x dx
Transcription
x dx
Integration by Parts - 1lasswork !"##$%&'($"')*%+',$'-$,.,&'./$",',+&' (0.1*%',+&'2-.#+'$3' ''y = ;$% x 4+&'5$6"7&8'"%*92',+&'%+&66'7&,+$:'*%'2*5&9'/( ! ''" x8 y# < # V = < ! x " ;$% x'dx = ' 42!56*!%78)%'+&9!+%&82!(:)+!'+)*;!9%'3!56&5'&6(%3<!=:)5:!'+2+!(:2!(25:*)>'2+!%?!*'@23)56&!)*(2;36()%*!((3602B%)C+< $)@0+%*D+<!2(5E)!!"'(!u,+'7+()('()%*!?%3!(:2!G'*C6@2*(6&!H:2%32@!%?!#6&5'&'+!C%2+*D(!=%3I!:232<!6*C!(%!(:)+!0%)*( )*!9%'3!+('C9!%?!56&5'&'+<!9%'!=232!6(!6!C26C!2*CE!!42!=)&&!*%=!&263*!(25:*)>'2+!(%!+%&82!+'5:!03%7&2@+!(:6(!=232 2++2*()6&!)*!(:2!C69+!J"#K!(72?%32!56&5'&6(%3+)E!H:2+2!(25:*)>'2+!632!*%=!)*(232+()*;!?%3!:)+(%3)56&!326+%*+<!7'(!632 )@0%3(6*(!?%3!(:)+!5%'3+2E L2(!'+!+(63(!79!&263*)*;!:%=!(%!)*(2;36(2!6!03%C'5(!%?!(=%!?'*5()%*+E!42!I*%=!:%=!(%!differentiate!6!03%C'5(<!7'( :%=!67%'(!6*!)*(2;36&M!!L2(!'+!+(63(!?%3!(:2!?%3@'&6!?%3!(:2!C)??232*()6&!%?!6!03%C'5(E!1?! y = u " v =:232!u!6*C!v!632 C)??232*()67&2!?'*5()%*+!%?!x<!(:2* dy dv du = u $ v !!! dx dx dx !1?!=2!@'&()0&9!7%(:!+)C2+!79!dx<!=2!;2( dy = u " dv $ v " du ! 1?!=2!)*(2;36(2!7%(:!+)C2+!%?!(:2!2>'6()%*<!=2!;2( # dy = # u " dv $ # v " du # u " dv = # dy $ # v " du # u " dv = y $ # v " du # u " dv = uv $ # v " du L2(D+!@%82!+%@2!(23@+!63%'*C $)*52! # dy = y !();*%3)*;!(:2!+#)<!=2!;2( "'(!+)*52<! y = uv !=2!;2(<!?)*6&&9 H:)+!)+!(:2!?%3@'&6!?%3!=:6(!=2!56&&!)*(2;36()%*!79!063(+ Technique9 Integration by Parts ! 1?!u!6*C!v!632!C)??232*()67&2!?'*5()%*+!%?!x, (:2* # u " dv = uv $ # v " du ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-./!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( Technique9 Integration by Parts ! 1?!u!6*C!v!632!C)??232*()67&2!?'*5()%*+!%?!x, (:2* # u " dv = uv $ # v " du PQ6@0&2!-)!G)*C! u = ________ # x " cos x dx !!H%!C%!(:)+!79!)*(2;36()%*!79!063(+<!+2(!'0!6!5:63(!! du = _______ v = ________ dv = ________ H:232!632!(:322!0)252+!%?!)*?%3@6()%*!(:6(!@'+(!72!0&652C!)*(%!(:2!u!6*C!dv +&%(+R!x<!5%+!x<!6*C!dx dx =)&&!6&=69+!;%!)*(%!(:2!dv +&%(E!L2(D+!0'(!(:2!x!)*!(:2!u!+&%(<!6*C!5%+!x!)*!(:2!dv +&%(E!$%!=2!:682E ! u= x du = dx v = sin x dv = cos x dx We can now complete the chart u = x'''''''''v = %*9 x ''du = dx'''''dv = ;$% x''dx 4+&'*9,&2-.,*$9'/('#.-,% 3$-7"6.')$->%'6*>&',+*%? # x " ;$% x'dx = x " %*9 x $ # %*9 x'dx u = x''''''''''''''''v = %*9 x ''du = dx'''''''''''dv = ;$% x''dx !!4:6(!=2!:682!C%*2!2++2*()6&&9!)+!5326(2!6*%(:23!)*(2;36&E =:)5:!:%02?'&&9!=2!56*!(6I2E = x " sin x $ cos x $ C L2(D+!5:25I!)(!%'(R!(6I2!(:2!C23)86()82!%?!! = x " sin x $ cos x $ C 1 PQ6@0&2!/)!G)*C! x x # x " e dx !6*C! # xe dx E 0 !!!!!!!!!G)3+(<!@6I2!+'32!(:6(!*%3@6&!u,+'7+()('()%*!C%2+!*%(!=%3I!72?%32!9%'!(39!JS63(+KE u= x v = ex du = dx dv = e x dx x x $ x x $ ex % = 1 # x " e dx = xe x # e dx = xe 1 # x " e dx = xe 0 # x 2 ln x dx u = ln x du = PQ6@0&2!O)!G)*C!!!!!!! # x 2 ln x dx = v= 1 dx x x3 ln x $ 3 # x $ ex $ C 1 0 x3 3 dv = x 2 dx x2 dx 3 x3 x3 = ln x $ $ C 3 9 ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-.O!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( # ln x dx u = ln x v=x 1 dx dv = dx x x 2 ln x dx = x ln x $ # 1 dx = x ln x $ x $ C PQ6@0&2!T)!G)*C!!!!!!!!!! du = # When things go wrongR!!1*(2;36()%*!79!063(+!(36C2+!%*2!)*(2;36&!?%3!6*%(:23E!H:2!763;6)*!)+!=%3(:!@6I)*;!%*&9!)? (:2!+25%*C!2Q032++)%*!)+!26+)23!(%!)*(2;36(2!(:6*!(:2!%3);)*6&E!!G%3!)*+(6*52<!)*!2Q6@0&2!/!67%82<! # x " e x dx , +'00%+2 x2 2 dv = x dx u = ex 9%'!+2(!'0!9%'3!5:63(!&)I2!(:)+R!!!! v= x du = e dx #%@0&2(2!(:2!5:63(E x< x x< x e $ e dx < < '' W'3!5:%)52+!632*D(!=3%*;<!(:29!X'+(!C%*D(!:2&0E!H:)+!()@2!=2!+(3'5I!%'(E U%=!+2(!'0!)*(2;36()%*!79!063(+E!!V%2+!)(!:2&0M!!!! # < x'e H39!(6I)*;! u = ex x< v = x2 2 du = e x "2 x # dx x2 # dx 79!)*(2;36()%*!79!063(+E!!H:232!632!(=%!0%++)7)&)()2+E!H39!265:E 2 # 2x e # x " e x dx = dx = e x2 dv = 2 x dx x2 " x # $ # e "2 x # dx 2 3 u = 2x v =? du = 2 dx dv = e x dx 2 H:+!5%*5&'+)%*+!)+!(:6(!)*(2;36()%*!79!063(+!)+!(:2!=3%*;!(%%&!?%3!(:2!X%7E!H:)+!03%7&2@!56*!72!C%*2 # < < x x 79!%3C)*639!u,+'7+()('()%*E!H39!)(E!!! '' < x'e dx = e $ C When things go rightR!H:2!(3)5I!)+!(%!5:%%+2!u!6*C!v!+'552++?'&&9E!1*!0365()52<!J+'552++?'&&9K!@26*+!(=%!(:)*;+R!dv 56*!72!6*()C)??232*()6(2C!(%!;)82!u<!6*C! # v " du !)+!+)@0&23!(:6*! # u " dv E PQ6@0&2!Y)!G)*C! # arctan x dx !!! u = tan$1 x 1 du = dx 1$ x2 v=x dv = 1 dx x 1 dx = x tan$1 x $ ln"1 $ x 2 # $ c 2 Repeated Integration by Parts9 $%@2()@2+<!=2!56*!32026(!(:2!03%52++!%?!)*(2;36()%*!79!063(+!(%!)*(2;36(2!6 C)??)5'&(!2Q032++)%*E $1 # tan PQ6@0&2!Z)!!!G)*C! ! $%! # # x dx = x tan$1 x $ x 2e x dx !!!!$2(!'0!9%'3!5:63(R!!!! u = x2 # 1$ x 2 v = ex du = 2 x dx dv = e x dx x 2e x dx = x 2e x $ # 2 xe x dx = x 2e x $ 2 # xe x dx !!!V)C!=2!;2(!6*9=:232M 4:6(!)+!(:2!?)*6&!6*+=23M # x 2e x dx = x 2e x $ # 2 xe x dx = x 2e x $ 2 # xe x dxx 2e x $ 2" xe x $ e x # = x 2e x $ 2 xe x $ 2e x $ C ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-.T!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( PQ6@0&2![)!G)*C! !$%! #e x # e x sin x dx !E!u,+'7+()('()%*!C%2+*D(!=%3IE!H39!063(+E!! x sin x dx = sin xe $ #e x u = sin x v = ex du = cos x dx dv = e x dx cos x dx 42!+()&&!:682!6!(%';:!)*(2;36&E!S63(+!6;6)*E! # x x x !!!$%! ' e %*9 x'dx = e %*9 x' $ e ;$% x $ 2 # e x sin x dx = e x sin x $ e x cos x !!!! e x sin x $ e x cos x x e sin x dx = $C # 2 # sin 2 #e x u = cos x v = ex du = $ sin x dx dv = e x dx ;$% x'dx . !H:2!%3);)*6&!)*(2;36&!326002632CE!\32!=2!5:6+)*;!%'3!(6)&+M x dx u = sin x du = cos x dx v = $ cos x dv = sin x dx # sin x dx = $ sin x cos x $ # cos x dx = $ sin x cos x $ # "1 $ sin x # dx PQ6@0&2!])!H%';:23!%*2E!!!!!! # sin x dx = $ sin x cos x $ x $ # sin x dx 2 # sin x dx = $ sin x cos x $ x 2 2 2 2 2 2 # sin #x 2 2 x dx = cos 4 x dx u = x2 du = 2 x dx # 1 sin 4 x 4 dv = cos 4 x dx v= x2 1 sin 4 x $ 4 2 1 v = $ cos 4 x 4 dv = sin 4 x dx x 2 cos 4 x dx = u= x PQ6@0&2!^)!H%';:23!%*2!!!!E! x $ sin x cos x $C 2 du = 1 dx # x sin 4 x dx #x 2 cos 4 x dx = x2 1 %$ x sin 4 x $ ' cos 4 x $ 4 2& 4 #x 2 cos 4 x dx = x2 x 1 sin 4 x $ cos 4 x $ sin 4 x 4 8 32 1 ( # 4 cos 4 x*) ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-.Y!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( Integration by Parts - >omework # x cos"5 x # dx # x sin x dx u= x -E!! du = dx v = $ cos x dv = sin x dx # x sin x dx = $ x cos x $ # cos x dx # x sin x dx = $ x cos x $ sin x $ C # xe 8x 1 v = sin 5 x 5 du = dx dv = cos 5 x dx /E! 1 x # x cos"5 x # dx = 5 sin x $ 5 # sin 5 x dx 1 x # x cos"5 x # dx = 5 sin 5 x $ 25 cos 5 x $ C u= x dx 1 v = e 8x 8 du = dx dv = e 8 x dx OE!! x 1 # xe 8x dx = 8 e 8x $ 8 # e 8x dx x 1 # xe 8x dx = 8 e 8x $ 64 e 8x $ C # 6 xe u= x # 6 xe $3 x # 6 xe $3 x 2 dx = $2 xe$3 x $ e$3 x $ C 3 x ln x dx v = tan x dv = sec 2 x dx 1 dx x du = ZE! # #x # sin 2 2 1 $ x dx # $1 2 32 " x $ 1# 3 dv = 1 $ x dx [E! du = dx 2x 2 32 32 # x 1 $ x dx = 3 " x $ 1# $ # 3 " x $ 1# dx 2x 4 32 52 # x 1 $ x dx = 3 " x $ 1# $ 15 " x $ 1# $ C v= v= 2 1.5 x 3 dv = x .5 dx +2 . 2 x ln x dx = - x 3 2 0 ln x $ # x .5 dx ,3 / 3 +2 . 4 x ln x dx = - x 3 2 0 ln x $ x 3 2 $ C ,3 / 9 # x sec x dx = x tan x $ # tan x dx # x sec x dx = x tan x $ ln cos x $ C u= x dx = $2 xe$3 x $ 2 # e$3 x dx u = ln x # x sec x dx $1 $3 x e 3 dv = e$3 x dx v= TE!! du = 6 dx 2 YE! du = dx dx u = 6x # u= x $3 x x dx u = sin$1 x 1 du = dx ]E! 1$ x2 $1 # sin $1 # sin v=x dv = 1 dx x dx = x sin$1 x $ # x 1$ x2 dx x dx = x sin$1 x $ 1 $ x 2 $ C ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-.Z!