakan persamaan dalam (b)(i), dapatkan satu perhubungan antara u, v1,
[3 markah]
(iii) Tentukan syarat yang diperlukan bagi objek berjisim M itu untuk berhenti selepas
perlanggaran.
[3 markah]
(iv) Jika M = 40.0 g, m = 60.0 g, dan u = 8.0 m s–1, hitung peratusan perubahan tenaga
kinetik objek berjisim M itu selepas perlanggaran.
[3 markah]
19 (a)
(i) Nyatakan hukum kegravitian semesta Newton.
[2 markah]
(ii) Jelaskan mengapa daya graviti Bumi pada satu objek menyebabkan objek itu memecut
ke arah Bumi.
[2 markah]
(b) Berat satu satelit dalam satu orbit bulat yang mengelilingi Bumi ialah setengah daripada
beratnya pada permukaan Bumi. Jisim satelit itu ialah 8.0 102 kg.
(i) Tentukan altitud orbit itu.
[3 markah]
(ii) Tentukan laju satelit itu.
[2 markah]
(iii) Tentukan tenaga minimum yang diperlukan oleh satelit untuk terlepas dari orbitnya ke
angkasa.
[3 markah]
(iv) Jika satelit itu digantikan dengan satelit yang lain berjisim 1.6
pada jawapan anda dalam (i), (ii), dan (iii).
960/1
51
103 kg, nyatakan kesan
[3 markah]
20 (a)
(i) State the first law of thermodynamics.
[2 marks]
(ii) Using the first law of thermodynamics, explain the changes due to the work done in an
isothermal expansion and an adiabatic expansion for an ideal gas.
[5 marks]
(b) A pump which is used to compress air into a big tank is shown in the diagram below.
To tank
Valve
Piston
0.300 m
Initially the air in the pump is at atmospheric pressure 1.01 × 105 Pa and temperature 300 K. The
pump has a uniform cylindrical space of length 0.300 m, and the valve opens when the air in the pump
exceeds a pressure of 6.25 × 105 Pa. Assuming that the compression is adiabatic and that the air
behaves as a diatomic ideal gas,
(i) determine the distance for which the piston moves before the air starts to enter the tank,
[4 marks]
(ii) determine the temperature of the compressed air,
[2 marks]
(iii) determine the work done by the pump to fill 50.0 mol of air into the tank.
[2 marks]
960/1
52
20 (a)
(i) Nyatakan hukum termodinamik pertama.
[2 markah]
(ii) Dengan menggunakan hukum termodinamik pertama, jelaskan perubahan yang
disebabkan oleh kerja yang dilakukan dalam pengembangan isoterma dan pengembangan adiabatik
bagi satu gas unggul.
[5 markah]
(b) Satu pam yang digunakan untuk memampatkan udara ke dalam satu tangki besar ditunjukkan
dalam gambar rajah di bawah.
Ke tangki
Injap
Piston
0.300 m
Pada awalnya udara di dalam pam ialah pada tekanan atmosfera 1.01 × 105 Pa dan suhu 300 K.
Pam itu mempunyai ruang silinder yang seragam dengan panjang 0.300 m, dan injap terbuka apabila
udara di dalam pam melebihi tekanan 6.25 × 105 Pa. Andaikan bahawa mampatan itu ialah mampatan
adiabatik dan udaranya bertindak sebagai satu gas unggul dwiatom,
(i) tentukan jarak pada ketika piston bergerak sebelum udara mula memasuki tangki,
[4 markah]
(ii) tentukan suhu udara yang termampat,
[2 markah]
(iii) tentukan kerja yang dilakukan oleh pam untuk memenuhkan 50.0 mol udara ke dalam
tangki itu.
[2 markah]
960/1
53
Values of constants
(Nilai Pemalar)
2
Acceleration of free fall
(Pecutan jatuh bebas)
g
=
9.81 m s
Avogadro constant
(Pemalar Avogadro)
NA
=
6.02
1023 mol
1
Boltzmann constant
(Pemalar Boltzmann)
k, kB
=
1.38
10
23
JK
1
Gravitational constant
(Pemalar graviti)
G
=
6.67
10
11
N m2 kg
Magnitude of electronic
charge
(Magnitud cas elektron)
e
=
1.60
10
19
C
Mass of the Earth
(Jisim Bumi)
ME
=
5.97
1024 kg
Mass of the Sun
(Jisim Matahari)
MS
=
1.99
1030 kg
Molar gas constant
(Pemalar gas molar)
R
=
8.31 J K 1 mol
1
Permeability of free space
(Ketelapan ruang bebas)
μ0
=
4
10 7 H m
1
Permittivity of free space
(Ketelusan ruang bebas)
ε0
=
8.85
=
1
12
10
10
36
Planck’s constant
(Pemalar Planck)
h
=
6.63
Fm
34
10
9
1
Fm
1
Js
6
Radius of the Earth
(Jejari Bumi)
RE
=
6.38
10 m
Radius of the Sun
(Jejari Matahari)
RS
=
6.96
108 m
Rest mass of electron
(Jisim rehat elektron)
me
=
9.11
10
31
kg
Rest mass of proton
(Jisim rehat proton)
mp
=
1.67
10
27
kg
Speed of light in free space
(Laju cahaya dalam ruang bebas)
c
=
3.00
108 m s
Stefan-Boltzmann constant
(Pemalar Stefan-Boltzmann)
=
5.67
10 8 W m 2 K
Unified atomic mass unit
(Unit jisim atom bersatu)
=
1.66
10
960/1
54
u
2
27
kg
1
4
Identity card number:………………………….. Centre number/index number:……………………….
(Nombor kad pengenalan)
(Nombor pusat/angka giliran)
SPECIMEN PAPER
960/2
STPM
PHYSICS (FIZIK)
PAPER 2 (KERTAS 2)
One and a half hours (Satu jam setengah)
MAJLIS PEPERIKSAAN MALAYSIA
(MALAYSIAN EXAMINATIONS COUNCIL)
SIJIL TINGGI PERSEKOLAHAN MALAYSIA
Please tear off along the perforated line.
(Sila koyakkan di sepanjang garis putus-putus ini.)
(MALAYSIA HIGHER SCHOOL CERTIFICATE)
Instructions to candidates:
DO NOT OPEN THIS QUESTION PAPER UNTIL YOU ARE
TOLD TO DO SO.
There are fifteen questions in Section A. For each question, four choices
of answers are given. Choose one correct answer and indicate it on the
Multiple-choice Answer Sheet provided. Read the instructions on the
Multiple-choice Answer Sheet very carefully. Answer all questions. Marks
will not be deducted for wrong answers.
Answer all questions in Section B. Write your answers in the spaces
provided.
Answer any two questions in Section C. All essential working should be
shown. For numerical answers, unit should be quoted wherever appropriate.
Begin each answer on a fresh sheet of paper and arrange your answers in
numerical order.
Tear off the front page of this question paper and your answer sheets of
Section B, and tie both of them together with your answer sheets of Section C.
Values of constants are provided on page in this question paper.
Answers may be written in either English or Bahasa Malaysia.
For examiner’s use
(Untuk kegunaan
pemeriksa)
Section B
(Bahagian B)
16
17
Section C
(Bahagian C)
Total
(Jumlah)
Arahan kepada calon:
JANGAN BUKA KERTAS SOALAN INI SEHINGGA ANDA DIBENARKAN BERBUAT
DEMIKIAN.
Ada lima belas soalan dalam Bahagian A. Bagi setiap soalan, empat pilihan jawapan diberikan.
Pilih satu jawapan yang betul dan tandakan jawapan itu pada Borang Jawapan Aneka Pilihan yang
dibekalkan. Baca arahan pada Borang Jawapan Aneka Pilihan itu dengan teliti. Jawab semua soalan.
Markah tidak akan ditolak bagi jawapan yang salah.
Jawab semua soalan dalam Bahagian B. Tulis jawapan anda di ruang yang disediakan.
Jawab mana-mana dua soalan dalam Bahagian C. Semua jalan kerja yang sesuai hendaklah
ditunjukkan. Bagi jawapan berangka, unit hendaklah dinyatakan di mana-mana yang sesuai. Mulakan
setiap jawapan pada helaian kertas jawapan yang baharu dan susun jawapan anda mengikut tertib
berangka.
Koyakkan muka hadapan kertas soalan ini dan helaian jawapan anda bagi Bahagian B, dan ikatkan
kedua-duanya bersama-sama dengan helaian jawapan anda bagi Bahagian C.
Nilai pemalar dibekalkan pada halaman kertas soalan ini.
Jawapan boleh ditulis dalam bahasa Inggeris atau Bahasa Malaysia.