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( #x 2x # " x $ 4# e dx ^E!! du = dx # " x $ 4# e 2x xA A B 'dx''''''''dv = x @ 'dx x -.E! x A 69 x B $ x @ 69 x'dx = x @ 'dx A A x A 69 x x A $ $C x @ 69 x'dx = A BC '' < x %*9 x'dx du = x $ 4 #e 2 x 1 " $ dx = #e 2 2x dx 2 " x $ 4#e 2x $ 1 e 2x = xe 2x $ 7 e 2x $ C 2x 4 $ = x e dx #" # 2 4 2 4 # x e 'dx @ x # # # # @ u = x ''''''''''''''''''v = e x du = @ x < 'dx''''''''dv = e x 'dx --E! 69 x'dx u = 69 x''''''''''''v = 1 v = e 2x 2 dv = e 2 x dx u= x$4 @ -/E!! # x e 'dx = x e $ @ # x e 'dx # x e 'dx = x e $ @" x e $ < xe $ <e # # x e 'dx = e " x $ @x $ C x $ C# $ C @ x @ x @ x @ x @ x x < x < x @ x x < u = x < ''''''''''''''''''v = $ ;$% x du = < x'dx''''''''dv = %*9 x'dx # x %*9 x'dx = $ x # x %*9 x'dx = $ x # x %*9 x'dx = $ x # e ;$% x'dx # < < ;$% x $ < x ;$% x'dx < < ;$% x $ <" x " %*9 x $ ;$% x # < < ;$% x $ < x %*9 x $ < ;$% x $ C x u = ;$% x''''''''''''''''v = e x #x -OE!! < du = $ %*9 x'dx''''''''dv = e x 'dx ;$% x'dx #e u = x < ''''''''''''''''''v = %*9 x du = < x'dx''''''''dv = ;$% x'dx #x #x x ''# x ;$% x'dx = e x ;$% x' $ #e x %*9 x'dx u = %*9 x''''''''''''''''v = e x -TE! du = ;$% x'dx''''''''dv = e x 'dx # < ;$% x'dx = x < %*9 x $ < x %*9 x'dx < ;$% x'dx = x < %*9 x $ <"$ x ;$% x $ %*9 x # < ;$% x'dx = x < %*9 x $ < x ;$% x $ < %*9 x $ C #e #e x ;$% x'dx = e x ;$% x $ e x %*9 x $ x ;$% x'dx = #e x ;$% x'dx e x ;$% x $ e x %*9 x $C < D*9:',+&'5$6"7&')+&9'y = 69 x'*%'-$,.,&:'./$", e e ,+&'x 0 .1*%'/&,)&&9'x = B'.9:'x = e 1 V = ! # 4 x ln x dx B 1 u = ln x 1 du = dx x v = 2x u = 69 x'''''''''''''v = x 69 x $ x du = B x 'dx''''''''dv = 69 x'dx 2 dv = 4 x dx e ! e -YE! # 4 x ln x dx = 2 x 2 ln x $ 1 # 2 x dx # 4 x ln x dx = 2 x 2 ln x $ x 2 % 2e 2 $ e 2 $ 1 = e 2 $ 1 e 1 < # "69 x # dx = !&69 x " x 69 x $ x# $ # "69 x $ B#'dx% B !!!-ZE!! e ! e 1 < # "69 x# dx e < # "69 x # dx = ! %&69 x " x 69 x $ x # $ x 69 x $ x $ x% () B B e < ! %!x " 69 x # $ < x 69 x $ < x ( = !"e $ <e $ <e $ <# = !"e $ <# )B '' & ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-.[!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( Integration of Powers of Sine and 1osine - 1lasswork $'00%+2!9%'!=6*(2C!(%!?)*C! # sin 4 x dx E!_%'!=%'&C!+2(!'0!9%'3!5:63(! u = "sin x # 3 v = $ cos x 2 du = 3"sin x # cos x dx dv = sin x dx 2 # $ cos x " 3"sin x # cos x dx !!!!!!#&26*)*;!(:)+!'0<!=2!;2( !!!!!!!!!!!!=!!! $ sin x cos x $ 3 # "sin x # cos x dx !!!!U%=!'+2!(:2!?65(!(:6(! cos x = 1 $ sin x <!=2!;2( !!!!!!!!!!!!=!! $ sin x cos x $ 3 # "sin x #"1- sin x # dx !!!\;6)*<!!6!&)((&2!5&26*'0 !!!!!!!!!!=!! $ sin x cos x $ 3 # "sin x # dx $ 3 # sin x dx !!!a%82! $3 # sin x dx (%!(:2!&2?(!+)C2<!=2!;2( !! 4 # sin x dx = $ sin x cos x $ 3 # "sin x # dx !!! $%&82!?%3! # sin x dx 1 3 # sin x dx = $ 4 sin x cos x $ 4 # "sin x # dx 42!:682!*%=!32C'52C!%'3!%3);)*6&! # sin x dx !(%!%*2!)*8%&8)*;! # sin x dx E!42!?%'*C! # sin x dx )*!6* $%! # sin 4 x dx !=! $ sin 3 x cos x $ 2 3 3 2 3 4 2 4 4 2 3 2 2 2 3 4 2 4 2 4 2 2 263&)23!2Q235)+2E!1?!=2!C)C!*%(<!=2!5%'&C!;%!(:3%';:!(:2!)*(2;36()%*!79!063(+!6;6)*E!!"'(!(:6(!)+!6!06)*b!!$% =2!:682!=:6(!632!32?2332C!(%!6+!32C'5()%*!?%3@'&6+R Guidelines for evaluating integrals involving powers of sine and cosine G)3+(<!9%'!ac$H!32@2@723!(:6(!+)*52! sin 2 x $ cos2 x = 1, sin 2 x = 1 $ cos2 x, cos2 x = 1 $ sin 2 x -E!1?!(:2!0%=23!%?!(:2!+)*2!)+!%CC!6*C!0%+)()82<!+682!%*2!+)*2!?65(%3!6*C!5%*823(!(:2!32@6)*)*;!?65(%3+!(%!5%+)*2E !!!!H:2*!2Q06*C!6*C!)*(2;36(2E /E!1?!(:2!0%=23!%?!(:2!5%+)*2!)+!%CC!6*C!0%+)()82<!+682!%*2!5%+)*2!?65(%3!6*C!5%*823(!(:2!32@6)*)*;!?65(%3+!(%!+)*2E !!!!H:2*!2Q06*C!6*C!)*(2;36(2E OE!1?!(:2!0%=23+!%?!both!(:2!+)*2!6*C!5%+)*2!632!282*!6*C!*%**2;6()82<!@6I2!32026(2C!'+2!%?!(:2!)C2*()()2+ 1 $ cos 2 x 1 $ cos 2 x and cos2 x = 2 2 !!!!!(%!5%*823(!(:2!)*(2;36*C!(%!%CC!0%=23+!%?!(:2!5%+)*2E!H:2*!03%522C!6+!)*!;')C2&)*2!/E sin 2 x = # %*9 ;$% @ A x'dx # G'J%&' %*9 x = B $ ;$% '.9:'-&)-*,&H''''''''''''''''''''''''' # %*9 x "B $ ;$% x # ;$% x'dx G'K$)'7"6,*#6('$",H'''''''''''''''''''''''''''''''''''''''''''''''' # "%*9 x $ %*9 x ;$% x # ;$% x'dx PQ6@0&2!-)! G'L-*,&'*,'.%',)$'*9,&2-.6%H'''''''''''''''''''''''''''''''''''''' ;$% x %*9 x'dx $ ;$% x %*9 x'dx # # G'4+*%'*%'2"*:&6*9&'BH'I&)-*,&'*,'"%*92'$9&'%*9&H''''' %*9 x %*9 < x ;$%A x'dx < < < A < A G'M.;+'*9,&2-.6';.9'/&',.>&9'/('u 0 %"/%,*,",*$9H''''' A C 0;$%E x ;$%F x $C $ E F ''G'N+&;>'($"-'.9%)&-'/(':*33&-&9,*.,*92H ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-.]!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( # ;$% x' %*9 x'dx''''''''''''''''''''''''''''' # ;$% x "B $ < %*9 x $ %*9 x# %*9 x'dx PQ6@0&2!/)!G)*C! # ;$% x ;$% x %*9 x'dx''''''''''''''''''''' # ;$% x "%*9 x $ < %*9 x $ %*9 x #'dx E < < A < < < # ;$% x "B $ %*9 x # %*9 '' < PQ6@0&2!O)!G)*C! # ;$% x'dx A G'I.;&' ;$%< x = < x'dx'''''''''''' A < A C %*9 @ x < %*9 E x %*9 F x $ $ $C @ E F 1*!(:)+!56+2<!7%(:!0%=23+!%?!+)*2!6*C!5%+)*2!632!282*!(T!6*C!.)!,!;')C2&)*2!O +B $ ;$% < x .+B $ ;$% < x . B $ ;$% < x 0'dx 0''''''''''''''''''''''''''''''''''' < < < / /, , # B B $ < ;$% < x $ ;$%< < x 'dx A B + B $ ;$% < x B $ ;$% A x . 0'dx -B $ < ;$% < x $ G'I.;&' ;$%< x = ''''''''''''''''''''''''''''''''' < A , < / #" G'M1#.9:',+*%'7&%%''''''''''''''''''''''''''''''''''''''''''''''''' # # . +B B B B G'O"6,*#6('$",'.66',+&'3-.;,*$9%'''''''''''''''''''''''''''''''' - $ ;$% < x $ $ ;$% A x 0'dx P P / ,A < # @ B B G'M.;+'*9,&2-.6';.9'/&',.>&9'/('u 0 %"/%,*,",*$9H''''' x $ %*9 < x $ %*9 A x $ C P A @< '' ! PQ6@0&2!T)!G)*C! < # ;$% A x'dx = ! !2 2 %3 ( 1 1 # cos x dx = '&8 x $ 4 sin 2 x $ 32 sin 4 x*) 0 0 4 3+ ! . 1 1 3! - 0 $ sin ! $ sin 2 x = 8,2/ 4 32 16 PQ6@0&2!Y)!G)*C! # cos3 x dx !!!!!V%*D(!;2(!'0+2(!67%'(!(:2! sin x !H:2!03%7&2@!)+!6*!%CC!0%=23!%?!5%+!xE sin x # cos3 x dx sin x $1 2 # cos x "1 $ sin x #"sin x # dx # &"sin x # $ "sin x # % cos x dx 2 $1 2 12 2"sin x # $ 32 2 52 "sin x # $ C 5 ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-.^!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( Integration of Powers of Sine and Cosine - Homework 3 ! cos x sin x dx ! cos x cos x sin x dx ! cos x (1 " sin x ) sin x dx ! cos x (sin x " sin x ) dx 3 2 1. 2 ! cos x sin x dx ! cos x (1 " sin x )(sin x ) dx ! [(sin x ) " (sin x ) ] cos x dx 2 2 2 2. 3 2 (sin x ) sin 2 x sin 4 x " +C 2 4 3 3 4 (sin x ) " 5 5 +C 3 3. ! sin 5 2 x cos 2 x dx 2 u = sin 2 x, du = 2 cos 2 x dx 4. 1 sin 6 2 x + C 12 ! sin x dx ! sin x (1 " cos x ) dx ! sin x dx " ! cos x sin x dx 2 " cos x + 5 2 ! sin cos x dx ! sin x sin x cos x dx ! sin x (1 " cos x ) cos x dx ! (cos x " 2 cos x + cos x ) sin x dx 4 5. 2 2 2 2 4 2 6 cos3 x 2cos5 x cos7 x " + " +C 3 5 7 ! cos2 3 x dx 1 cos2 3 x ( 3) dx ! 3 1 cos2 u du ! 3 7. 1 (1 + cos 2u) du ! 3 2 & 1# 1 % 3 x + sin 6 x ( + C ' 6$ 2 © www.MasterMathMentor.com BC Solutions cos3 x +C 3 x dx 3 # x &# x& ! %$cos 3 ('%$cos2 3 (' dx # x &# x& ! %$cos 3 ('%$1 " sin2 3 (' dx 6. # x& x# x& ! %$cos 3 (' dx " ! sin2 3 %$cos 3 (' dx x x 3 sin " sin 3 + C 3 3 ! cos3 ! sin 2 2 x dx 1 sin 2 2 x (2) dx ! 2 1 sin 2 u du ! 2 1 (1 " cos 2u) du ! 2 2 8. & 1# 1 % u " sin 2 u( + C ' 4$ 2 x sin 4 x " +C 2 8 - 110 - Illegal to post on Internet x sin 2 x dx ! From Ex 8, page 105. x " sin x cos x u= x v= 2 2 du = dx dv = sin x dx 2 4 2 2 ! tan x sec x dx ! tan x sec x sec x dx ! tan x (1 + tan x ) sec x dx ! (tan x + tan x ) sec x dx ! (u + u )du 2 2 2 2 # x " sin x cos x & x 2 " x sin x cos x " !% ( dx $ ' 2 2 9. 2 x " x sin x cos x 1 # x 2 sin 2 x & " % " ( 2 2$ 2 2 ' 2 10. x 2 x sin x cos x sin 2 x " + +C 4 2 4 4 2 2 u = tan x, du = sec 2 x dx 4 u3 u5 + 3 5 3 tan x tan 5 x + +C 3 5 ) ! sin 2 x dx ) ") ) 2 * ! (1 + cos x ) dx = ,+x + ") 2 ) *1 1 " cos 2 x 1 dx = 2, x " sin 2 x/ 11. ! +2 .0 2 4 ") 12. 2 )2 1 + cos 2 x ! 2 dx/. ") 2 )2 * ) ) # ) ) & 3) 1 1 ,+x + 2 x " 4 sin 2 x/. = 2 + 4 " %$" 2 " 4 (' = 2 ") 2 ) 13. If one arch of the graph y = sin x is rotated about the x-axis to form a football shaped solid, find the exact value of its volume. ) V = ) ! sin 2 x dx 0 ) #1 " cos 2 x & V =)!