This question paper consists of
printed pages and
(Kertas soalan ini terdiri daripada halaman bercetak dan
© Majlis Peperiksaan Malaysia
STPM 960/2
55
blank page.
halaman kosong.)
BLANK PAGE
960/2
56
HALAMAN KOSONG
960/2
57
Section A [15 marks]
Answer all questions in this section.
1 A Gaussian surface encloses a charge of 2.0 C in vacuum. What is the electric flux through the
surface?
A 1.8 × 10
17
Vm
B 4.4 × 10 6 V m
C 1.8 × 104 V m
D 2.3 × 105 V m
2
Which statement is not true of an isolated charged conducting sphere?
A Electric field exists inside the conductor.
B The potential in the conductor is constant.
C The charge distribution on the conductor is uniform.
D The charge is distributed only on the surface of the conductor.
3 The space between the plates of a parallel-plate capacitor needs to be completely filled by a
dielectric material to increase its capacitance. Which will give the highest capacitance?
Dielectric material
Permittivity
Thickness
A
Teflon
2
0
0.4 mm
B
Quartz
3
0
0.8 mm
C
Glass
4
0
1.0 mm
D
Mica
5
0
1.2 mm
960/2
58
Bahagian A [15 markah]
Jawab semua soalan dalam bahagian ini.
1 Satu permukaan Gauss mengurungi cas 2.0 C dalam vakum. Berapakah fluks elektrik menerusi
permukaan itu?
A 1.8 × 10
17
Vm
B 4.4 × 10 6 V m
C 1.8 × 104 V m
D 2.3 × 105 V m
2
Penyataan yang manakah yang tidak benar tentang cas terpencil sfera pengkonduksi?
A Medan elektrik wujud di dalam konduktor.
B Keupayaan di dalam konduktor adalah malar.
C Taburan cas pada konduktor adalah seragam.
D Cas ditaburkan hanya pada permukaan konduktor.
3 Ruang di antara plat-plat satu kapasitor plat selari perlu dipenuhkan selengkapnya dengan bahan
dielektrik untuk meningkatkan nilai kapasitans. Yang manakah yang akan memberikan kapasitans
yang paling tinggi?
Bahan dielektrik
Ketelusan
Ketebalan
A
Teflon
2
0
0.4 mm
B
Kuartz
3
0
0.8 mm
C
Kaca
4
0
1.0 mm
D
Mika
5
0
1.2 mm
960/2
59
4
A switch S connected to terminal 1 at time t = 0 is shown in the circuit diagram below.
S
When the voltmeter reading has reached V0 at time t = T, the switch S is flipped to terminal 2.
Which graph shows the correct variation of voltmeter reading V with time t?
5
The equation which relates the electrical conductivity of the material of a conductor with other
ne 2t
, where n, e and m are symbols with the usual meaning. t in the equation
quantities is
m
represents
A the thickness of the conductor
B the mean distance between adjacent atoms in the conductor
C the mean time between the collisions of free electrons with lattice ions
D the mean time for a free electron to move from one end to the other end of the conductor
960/2
60
4 Satu suis S yang disambungkan ke terminal 1 pada masa t = 0 ditunjukkan dalam gambar rajah
litar di bawah.
S
Apabila bacaan voltmeter telah mencapai V0 pada masa t = T, suis S ditukar ke terminal 2. Graf
yang manakah yang menunjukkan dengan betul ubahan bacaan voltmeter V dengan masa t?
5
Persamaan yang mengaitkan kekonduksian elektrik
bahan suatu konduktor dengan kuantiti2
ne t
, dengan n, e, dan m adalah simbol yang membawa makna yang biasa. t
kuantiti lain ialah
m
dalam persamaan itu mewakili
A ketebalan konduktor itu
B min jarak antara atom-atom bersebelahan dalam konduktor itu
C min masa antara perlanggaran elektron bebas dengan ion kekisi
D min masa bagi satu elektron bebas untuk bergerak dari satu hujung konduktor ke hujung yang
lain
960/2
61
6
When a potential difference V is applied across two ends of a copper wire with diameter d and
d
L
length L, the drift velocity of the electrons is v. If a copper wire of diameter
and length
with
2
4
potential difference of 2V applied across the two ends, the drift velocity, in terms of v, is
A v
B 2v
C 4v
D 8v
7 A cell of e.m.f. ε connected to three identical bulbs R, S and T and a rheostat XY is shown in the
circuit diagram below.
X
P
S
ε
Y
T
R
If the contact P of the rheostat is adjusted towards Y, which statement is true of the changes in the
brightness of the three bulbs?
A R, S and T become brighter.
B R and T become brighter, but S becomes dimmer.
C R becomes brighter, but S and T become dimmer.
D R and S become brighter, but T becomes dimmer.
8
A potentiometer with a 100 cm wire XY is shown in the circuit diagram below.
P
X
Y
K
E is a dry cell of e.m.f. 1.5 V and internal resistance 0.50 . R is a resistor of 2.0 . When switch
K is open, the balance point P from X is 75 cm. When switch K is closed, the new balance point from
X is
A 30 cm
B 40 cm
C 60 cm
960/2
62
D 75 cm
6
Apabila beza keupayaan V dikenakan merentas dua hujung satu dawai kuprum dengan garis pusat
d
d dan panjang L, halaju hanyut elektron ialah v. Jika satu dawai kuprum bergaris pusat dan panjang
2
L
dengan beza keupayaan 2V dikenakan merentas dua hujung, halaju hanyut, dalam sebutan v, ialah
4
A v
B 2v
C 4v
D 8v
7 Satu sel dengan d.g.e ε disambungkan ke tiga mentol R, S, dan T yang seiras dan satu reostat XY
ditunjukkan dalam gambar rajah litar di bawah.
X
P
S
ε
Y
T
R
Jika sesentuh P reostat dilaraskan ke arah Y, penyataan yang manakah yang benar tentang
perubahan kecerahan tiga mentol itu?
A R, S, dan T menjadi lebih cerah.
B R dan T menjadi lebih cerah, tetapi S menjadi malap.
C R menjadi lebih cerah, tetapi S dan T menjadi malap.
D R dan S menjadi lebih cerah, tetapi T menjadi malap.
8
Satu potentiometer dengan 100 cm dawai XY ditunjukkan dalam gambar rajah litar di bawah.
P
X
Y
K
E ialah sel kering dengan d.g.e. 1.5 V dan rintangan dalam 0.50 . R ialah perintang 2.0 .
Apabila suis K dibuka, titik seimbang P daripada X ialah 75 cm. Apabila suis K ditutup, titik
seimbang daripada X yang baharu ialah
A 30 cm
B 40 cm
C 60 cm
960/2
63
D 75 cm
9 An electron moves into a uniform magnetic field with a certain velocity. If the velocity of the
electron is in the same direction as the magnetic field,
A the electron accelerates
B the electron decelerates
C the electron continues to move with its original velocity
D the electron is deflected and moves in a circle at constant speed
10 Four parallel wires passing through the four vertices of a square WXYZ is shown in the diagram
below.
M
W
X
P
Z
O
N
Q
Y
These wires carry currents of equal magnitude in the directions shown. The resultant magnetic
field at the centre O of the square is in the direction of




A OM
B ON
C OP
D OQ
11 Which statement is true of Hall effect?
A The Hall voltage for ordinary metal is a few volts.
B Hall effect can be used to determine the type of charge carrier.
C The Hall voltage is not dependent on the dimensions of the material.
D The electric force by the Hall voltage on the charge carriers exceeds the magnetic force.
12 A circular coil is placed in a uniform magnetic field. Which quantity does not influence the
magnitude of the charge flow in the coil when the coil is pulled out from the magnetic field?
A Area of the coil
B Resistance of the coil
C Magnetic flux density
D The time taken to pull the coil out from the magnetic field
960/2
64
9 Satu elektron bergerak masuk ke dalam medan magnet seragam dengan satu halaju tertentu. Jika
halaju elektron itu adalah searah dengan medan magnet,
A elektron itu memecut
B elektron itu nyahpecutan
C elektron itu terus bergerak dengan halaju asal
D elektron itu dipesongkan dan bergerak dalam satu bulatan dengan laju malar
10 Empat dawai selari yang melalui empat bucu satu segi empat sama WXYZ ditunjukkan dalam
gambar rajah di bawah.
M
W
X
P
Z
O
N
Q
Y
Dawai-dawai ini membawa arus yang sama magnitudnya mengikut arah yang ditunjukkan.
Medan magnet paduan di pusat O segi empat itu ialah dalam arah




A OM
B ON
C OP
D OQ
11 Penyataan yang manakah yang benar tentang kesan Hall?
A Voltan Hall pada logam biasa ialah beberapa volt.