% ( dx $ ' 2 0 ) - )2 )* 1 V = ,x " sin 2 x/ = .0 2 2+ 2 © www.MasterMathMentor.com BC Solutions - 111 - Illegal to post on Internet Integration of Rational Functions by Partial Fractions - 1lasswork x$5 dx !(:3%';:!u,+'7+()('()%*E!42!56*!023?%3@!(:2 $ 10 x ln x 2 $ 10 < )*(2;36()%*!7256'+2!)?!''u = x $ B= x <!=2!56*!0'&&!%??!(:2! du = "< x $ B=# 'dx %*!(%0E!W'3!6*+=23!)+! $ CE ' 2 42!:682!2Q6@)*2C!)*(2;36()%*!03%7&2@+!&)I2! #x 2 8 x $ 82 dx E!42!632!)*!(3%'7&2!7256'+2!)?! u = x 2 $ 3 x $ 10<!=2!56**%(!282* $ 3 x $ 10 32@%(2&9!5%@2!5&%+2!(%! du = "2 x $ 3# dx !"2?%32!(:)+!0%)*(<!=2!=%'&C!:682!+6)C!)(!=6+!*%(!)*(2;36()7&2E "'(!=:6(!)+!=2!:682!(%!(6I2! #x 2 H:2!;%6&!%?!(:)+!+25()%*!)+!7326I)*;!(:2!36()%*6&!2Q032++)%*!)*(%!6!+'@!%?!32&6()82&9!+)@0&2!partial fractions<!265: %?!=:)5:!)+!26+9!(%!)*(2;36(2E!1*!(:2%39<!@6*9!36()%+!%?!0%&9*%@)6&+!(:6(!:682!6!*'@236(%3!%?!C2;322!&%=23!(:6*!(:2 0%&9*%@)6&!C2;322!56*!72!=3)((2*!6+R Polynomial constant constant constant constant !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! = $ $ $ ... $ Polynomial linear linear linear linear PQ6@0&2!-)!d268)+)C2!a2(:%C!!,!G)*C! #x 8 x $ 82 dx $ 3 x $ 10 2 8 x $ 82 x $ 3 x $ 10 _%'!+:%'&C!(:)*I!(%!9%'3+2&?R!J$2&?!!)(!&%%I+!6+!)?!+%@2%*2!:6+!722*!6CC)*;!?365()%*+!=:232! " x $ 5#" x $ 2# )+!(:2!5%@@%*!C2*%@)*6(%3bK!!$%!9%'!=3)(2R H:2!?)3+(!+(20!)+!?65(%3)*;!(:2!C2%@)*6(%3 2 8 x $ 82 A B = $ \!5&2823!=69!(%!)+%&6(2!!A!)+!(%!@'&()0&9!7%(:!+)C2+!79! " x $ 5# " x $ 5#" x $ 2# x $ 5 x $ 2 8 x $ 82 A B U%=!+)@0&)?9E = " x + 5# $ " x $ 5# " x $ 5# x$5 x $2 " x $ 5#" x $ 2# 8 x $ 82 B = A $ " x $ 5# U%=!&2(! ''x = $E!6*C!+)@0&)?9 x $2 x $2 8"$5# $ 82 B H:2!B!(23@!=6+:2+!%'(<!&268)*; = A $ "$5 $ 5# $5 $ 2 $5 $ 2 A = $6 8 x $ 82 A B = $ U%=!C%!(:2!+6@2!03%52++<!@'&()0&9)*;!79! " x $ 2# " x $ 5#" x $ 2# x $ 5 x $ 2 8 x $ 82 A B 6*C!+)@0&)?9 = " x $ 2# $ " x $ 2# " x $ 2# x$5 x $2 " x $ 5#" x $ 2# 8 x $ 82 A = " x $ 2# $B U%=!&2(! ''x = <6*C!+)@0&)?9 x$5 x$5 8"2# $ 82 A = "2 $ 2# $B H:2!A!(23@!=6+:2+!%'(<!&268)*; 2$5 2$5 B = 14 $%! #x 8 x $ 82 dx = $ 3 x $ 10 2 + $6 14 . # -, x $ 5 $ x $ 2 0/ dx = $6 ln x $ 5 $ 14 ln x $ 2 $ C ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!--/!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( H:)+!@2(:%C!)+!56&&2C!(:2!>eaviside method 6?(23!W&)823!d268)+)C2!(-]Y.,-^/Y)E!"'(!(:2!@2(:%C!56*!72 +:%3(2*2C!2*%';:!(%!72!C%*2!)*!%*2!+(20!)*!9%'3!:26CE!d232D+!:%=E H:%';:(!03%52++R e!43)(2!(:2!)*(2;36&!6*C!(:2!C2*%@)*6(%3!%?!(:2!063()6&!?365()%*+E + . 8 x $ 82 !!!!!!!! # $ dx = # 0 dx , x $ 5 x $ 2/ " x $ 5#" x $ 2# !!!!H2&&!9%'3+2&?!!J)?! x = $5 <!(:2*! " x $ 5# = 0K!!#%823!(:2! " x $ 5# !=)(:!9%'3!?)*;23!6*C!0&';!)*!(%!=:6(D+!&2?(E !!!!!!!! 8"$5# $ 82 8 x $ 82 = $6 !!!!!!!!!!!V%!63)(:@2()5R!! $5 $ 2 " x $ 2# # e!H:2!6*+=23<!,Z<!)+!(:2!*'@236(%3!?%3! x $ 5E!H%!?)*C!(:2!*'@236(%3!?%3! " x $ 2# <!32026(!(:2!03%52++!7'( !!!!5%823!'0!(:2! " x $ 2# !6*C!0&';!/!)*(%!=:6(!)+!&2?(E 8"2# $ 82 = 14 2$5 e!!G)&&!)*!(:2!,Z!6*C!-T!=:232!(:29!72&%*;E!H:2!2*()32!03%52++!)+!X'+(!%*2!+(20R !!!!!!!! !!!!!! 8 x $ 82 # " x $ 5# #x !!!!!!!!!!!!!V%!63)(:@2()5R! 8 x $ 82 dx = $ 3 x $ 10 2 + $6 14 . # -, x $ 5 $ x $ 2 0/ dx = $6 ln x $ 5 $ 14 ln x $ 2 $ C 2 dx $ x $ 20 2 dx " x $ 5#" x $ 4# #x x$4 dx $ 6x $ 5 x$4 dx " x $ 5#" x $ 1# #x # H39!(:)+!%*2R!!! # 2 % 1 4 $3 $4 ( # '& x $ 5 $ x $ 1 *) dx 1 3 ln x $ 5 $ ln x $ 1 $ C 4 4 2 %29 H39!(:)+!%*2R! $2 9 ( # '& x $ 5 $ x $ 4 *) dx 2 2 ln x $ 5 $ ln x $ 4 $ C 9 9 2 x $5 $C ln 9 x$4 ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!--O!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( # d63C23!%*2R! # x 2 $ 12 x $ 12 dx x3 $ 4x x 2 $ 12 x $ 12 dx x " x $ 2#" x $ 2# %$3 1 $8 8 40 8 ( $ $ dx x x $ 2 x $ 2 *) # '& $3 ln x $ ln x $ 2 $ 5 ln x $ 2 $ C 1*!(:2!\ESE!2Q6@<!9%'!632!%*&9!32+0%*+)7&2!?%3!063()6&!?365()%*+!)*(2;36()%*!=:%+2!C2*%@)*6(%3+!?65(%3!)*(%!*%*, 32026()*;!&)*263!?65(%3+E!H:232!632!@2(:%C+!(%!+%&82!%*2+!=)(:!>'6C36()5!?65(%3+!%3!32026()*;!&)*263!?65(%3+!=:)5: =2!=)&&!*%(!5%823E 1?!(:2!*'@236(%3!)+!%?!:);:23!C2;322!(:6*!(:2!C2*%@)*6(%3<!&%*;!C)8)+)%*!=)&&!32C'52!(:2!)*(2;36*C!(%!6!0%&9*%@)6& 0&'+!6!J03%023!?365()%*EK G%3!)*+(6*52R!!! x 3 $ 9 x 2 $ 24 x $ 17 # x 2 $ 6 x $ 5 dx % ( x $2 x $ 3 $ ' * dx # " x $ 5#" x $ 1#) & 2 x $ 3x $ 2 %34 # '& x $ 5 $ $1 $4 ( dx x $ 1 *) x$3 x $ 6 x $ 5 x $ 9 x $ 24 x $ 17 # 2 3 2 x3 $ 6x2 $ 5x $ 3 x 2 $ 19 x $ 7 !!!!!V)8)C2R! $3 x 2 $ 18 x $ 15 x $2 x2 3 1 $ 3 x $ ln x $ 5 $ ln x $ 1 $ C 2 4 4 G)*6&&9<!C%!*%(!?6&&!)*!&%82!=)(:!063()6&!?365()%*+E!G)3+(<!)(!)+!*%(!*252++639!(%!'+2!(:2!063()6&!?365()%*!(25:*)>'2!%*!6&& 36()%*6&!?365()%*+E!G%3!)*+(6*52<!(:2!?%&&%=)*;!)*(2;36&!)+!286&'6(2C!@%32!26+)&9!79!u,+'7+()('()%*E x2 $1 # x 3 $ 3x $ 4 dx u = x 3 $ 3x $ 4 1 du = # 3 u 1 = ln x 3 $ 3 x $ 4 $ C 3 du = " 3 x 2 $ 3# dx = 3" x 2 $ 1# dx W3<!)?!(:2!)*(2;36*C!)+!*%(!)*!32C'52C!?%3@<!32C'5)*;!)(!@69!2&)@)*6(2!(:2!*22C!?%3!063()6&!?365()%*+<!6+!+:%=*E # x2 $ x $ 2 dx x3 $ 2x $ 4 = # " x +1# "x 2 $ 2 x $ 2# = = " x +1#" x $ 2# # " x $ 2# x " 2 $ 2 x $ 2# dx 1 ln x 2 $ 2 x $ 2 $ C 2 ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!--T!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( Integration of RatEl Functions by Partial Fractions - >omework 11x $ 15 dx 2 $ 3x $ 2 % 7 4 ( dx $ -E!! # ' & x $ 2 x $ 1*) #x 7 x $ 25 dx $ 7x $ 8 % 9 $2 ( dx $ /E! # ' & x $ 8 x $ 1*) #x 7 ln x $ 2 $ 4 ln x $ 1 $ C 2 9 ln x $ 8 $ 2 ln x $ 1 $ C 5 x $ 11 dx $ 2x $ 8 %96 21 6 ( dx $ OE! # ' & x $ 4 x $ 2 *) 3 7 ln x $ 4 $ ln x $ 2 $ C 2 2 3 x $ 12 dx $ 5 x $ 50 % 18 15 27 5 ( dx $ TE! # ' & x $ 10 x $ 5 *) 6 27 ln x $ 10 $ ln x $ 5 $ C 5 5 21 dx $ 7 x $ 10 % $7 7 ( dx $ YE! # ' & x $ 5 x $ 2 *) 10 x dx $ 9 x $ 36 %120 15 $30 $15 ( dx $ ZE! # ' & x $ 12 x $ 3 *) #x #x 2 2 #x #x 7 ln x $ 2 $ 7 ln x $ 5 $ C # [E!! %$16 $8 216 72 36 9 ( $ $ dx x $1 x$7 x $ 2 *) 2 ln x $ 1 $ 3 ln x $ 7 $ 4 ln x $ 2 $ C 4 x 2 $ 15 x $ 1 # x 3 $ 2 x 2 $ 5 x $ 6 dx % 45 15 $12 $6 $10 10 ( dx $ $ ^E!! # ' & x $2 x $1 x $ 3 *) 3 ln x $ 2 $ 2 ln x $ 1 $ ln x $ 3 $ C 2 8 ln x $ 12 $ 2 ln x $ 3 $ C 9 x 2 $ 25 x $ 50 dx " x $ 1#" x $ 7#" x $ 2# # '& 2 # ]E! 7 x 2 $ 22 x $ 54 dx " x $ 2#" x $ 4#" x $ 1# % 18 6 # '& x $ 2 $ $30 30 $25 $5 ( dx $ x$4 x $ 1 *) 3 ln x $ 2 $ ln x $ 4 $ 5 ln x $ 1 $ C $3 x 2 $ 22 x $ 31 # x 3 $ 8 x 2 $ 19 x $ 12 dx % 8 $2 $12 6 9 3 ( $ $ dx -.E!! # ' & x $ 3 x $ 1 x $ 4 *) $4 ln x $ 3 $ 2 ln x $ 1 $ 3 ln x $ 4 $ C ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!--Y!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( x 3 $ 7 x 2 $ 5 x $ 40 dx x2 $ 2x $ 8 % ( 3x * dx -/E!! # 'x $ 5 $ " x $ 4#" x $ 2#) & 3 x 3 $ 2 x 2 $ 12 x $ 9 dx # x $1 + 2 2 . --E! # - 3 x $ 5 x $ 7 $ 0 dx , x $ 1/ # 5x2 x $ $ 7 x $ 2 ln x $ 1 $ C 2 x2 $ 5 x $ 2 ln x $ 4 $ ln x $ 2 $ C 2 3 -TE!!c+2!(:2!+'7+()('()%*! u = x $ 4 dx !!!!!!!!(%!286&'6(2! # " x $ 5# x $ 4 -OE!!c+2!(:2!+'7+()('()%*! u = x $ 1 dx !!!!!!!(%!286&'6(2! # x x $1 2 u 2 = x $ 4, u 2 $ 4 = x, dx = 2 udu 2 u du 2 du # "u $ 3#"u $ 3#u = # "u $ 3#"u $ 3# 2 u = x $ 1, u $ 1 = x, dx = 2 udu 2 u du 2 du # "u $ 1#"u $ 1#u = # "u $ 1#"u $ 1# % $1 3 1 "ln u $ 3 $ ln u $ 3 # 3 ln u $ 1 $ ln u $ 1 ln 13( # '& u $ 3 $ u $ 3*) du % $1 1 ( # '& u $ 1 $ u $ 1*) du x $ 1 $1 $C x $1 $1 1 x$4 $3 ln $C 3 x$4 $3 -YE!c+2!(:2!+'7+()('()%*! u = sin x cos x dx !!!!!!!(%!286&'6(2! # sin x "sin x $ 1# -ZE!c+2!(:2!+'7+()('()%*! u = cos x sin x dx !!!!!!(%!286&'6(2! # cos x $ cos2 x du = cos dx du = $ sin x dx du %$1 1 ( du u $ 1*) # u"u $ 1# = # '& u $ ln u $ 1 $ ln u = ln sin x $ 1 $C sin x $du %1 $1 ( # u"u $ 1# = $ # '& u $ u $ 1*) du ln u $ 1 $ ln u = ln cos x $ 1 $C cos x 25 !?3%@!x!=!/!(%!b!=:232!b!)+!6!5%*+(6*(!;326(23 x $ 3x $ 4 !!!!!!(:6*!/E!V%2+!(:2!6326!6003%65:!6!?)*)(2!&)@)(!6+!b!6003%65:2+!)*?)*)(9M -[E!G)*C!(:2!6326!%?!(:2!32;)%*!'*C23!(:2!;360:!