B Kesan Hall dapat digunakan untuk menentukan jenis pembawa cas.
C Voltan Hall tidak bergantung pada dimensi sesuatu bahan.
D Daya elektrik oleh voltan Hall pada pembawa cas melebihi daya magnet.
12 Satu gegelung bulat diletakkan dalam medan magnet seragam. Kuantiti yang manakah yang tidak
mempengaruhi magnitud aliran cas dalam gegelung apabila gegelung itu ditarik keluar dari medan
magnet?
A Luas gegelung
B Rintangan gegelung
C Ketumpatan fluks magnet
D Masa yang diambil untuk menarik gegelung keluar dari medan magnet
960/2
65
13 The mutual inductance M between two coils is defined by M
P
P
. What do P and Q represent?
Q
Q
A E.m.f. induced in primary coil
Rate of change of current in secondary coil
B E.m.f. induced in secondary coil
Rate of change of current in primary coil
C Potential difference across primary coil
Potential difference across secondary coil
D Potential difference across secondary coil
Potential difference across primary coil
14 An alternating current I which flows through a 5 resistor is given by I = 2 sin (50t), where I is
in amperes and t in seconds. The mean power dissipated in the resistor is
A 5W
B 10 W
C 20 W
D 50 W
15 An R-C circuit is shown in the diagram below.
R
C
The r.m.s. voltage across R and C are 10 V and 7 V respectively. What is the r.m.s. voltage of the
source?
A 3V
B 12 V
C 17 V
960/2
66
D 24 V
13 Induktan saling M antara dua gegelung ditakrifkan sebagai M
P
. Apakah yang mewakili P
Q
dan Q?
P
Q
A D.g.e. teraruh dalam gegelung primer
Kadar perubahan arus dalam gegelung
sekunder
B D.g.e. teraruh dalam gegelung sekunder
Kadar perubahan arus dalam gegelung
primer
C Beza keupayaan merentas gegelung primer
Beza keupayaan
sekunder
D Beza keupayaan merentas gegelung sekunder
Beza keupayaan merentas gegelung primer
merentas
gegelung
14 Arus ulang-alik I yang mengalir melalui satu perintang 5
diberikan sebagai I = 2 sin (50t),
dengan I dalam ampere dan t dalam saat. Min kuasa yang terlesap dalam perintang ialah
A 5W
B 10 W
C 20 W
D 50 W
15 Satu litar R-C ditunjukkan dalam gambar rajah di bawah.
R
C
Voltan p.m.k.d. merentas R dan C ialah masing-masing 10 V dan 7 V. Berapakah voltan p.m.k.d.
sumber itu?
A 3V
B 12 V
C 17 V
960/2
67
D 24 V
BLANK PAGE
960/2
68
Sila koyakkan di sepanjang garis putus-putus ini.
HALAMAN KOSONG
960/2
69
Section B [15 marks]
Answer all questions in this section.
16 Two thin conducting plates have an area of 0.50 m2 each. They are placed parallel to each other
and 25 mm apart. One plate is maintained at +75 V while the other at –75 V by a d.c. supply.
(a) Define capacitance of a capacitor.
[1 mark]
……………………………………………………………………………………………………………
(b) Determine the amount of charge stored on each plate.
[4 marks]
(c) Calculate the energy stored in the electric field between the plates.
[2 marks]
17 (a) State Kirchhoff’s laws.
[2 marks]
……………………………………………………………………………………………………………
……………………………………………………………………………………………………………
(b) Cell X of e.m.f. 3.0 V with internal resistance 1.0 and cell Y of e.m.f. 3.0 V with internal
resistance 2.0 are connected as shown in the circuit diagram below.
X
Y
I
I2
5.0
I1
3.0
Q
P
(i) Calculate current I1 and I2.
[4 marks]
(ii) Determine the potential different between P and Q.
[2 marks]
960/2
70
Bahagian B [15 markah]
Jawab semua soalan dalam bahagian ini.
16 Dua plat pengkonduksi nipis tiap-tiap satu mempunyai luas 0.50 m2. Plat-plat itu diletakkan selari
antara satu sama lain dan terpisah sejauh 25 mm. Satu plat dikekalkan pada +75 V manakala plat
yang satu lagi pada –75 V oleh satu bekalan a.t.
(a) Takrifkan kapasitans satu kapasitor.
[1 markah]
Sila koyakkan di sepanjang garis putus-putus ini.
……………………………………………………………………………………………………………
(b) Tentukan amaun cas yang tersimpan pada setiap plat.
[4 markah]
(c) Hitung tenaga yang tersimpan dalam medan elektrik di antara plat-plat itu.
[2 markah]
17 (a) Nyatakan hukum Kirchhoff.
[2 markah]
……………………………………………………………………………………………………………
……………………………………………………………………………………………………………
(b) Sel X mempunyai d.g.e. 3.0 V dengan rintangan dalam 1.0 dan sel Y mempunyai d.g.e.
3.0 V dengan rintangan dalam 2.0
disambungkan seperti ditunjukkan dalam gambar rajah litar
di bawah.
X
Y
I
I2
5.0
I1
3.0
Q
P
(i) Hitung arus I1 dan I2.
[4 markah]
(ii) Tentukan beza keupayaan antara P dengan Q.
[2 markah]
960/2
71
BLANK PAGE
960/2
72
HALAMAN KOSONG
960/2
73
Section C [30 marks]
Answer any two questions in this section.
18 (a) Two fixed spherical conductors X and Y which is separated by a distance of 0.50 m is shown
in the diagram below.
–2.0 C
+3.0 C
X
Y
0.50 m
Conductor X has a radius 0.15 cm and charge +3.0 C. Conductor Y has a radius of 0.30 cm and
charge –2.0 C.
(i) Calculate the force between the two spheres.
[3 marks]
(ii) The two spheres are then connected with a thin wire. The wire is then removed from
the spheres. Calculate the charge on each sphere.
[5 marks]
(b) (i) Using Gauss’s law, explain why a person inside a hollow metallic sphere of radius R
maintained at a high electric potential does not experience an electric shock.
[4 marks]
(ii) Sketch a graph of electric field E against distance r for r < R and r > R for the situation
in (b)(i).
[4 marks]
19 (a) Explain microscopically why
(i) metal becomes hot when an electric current flows through it,
[2 marks]
(ii) the resistivity of a metal increases while the resistivity of a semiconductor decreases
when the temperature rises.
[4 marks]
(b) A current of 5.0 A flows in a wire of length 1.50 m and cross-sectional area 1.2 mm2. The
potential difference is 6.0 V.
(i) Determine the power dissipated in the wire.
[3 marks]
(ii) Determine the drift velocity of free electrons if the electron density is
1.5 × 1028 m–3.
[3 marks]
(iii) Calculate the force experienced by a free electron if all the power dissipated in the wire
is used to drift the free electrons.
[3 marks]
960/2
74
Bahagian C [30 markah]
Jawab mana-mana dua soalan dalam bahagian ini.
18 (a) Dua konduktor sfera yang ditetapkan X dan Y yang dipisahkan oleh satu jarak 0.50 m
ditunjukkan dalam gambar rajah di bawah.
–2.0 C
+3.0 C
X
Y
0.50 m
Konduktor X mempunyai jejari 0.15 cm dan cas +3.0 C. Konduktor Y mempunyai jejari 0.30
cm dan cas –2.0 C.
(i) Hitung daya di antara dua sfera itu.
[3 markah]
(ii) Dua sfera itu kemudiannya dihubungkan dengan satu dawai nipis. Dawai itu
kemudiannya ditanggalkan dari sfera-sfera itu. Hitung cas pada setiap sfera.
[5 markah]
(b) (i) Dengan menggunakan hukum Gauss, jelaskan mengapa seseorang di dalam satu sfera
logam lompang berjejari R dikekalkan pada suatu keupayaan elektrik yang tinggi tidak mengalami
renjatan elektrik.
[4 markah]
(b)(i).
(ii) Lakar satu graf medan elektrik E lawan jarak r untuk r < R dan r > R bagi situasi dalam
[4 markah]
19 (a) Jelaskan secara mikroskopik mengapa
(i) logam menjadi panas apabila arus elektrik mengalir melaluinya,
[2 markah]
(ii) kerintangan satu logam bertambah manakala kerintangan satu semikonduktor berkurang
apabila suhu meningkat.
[4 markah]
(b) Satu arus 5.0 A mengalir dalam satu dawai yang panjang 1.50 m dan luas keratan rentas
1.2 mm2. Beza keupayaan ialah 6.0 V.
(i) Tentukan kuasa terlesap dalam dawai itu.
[3 markah]
(ii) Tentukan halaju hanyut elektron bebas jika ketumpatan elektron ialah 1.5 × 1028 m–3.
[3 markah]
(iii) Hitung daya yang dialami oleh satu elektron bebas jika semua kuasa yang terlesap
dalam dawai itu digunakan untuk menghanyutkan elektron bebas itu.
[3 markah]
960/2
75
20 (a)
(i) Define magnetic flux density, and state its unit.
[3 marks]
(ii) State two differences between the force due to electric field and the force due to
magnetic field on a charged particle.
[2 marks]
(iii) State Ampere’s law, and use it to derive the magnetic field of a long straight wire.
[4 marks]
(b) A long fixed horizontal wire PQ carries current 80.0 A in the direction QP as shown in the
diagram below.
Q
P
80.0 A
80.0 A
String
R
0.15 m
S
A copper wire RS of diameter 0.40 mm having the same length of PQ hanging horizontally
0.15 m below PQ on two light strings. An e.m.f. source is connected across terminals R and S. If the
density of copper is 8930 kg m 3, determine the minimum current and its direction needed to flow
through RS so that the tension in the strings is zero.
[6 marks]
960/2
76
20 (a)
(i) Takrifkan ketumpatan magnetik fluks, dan nyatakan unitnya.
[3 markah]
(ii) Nyatakan dua perbezaan antara daya yang disebabkan oleh medan elektrik dengan daya
yang disebabkan oleh medan magnet pada satu zarah bercas.
[2 markah]
(iii) Nyatakan hukum Ampere, dan gunakan hukum Ampere untuk terbitkan medan magnet
satu dawai lurus yang panjang.
[4 markah]
(b) Satu dawai panjang mengufuk yang tetap PQ membawa arus 80.0 A dalam arah QP seperti
ditunjukkan dalam gambar rajah di bawah.
P
Q
80.0 A
80.0 A
Tali
R
0.15 m
S
Satu dawai kuprum RS bergaris pusat 0.40 mm mempunyai panjang yang sama dengan PQ
tergantung secara mengufuk 0.15 m di bawah PQ pada dua tali ringan. Satu sumber d.g.e. disambung
merentas terminal R dan S. Jika ketumpatan kuprum ialah 8930 kg m 3, tentukan arus minimum dan
arah yang diperlukannya untuk mengalir melalui RS supaya tegangan dalam tali adalah sifar.
[6 markah]
960/2
77
Values of constants
(Nilai Pemalar)
2
Acceleration of free fall
(Pecutan jatuh bebas)
g
=
9.81 m s
Avogadro constant
(Pemalar Avogadro)
NA
=
6.02
1023 mol
1
Boltzmann constant
(Pemalar Boltzmann)
k, kB
=
1.38
10
23
JK
1
Gravitational constant
(Pemalar graviti)
G
=
6.67
10
11
N m2 kg
Magnitude of electronic
charge
(Magnitud cas elektron)
e
=
1.60
10
19
C
Mass of the Earth
(Jisim Bumi)
ME
=
5.97
1024 kg
Mass of the Sun
(Jisim Matahari)
MS
=
1.99
1030 kg
Molar gas constant
(Pemalar gas molar)
R
=
8.31 J K 1 mol
1
Permeability of free space
(Ketelapan ruang bebas)
μ0
=
4
10 7 H m
1
Permittivity of free space
(Ketelusan ruang bebas)
ε0
=
8.85
=
1
12
10
10
36
Planck’s constant
(Pemalar Planck)
h
=
6.63
Fm
34
10
9
1
Fm
1
Js
6
Radius of the Earth
(Jejari Bumi)
RE
=
6.38
10 m
Radius of the Sun
(Jejari Matahari)
RS
=
6.96
108 m
Rest mass of electron
(Jisim rehat elektron)
me
=
9.11
10
31
kg
Rest mass of proton
(Jisim rehat proton)
mp
=
1.67
10
27
kg
Speed of light in free space
(Laju cahaya dalam ruang bebas)
c
=
3.00
108 m s
Stefan-Boltzmann constant
(Pemalar Stefan-Boltzmann)
=
5.67
10 8 W m 2 K
Unified atomic mass unit
(Unit jisim atom bersatu)
=
1.66
10
960/2
78
u
2
27
kg
1
4
Identity card number:………………………….. Centre number/index number:……………………….
(Nombor kad pengenalan)
(Nombor pusat/angka giliran)
SPECIMEN PAPER
960/3
STPM
PHYSICS (FIZIK)
PAPER 3 (KERTAS 3)
One and a half hours (Satu jam setengah)
MAJLIS PEPERIKSAAN MALAYSIA
(MALAYSIAN EXAMINATIONS COUNCIL)
SIJIL TINGGI PERSEKOLAHAN MALAYSIA
Please tear off along the perforated line.
(Sila koyakkan di sepanjang garis putus-putus ini.)
(MALAYSIA HIGHER SCHOOL CERTIFICATE)
Instructions to candidates:
DO NOT OPEN THIS QUESTION PAPER UNTIL YOU ARE
TOLD TO DO SO.
There are fifteen questions in Section A. For each question, four choices
of answers are given. Choose one correct answer and indicate it on the
Multiple-choice Answer Sheet provided. Read the instructions on the
Multiple-choice Answer Sheet very carefully. Answer all questions. Marks
will not be deducted for wrong answers.
Answer all questions in Section B. Write your answers in the spaces
provided.
Answer any two questions in Section C. All essential working should be
shown. For numerical answers, unit should be quoted wherever appropriate.
Begin each answer on a fresh sheet of paper and arrange your answers in
numerical order.
Tear off the front page of this question paper and your answer sheets of
Section B, and tie both of them together with your answer sheets of Section C.
Values of constants are provided on page in this question paper.
Answers may be written in either English or Bahasa Malaysia.
For examiner’s use
(Untuk kegunaan
pemeriksa)
Section B
(Bahagian B)
16
17
Section C
(Bahagian C)
Total
(Jumlah)
Arahan kepada calon:
JANGAN BUKA KERTAS SOALAN INI SEHINGGA ANDA DIBENARKAN BERBUAT
DEMIKIAN.
Ada lima belas soalan dalam Bahagian A. Bagi setiap soalan, empat pilihan jawapan diberikan.
Pilih satu jawapan yang betul dan tandakan jawapan itu pada Borang Jawapan Aneka Pilihan yang
dibekalkan. Baca arahan pada Borang Jawapan Aneka Pilihan itu dengan teliti. Jawab semua soalan.
Markah tidak akan ditolak bagi jawapan yang salah.
Jawab semua soalan dalam Bahagian B. Tulis jawapan anda di ruang yang disediakan.
Jawab mana-mana dua soalan dalam Bahagian C. Semua jalan kerja yang sesuai hendaklah
ditunjukkan. Bagi jawapan berangka, unit hendaklah dinyatakan di mana-mana yang sesuai. Mulakan
setiap jawapan pada helaian kertas jawapan yang baharu dan susun jawapan anda mengikut tertib
berangka.
Koyakkan muka hadapan kertas soalan ini dan helaian jawapan anda bagi Bahagian B, dan ikatkan
kedua-duanya bersama-sama dengan helaian jawapan anda bagi Bahagian C.
Nilai pemalar dibekalkan pada halaman kertas soalan ini.
Jawapan boleh ditulis dalam bahasa Inggeris atau Bahasa Malaysia.
This question paper consists of
printed pages and
(Kertas soalan ini terdiri daripada halaman bercetak dan
© Majlis Peperiksaan Malaysia
STPM 960/3
79
blank page.
halaman kosong.)
BLANK PAGE
960/3
80
HALAMAN KOSONG
960/3
81
Section A [15 marks]
Answer all questions in this section.
1 A particle of mass m performs a simple harmonic motion with amplitude A and frequency f. The
total energy of this simple harmonic motion is
A
1
mA2f
2
B 2mA2f
2
C 2 2mA2f
2
D 4 2mA2f
2
2
2 A spring-mass system experiences critical damping. Which graph represents the variation of the
displacement s with time t of the motion of the mass?
3
The oscillations of the particles between consecutive nodes of a standing wave have the same
A amplitude
B phase
C maximum velocity
D energy
4
Which statement is not true of an electromagnetic wave?
A It is a transverse wave.
B The expression for its speed is
0 0
.
C It consists of vibrations in magnetic and electric fields.
D It can be polarised.
960/3
82
Bahagian A [15 markah]
Jawab semua soalan dalam bahagian ini.