%?!! y = b # 2 25 dx = " x $ 4#" x $ 1# b 2 b % 5 5 ( 1 x $1 b $1 # '& x $ 1 $ x $ 4 *) dx = 5 ln x $ 4 = 5 ln b $ 4 $ 5 ln 6 2 2 As b 2 3 ... 5 ln1 $ 5 ln 6 = 5 ln 6 ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!--Z!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( Improper Integrals - 1lasswork $'00%+2!9%'!632!C3)8)*;!6&%*;!(:2!:);:=69!6(!-..!?(f+25!(67%'(!Z]!@0:)E!\(!()@2!t!=!.!+25E<!9%'!(6I2!9%'3!?%%(!%?? (:2!6552&236(%3!6*C!&2(!(:2!563!+(63(!(%!+&%=!C%=*E!!_%'3!82&%5)(9!)+!;)82*!79 v " t # = 100e$0.1t !!=:232! v " t # !)+!)*!?22(!023!+25%*CE \55%3C)*;!(%!(:)+!@%C2&<!(:2!82&%5)(9!6003%65:2+!B23%!6+!()@2!)*5326+2+!7'(!)+!*2823!2>'6&!(%!B23%E 100 = 0 = 100e$0.1t 0 . 1 t t 23 e lim100e$0.1t = lim t 23 4%'&C!(:2!C)+(6*52!9%'!;%!6003%65:!6!&)@)()*;!86&'2<!%3!=%'&C!)(!)*5326+2!=)(:%'(!7%'*CM!1*!(:)+!+25()%*<!9%'!=)&& &263*!:%=!(%!6*+=23!+'5:!>'2+()%*+!79!286&'6()*;!)@03%023!)*(2;36&+E g)82*!6*!)@03%023!)*(2;36&<!=2!=)+:!(%!C2(23@)*2!=:2(:23!%3!*%(!)(!converges!((:6(!)+<!6003%65:2+ 6!?)*)(2!*'@723!6+!6!&)@)()E!1?!)(!C%2+<!=2!=)+:!(%!?)*C!(:2!*'@723!(%!=:)5:!)(!5%*823;2+E H:2!0)5('32!72&%=!+:%=+!(:2!82&%5)(9!?'*5()%*!@2*()%*2C!67%82E!H:2!C)+(6*52!(:2!563!;%2+!72(=22*!t!=!.!6*C t!=!b!)+!2>'6&!(%!(:2!6326!'*C23!(:2!;360:E B== S*%,.9;&' Q-&.'=':*%,.9;&',-.5&6&: b = # 100e$0.1t dt 0 b = $1000e$0.1t |0 = $1000e$.1b $ 1000 b 1?!b!=!-.!+25%*C+<!(:2!C)+(6*52!)+!ZO/E-!?(E!\+!b!6003%65:2+!)*?)*)(9<!(:2!1000e$0.1t !(23@!6003%65:2+!B23%E!H:'+!(:2 C)+(6*52!6003%65:2+!-<...!?(E!H:2!@6(:2@6()56&!@%C2&!(2&&+!9%'!(:6(!(:2!563!*2823!06++2+!6!0%)*(!-<...!?22(!?3%@ 3 =:232!9%'!+(63(2C!+&%=)*;E!H:2!)*(2;36&! # 100e$0.1t dt !)+!56&&2C!6*!)@03%023!)*(2;36&!7256'+2!%*2!%?!)(+!&)@)(+!%? 0 )*(2;36()%*!)+!*%(!?)*)(2E!H:2!)*(2;36&!converges!(%!-...!7256'+2!(:2!)*(2;36&!?3%@!.!(%!b!6003%65:2+!-<...!6+ b!6003%65:2+!)*?)*)(9E h'2+()%*R!4:6(!)+!(:2!()@2!&6;!72(=22*!(:2!563!(3682&)*;!^Y.!?22(!6*C!^^^!?22(M 950 = 1000 $ 1000e$.1t 999 = 1000 $ 1000e$.1t 1000e.$1t = 50 1000e.$1t = 10 e.$1t = +1. 1 1 $.1t = ln- 0 , 20 / 20 t = 29.957 sec1000e$0.1t + 1 . !!!! time lag is 39.121 sec. 1 1 $.1t = ln0 ,1000 / 1000 t = 69.078 sec e.$1t = ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!--[!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( $1 $'00%+2!(:2!82&%5)(9!?'*5()%*!:6C!722*!! 400" t $ 4 # E!!H:2!;360:!72&%=!&%%I+!6&@%+(!(:2!+6@2E!H:2!82&%5)(9!+()&& 6003%65:2+!B23%!6+!()@2!)*5326+2+E b S*%,.9;&' = # A=="t $ A# $B B== dt = b = # = Q-&.'=':*%,.9;&',-.5&6&: A== 'dt "t $ A# = A== 69 t $ A b T = = A== 69 b $ A $ A== 69 A '' \+!b!6003%65:2+!)*?)*)(9<!+%!C%2+! 69 b $ A E!H:2!)*(2;36&!divergesE!c*&)I2!(:2!?)3+(!@6(:2@6()56&!@%C2&<!(:)+!%*2!(2&&+ 9%'!(:2!563!=%'&C!;%!)*?)*)(2&9!?63!?3%@!(:2!+(63()*;!0%)*(!)?!9%'!=6)(2C!&%*;!2*%';:E A definite integral is improper if the following hold. e!H:2!'0023!%3!&%=23!&)@)(!%?!)*(2;36()%*!)+!)*?)*)(2E b 3 !!!!!!!!!! # a b f " x # dx = lim # f " x # dx b 23 # or a b f " x # dx = lim # f " x # dx a 23 3 a e!H:2!)*(2;36*C!)+!C)+5%*()*'%'+!?%3!6(!&26+(!%*2!86&'2!%?!x!6(!%3!72(=22*!(:2!&)@)(+!%?!)*(2;36()%*E b !!!!!!! b k # f " x # dx = lim # f " x # dx $ lim # f " x # dx <! f )+!C)+5%*()*'%'+!6(! x' = c'*9'&a8 b% a k 2c $ k 2c $ k a \*!)@03%023!)*(2;36&!converges!(%!6!523(6)*!*'@723!)?!265:!600&)567&2!&)@)(!+:%=*!67%82!)+!?)*)(2E W(:23=)+2<!(:2!)*(2;36&!divergesE!U%(2!(:6(!6*!)@03%023!)*(2;36&!=)(:!6*!)*?)*)(2!&)@)(!%? )*(2;36()%*!6&=69+!C)823;2+!)?!(:2!)*(2;36*C!:6+!6!&)@)(!%(:23!(:6*!B23%!6+!(:2!863)67&2!%?!)*(2;36()%* 6003%65:2+!)*?)*)(9E 3 PQ6@0&2!-)!G%3!(:2!)@03%023!)*(2;36&! #xe < $x dx = .)'V-.#+',+&'*9,&2-.9:'.9:',&66')+&,+&''''$-'9$,',+&'*9,&2-.6'7*2+,';$95&-2&H !!!!!!!!!!!!!!!!!!! W&-+.#% !!!!!!! ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!--]!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( 7)!1?!(:2!)*(2;36&!@);:(!5%*823;2<!?)*C!%'(!=:2(:23!%3!*%(!)(!C%2+<!6*C!)?!+%<!(%!=:6(!&)@)( !!!!!)(!5%*823;2+E b !!!!e!i20&652!!!=)(:!JbK6*C!&2(!b!6003%65:!)*?)*)(9E!!!!!! lim # x 2e$ x dx b 23 0 !!!!e!42!*22C!(%!)*(2;36(2!(:)+!2Q032++)%*E!!4:6(!3'&2!@'+(!=2!'+2M x 2e x $ 2 # xe$ x dx 2 x & $x $x #e $ 2e % x e $ 2 $ xe $ !!!!!! &x e 2 x $ 2 xe$ x dx u = x2 % du = 2 xdx dv = e$ x dx !!!!! $x b v = $e$ x 0 $b 2 2b 2 $ $ $ "0 $ 0 $ 2# eb eb eb u= x v = $e$ x du = dx dv = e$ x dx !!!!e!42!*%=!*22C!(%!(6I2!6!&)@)(E!d%=!C%!=2!C%!(:)+M %$b 2 2b 2 ( $ $ $ 0 $ 0 $ 2 " # !!!!!!!!!! lim ' * b 23 e b eb eb & ) 3 !!!!e!S'(!)(!6&&!(%;2(:23E!4:6(!)+! 2 $x #xe dx = 2 0 3 PQ6@0&2!/)!!G%3!(:2!)@03%023!)*(2;36&! #x 0.3 dx 0 .)'V-.#+',+&'*9,&2-.9:'.9:',&66')+&,+&''''$-'9$,',+&'*9,&2-.6'7*2+,';$95&-2&H X,';.99$,'.%',+&'.;;"7"6.,&:'.-&.' 2&,%'/*22&-')*,+$",'/$"9: 7)!1?!(:2!)*(2;36&!@);:(!5%*823;2<!?)*C!%'(!=:2(:23!%3!*%(!)(!C%2+<!6*C!)?!+%<!(%!=:6(!&)@)( !!!!!)(!5%*823;2+E b 3 % x1.3 ( + b1.3 . .2 = lim- 0 = 3 so the integral is divergent. !!!!!!!!!!!!! # x dx = lim ' * b 23 1.3 & )0 b 23, 1.3 / 0 ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!--^!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( 2 PQ6@0&2!O)!!G%3!(:2!)@03%023!)*(2;36&! 2 # x dx $2 .)'V-.#+',+&'*9,&2-.9:'.9:',&66')+&,+&''''$-'9$,',+&'*9,&2-.6'7*2+,';$95&-2&H W&-+.#% !!!!! !!!!7)!1?!(:2!)*(2;36&!@);:(!5%*823;2<!?)*C!%'(!=:2(:23!%3!*%(!)(!C%2+<!6*C!)?!+%<!(%!=:6(!&)@)(!)(!5%*823;2+E 0 2 # x dx $ $2 2 2 #x dx 0 " b 2 lim 2&ln x %$2 $ &2 ln x % b b 20 # lim"2 ln b $ 2 ln 2 $ 2 ln 2 $ 2 ln b# b 20 DNE 3 3 #e $x # dx 0 = PQ6@0&2!T)!P86&'6(2! &$e % $x 3 1 dx and 2 x $1 &tan x % $1 PQ6@0&2!Y)!P86&'6(2! = $e$3 $ e= $B $B=B e3 dx #3x 0 (improper - 0 in denominator) 1 PQ6@0&2!Z)!P86&'6(2! % 3 2 3( x '&2 *) 0 3 2 #x $3 1 dx $1 2 3 0 $1 tan 3 $ tan$1 0 ! 1 4 3 #x $3 1 1 3 1 ! dx = 2 $1 2 dx #x 3 0 (improper - 0 in denominator) 1 % x $2 ( PQ6@0&2![)!P86&'6(2! '& $2 *) 0 1 % 1 ( '&2 x 2 *) 0 DNE ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-/.!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( Improper Integrals - >omework G%3!265:!%?!(:2!03%7&2@+!72&%=!,!6)!;360:!)(!?)3+(!(%!C2(23@)*2!=:2(:23!%3!*%(!(:2!)*(2;36*C!@);:(!5%*823;2!6*C 7)!)?!(:2!)*(2;36&!@);:(!5%*823;2<!?)*C!%'(!=:2(:23!%3!*%(!)(!C%2+<!6*C!)?!+%<!(:2!&)@)(!(%!=:)5:!)(!5%*823;2+E 3 1 dx x2 # -)! 2 3 %$1( 1 '& x *) = 2 2 3 # TE!! 1 1 dx x 0.2 3 % x .8 ( ' * = Divergent & .8 )1 1 [E!! 1 #x 1.2 3 /E! # 1 1 % x $.2 ( ' * = Divergent & $.2 )0 1 1 ZE! 3 % x $.2 ( 1 ' * = =5 & $.2 )1 .2 ]E!! 0 &ln x % 0 = Divergent 1 dx x1.2 3 1 # x dx OE! 3 % $1 ( 1 '& 3 x 3 *) = 81 3 dx 0 1 dx 4 3 3 YE! 1 #x dx 1 % x .8 ( 1 5 ' * = = & .8 )0 .8 4 1 ^E!! 0 0.2 0 1 # x $ 1 dx 1 #x 1 # x ln x dx 0 1 3 &ln x $ 1%0 = Divergent &ln ln x %0 = Divergent 3 11 # " x $ 3# $2 3 # xe dx -.E!! # 3 x dx $1 DNE # " x $ 3# --E!!! $2 11 3 dx $ & $2 # " x $ 3# 3 3 3 2 13 3 3" x $ 3# dx 0 2 2 $x % & 1 1 3 11 $ 3" x $ 3# 3&0 $ "$1#% $ 3&2 $ 0% = 9 % 3 dx -/E!! &$ xe$ x % $ 0 3 3 #e $x dx 0 3 %$ x ( % 1 ( '& e x *) $ '&e x *) 0 0 0 $ 0 $ "0 $ 1# = 1 ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-/-!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( 3 # "1 $ x #e -x dx 1 3 3 # e -x dx $ # xe 1 3 # -OE!!! 1 -x dx 3 1 + 1 $x 3 dx $ -&$ xe %1 $ x e , $x 3 & xe % 1 ex # 1+e . # e$ x dx 0/ 1 3 2x u = e x , du = e x dx dx $3 3 -TE! 3 %x( =' x* &e )1 du # 1+u x = -3, u = 0, x = 3, u = 3 2 $3 &tan u% $1 $1 e 3 0 = ! 2 2 !?3%@!x!=!-!(%!x!=!b!6*C!(:2!x,6Q)+E x !!!!!!6E!$:%=!=%3I!(%!C2(23@)*2!=:2(:23!(:2!32;)%*D+ 7)!1?!(:2!32;)%*!)+!3%(6(2C!67%'(!(:2!x,6Q)+<!C2(23@)*2 !!!!!!!!!6326!6003%65:2+!6!?)*)(2!&)@)(!6+!b!6003%65:2+!!E!!!!!!!!!!!!!!)?!(:2!8%&'@2!%?!(:2!+%&)C!6003%65:2+!6!&)@)(!6+! !!!!!!!!!!!!!!! b 2 3E -YE!V36=!(:2!;360:!%?!(:2!32;)%*!'*C23!(:2!;360:! y = !!!!!!!!!!!!!! !!!!!!!!!! 3 3 A= # 1 V =!# 2 dx x 1 4 dx x2 3 %$4 ( !!!!! !' * & x )1 3 !!!!!!!!!!!!!!!! &ln x % 2 DNE 4! !!!!!5E!H:2!32;)%*!)+!3%(6(2C!67%'(!(:2!y,6Q)+!(%!?%3@!!!!!!!!!!!CE!H3'2!%3!?6&+2R!J1?!6!32;)%*!:6+!)*?)*)(2!6326<!(:2* !!!!!!!!!6!+%&)CE!V%2+!(:)+!8%&'@2!6003%65:!6!?)*)(2! !!!!!!!!!!!!(:2!+%&)C!?%3@2C!79!3%(6()*;!(:6(!%7X25(!67%'( !!!!!!!!!&)@)(!6+! b 2 3M !!!!!!!!!!!!6*!6Q)+!:6+!)*?)*)(2!8%&'@2EK 3 +2. V = 2! # x- 0 dx , x/ 1 3 !!!!! 2!&2 x % 2 False...a# and b# contradict that. 3 ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-//!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( -ZE!!P63&)23<!9%'!?%'*C!(:6(!)(!=%'&C!32>')32!-.<...!@)&2,(%*+!(%!03%02&!6!-Y,(%*!+0652!@%C'&2!(%!6!:2);:(!%?!].. @)&2+!67%82!(:2!263(:E!d%=!@'5:!=%3I!)+!32>')32C!(%!03%02&!(:2!@%C'&2!6*!'*&)@)(2C!C)+(6*52!?3%@!(:2 263(:D+!+'3?652M C C F " x # = 2 1 15 = 1 C = 240, 000, 000 x 4000 2 3 3 %$240000000 ( 240000000 W = # dx = ' *) & x2 x 4000 4000 W = 60000 mile - tons = 6.336 " 1011 ft - lbs -[E!42!I*%=!(:2!(:2!5)35'@?232*52!%?!6!5)35&2!=)(:!36C)'+!=!-!)+!/"E!c+2!(:2!635!&2*;(:!?%3@'&6!(%!+:%=!(:6(!(:2 5)35'@?232*52!%?!(:2!5)35&2!%?! x 2 $ y 2 = 1!)+!/"E x2 $ y2 = 1 1 y2 = 1$ x2 $x $2 x y = 1 $ x 2 1 y4 = = 2 2 1$ x 1$ x2 1 1 x2 1 1 dx 4 dx 4 dx = = # # 2 2 2 1 x 1 x $ $ 1 x $ 0 0 0 1 + . ! L = & 4 sin$1 x % = 4- 0 = 2! 0 ,2/ 1 L = 4 # 1$ -]E!!W*!9%'3!56&5'&6(%3<!;360:! y = e x $ x $2 !%*!(:2!=)*C%=![-<!O]<![.<!/.]E!!$'00%+2!9%'!632!(%!286&'6(2 x $2 + x $2. !!!!!! # -e x $ 0 dx E!\&(:%';:!(:2!)*(2;36*C!)+!C)+5%*()*'%'+!%*!(:2!5&%+2C!)*(2386&![-<!O]<!(:232!)+!%*&9!6!+(20 x $2/ 1 , !!!!!!C)+5%*()*')(9!6(!x!=!/E!H:)+!)+!56&&2C!piecewise-continuous!%*!(:6(!)*(2386&E 3 6E!!43)(2!(:2!)*(2;36&!6+!(:2!+'@!%?!(=%!)*(2;36&+<!%*2!?3%@!x!=!-!(%!x!=!/!6*C!(:2!%(:23!?3%@!x!=!/!(%!x =!OE + x $2. # -,e x $ x $ 2 0/ dx = 1 3 + x $2. # -,e x $ x $ 2 0/ dx $ 1 2 3 + # -,e x $ 2 x $2. 0 dx x $2/ 7E!!"%(:!)*(2;36&+!632!)@03%023E!43)(2!(:2@!=)(:!(:2!5%3325(!&)@)(!(23@)*%&%;9E 3 + %b + x x $2. ( % 3 + x x $2. ( x $2. x ' # -e $ ' # -e $ 0 *dx $ lim 0 *dx # -,e $ x $ 2 0/ dx = lim b 22 b 22 x $2/ ) x $2/ ) &1 , &b , 1 x$< !2>'6&+!6!5%*+(6*(!(%!(:2!&2?(!%? x$< !!!!!!!!!!!!!!!x!=!/!6*C!6*%(:23!5%*+(6*(!(%!(:2!3);:(!%?!x!=!/E!G)*C!(:2!86&'2!(%!=:)5:!(:2!%3);)*6&!)*(2;36&!5%*823;2+E 5E!!$:%=!(:6(!7%(:!)*(2;36&+!5%*823;2E!W7+2382!(:6(!(:2!2Q032++)%*! + x $2. # -,e x $ x $ 2 0/ dx = 1 3 &e x 2 3 1 2 2 3 # "e x $ 1# dx $ # "e 1 2 x $ 1# dx $ x % $ &e x $ x % = e 2 $ 2 $ e $ 1 $ e 3 $ 3 $ e 2 $ 2 = e 3 $ e !!!! ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-/O!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( Finding HImpossibleI Integrals - 1lasswork x E!1?! F "0# = 2 <!?)*C! F "3# E x $1 x $%&'()%*R!!42!*22C!(%!(6I2!(:2!)*(2;36&!%?! 3 E!!"'(!56*!=2M!!u,+'7+()('()%*!C%2+!*%(!=%3IE!42!56**%(!+0&)( x $1 !!!!!!!!!!!!!!!!!(:2!?'*5()%*E!H:232!+22@+!(%!72!*%!0%++)7)&)(9!?%3!)*823+2,(3);E!!$%!:%=!56*!=2!C%!(:2!03%7&2@M PQ6@0&2R!!L2(! F " x # !72!6*!6*()C23)86()82!%?! 3 !!!!!!!!!!!!!!!!!42!632!*%(!72)*;!6+I2C!(%!?)*C!(:2!)*C2?)*)(2!)*(2;36&!%?!(:2!2Q032++)%*E!42!X'+(!*22C!(%!?)*C!(:2!86&'2 !!!!!!!!!!!!!!!!!%?!(:2!)*(2;36&!?'*5()%*!%?!(:)+!2Q032++)%*!6(!OE 3 3 x x x dx <!(:2*! F " 3# $ F "0# = # 3 dx !6*C!(:'+! F " 3# = 2 $ # 3 dx E !!!!!!!!!!!!!!!!!!$%<!)?! F " x # = # 3 x $1 0 x $1 0 x $1 !!!!!!!!!!!!!!!!!c+)*;!(:2!56&5'&6(%3R! F " 3# = 2 $ .879 = 2.879 E /)!!L2(! F " x # !72!6*!6*()C23)86()82!%?! 4 x 2 $ 5 E!1?! F "1# = 3 <!?)*C! F "5# E 5 F "5# $ F "1# = # 4 x 2 $ 5 dx 1 !!!!!!!!!!!!!!! 5 F "5# = F "1# $ # 4 x 2 $ 5 dx = 3 $ 25.866 = 28.866 1 OE!!!L2(! F " x # !72!6*!6*()C23)86()82!%?! e x $1 F "$1# $ F "$2# = #e 2 E!1?! F "$1# = 2<!?)*C! F "$2# E x2 dx x2 dx = 2 $ 14.990 = $12.990 $2 !!!!!!!!!!!!!!!!!! $1 F "$2# = F "$1# $ #e $2 llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll Finding HImpossibleI Integrals - >omework 5x $ 2 E!1?! F "1# = 3 <!?)*C! F "6# E 8x4 $ 2 6 5x $ 2 5x $ 2 dx 1 F 6 = F 1 $ " # " # # 4 dx = 3 $ .206 = 3.206 4 8x $ 2 1 8x $ 2 -E!!!L2(! F " x # !72!6*!6*()C23)86()82!%?! 6 !!!!!!!!!!!! F "6# $ F "1# = # 1 /E!!L2(! F " x # !72!6*!6*()C23)86()82!%?! 3 5 x 2 $ 4 E!1?! F "2# = 7 <!?)*C! F "5# E 5 !!!!!!!!!!!! F "5# $ F "2# = # 5 3 2 5 x $ 4 dx 1 F "5# = F "2# $ 2 # 3 5 x 2 $ 4 dx = 7 $ 11.447 = 18.447 2 OE!!L2(! F " x # !72!6*!6*()C23)86()82!%?! sin x E!1?! F "$1# = 4<!?)*C! F " 4 # 3 !!!!!!!!!!!! F " 4 # $ F "$1# = 4 4 # sin3 x dx 1 F "4# = F "$1# $ # sin $1 3 x dx = 4 $ 1.048 = 5.048 $1 TE!!L2(! F " x # !72!6*!6*()C23)86()82!%?! ln" x 2 $ 4 x $ 12# E!1?! F "10# = $2 <!?)*C! F "$1# !!!!!!!!!!! F "10# $ F "$1# = 10 10 # ln" x 2 $ 4 x $ 12# dx 1 F "$1# = F "10# $ # ln" x $1 $1 2 $ 4 x $ 12# dx = $2 $ 41.743 = $43.743 ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-/T!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( Slope Fields - 1lasswork 1*!(:)+!+25()%*<!=2!56*!+%&82!C)??232*()6&!2>'6()%*+!79!%7(6)*)*;!6!slope field!(+%@2()@2+!56&&2C!6!direction field)!(:6( 6003%Q)@6(2+!(:2!;2*236&!+%&'()%*E!!!H:2!+&%02!?)2&C!%?!6!?)3+(,%3C23!C)??232*()6&!2>'6()%*!+69+!(:6(!(:2!C)??232*()6& 2>'6()%*!56*!72!)*(23032(2C!6+!6!+(6(2@2*(!67%'(!(:2!+&%02+!%?!)(+!+%&'()%*!5'382+E!_%'!632!;)82*!dyfdxE dy dy dy 1 dy -)! = y E!!!G)&&!)*!(:2!5:63(!?%3 /)!! = !!!!G)&&!)*!(:2!5:63(!?%3! dx dx dx x dx (x, y) 3 2 1 0 -1 -2 -3 -3 O / . ,,/ ,O -2 O / . ,,/ ,O -1 O / . ,,/ ,O 0 O / . ,,/ ,O 1 O / . ,,/ ,O 2 O / . ,,/ ,O 3 O / . ,,/ ,O (x, y) 3 2 1 0 -1 -2 -3 -3 -2 E,OO ,EY E,OO ,EY E,OO ,EY E,OO ,EY E,OO ,EY E,OO ,EY E,OO ,EY -1 ,,,,,,,- 0 ! ! ! ! ! ! ! 1 - 2 EY EY EY EY EY EY EY 3 EOOO OOO OOO OOO OOO OOO OOO !!!G)*C!(:2!+%&'()%*!;%)*;!(:3%';: !!!!G)*C!(:2!+%&'()%*!;%)*;!(:3%';: !!!!!!!6)!!(-<!-)!!!!!!!!7)!(,/<!.) !!!!!!6)!!(-<!-)!!!!!!!!7)!(,/<!,-) llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll dy $ x dy dy dy O)!!! = !!!!G)&&!)*!(:2!5:63(!?%3! T)!!! = x $ y !!!!!!!G)&&!)*!(:2!5:63(!?%3! dx y dx dx dx (x, y) 3 2 1 0 -1 -2 -3 -3 EZ[ EOO . ,EOO ,EZ[ ,- -2 -EY EY . ,EY ,,-EY -1 O / . ,,/ ,O 0 ! ! ! ! ! ! ! !!!G)*C!(:2!+%&'()%*!;%)*;!(:3%';: !!!!!!!6)!!(-<!-)!!!!!!!!7)!(,/<!.) 1 ,O ,/ ,. / O 2 ,-EY ,,EY . EY -EY 3 ,,EZ[ ,EOO . EOO EZ[ - (x, y) 3 2 1 0 -1 -2 -3 -3 . ,,/ ,O ,T ,Y ,Z -2 . ,,/ ,O ,T ,Y -1 / . ,,/ ,O ,T 0 O / . ,,/ ,O 1 T O / . ,,/ 2 Y T O / . ,- 3 Z Y T O / . !!!!G)*C!(:2!+%&'()%*!;%)*;!(:3%';: !!!!!!6)!!(-<!-)!!!!!!!!7)!(,/<!,-) ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-/Y!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( Slope Fields - >omework -E!!! dy x dy = !!!!G)&&!)*!(:2!5:63(!?%3 . dx y dx (x, y) 3 2 1 0 -1 -2 -3 dy dy = x $ y !!!!!!!!!G)&&!)*!(:2!5:63(!?%3! dx dx /E!!! -3 -2 -1 0 1 2 ,- ,-EY ,O ! O -EY ,EZ[ ,,/ ! / ,EOO ,EY ,! EY . . . ! . . EOO EY ! ,- ,EY EZ[ / ! ,/ ,- -EY O ! ,O ,-EY 3 EZ[ EOO . ,EOO ,EZ[ ,- (x, y) 3 2 1 0 -1 -2 -3 -3 Z Y T O / . -2 Y T O / . ,- -1 T O / . ,,/ 0 O / . ,,/ ,O 1 / . ,,/ ,O ,T 2 . ,,/ ,O ,T ,Y 3 . ,,/ ,O ,T ,Y ,Z !!!G)*C!(:2!+%&'()%*!;%)*;!(:3%';: !!!!G)*C!(:2!+%&'()%*!;%)*;!(:3%';: !!!!!!!6)!!(.<!-)!!!7)!(-<!.)!!!5)!(.<!O) !!!!!!6)!!(.<!.)!!!!!!!!7)!(.<!,-)!!!!!5)!(-<!,/) llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll OE!!! dy dy = sin x !!!G)&&!)*!(:2!5:63(!?%3 . dx dx (x, y) 3 2 1 0 -1 -2 -3 -3 .E-T .E^.E]T .E.. ,.E]T ,.E^,.E-T -2 .E-T .E^.E]T .E.. ,.E]T ,.E^,.E-T -1 .E-T .E^.E]T .E.. ,.E]T ,.E^,.E-T 0 .E-T .E^.E]T .E.. ,.E]T ,.E^,.E-T !!!G)*C!(:2!+%&'()%*!;%)*;!(:3%';: !!!!!!!6)!!(.<!.)!!!!!!!7)!(-<!.)!!! 1 .E-T .E^.E]T .E.. ,.E]T ,.E^,.E-T !TE!!! 2 .E-T .E^.E]T .E.. ,.E]T ,.E^,.E-T 3 .E-T .E^.E]T .E.. ,.E]T ,.E^,.E-T dy dy = x "1 $ y #"2 $ y # !!!!!!!G)&&!)*!(:2!5:63(!?%3! . dx dx (x, y) 3 2 1 0 -1 -2 -3 -3 -2 -1 0 1 2 3 ,O. ,-/ . Z Z . ,-/ ,/. ,] . T T . ,] ,-. ,T . / / . ,T . . . . . . . -. T . ,/ ,/ . T /. ] . ,T ,T . ] O. -/ . ,Z ,Z . -/ !!!!G)*C!(:2!+%&'()%*!;%)*;!(:3%';: !!!!!!6)!!(.<!.)!!!!!!!!7)!(.<!-) ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-/Z!