1 Satu zarah berjisim m melakukan gerakan harmonik ringkas dengan amplitud A dan frekuensi f.
Jumlah tenaga gerakan harmonik ringkas ini ialah
A
1
mA2f
2
B 2mA2f
2
C 2 2mA2f
2
D 4 2mA2f
2
2
2 Satu sistem jisim-spring mengalami pelembapan genting. Graf yang manakah yang mewakili
ubahan sesaran s dengan masa t bagi gerakan jisim itu?
3
Ayunan satu zarah antara nod berturutan satu gelombang pegun mempunyai sama
A amplitud
B fasa
C halaju maksimum
D tenaga
4
Penyataan yang manakah yang tidak benar tentang gelombang elektromagnet?
A Merupakan gelombang melintang.
B Ungkapan bagi laju ialah
0 0
.
C Terdiri daripada getaran dalam medan magnet dan medan elektrik.
D Boleh dikutubkan.
960/3
83
5 If the level of intensity of a sound is raised by 10 dB, what is the ratio of the new sound intensity
to the original sound intensity?
A 0.1
B 1
D 1010
C 10
6 A guitar wire is 0.80 m long and of mass 5.0 g. If its frequency of fundamental mode of vibration
is 100 Hz, its tension is
A 40 N
B 128 N
C 160 N
D 200 N
7 Two thin lenses L1 and L2 which are placed coaxially at a distance 30 cm apart is shown in the
diagram below.
L2
L1
Each lens has a focal length of 40 cm. If the incident rays to L1 are parallel, the final image which
is produced after the rays pass through lenses L1 and L2 is
A real and located between L1 and L2
B virtual and located between L1 and L2
C real and located on the right side of L2
D virtual and located on the left side of L1
8 A concave mirror produces a virtual image at a distance 60 cm from the mirror. The height of the
image is three times the height of the object. What is the focal length of the concave mirror?
A 10 cm
9
B 20 cm
C 30 cm
The resolving power of an aperture can be increased by using
A an aperture of smaller diameter
B light with higher frequency
C light with longer wavelength
D light with higher intensity
960/3
84
D 40 cm
5 Jika paras keamatan satu bunyi dinaikkan sebanyak 10 dB, berapakah nisbah keamatan bunyi
baharu itu kepada keamatan bunyi asal?
A 0.1
B 1
D 1010
C 10
6 Seutas dawai gitar panjangnya 0.80 m dan berjisim 5.0 g. Jika frekuensi getaran mod asasnya
ialah 100 Hz, tegangannya ialah
A 40 N
B 128 N
C 160 N
D 200 N
7 Dua kanta nipis L1 and L2 yang diletakkan sepaksi pada jarak 30 cm di antara satu sama lain
ditunjukkan dalam gambar rajah di bawah.
L2
L1
Setiap kanta mempunyai jarak fokus 40 cm. Jika sinar tuju ke L1 adalah selari, imej akhir yang
terhasil selepas sinar melalui kanta L1 dan L2 adalah
A nyata dan terletak di antara L1 dengan L2
B maya dan terletak di antara L1 dengan L2
C nyata dan terletak di sebelah kanan L2
D maya dan terletak di sebelah kiri L1
8 Satu cermin cekung menghasilkan satu imej maya pada jarak 60 cm dari cermin. Tinggi imej ialah
tiga kali daripada tinggi objek itu. Berapakah panjang fokus cermin cekung itu?
A 10 cm
9
B 20 cm
C 30 cm
D 40 cm
Kuasa pembezaan jelas satu bukaan boleh ditingkatkan dengan menggunakan
A bukaan garis pusat yang lebih kecil
B cahaya dengan frekuensi yang lebih tinggi
C cahaya dengan panjang gelombang yang lebih panjang
D cahaya dengan keamatan yang lebih tinggi
960/3
85
10 Which statement is not true of multimode step index optical fibres?
A The refractive index of the cladding layer is greater than that of the core index.
B The refractive index of the cladding layer is smaller than that of the core index.
C Total internal reflections occur at core-cladding boundaries.
D All wavelengths arrive at the other end of the fibre at different times.
11 When light with wavelength 300 nm incidents on the surface of a metal, photoelectrons with
maximum kinetic energy 2.0 eV are emitted from the surface of the metal. What is the maximum
wavelength for the light which can cause this emission of photoelectrons from the surface of the
metal?
A 200 nm
B 600 nm
C 650 nm
D 880 nm
12 The characteristic lines in an X-ray spectrum is caused by
A deceleration of the energetic incident electrons while they approach the target
B collision of energetic incident electrons with the target atoms
C release of energy when the target atoms undergo ionisation
D transitions of electrons between innermost shells of the target atom
13 Nanoscience is generally known as the study on systems with
A sizes less than one nanometer
B sizes from one to one hundred nanometres
C mass of one to one hundred nanograms
D interaction time of one to one hundred nanoseconds
14 The binding energy per nucleon is
A almost constant when the nucleon number is between 60 and 80
B directly proportional to the nucleon number
C maximum when the nucleon number is between 1 to 20
D maximum when the nucleon number is between 220 to 240
15 The count rate of a radioactive sample was originally 208 s–1 as recorded by a detector. Four
minutes later, the count rate had decreased to 40 s–1. The average background count was found to be
16 s–1. What is the half-life of the radioactive sample?
A 30 s
B 40 s
C 60 s
960/3
86
D 80 s
10 Penyataan yang manakah yang tidak benar tentang gentian optik multimod indeks berperingkat?
A Indeks biasan lapisan salutan adalah lebih besar daripada indeks teras lapisan salutan.
B Indeks biasan lapisan salutan adalah lebih kecil daripada indeks teras lapisan salutan.
C Jumlah pesongan dalaman berlaku pada sempadan salutan teras.
D Semua panjang gelombang sampai di hujung yang lain gentian pada masa yang berbeza.
11 Apabila cahaya dengan panjang gelombang 300 nm tuju pada permukaan satu logam, fotoelektron
dengan tenaga kinetik maksimum 2.0 eV dipancarkan dari permukaan logam itu. Berapakah panjang
gelombang maksimum cahaya yang boleh menyebabkan pancaran fotoelektron ini dari permukaan
logam itu?
A 200 nm
B 600 nm
C 650 nm
D 880 nm
12 Garis cirian dalam spektrum X-ray disebabkan oleh
A nyahpecutan elektron tuju yang bertenaga semasa menghampiri sasaran
B perlanggaran elektron tuju yang bertenaga dengan atom sasaran
C pembebasan tenaga apabila atom sasaran mengalami pengionan
D peralihan elektron di antara petala-petala yang paling dalam atom sasaran
13 Nanosains secara umumnya dikenali sebagai kajian terhadap sistem dengan
A saiz yang kurang daripada satu nanometer
B saiz daripada satu nanometer hingga seratus nanometer
C jisim satu nanogram hingga seratus nanogram
D interaksi masa satu nanosaat hingga seratus nanosaat
14 Tenaga pengikat per nukleon ialah
A hampir malar apabila nombor nukleon adalah di antara 60 dengan 80
B berkadar terus kepada nombor nukleon
C maksimum apabila nombor nukleon adalah di antara 1 hingga 20
D maksimum apabila nombor nukleon adalah di antara 220 hingga 240
15 Kadar bilang satu sampel radioaktif pada asalnya 208 s–1 seperti yang tercatat oleh satu pengesan.
Empat minit kemudian, kadar bilang telah berkurang kepada 40 s–1. Purata kadar bilang latar belakang
didapati menjadi 16 s–1. Berapakah setengah hayat sampel radioaktif itu?
A 30 s
B 40 s
C 60 s
960/3
87
D 80 s
BLANK PAGE
960/3
88
Sila koyakkan di sepanjang garis putus-putus ini.
HALAMAN KOSONG
960/3
89
Section B [15 marks]
Answer all questions in this section.
16 A body of mass 2.0 kg moves in simple harmonic motion. The displacement x from the
equilibrium position at time t is given by x 6.0cos0.22 t , where x is in metres and t in seconds.
(a) Determine is the amplitude and the period of the simple harmonic motion.
[3 marks]
(b) Calculate the maximum acceleration of the motion.
[2 marks]
(c) Calculate the kinetic energy of the body at time t = 3 seconds.
[3 marks]
17 In an electron diffraction experiment, an electron beam which is accelerated on a potential
difference is incident normally on a very thin gold film. Several circular diffraction rings are seen on a
photographic film.
(a) If the voltage at the anode is increased, what happens to the circular rings?
[1 mark]
....................................................................................................................................................................
(b) If a particular ring of radius R is chosen and different values of accelerating voltage V are
1
recorded, sketch a graph of R against
. Deduce that the experiment is in agreement with de
V
Broglie’s hypothesis.
[6 marks]
960/3
90
Bahagian B [15 markah]
Jawab semua soalan dalam bahagian ini.
Sila koyakkan di sepanjang garis putus-putus ini.
16 Satu jasad berjisim 2.0 kg bergerak dalam gerakan harmonik ringkas. Sesaran x daripada
kedudukan keseimbangan pada masa t berikan oleh x 6.0kos 0.22 t , dengan x dalam meter dan t
dalam saat.
(a) Tentukan amplitud dan tempoh gerakan harmonik ringkas itu?
[3 markah]
(b) Hitung pecutan maksimum gerakan itu.
[2 markah]
(c) Hitung tenaga kinetik jasad itu pada masa t = 3 saat.
[3 markah]
17 Dalam satu uji kaji belauan elektron, satu alur elektron yang dipecutkan pada satu beza keupayaan
menuju secara normal pada satu filem emas yang sangat nipis. Beberapa gelang belauan bulat dilihat
pada satu filem fotograf.
(a) Jika voltan pada anod ditingkatkan, apakah yang terjadi pada gelang bulat itu?
[1 markah]
....................................................................................................................................................................
(b) Jika satu gelang tertentu yang berjejari R dipilih dan nilai berbeza voltan pecutan V
1
direkodkan, lakar graf R lawan
. Deduksikan bahawa uji kaji itu bersetuju dengan hipotesis de
V
Broglie.
[6 markah]
960/3
91
BLANK PAGE
960/3
92
HALAMAN KOSONG
960/3
93
Section C [30 marks]
Answer any two questions in this section.
18 (a) The displacement y at distance x and time t of a sound wave propagating in air can be
represented by
y = 7.5 × 10 4 sin (315t
1.05x),
where x and y are in metres and t in seconds.
(i) Sketch, on the same axes, graphs of y against x at times t = 0 and t =
period of the wave.
(b)
T
, where T is the
4
[2 marks]
(ii) Determine the velocity and the frequency of the wave.
[4 marks]
(iii) Calculate the phase difference between the origin and a point 2.0 m from it.
[3 marks]
(i) What is meant by Doppler effect?
[2 marks]
(ii) Describe the principle of Doppler radar used by the police to determine the speed of an
automobile.
[4 marks]
960/3
94
Bahagian C [30 markah]
Jawab mana-mana dua soalan dalam bahagian ini.
18 (a) Sesaran y pada jarak x dan masa t suatu gelombang bunyi yang merambat di udara boleh
diwakili oleh
y = 7.5 × 10 4 sin (315t
1.05x),
dengan x dan y dalam meter dan t dalam saat.
(i) Lakar, pada paksi yang sama, graf y lawan x pada masa t = 0 dan t =
gelombang itu.
(b)
T
, dengan T kala
4
[2 markah]
(ii) Tentukan halaju dan frekuensi gelombang itu.
[4 markah]
(iii) Hitung beza fasa di antara asalan dengan satu titik 2.0 m dari asalan.
[3 markah]
(i) Apakah yang dimaksudkan dengan kesan Doppler?
[2 markah]
(ii) Perihalkan prinsip radar Doppler yang digunakan oleh polis untuk menentukan laju
sesebuah kenderaan.
[4 markah]
960/3
95
19 (a)
(i) State the principle of superposition.
[2 marks]
(ii) Explain the conditions needed to obtain a well-defined interference pattern.
[4 marks]
(b) The set-up for a Young’s double slit experiment is shown in the diagram below.
Light
source
a
Red
filter
D
Screen
The fringe pattern observed has fringe separation of 1.6 mm.
(i) If
D
a
is 2500, calculate the wavelength of the red light that passes through the filter.
[2 marks]
(ii) A blue filter is inserted to replace the red filter. Suggest what can be done to the set-up
to obtain the fringe pattern of the same fringe separation as in (b)(i).
[2 marks]
(iii) If a thin sheet of mica with refractive index 1.58 is placed in front of the upper slit,
explain the changes occurred to the fringe pattern.
[2 marks]
(iv) Given that the thickness of mica in (b)(iii) is 6.64 m, calculate the shift of fringe
D
pattern using
= 2500 and = 450 nm.
[3 marks]
a
960/3
96
19 (a)
(i) Nyatakan prinsip superposisi.
[2 markah]
(ii) Jelaskan syarat yang diperlukan untuk memperoleh satu corak interferen yang jelas.
[4 markah]
(b) Susunan bagi satu uji kaji dua celah Young ditunjukkan dalam gambar rajah di bawah.
Sumber
cahaya
a
Penapis
merah
D
Tabir
Corak pinggir yang dicerap mempunyai pemisahan pinggir 1.6 mm.
(i) Jika
D
a
ialah 2500, hitung panjang gelombang cahaya merah yang melepasi melalui
penapis itu.
[2 markah]
(ii) Satu penapis biru dimasukkan untuk menggantikan penapis merah itu. Cadangkan
apakah yang boleh dibuat kepada susunan untuk memperoleh corak pinggir dengan pemisahan pinggir
sama seperti dalam (b)(i).
[2 markah]
(iii) Jika satu keping mika yang nipis dengan indeks biasan 1.58 diletakkan di hadapan
celah atas, jelaskan perubahan yang berlaku pada corak pinggir itu.
[2 markah]
(iv)
Diberikan bahawa tebal mika dalam (b)(iii) ialah 6.64
D
pinggir menggunakan
= 2500 dan = 450 nm.
a
960/3
97
m, hitung anjakan corak
[3 markah]
20 (a)
(i) Explain nuclear fusion reaction.
[2 marks]
(ii) State the conditions for nuclear fusion.
[2 marks]
(b) Solar energy is produced by fusion reactions in the Sun. One of the fusion processes is known
as proton-proton cycle which involves reactions as shown below.
Reaction 1:
1
1H
Reaction 2:
2
1H
Reaction 3:
3
2 He
1
1H
2
1H
1
1H
0
1
3
2 He
3
2 He
Q1
Q2
4
2 He
211 H
Q3
Q1, Q2 and Q3 are energies released.
(i) Determine Q1, in Joules, released in Reaction 1.
[3 marks]
(ii) Determine the number of protons required to form a helium nucleus 42 He in the above
continuous reactions.
[2 marks]
(iii) Determine the total energy, in Joules, released in forming a helium nucleus 42 He .
[2 marks]
(iv) The Sun radiates 4.0 1026 W at a constant rate and the total mass of protons in the Sun
is 2.0 1030 kg. Determine the approximate life span of the Sun if it radiates energy by the protonproton cycle reaction.
[4 marks]
[Atomic mass of 11 H is 1.00728 u, atomic mass of
0.00055 u and atomic mass of
4
2 He
is 4.00150 u.]
960/3
98
2
1H
is 2.01355 u, atomic mass of
0
1
is
20 (a)
(i) Jelaskan tindak balas pelakuran nuklear.
[2 markah]
(ii) Nyatakan syarat bagi pelakuran nuklear.
[2 markah]
(b) Tenaga suria dihasilkan oleh tindak balas pelakuran dalam Matahari. Satu daripada proses
pelakuran dikenal sebagai kitar proton-proton yang melibatkan tindak balas seperti yang ditunjukkan
di bawah.
Tindak balas 1:
1
1H
Tindak balas 2:
2
1H
Tindak balas 3:
3
2 He
1
1H
2
1H
1
1H
0
1
3
2 He
3
2 He
4
2 He
Q1
Q2
211 H
Q3
Q1, Q2, dan Q3 ialah tenaga yang dibebaskan.
(i) Tentukan Q1, dalam Joule, yang dibebaskan oleh Tindak balas 1.
4
2 He
[3 markah]
(ii) Tentukan nombor proton yang diperlukan untuk pembentukan satu nukleus helium
dalam tindak balas selanjar di atas.
[2 markah]
(iii) Tentukan jumlah tenaga, dalam Joule, yang dibebaskan dalam pembentukan satu
nukleus helium 42 He .
[2 markah]
(iv) Matahari memancarkan 4.0 1026 W pada kadar malar dan jumlah jisim proton dalam
Matahari ialah 2.0 1030 kg. Tentukan anggaran tempoh hayat Matahari jika Matahari memancarkan
tenaga melalui tindak balas kitar proton-proton.
[4 markah]
[Jisim atom 11 H ialah 1.00728 u, jisim atom 21 H ialah 2.01355 u, jisim atom
dan jisim
atom 42 He
ialah 4.00150 u.]