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( Numerical Solutions of Differential Tquations Using TulerEs Method - 1lasswork 1*!(:2!&6+(!+25()%*<!9%'!+I2(5:2C!6003%Q)@6(2!+%&'()%*+!%?!C)??232*()6&!2>'6()%*+!'+)*;!(:2)3!+&%02!?)2&CE!1*!(:)+ +25()%*<!9%'!=)&&!&263*!6!*'@23)56&!@2(:%C!?%3!56&5'&6()*;!6003%Q)@6(2!y,86&'2+!?%3!6!063()5'&63!+%&'()%*<!6*C!9%'D&& 0&%(!(:2!0%)*(+<!2)(:23!79!:6*C!%3!%*!(:2!;360:23E!H:)+!@2(:%C!)+!56&&2C!P'&23D+!a2(:%C<!6?(23!$=)++!@6(:2@6()5)6* L2%*:63C!P'&23!(-[.[,-[]O)(!P'&23!)+!03%*%'*52C!J%)D,&23EK) W7X25()82R!g)82*!6!C)??232*()6&!2>'6()%*!6*C!)(+!+&%02!?)2&C<!56&5'&6(2!0%)*(+!%*!(:2!;360:!)(236()82&9!79!+(63()*;!6( %*2!0%)*(!6*C!?)*C)*;!(:2!*2Q(!0%)*(!79!?%&&%=)*;!(:2!+&%02!?%3!6!;)82*!C)+(6*52E P'&23D+!@2(:%C!?%3!+%&8)*;!6!C)??232*()6&!2>'6()%*!*'@23)56&&9!)+!76+2C!%*!(:2!?65(!(:6(!6!C)??232*()6&!2>'6()%*!:6+ dy &%56&!&)*263)(9!6(!6*9!;)82*!0%)*(E!G%3!)*+(6*52<!)?! = cos xy <!9%'!56*!56&5'&6(2!(:2!+&%02!6(!6*9!0%)*(! " x8 y# !6*C ' dx ?%&&%=!(:2!&)*263!?'*5()%*!(%!6*%(:23!0%)*(! 5x '*)(+!6=69E!1?! ! 5x )+!+@6&&<!(:2!*2=!0%)*(!=)&&!72!5&%+2!(%!(:2!65('6& 0%)*(!%*!(:2!;360:E!!H:)+!0)5('32!)&&'+(36(2+!(:2!03%52C'32E y !,.-,'+&-&H'D*9:',+&' %6$#&H D$66$)',+&'%6$#&',$'2&,'+&-&H I&#&., 5x x !!!!!!!!!!!!!!!!!!!!! >ere is the procedure for TulerEs Method e!$(63(!6(!6!;)82*!0%)*(! " x, y # !%*!(:2!;360:E e!#6&5'&6(2!(:2!+&%02!6(!(:)+!0%)*(!79!'+)*;!(:2!C)??232*()6&!2>'6()%*E e!G%3!6!;)82*!86&'2!%?! 5x <!56&5'&6(2!(:2!86&'2!%?! dy <!'+)*;!(:2!?65(!(:6(! dy 6 !!!!!!!!!!!!!!!5:6*;2!)*!y!6&%*;!(:2!;360:E dy 5x !=:)5:!=)&&!72!(:2 dx e!\CC! 5x (%!x!6*C!6CC! dy (%!y!(%!;2(!6!*2=!0%)*(! " x, y # E e!i2026(!(:2!03%52++ ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-/[!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( PQ6@0&2!-)!H:2!0)5('32!72&%=!+:%=+!(:2!+&%02!?)2&C!?%3!(:2!C)??232*()6&!2>'6()%* A dy $ x = dx 2 y B < @ 4 E C F 0A 6E!$(63(!6(!(:2!0%)*(!(.<!O)!6*C!'+2!P'&23D+!@2(:%C!=)(:! 5x =.EYE!#%@0&2(2!(:2!5:63(E x new = x old $ 5x y new = y old $ dy = =HE B BHE < <HE @ @HE A AHE E EHE C CHE F @H==== @H==== <HYEP@ <HPF@P <HFA@@ <HECBB <H@BF= BHYY@A BHEEAA =HYBBB 0=H@<@P @HE@CY @HBAPB <HCFBF <H=C@A dy dx =H==== 0=H=P@@ 0=HBCY= 0=H<CB= 0=H@CAE 0=HAPPB 0=HCAFA 0=HPFFY 0BH<PCF 0<HACYF FHF<BA 0=HFFFE 0=HYE<Y 0BH<BCE 0BHCYC< dy = dy 5x dx =H==== 0=H=ABF 0=H=PAE 0=HB@=E 0=HBP<@ 0=H<AA= 0=H@<@F 0=HA@Y= 0=HCA@@ 0BH<@AP @HPC=F 0=H@PPP 0=HAFCE 0=HC=P< 0=HPAPB 7E!W*!(:2!+&%02!?)2&C!67%82<!0&%(!(:2!y,86&'2+!9%'!X'+(!56&5'&6(2CE 5E G%3!=:)5:!86&'2+!%?!x!C%!(:2!P'&23D+!@2(:%C!y,86&'2+!+22@!(%!?%&&%=!(:2!+&%02!?)2&CM 6003%+)@6(2&9!.!(%!Y CE!!G%3!=:)5:!86&'2+!%?!x!)+!(:)+!*'@23)56&!+%&'()%*!5&263&9!=3%*;M 67%82!YE ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-/]!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( PQ6@0&2!/)!!i2026(!(:2!03%7&2@!67%82!7'(!'+2!9%'3!+(63()*;!0%)*(!6+!(.<!,T)E A dy $ x = dx 2 y B < @ 4 E C F 0A x new = x old $ 5x y new = y old $ dy dy 5x dx = 0AH==== =H==== =H==== =HE 0AH==== =H=C<E =H=@B@ B 0@HYCPP =HB<C= =H=C@= BHE 0@HY=EP =HBY<= =H=YC= < 0@HP=YF =H<C<E =HB@B< <HE 0@HCFPE =H@@YP =HBCYY @ 0@HE=PC =HA<FE =H<B@P @HE 0@H<YAP =HE@BB =H<CEC A 0@H=<Y@ =HCC=< =H@@=B AHE 0<HCYY< =HP@@C =HABCP E 0<H<P<A BH=YEA =HEAFF EHE 0BHF@AF BHEPE@ =HFY<F C 0=HYA<= @HBPAC BHEY<@ CHE =HCE=@ 0AHYYFY 0<HAYPY F 0BHPAPF BHPY@@ =HYACC PQ6@0&2!O)!!L2(! y " t # !C2*%(2!(:2!3%%@!(2@0236('32!(G6:32*:2)()!%?!6!5'0!%?!5%??22!6(!()@2!t!(@)*'(2+)E!i%%@ !!!!!!!(2@0236('32!)+![.!C2;322+<!6*C!(:2!5%??22!+(63(+!6(!-^.!C2;322+E!H:2!5%??22D+!(2@0236('32!)+!C2+53)72C dy !!!!!!!79!(:2!C)??232*()6&!2>'6()%*! = $0.1" y $ 70# E!!#%@0&2(2!(:2!5:63(!?%3!-.!@)*'(2+!6*C!(:2*!0&%(!(:2 dt !!!!!!32+'&(+!%*!(:2!655%@06*9)*;!+&%02!?)2&CE t 0 1 2 3 4 5 6 7 8 9 10 y BY= BFP BCFH< BEFHE BAPHF BA=HY B@@HP B<FHA B<BHF BBCHE BBBHP 0B< 0B=HP 0YHF 0PHF 0FHY 0FHB 0CHA 0EHF 0EH< 0AHC dy dt dy dx dy = BY= 170 BE= B@= BB= = B < @ 4 E C F P Y B= ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-/^!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( Numerical Solutions of Differential Tquations using TulerEs Method - >omework dy = sin t and y "0# = 0 dt 6E!!#6339!%'(!P'&23D+!@2(:%C!=)(:!T!+(20+!(%!2+()@6(2! y "1# E!!U%!03%;36@+E -E!#%*+)C23!(:2!C)??232*()6&!2>'6()%*! t y dy dt 0 . . .25 E. E/T[T .50 E.Z-^ ET[^T .75 E-]-[ EZ]-Z 1.00 EOY/- 7E!!$%&82!(:2!C)??232*()6&!2>'6()%*!67%82E!!i2@2@723!(%!?)*C!(:2!5%*+(6*(!%?!)*(2;36()%*E dy = sin t dt 1 y = $ cos t $ C 1 0 = $1 $ C 1 C = 1 1 y = 1 $ cos t 5E!!L2(!!Y " t # !72!(:2!2Q65(!+%&'()%*!?'*5()%*!6*C!&2(!! y " t # !72!(:2!approximate!+%&'()%*!?'*5()%*!5%*+(3'5(2C !!!!!79!P'&23D+!@2(:%C!67%82E!#%@0&2(2!(:2!?%&&%=)*;!(67&2E t Y "t # y "t # 0 . . .25 E.O-.... .50 E-//T E.Z-^ .75 E/Z]O E-]-[ 1.00 ETY^[ EOY/- ?E!!S&%(! y"t # !6*C! Y "t # !%*!(:2!+6@2!6Q2+E!4:6(!C%!9%'!+22M!!!!!!! dy = e t and y "0# = 0E dt 6E!!#6339!%'(!P'&23D+!@2(:%C!=)(:!T!+(20+!(%!2+()@6(2! y "1# E!!U%!03%;36@+E /E!!!#%*+)C23!(:2!C)??232*()6&!2>'6()%*! t y dy dt 0 . - .25 E/Y.. -E/]T. .50 EY[-. -EZT][ .75 E^]O/ /E--[. 1.00 -EY-/T 7E!!!!$%&82!(:2!C)??232*()6&!2>'6()%*!67%82E!!i2@2@723!(%!?)*C!(:2!5%*+(6*(!%?!)*(2;36()%*E dy = e t dt 1 y = e t $ C 1 0 = 1 $ C 1 C = $1 1 y = e t $ 1 ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-O.!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( 5E!!L2(!!Y " t # 72!(:2!2Q65(!+%&'()%*!?'*5()%*!6*C!&2(!72!(:2!approximate!+%&'()%*!?'*5()%*!5%*+(3'5(2C !!!!!79!P'&23D+!@2(:%C!67%82E!#%@0&2(2!(:2!?%&&%=)*;!(67&2E t Y "t # y "t # 0 . . .25 E/]T. E/Y.. .50 EZT][ EY[-. .75 -E-[[. E^]O/ 1.00 -E[-]O -EY-/T CE!!S&%(! y " t # !6*C!Y " t # !%*!(:2!+6@2!6Q2+E!4:6(!C%!9%'!+22M!!!!!!! dy = 1 $ t $ y, y "0# = 0 dt 6E!c+2!P'&23D+!@2(:%C!=)(:!Y!+(20+!%?!+)B2!ET!(%!2+()@6(2! y "2# E OE!!#%*+)C23!(:2!C)??232*()6&!2>'6()%*! t y dy 0 . - .4 ET - .8 E] - 1.2 -E/ - 1.6 -EZ - 2.0 / dt 7E!!H:2!2>'6()%*! y " t # = Ce$ t $ t !)+!(:2!+%&'()%*!(%!(:2!C)??232*()6&!2>'6()%*E!!H6I2!(:2!C23)86()82!%?!y!6*C !!!!!+:%=!(:6(!)(!)+!(:2!+%&'()%*!(%!(:2!C)??232*()6&!2>'6()%*!67%82E dy dy = $Ce$ t $ 1 1 $ 1 = $Ce$ t dt dt dy dy dy 1$ = Ce$ t 1 1 $ = y$t 1 = 1$ t $ y dt dt dt y " t # = Ce$ t $ t 1 5E!G)*C!(:2!86&'2!%?!C!?%3!(:)+!063()5'&63!2>'6()%*!(:6(!?)(+! y "0# = 0 y = Ce$ t $ t 0 = Ce 0 $ 0 C=0 y=t !! ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-O-!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( dy = y $ 2, y "0# = 1E dt 6E!c+2!P'&23D+!@2(:%C!=)(:!Y!+(20+!%?!+)B2!E/!(%!2+()@6(2! y "1# t 0 .2 .4 .6 .8 1.0 y E] EYZ E/[/ ,E.[OZ ,ET]]O ,,-E/ ,-ETT ,-E[/] ,/E.[OZ dy dt dy 7E!!$%&82!(:2!C)??232*()6&!2>'6()%*! = y $ 2, y "0# = 1E!S&%(!(:6(!2>'6()%*!6;6)*+(!(:2!0%)*(+!67%82E dt !!!!!6*C!+6()+?9!9%'3+2&?!(:6(!9%'!:682!(:2!3);:(!+%&'()%*E dy # y $ 2 = # dt 1 ln y $ 2 = t $ C 1 y $ 2 = Ce t 1 y = 2 $ Ce t TE!!#%*+)C23!(:2!C)??232*()6&!2>'6()%*! 1 = 2 $ C 1 C = $1 1 y = 2 $ e t 5E!G)*C!(:2!C)??232*52!72(=22*!(:2!2Q65(!86&'2!%?! y"B# !=)(:!(:2!2+()@6(2!9%'!5%@0'(2C!)*!063(!6E '' $.8183 $ "$.4883# = .23 dy = xy and y "0# = 1E YE!!#%*+)C23!(:2!C)??232*()6&!2>'6()%*! dx 6E!c+2!P'&23D+!@2(:%C!=)(:!Y!+(20+!%?!+)B2!E/!(%!2+()@6(2! y "1# x 0 .2 .4 .6 .8 1.0 y -E.T -E-/O/ -E/Y]. -ETY^O . E/ ET-Z. EZ[O^ -E..ZT dy dx dy 7E!!$%&82!(:2!VPh! = xy and y "0# = 1E!S&%(!)(!6;6)*+(!(:2!0%)*(+!67%82!6*C!+:%=!9%'!632!3);:(E dx 2 2 dy x2 = 1 ln = $ C 1 y = Ce x 2 1 Ce 0 = 1 1 C = 1 1 y = e x 2 x dx y # y # 2 5E!G)*C!(:2!C)??232*52!72(=22*!(:2!2Q65(!86&'2!%?! y "1# =)(:!(:2!2+()@6(2!9%'!5%@0'(2C!)*!063(!6E 1.6487 $ 1.4593 = 0.1894 dy ZE!!#%*+)C23!(:2!C)??232*()6&!2>'6()%*! = 1 $ 3 x $ 2 y, y "0# = 2 E dx 6E!c+2!P'&23D+!@2(:%C!=)(:!Y!+(20+!%?!+)B2!E/!(%!2+()@6(2! y "1# E x 0 .2 .4 .6 .8 1.0 y / -ET. -E-Z -E-OZ -E/T-Z -ET/Y. ,O ,-E/ ,E-/ EY/]. E^-Z] dy dx dy 3x 1 7E!!H:2!+%&'()%*!(%!(:2!VPh! $ E!V)??232*()6(2 = 1 $ 3 x $ 2 y, y "0# = 2 !)