960/3
99
0
1
ialah 0.00055 u
Values of constants
(Nilai Pemalar)
2
Acceleration of free fall
(Pecutan jatuh bebas)
g
=
9.81 m s
Avogadro constant
(Pemalar Avogadro)
NA
=
6.02
1023 mol
1
Boltzmann constant
(Pemalar Boltzmann)
k, kB
=
1.38
10
23
JK
1
Gravitational constant
(Pemalar graviti)
G
=
6.67
10
11
N m2 kg
Magnitude of electronic
charge
(Magnitud cas elektron)
e
=
1.60
10
19
C
Mass of the Earth
(Jisim Bumi)
ME
=
5.97
1024 kg
Mass of the Sun
(Jisim Matahari)
MS
=
1.99
1030 kg
Molar gas constant
(Pemalar gas molar)
R
=
8.31 J K 1 mol
1
Permeability of free space
(Ketelapan ruang bebas)
μ0
=
4
10 7 H m
1
Permittivity of free space
(Ketelusan ruang bebas)
ε0
=
8.85
=
1
12
10
10
36
Planck’s constant
(Pemalar Planck)
h
=
6.63
Fm
34
10
9
1
Fm
1
Js
6
Radius of the Earth
(Jejari Bumi)
RE
=
6.38
10 m
Radius of the Sun
(Jejari Matahari)
RS
=
6.96
108 m
Rest mass of electron
(Jisim rehat elektron)
me
=
9.11
10
31
kg
Rest mass of proton
(Jisim rehat proton)
mp
=
1.67
10
27
kg
Speed of light in free space
(Laju cahaya dalam ruang bebas)
c
=
3.00
108 m s
Stefan-Boltzmann constant
(Pemalar Stefan-Boltzmann)
=
5.67
10 8 W m 2 K
Unified atomic mass unit
(Unit jisim atom bersatu)
=
1.66
10
960/3
100
u
2
27
kg
1
4
SPECIMEN EXPERIMENT
960/4
STPM
PHYSICS (FIZIK)
PAPER 4 (KERTAS 4)
MAJLIS PEPERIKSAAN MALAYSIA
(MALAYSIAN EXAMINATIONS COUNCIL)
SIJIL TINGGI PERSEKOLAHAN MALAYSIA
(MALAYSIA HIGHER SCHOOL CERTIFICATE)
© Majlis Peperiksaan Malaysia
STPM 960/4
101
STUDENT’S MANUAL 20___/20___
STPM PHYSICS
Experiment
Topic: Direct current circuit
Title: Potentiometer
Objective: To determine the internal resistance of a cell using a potentiometer
Theory:
Accumulator
S1
l
Dry cell
S1
E.m.f. of the cell = .
Internal resistance of the cell = r.
With switch S1 closed while switch S2 open, obtain the balance length lo. With both S1 and S2
closed, obtain the balance length l.
Then,
V
Ir
V
r
r
r
Graph of
lo
l
against
1
R
I
V
V
R
V
1 R
r
lo
l
1 R
lo
l
r
1
R
1
should be linear and the gradient is r.
960/4
102
STUDENT’S MANUAL 20___/20___
STPM PHYSICS
Apparatus:
(i) A potentiometer
(ii) A resistor-pack
(iii) Two on-off switches
(iv) A jockey
(v) A 2 V accumulator
(vi) A 1.5 V dry cell
(vii) A centre-zero galvanometer
Procedure:
(a) With S1 closed and S2 open, determine the balance length lo.
(b) With both S1 and S2 closed, determine the balance length l for various values of R.
(c) Plot a graph of
1
lo
against .
l
R
(d) Calculate the internal resistance r of the cell.
960/4
103
104
Identity card number:………………………….. Centre number/index number:……………………….
(Nombor kad pengenalan)
(Nombor pusat/angka giliran)
SPECIMEN PAPER
960/5
STPM
PHYSICS (FIZIK)
PAPER 5 (KERTAS 5)
One and a half hours (Satu jam setengah)
MAJLIS PEPERIKSAAN MALAYSIA
(MALAYSIAN EXAMINATIONS COUNCIL)
SIJIL TINGGI PERSEKOLAHAN MALAYSIA
(MALAYSIA HIGHER SCHOOL CERTIFICATE)
Instructions to candidates:
DO NOT OPEN THIS QUESTION PAPER UNTIL YOU ARE
TOLD TO DO SO.
Answer all questions. Write your answers in the spaces provided.
For examiner’s use
(Untuk kegunaan
pemeriksa)
1
Answers may be written in either English or Bahasa Malaysia.
2
All working should be shown.
Numerical answers should be given to an appropriate number of
significant figures; units should be quoted where appropriate.
3
Total
(Jumlah)
Arahan kepada calon:
JANGAN BUKA KERTAS SOALAN INI SEHINGGA ANDA DIBENARKAN BERBUAT
DEMIKIAN.
Jawab semua soalan. Tulis jawapan anda dalam ruang yang disediakan.
Jawapan boleh ditulis dalam bahasa Inggeris atau Bahasa Malaysia.
Semua kerja hendaklah ditunjukkan.
Jawapan berangka hendaklah diberikan hingga bilangan anga bererti atau tempat perpuluhan
yang sesuai; unit hendaklah dinyatakan di mana-mana yang sesuai.
This question paper consists of printed pages and
(Kertas soalan ini terdiri daripada halaman bercetak dan
© Majlis Peperiksaan Malaysia
STPM 960/5
105
blank page.
halaman kosong.)
1
The rate of heat loss
dQ
dt
of a hot body at temperature
to the surroundings at temperature
0
is
given by
dQ
dt
k A(
0 ),
where k is a constant which depends on the nature of its surface and A the surface area of the body
which is exposed to the surroundings. The rate at which thermal energy is lost from the body is given
by
dQ
dt
mc
d
dt
,
where m is the mass of the body and c the specific heat capacity of the body. Thus
d
kA
dt
mc
(
0)
.
An apparatus set-up used by a student to study the rate of cooling of a body is shown in the
diagram below.
Starting with water which was nearly boiling, the student recorded the temperature of hot water
at time t for each five minute interval, with the temperature of the surroundings 0 = 27 C. Then the
student plotted a graph of
against t as shown in page __.
960/5
106
1
Kadar kehilangan haba
dQ
dt
satu jasad panas pada suhu
kepada persekitaran pada suhu
0
diberikan oleh
dQ
dt
k A(
0 ),
dengan k pemalar yang bergantung pada sifat permukaannya dan A luas permukaan jasad yang
terdedah kepada persekitaran. Kadar kehilangan tenaga terma daripada jasad itu diberikan oleh
dQ
dt
mc
d
dt
,
dengan m jisim jasad dan c muatan haba tentu jasad itu. Oleh itu
d
kA
dt
mc
(
0)
.
Susunan radas yang digunakan oleh seorang pelajar untuk mengkaji kadar penyejukan satu jasad
ditunjukkan dalam gambar rajah di bawah.
Termometer
Pengacau
Penutup kayu
Bikar
Air panas
Pelapik kayu
Bermula dengan air yang hampir mendidih, pelajar itu mencatat suhu air panas pada masa t bagi
setiap selang lima minit, dengan suhu persekitaran 0 = 27 C. Pelajar itu kemudian memplot graf
lawan t seperti yang ditunjukkan pada halaman __.
960/5
107
960/5
108
Graf
lawan t
960/5
109
(a) On the graph of
against t, draw tangent lines at = 40 C, 50 C, 60 C, 70 C and 80 C,
d
d
and determine the corresponding slopes
. Tabulate , (
.
[5 marks]
0 ) and
dt
dt
960/5
110
(a) Pada graf
lawan t, lukis garis tangen pada = 40 C, 50 C, 60 C, 70 C, dan 80 C, dan
d
d
tentukan kelerengan
yang sepadan. Jadualkan , (
.
[5 markah]
0), dan
dt
dt
960/5
111
(b) Plot a graph of
d
dt
against (
0)
.
[5 marks]
960/5
112
(b) Plot graf
d
dt
lawan (
[5 markah]
0 ).
960/5
113
(c) State two precautionary measures which need to be taken so that the variation of temperature
of hot water with time t in the cooling process gives a good result.
[2 marks]
....................................................................................................................................................................
....................................................................................................................................................................
(d) Given that m = 1.0 kg, c = 4200 J kg
against (
0)
1
K
1
and A = 0.1 m2. Based on the graph of
, determine the value of k for the apparatus set-up.
960/5
114
d
dt
[3 marks]
(c) Nyatakan dua langkah berjaga-jaga yang perlu diambil supaya ubahan suhu air panas
dengan masa t dalam proses penyejukan itu memberikan keputusan yang baik.
[2 markah]
....................................................................................................................................................................
....................................................................................................................................................................
(d) Diberikan m = 1.0 kg, c = 4200 J kg
lawan (
0)
1
K 1, dan A = 0.1 m2.
, tentukan nilai k bagi susunan radas itu.
960/5
115
Berdasarkan graf
d
dt
[3 markah]
2
An apparatus set-up to determine the resistivity of a wire is shown in the diagram below.
J
O
P
Initially the wire of length  is placed between O and P. The switch was closed and an ammeter
reading I was recorded. The jockey was then touched and slid along the wire until the original
reading I was obtained at point J. The distance x was then measured and recorded. The experiment
was repeated using different values of .
The readings of , I and x obtained are as follows.
(
0.1) cm
105
100
95
90
85
(I
0.01) A
0.72
0.74
0.80
0.82
0.84
(x
0.1) cm
64.0
63.3
55.7
52.7
51.5
The diameters D of the wire for three different measurements were recorded as 0.56 mm,
0.57 mm and 0.56 mm.
The resistivity
of the wire is given by
(a) If E = 1.5 V, calculate the value of
D2E
4 Ix
, where E is the e.m.f. of the dry cell.
and its error without using the graphical method.
[4 marks]
(b) Describe a simple method to determine the e.m.f. of the dry cell.
[2 marks]
....................................................................................................................................................................
....................................................................................................................................................................
960/5
116
2 Susunan radas untuk menentukan kerintangan seutas dawai ditunjukkan dalam gambar rajah
di bawah.
Akumulator
Suis
Dawai gelongsor
J
O
P
Joki
Sel kering
Pada mulanya seutas dawai yang panjangnya  ditempatkan di antara O dengan P. Suis ditutup
dan bacaan ammeter I direkodkan. Joki kemudian disentuhkan dan digelongsorkan pada dawai
tersebut sehingga bacaan I yang asal diperoleh di titik J. Jarak x kemudian diukur dan direkodkan. Uji
kaji ini diulangi dengan menggunakan nilai  yang berlainan.
Bacaan , I, dan x yang diperoleh adalah seperti yang berikut.
(
0.1) cm
105
100
95
90
85
(I
0.01) A
0.72
0.74
0.80
0.82
0.84
(x
0.1) cm
64.0
63.3
55.7
52.7
51.5
Garis pusat D dawai untuk tiga pengukuran yang berlainan direkodkan sebagai 0.56 mm,
0.57 mm, dan 0.56 mm.
Kerintangan
dawai tersebut diberikan sebagai
(a) Jika E = 1.5 V, hitung nilai
D2E
4 Ix
, dengan E sebagai d.g.e. sel kering.
dan ralatnya tanpa menggunakan kaedah bergraf.
(b) Perihalkan satu kaedah ringkas untuk menentukan d.g.e. sel kering itu.
[4 markah]
[2 markah]
....................................................................................................................................................................
....................................................................................................................................................................
960/5
117
(c) The position of J determined in this experiment is called the balance point. With the aid of a
diagram, describe another way to determine the position of J using the same apparatus and a
galvanometer.
[2 marks]
....................................................................................................................................................................
....................................................................................................................................................................
....................................................................................................................................................................
(d) In this experiment, it was found that the accuracy of the experiment would increase when a
longer slide wire was used. Explain why this is the case.
[2 marks]
....................................................................................................................................................................
....................................................................................................................................................................
....................................................................................................................................................................
(e) Suggest two precautions which should be taken in order to increase the accuracy of the
experiment.
[2 marks]
....................................................................................................................................................................
....................................................................................................................................................................
....................................................................................................................................................................
....................................................................................................................................................................
960/5
118
(c) Kedudukan J yang ditentukan dalam uji kaji ini disebut titik keseimbangan. Dengan bantuan
gambar rajah, perihalkan satu cara lain untuk menentukan kedudukan J dengan menggunakan radas
yang sama dan sebuah galvanometer.
[2 markah]
....................................................................................................................................................................
....................................................................................................................................................................
....................................................................................................................................................................
(d) Dalam uji kaji ini, didapati bahawa kejituan uji kaji akan meningkat apabila dawai gelongsor
yang lebih panjang digunakan. Jelaskan mengapa hal ini demikian.
[2 markah]
....................................................................................................................................................................
....................................................................................................................................................................
....................................................................................................................................................................
ini.
(e) Cadangkan dua langkah berjaga-jaga yang perlu diambil untuk meningkatkan kejituan uji kaji
[2 markah]
....................................................................................................................................................................
....................................................................................................................................................................
....................................................................................................................................................................
....................................................................................................................................................................
960/5
119
(f) Using the data and resistivity formula given, describe briefly the graphical method to
determine the resistivity of wire.
[3 marks]
960/5
120
(f) Dengan menggunakan data dan rumus kerintangan yang diberikan, perihalkan secara ringkas
kaedah bergraf untuk menentukan kerintangan dawai.
[3 markah]
960/5
121
3
(a) State a simple method to estimate the focal length of a convex lens.
[1 mark]
....................................................................................................................................................................
....................................................................................................................................................................
(b) An apparatus set-up to determine the focal length of a convex lens is shown in the diagram
below. A light bulb was used as an object.
A student obtained several object distances u and the corresponding image distances v. A graph
of v against u was then plotted as shown on page . A graph of v = u was also drawn.
Determine the focal length f1 of the convex lens from the graphs.
960/5
122
[3 marks]
3
(a) Nyatakan kaedah ringkas untuk menganggar panjang fokus satu kanta cembung.
[1 markah]
....................................................................................................................................................................
....................................................................................................................................................................
(b) Susunan radas untuk menentukan panjang fokus satu kanta cembung ditunjukkan seperti
dalam gambar rajah di bawah. Satu mentol digunakan sebagai objek.
Kanta
cembung
Tabir
Mentol
Plastisin
Seorang pelajar memperoleh beberapa jarak objek u dan jarak imej v yang sepadan. Satu graf v
lawan u kemudian diplot seperti yang ditunjukkan pada halaman . Graf v = u juga dilukis.
Tentukan panjang fokus f1 kanta cembung dari graf itu.
960/5
123
[3 markah]
raph of v against u
960/5
124
Graf v lawan u
960/5
125
(c) A concave lens was then placed in contact with the convex lens to form a combined lens as
shown in the diagram below. The experiment was repeated.
(i) The results were recorded. Complete the table.
u/cm
v/cm
100.00
25.5
67.0
30.0
50.0
35.9
40.0
38.5
33.0
57.0
25.0
154.0
1
u
960/5
126
/cm
[2 marks]
1
1
v
/cm
1
(c) Satu kanta cekung kemudian diletakkan bersentuhan dengan kanta cembung itu untuk
membentuk satu kanta gabungan seperti yang ditunjukkan dalam gambar rajah di bawah. Uji kaji
diulangi.
Kanta
cembung
Kanta
cekung
Tabir
Mentol
Plastisin
(i) Keputusan direkodkan. Lengkapkan jadual ini.
u/cm
v/cm
100.00
25.5
67.0
30.0
50.0
35.9
40.0
38.5
33.0
57.0
25.0
154.0
1
u
960/5
127
/cm
[2 markah]
1
1
v
/cm
1
(ii) Plot a graph of
1
v
against
1
u
, and extrapolate the line to intersect both the axes.
[3 marks]
960/5
128
(ii) Plot graf
1
v
lawan
1
u
, dan ekstrapolasikan garis itu untuk memotong kedua-dua paksi.
[3 markah]
960/5
129
(iii) Write down the value of the intercept on each axis, and determine the focal length f of
the combined lens.
[2 marks]
....................................................................................................................................................................
....................................................................................................................................................................
(iv) Based on your graph, state two reasons why the experiment is considered not accurate.
[2 marks]
....................................................................................................................................................................
....................................................................................................................................................................
(d) The focal length f of the combined lens is related to the focal length f1 of the convex lens and
the focal length f2 of the concave lens by the equation
1
1
1
f
f1
f2
Calculate the focal length f2 of the concave lens.
960/5
130
.
[2 marks]
(iii) Tulis nilai pintasan pada setiap paksi, dan tentukan panjang fokus f kanta gabungan.
[2 markah]
....................................................................................................................................................................
....................................................................................................................................................................
(iv) Berdasarkan graf anda, nyatakan dua sebab mengapa uji kaji itu dianggap tidak jitu.
[2 markah]
....................................................................................................................................................................
....................................................................................................................................................................
(d) Panjang fokus f kanta gabungan dihubungkan dengan panjang fokus f1 kanta cembung dan
panjang fokus f2 kanta cekung oleh persamaan
1
1
1
f
f1
f2
Hitung panjang fokus f2 kanta cekung itu.
.
[2 markah]
960/5
131