+! y = Ce$2 x $ dx 2 4 3 3 dy dy 3x 1 $ $2Ce$2 x $ 1 2Ce$2 x = $ $ !(%!+:%=!(:6(!(:)+!)+!(3'2E!! !!!!!! y = Ce$2 x $ 2 2 dx dx 2 4 dy dy dy 3 1 3 1 3 1 Ce$2 x = $ 1 y$ x$ = $ 1 = 1 $ 3x $ 2 y dx 4 2 dx 2 4 4 2 dx 5E!G)*C!(:2!86&'2!%?!C!?%3!(:)+!063()5'&63!2>'6()%*!(:6(!?)(+! y "0# = 2 E!H:2*!0&%(!9%'3!+%&'()%*!2>'6()%* !!!!6;6)*+(!(:2!0%)*(+!9%'!:682!67%82E!G)*C!(:2!C)??232*52!72(=22*!(:2!2+()@6(2!6*C!65('6&!86&'2+!%?!! y "1# E 1 9 2 = Ce 0 $ 0 $ 1 C = 1.5545 $ 1.4250 = .1295 4 4 ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-O/!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( Logistic Growth - 1lasswork c+)*;!(:2!2Q0%*2*()6&!;3%=(:!@%C2&<!(:2!;3%=(:!%?!6!0%0'&6()%*!)+!03%0%3()%*6&!(%!)(+!5'332*(!+)B2E!!H:2 dP C)??232*()6&!2>'6()%*!)+! = kP 6*C! P = Ce kt E!H:)+!@%C2&+!;3%=(:!(:6(!5%*()*'2+!?%32823!,! lim P " t # = 3E t 23 dt "'(<!;3%=(:!3632&9!5%*()*'2+!?%32823E!1?!=2!632!(6&I)*;!67%'(!6!0%0'&6()%*!%?!02%0&2!:263)*;!6!3'@%3<!?%3!)*+(6*52< (:2!@6Q)@'@!*'@723!%?!02%0&2!:263)*;!(:2!3'@%3!)+!(:2!0%0'&6()%*!)(+2&?E!!H:)+!)+!56&&2C!(:2!56339)*;!56065)(9!%? (:2!0%0'&6()%*E!!H:2!863)67&2!C!)+!'+'6&&9!'+2C!(%!32032+2*(!(:2!56339)*;!56065)(9E!!G%3!)*+(6*52<!)?!=2!632!@%C2&)*; ;3%=(:!%?!6&;62!%*!6!&6I2<!C!@);:(!32032+2*(!(:2!@6Q)@'@!6@%'*(!%?!6&;62!(:6(!(:2!&6I2!56*!+'+(6)*E L%;)+()5!;3%=(:!)+!(:2!(23@!(:6(!@%C2&+!+'5:!;3%=(:E!!H:2!=%3C!logistics!32?23+!(%!(:2!63(!%?!0&6**)*;!6*C 5%%3C)*6()*;!(:2!C2(6)&+!%?!6*!%0236()%*E!1(!5%@2!?3%@!(:2!g322I!=%3C!logistikos<!@26*)*;!J325I%*)*;K!%3!J326+%*EK 1*!&%;)+()5!;3%=(:<!(:2!>'6*()(9!P!;3%=+!6(!6!36(2!(:6(!)+!03%0%3()%*6&!(%!)(+2&?!6*C!(%!C ,!P<!=:)5:!)+!(:2!J3%%@ 686)&67&2K!?%3!?'3(:23!;3%=(:E dP = kP "C $ P # !!!!!L2(D+!+%&82!)(E !!! dt !!!!!!!!!!!!!e!G)3+(<!+20636(2!863)67&2+ e!c+2!063()6&!?365()%*+!?%3!(:2!&2?(!+)C2 +1 1 . dP C # P "C $ P # = # k dt # - P $ C $CP 00 dt = # k dt , / e!1*(2;36(2!265:!+)C2 1 &ln P $ ln"C $ P #% = kt $ D C e!43)(2!(:2!&2?(!+)C2!6+!6!&*!+(6(2@2*( + P . ln0 = Ckt $ D ,C - P/ e!$%&82!?%3!P P C$P C C C = eCkt $ D 1 = e$Ckt $ D 1 $ 1 = de$Ckt 1 = 1 $ de$Ckt 1 P = 1 $ de$Ckt C-P P P P Logistic growth $%!=2!2*C!'0!=)(:!(:2!32+'&(R!!!! P "t # = dP = kP "C $ P # has solution dt C where k and d are constants and C is the carrying capacity 1 $ de$Ckt Rumors and logistic growth9 !\!3'@%3!+0326C!6+!J(2&&23+K!06++!)(!%*!(%!J:26323+EK!W*52!(%&C<!6!:26323!725%@2+!6 (2&&23E!H:2!3'@%3!+0326C+!+&%=&9!6(!?)3+(!=:2*!(2&&23+!632!?2=E!1(!+0326C+!?6+(23!=:2*!7%(:!(2&&23+!6*C!:26323+!632 0&2*()?'&!7'(!+&%=+!C%=*!6;6)*!6+!:26323+!725%@2!+56352!6*C!)(!+(%0+!=:2*!28239%*2!I*%=+!(:2!3'@%3E!H:2 *'@723!%?!02%0&2!I*%=)*;!(:2!3'@%3!((2&&23+)!;3%=+!6+!+:%=*E ,&66&-% = = ,*7& ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-OO!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( PQ6@0&2!-)!4)++6:)5I%*!d);:!:6+!-O..!+('C2*(+E!H:2!T!d%*%3!$%5)2(9!%??)523+<!a6((<!$5%((<!i2*6E!6*C!L)+6 !!!!!!!!6*C!/-!+2*)%3!%(:23!@2@723+!%?!d%*%3!$%5)2(9!+0326C!6!3'@%3!%*!C69!.!(:6(!a3E!$5:=63(B!)+!(% !!!!!!!!!!!!!!!!!!!!725%@2!03)*5)06&E!\!C69!&6(23<!Z/!+('C2*(+!I*%=!(:2!3'@%3E!4:6(!:6002*+!%823!-.!C69+M!4:2*!)+ !!!!!!!!!!!!!!!!!!!!(:2!3'@%3!+0326C)*;!(:2!?6+(2+(M dP = kP "1300 $ P # e!G)3+(<!=3)(2!(:2!C)??232*()6&!2>'6()%*!(:6(!C2+53)72+!)(E!! dt 1300 e!H:)+!9)2&C+!(:2!&%;)+()5!2>'6()%*R!! P = 1 $ de$1300 kt e!42!I*%=!(:6(!=:2*!t!=!.<!P =!/YE!S&';!(:)+!)*!6*C!+%&82!?%3!dE 1300 25 = 1 d = 51 1$ d e!42!I*%=!(:6(!=:2*!t!=!-<!P B Z/E!S&';!(:)+!)*!6*C!+%&82!?%3!kE!g2(!6!&%(!%?!655'3659E e!$%!=:6(!)+!(:2!+%&'()%*!?'*5()%*M!!g360:!)(E 1(!+:%'&C!&%%I!&)I2!(:)+R 1300 1300 1300 1 62 = 1 1 $ 51e$1300 k = $1300 kt $1300 k 1 $ 51e 1 $ 51e 62 + 1300 . 1300 $1 - 62 $ 10 1300 $1300 k $1300 k 62 51e = $1 1 e = 1 k = ln0 62 51 - 51 0 , / P= !!!!!! $1300 e!c+)*;!9%'3!56&5'&6(%3<!C2(23@)*2!:%=!@6*9!+('C2*(+!I*%=!(:2!3'@%3!6?(23!-.!C69+M!!-/^T e!H%!C2(23@)*2!=:2*!(:2!3'@%3!)+!growing fastest<!=2!*22C!(%!@6Q)@)B2!(:2!;3%=(:!?'*5()%*!%? !!!PE!!G)3+(<!=2!*22C!(%!?)*C!(:2!C23)86()82!%?!P!6*C!(:2*!=2!*22C!(%!@6Q)@)B2!)(E!!c+)*;!(:2 !!!!!!!!!!!!!!!56&5'&6(%3D+!nderiv!?'*5()%*<!?)3+(!?)*C!(:2!C23)86()82!6*C!P 6*C!@6Q)@)B2!)(!6*C!+25%*C<!?)*C !!!!!!!!!!!!!!!C23)86()82!%?!(:)+!?'*5()%*!6*C!C2(23@)*2!=:232!)(!2>'6&+!.E!_%'!+:%'&C!;2(!(:2!+6@2!(:)*;E !! !! !! PQ6@0&2!/)!!U%(!5%*(2*(!=)(:!(:6(!3'@%3<!\&2Q<!i6*C9<!"3)6*<!6*C!m)@!+(63(!(:2!*2Q(!3'@%3!(:6(!a3E !!!!!!!!!$5:=63(B!=)&&!72!032+)C2*(!%?!(:2!+5:%%&!7%63C!6&&!79!(:2@+2&82+E!1(!(3682&+!=)(:!(:2!+6@2 !!!!!!!!!(36*+@)++)%*!5%2??)5)2*(!kE!4:6(!:6002*+!%823!-.!C69+M!4:2*!)+!(:2!3'@%3!+0326C)*;!(:2!?6+(2+(M e!PQ520(!?%3!(:2!*2=!)*)()6&!5%*C)()%*+<!(:2!+)('6()%*!)+!2Q65(&9!6+!)*!(:2!03252C)*;!2Q6@0&2E !!!!!!!!!!!!!!!$%<!+%&82!?%3!d!6*C!=3)(2!(:2!*2=!&%;)+()5!2>'6()%*E!!H:2*!;360:!)(!)*!5%@063)+%*!(%!(:2!&6+( !!!2Q6@0&2E!! !!! P= 1300 1300 14= 1 1 $ d = 325 1 d = 324 $1300 kt 1 $ de 1$ d !!!! e!V2(23@)*2!=:6(!C69!)+!(:)+!3'@%3!+0326C)*;!(:2!?6+(2+(E !!!! !!! !!!! ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-OT!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( Logistic Growth - >omework -E!!"256'+2!%?!&)@)(2C!?%%C!6*C!+0652<!6!+>')332&!0%0'&6()%*!56**%(!2Q522C!-/..E!1(!;3%=+!6(!6!36(2!03%0%3()%*6& 7%(:!(%!(:2!2Q)+()*;!0%0'&6()%*!6*C!(%!(:2!6((6)*67&2!6CC)()%*6&!0%0'&6()%*E dP = kP "1200 $ P # 6)!43)(2!6!C)??232*()6&!2>'6()%*!(:6(!C2+53)72+!(:)+!+)('6()%*E!! dt 1200 7)!43)(2!(:2!+%&'()%*!(%!(:)+!C)??232*()6&!2>'6()%*E!!! P = 1 $ de$1200 kt 5)!1?!(:232!632!-..!+>')332&+!(=%!9263+!6;%!6*C!T..!%*2!9263!6;%<!:%=!@6*9!+>')332&+!632!(:232!*%=M !!!!!(d)*(!,!'+2!P(.)!=!-..<!6*C!P(-)!=!T..E!_%'!=6*(!P(/)E!!$:%=!=%3IE 1200 1 1 $ d = 12 1 d = 11 1$ d +2. 1200 2 400 = 1 1 $ 11e$1200 k = 3 1 e$1200 k = 1 k = ln- 0 $1200 = .0014 1 P "2# = 880 $1200 k ,11/ 1 $ 11e 11 100 = C)!g360:!(:2!?)3+(!Y!9263+!%?!+>')332&!0%0'&6()%*E 2)!c+2!9%'3!56&5'&6(%3!(%!?)*C!=:2*!(:2!+>')332& !!!0%0'&6()%*!)+!;3%=)*;!(:2!?6+(2+(E!!!!V69!-ET.ZZ !!!!!!!!!!! dP H:)+!56*!72!6&+%!72!C%*2!79!@6Q)@)B)*;!!!!!!!!!<!326&)B)*;!)(!%55'3+! dt =:2*!(:2!0%0'&6()%*!=!Z..!6*C!?)*C)*;!=:2*!S!=!Z..E!!!! /E!!$'00%+2!6!?&',&)I2!8)3'+!)+!+0326C)*;!(:3%';:!6!0%0'&6()%*!%?!Y.<...!6(!6!36(2!03%0%3()%*6&!7%(:!(%!(:2!*'@723 %?!02%0&2!6&326C9!)*?25(2C!6*C!(%!(:2!*'@723!+()&&!'*6??25(2CE dP = kP "50000 $ P # dt 50000 7)!43)(2!(:2!+%&'()%*!(%!(:)+!C)??232*()6&!2>'6()%*E!! P = 1 $ de$5000 kt 6)!43)(2!6!C)??232*()6&!2>'6()%*!(:6(!C2+53)72+!(:)+!+)('6()%*E!! 5)!1?!-..!02%0&2!=232!)*?25(2C!92+(23C69!6*C!-/Y!632!)*?25(2C!(%C69<!C2(23@)*2!:%=!@6*9!=)&&!72 !!!)*?25(2C!6!=22I!?3%@!(%C69E 50000 50000 100 = 1 1 $ d = 500 1 d = 499 1 125 = 1$ d 1 $ 499e$50000 k + 399 . 399 1 $ 499e$50000 k = 400 1 e$50000 k = 1 k = ln0 $50000 1 P "8# = 592 , 499 / 499 C)!g360:!(:2!?)3+(!Y.!C69+!%?!?&'!)*?25()%*E 2)!c+2!9%'3!56&5'&6(%3!(%!?)*C!=:2*!(:2!?&' !!!!)+!;3%=)*;!(:2!?6+(2+(E!!!!V69!/[E[[^ !!!!!!!!! dP H:)+!56*!72!6&+%!72!C%*2!79!@6Q)@)B)*;!!!!!!!!!<!326&)B)*;!)(!%55'3+! dt =:2*!(:2!?&'!*'@723!=!/Y...!6*C!?)*C)*;!=:2*!S!=!/Y...E!!!! ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-OY!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( OE!!!\!*2=!7%%I!:)(+!(:2!+(6*C+!6*C!725%@2+!>')(2!0%0'&63E!!H:2!;3%=(:!%?!326C23+:)0!%?!(:2!7%%I!56*!72 + dR R . C2+53)72C!79!(:2!VPh! = 4 R-2 $ 0 !!=:232!C!32032+2*(+!(:2!*'@723!%?!02%0&2!:68)*;!326C!(:2!7%%I!)* , 200 / dt 6!063()5'&63!%??)52!7')&C)*;!6*C!t!)+!@26+'32C!)*!C69+E!!1?! R"0# = 3 <!?)*C 6)!! lim R" t # 7)!(:2!86&'2!%?!C!(:6(!(:2!326C23+:)0!)+!;3%=)*;!(:2!?6+(2+(E t 23 ! TE + R . !!!!! 4 R-2 $ 0 = 0 1 R = 400 !!!!!! , 200 / !!!!!!! 8 = 8R 1 R = 200 200 H9!S)+(!(6I2+!6!(90)*;!5%'3+2E!d2!(6I2+!6!032,(2+(!6*C!?)*C+!:2!56*!(902!6(!/.!=%3C+!023!@)*'(2E!\?(23!-!=22I %?!(:2!5%'3+2<!:2!56*!*%=!(902!6(!OY!=%3C+!6!@)*'(2E!!H:2!@6Q)@'@!(90)*;!+022C!%?!@%+(!:'@6*+!)+!-Z. =%3C+!6!@)*'(2E!!d)+!(90)*;!+022C!;3%=+!&%;)+()56&&9E dP = kP "160 $ P # 6)!43)(2!6!C)??232*()6&!2>'6()%*!(:6(!C2+53)72+!(:)+!+)('6()%*E!! dt 160 7)!43)(2!(:2!;2*236&!+%&'()%*!(%!(:)+!C)??232*()6&!2>'6()%*E!! P = 1 $ de$160 kt 5) $%&82!(:2!C)??232*()6&!2>'6()%*!?%3!H9E 20 = 160 1 1$ d = 8 1 d = 7 1$ d + +160 . . 0 $ 10 -160 160 160 , / 0 35 $160 k $160 k $160 = .0042 35 = 1 1 $ 7e = 1e = $ 1 1 k = ln$160 k 1 $ 7e 35 35 7 0 0 , / C) c+)*;!56&5'&'+!(25:*)>'2+<!?)*C!(:2!36(2!6(!=:)5:!(:2!(90)*;!+022C!)+!)*5326+)*;!=:2*!t!=!Y!=22I+!6*C t !=!/.!=22I+E dP P "5# = 128.824 = .0042"128.824 #" 31.176# = 16.892 wpm/week dt dP P "20# = 159.998 = .0042"159.998#".002# 6 0 wpm/week dt 2) c+)*;!56&5'&'+!(25:*)>'2+<!?)*C!=:2*!H9D+!(90)*;!;3%=(:!)+!(:2!?6+(2+(E!W*&9!'+2!(:2!56&5'&6(%3 6(!(:2!8239!2*C!=:2*!9%'!56&5'&6(2E dP = 160 kP $ kP 2 dt 0 = 160 k $ 2 kP P = 80 160 1 1 $ 7e$160 kt = 2 1 7e$160 kt = 1 $160 kt 1 $ 7e + 1. 1 e$160 kt = 1 t = ln- 0 $160 k = Week 2.892 , 7/ 7 80 = ?) H9!C25)C2+!(%!>')(!(:2!5%'3+2!=:2*!:)+!)*5326+2!)*!(90)*;!+022C!)+!&2++!(:6*!/!=%3C+!6!@)*'(2E!c+)*; ;360:)56&!(25:*)>'2+<!=:6(!=22I!=)&&!H9!C25)C2!(%!>')(M !!!! ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-OZ!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( Inverse Trig Functions - 1lasswork H:2!&2?(!:6*C!;360:!72&%=!+:%=+!:%=!(:2!0%0'&6()%*!%?!6!523(6)*!5)(9!@69!;3%=!6+!6!?'*5()%*!%?!()@2E!1?!9%'!632 )*(232+(2C!)*!?)*C)*;!(:2!()@2!6(!=:)5:!(:2!0%0'&6()%*!3265:2+!6!523(6)*!86&'2<!)(!@69!72!@%32!5%*82*)2*(!(%!32823+2 (:2!863)67&2+!6*C!=3)(2!()@2!6+!6!?'*5()%*!%?!0%0'&6()%*E!H:2!32&6()%*!9%'!;2(!79!)*(235:6*;)*;!(:2!(=%!863)67&2+!)+ 56&&2C!(:2!inverse!%?!(:2!%3);)*6&!?'*5()%*E!H:2!;360:!%?!(:2!)*823+2!)+!+:%=*!%*!(:2!3);:(!;360:!72&%=E 4*7& W$#"6.,*$9 X95&-%&' -&6.,*$9 y=x Z-*2*9.6'D"9;,*$9 W$#"6.,*$9 4*7& G%3!6!&)*263!?'*5()%*!+'5:!6+!y!=!/x!+!Z<!)*(235:6*;)*;!(:2!863)67&2+!;)82+!x!=!/y!+!Z!?%3!(:2!)*823+2!32&6()%*E $%&8)*;!?%3!y!)*!(23@+!%?!x!;)82+!y!=!.EYx!,!OE!H:2!+9@7%&! 'f $B<!03%*%'*52C!Jf!)*823+2<K!)+!'+2C!?%3!(:2!)*823+2 ?'*5()%*E!!1?! f " x# = < x $ C8 ',+&9'f $B " x# = =HEx $ @E 1?!!''f $B!('3*+!%'(!(%!72!6!?'*5()%*!(06++2+!(:2!823()56&!&)*2!(2+()<!(:2!(:2!%3);)*6&!?'*5()%*!f!)+!+6)C!(%!72!invertibleE i2@2@723!(:6(!(:2!,-!2Q0%*2*(!C%2+!not!@26*!(:2!325)03%56&!%?! f " x# E!!H:2!)*823+2!%?!6!?'*5()%*!'*C%2+!=:6(!(:2 " # ?'*5()%*!C)C!(%!xE!H:6(!)+! f $B f " x# = x E!1?! f " x# = x < <!(:2*! f $1 " x # = x 6*C! x 2 = x E!U%(2!(:6(!)?!(:2!+6@2 +56&2+!632!'+2C!?%3!(:2!(=%!6Q2+<!(:2*!(:2!;360:+!%?! f 6*C! f $B!632!@)33%3!)@6;2+!=)(:!32+025(!(%!(:2!TY%!&)*2!y!=!xE H:2!)*823+2+!%?!(:2!(3);%*%@2(3)5!?'*5()%*+!?%&&%=!?3%@!(:2!C2?)*)()%*E!G%3!)*+(6*52<!)?!(:2!?'*5()%*!)+! 'y = %*9 x < (:2!)*823+2!?'*5()%*!)+!;)82*!79!''x = %*9 y E!4:2*!=2!+%&82!?%3!y<!=2!;2(!''y = %*9 $B x E!!H:2!+9@7%&!arcsin x !)+ E!!d232!632!(:2!;360:+!%?! y = %*9 x 6*C! y = %*9 $B x E +%@2()@2+!'+2C!(%!:2&0!9%'!C)+()*;')+:!''%*9 $B x ?3%@! B %*9 x '' !! !!! ! 1(!)+!%78)%'+!(:6(!(:2!)*823+2!+)*2!32&6()%*!)+!*%(!6!?'*5()%*E!H:232!632!@6*9!86&'2+!%?!y!?%3!(:2!+6@2!86&'2!%?!xE!H% $! ! ' y ' E!H:)+!)*5&'C2+!%*&9 5326(2!6!?'*5()%*!(:6(!)+!(:2!)*823+2!%?!+)*!x!)(!)+!5'+(%@639!(%!32+(3)5(!(:2!36*;2!(%! < < (:2!736*5:!%?!(:2!;360:!*2632+(!(:2!%3);)*E!(O3C!0)5('32!67%82)E ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-O[!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( "2&%=!632!0)5('32+!%?!(:2!)*823+2!5%+)*2!?'*5()%*!6*C!)*823+2!(6*;2*(!?'*5()%*E!U%(2!(:6(!)*!%3C23!(%!2*+'32!(:6( (:2+2!32&6()%*+!632!?'*5()%*+<!=2!:682!(%!32+(3)5(!(:2!36*;2E $%<!=2!:682!(:2+2!C2?)*)()%*+R % ! !( y = %*9 $B x'*3'.9:'$96('*3' %*9 y = x'.9:'y 7 '$ 8 * & < <) y = ;$%$B x'*3'.9:'$96('*3' ;$% y = x'.9:'y 7 &=8 !% + ! !. y = ,.9 $B x'*3'.9:'$96('*3' ,.9 y = x'.9:'y 7 -$ 8 0 , < </ _%'!@'+(!I*%=!5%*823+)%*+!%?!C2;322+!(%!36C)6*+!6*C!+025)6&!(3)6*;&2+E /"!36C)6*+!=!OZ.%!%3!"!36C)6*+!=!-].%E!$%@2!%?!(:2!32&6()%*+:)0+!(:6(!9%'!+:%'&C!I*%=!632R Degrees Radians O. " Z TY " T Z. " O ^. " / -/. /" O -OY O" T -Y. Y" Z -]. " 1*!6!O.%,Z.%,^.%!(3)6*;&2<!(:2!+)C2+!632!6&=69+!)*!(:2!03%0%3()%*!1 $ 3 $ 2 1*!6!TY%,TY%,^.%!(3)6*;&2<!(:2!+)C2+!632!6&=69+!)*!(:2!03%0%3()%*!1 $ 1 $ 2 AE C= < B @= '' < B AE '' @ B PQ6@0&2!-)!#P86&'6(2!265:!%?!(:2!?%&&%=)*;R + 1. arcsin-$ 0 , 2/ ! 6)! ! $ 6 !! ;$%$B = 7E! ! ''< tan$1 3 5E!! ! 3 " csc$1 $ 2 CE!! ! $ 4 # ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-O]!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( PQ6@0&2!/)!P86&'6(2!(:2!?%&&%=)*;E!a6I2!6!0)5('32!(%!C2+53)72!(:2!+)('6()%*E + + 3. 3 2. 6E!! sin-arctan 0 = 7E!! tan-arccos 0 = 1 , 4/ 5 2 / , @ < 8 8 A 2 + $1 1 . 3 5E! sec-sin 0 = , 3/ 8 + $1 $2 . $2 CE cot-cos 0= , 5/ 21 @ E B 8 0< 8 PQ6@0&2!O)!P86&'6(2!(:2!?%&&%=)*;E!a6I2!6!0)5('32!(%!C2+53)72!(:2!+)('6()%*E 6E! cos"sin x # = 1 $ x $1 1$ x2 7E! tan"cos x # = x 2 B $1 B x 8 8 x !!!!!!!!!! !!!!!!!!!!!!!!!!! " # $B 5E!! %*9 ;$% < x = B $ A x < $1 CE! sin"tan 3 x # = 1 1$ 9x2 B !!!!!!!!!!!!!!!!! 8 <x !!!!!!!!! d $%!*%=!=2!56*!(6I2!C23)86()82+!%?!)*823+2!(3);!?'*5()%*+E!!G)*C! %*9 $B x ''dx $B !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!''y = %*9 x''' 9 ''' %*9 y = x E " y = %*9 $B x : %*9 y = x S-.)'.'#*;,"-& ,+&'.926&'*%'y 8 '$##$%*,&' = 'B8 '+(#$,&9"%& = B # B x y '' B$ x < ''I&7.*9*92'%*:&'*%' B $ x $)*52! %*9 y = x <!(6I2!(:2!C23)86()82!%?!265:!+)C2 cos y < dy dy 1 = 1 or = dx dx cos y P6Q@0&2!T)!H6I2!(:2!C23)86()82!%? y = cos$1 x 6E! dy $1 = dx 1$ x2 @x 8 B or dy 1 = dx 1$ x2 y = tan$1 x 7E! dy 1 = dx 1 $ x 2 ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-O^!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( The derivatives of the three inverse trig functions are as follows9 d 1 sin$1 u# = " dx 1 $ u2 d $1 cos$1 u# = " dx 1 $ u2 du dx du dx 1 du d tan$1 u# = " 1 $ u 2 dx !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! dx PQ6@0&2!Y)!!G)*C!(:2!C23)86()82+!%? y = sin$1 4 x 6E! dy 4 = dx 1 $ 16 x 2 + x. y = -cos$1 0 , 2/ 5E! y = ,.9 $B x @ 7E! dy @x < = C ''dx B $ x 3 + dy x. = 3-cos$1 0 , 2/ dx 2 + 1. - 0= x , 2/ 1$ 4 $1 2 + x. $3-cos$1 0 , 2/ 4 $ x2 2 y = x sin$1 x $ 1 $ x 2 CE!! dy x $2 x = $ sin$1 x $ = sin$1 x 2 2 dx 1$ x 2 1$ x PQ6@0&2!Z)!\*!%??)523!)*!6!06(3%&!563!+)(()*;!-..!?22(!?3%@!(:2!:);:=69!%7+2382+!6!(3'5I!6003%65:)*;E!\(!6 !!!!!!!!!!!!!!!!!!!!063()5'&63!)*+(6*(!t!+25%*C+<!(:2!(3'5I!)+!x!?22(!C%=*!(:2!3%6CE!H:2!&)*2!%?!+);:(!(%!(:2!(3'5I!@6I2+!6* !!!!!!!!6*;&2!%?! 8 !36C)6*+!(%!6!02302*C)5'&63!&)*2!(%!(:2!3%6CE 4-";> x .H'''M1#-&%%'8 '.%'.9'*95&-%&',-*2'3"9;,*$9H x 8 = ,.9 B== '' B=='3, $B 8 W.,-$6'N.- d8 !!!!!!!!!!!!!!!!!!!5E!4:2*!(:2!(3'5I!)+!6(!x!=!Y..!?(<!(:2!6*;&2!)+!%7+2382C!(%!72!5:6*;)*;!6(!6!36(2 dt d8 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !=!,/!C2;322+f+25E!d%=!?6+(!)+!(:2!563!;%)*;!)*!?(f+25!6*C!@0:M dt d8 dx B== = < dt B==== $ x dt !!!!!!!!!!!!!! dx $<! B== dx = 1 = $Y=HFEF '3,[%&; = CBHPP='7#+ dt BP= <C==== dt 7E!!G)*C! ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-T.!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( Inverse Trig Functions - >omework -)!#P86&'6(2!265:!%?!(:2!?%&&%=)*;R B .-;;$% < 6E! ! ! ! ! @ cot $1 3 7E! ! 6 sin$1 5E!! $ 3 2 sec$1 $ CE!! ! $ 3 2 3 3 5! 6 /)!P86&'6(2!(:2!?%&&%=)*;E!a6I2!6!0)5('32!(%!C2+53)72!(:2!+)('6()%*E + + 12 . 12 $3 . 4 6E!! cos-arcsin 0 = 7E!! sin-arctan 0 = , , 5/ 5 5 / 13 8 E B< 0@ 8 E " # $B 5E! ;%; ;$, A = BF '' " 2 2 # $1 CE tan csc 3 = A 3 8 8 B B O)!P86&'6(2!(:2!?%&&%=)*;E!a6I2!6!0)5('32!(%!C2+53)72!(:2!+)('6()%*E 1 B $1 $B 6E! cos"tan x # = 7E! %&; %*9 x = 2 1$ x B $ x< '' " x # B 8 x 8 B !!!!!!!!! Ax $B 5E!! ,.9 %*9 A x = B $ BC x < '' " # B 8 Ax " # $B CE! ;$% ,.9 " x $ @# = '' 8 B B x < $ C x $ B= x +@ T)!!G)*C!(:2!C23)86()82+!%? y = ;$%$B "@ x # 6E! dy $@ = B $ Y x< ''dx y = sin$1 " x 2 $ 1# 2x 2x 7E! dy = = 2 dx 2x2 $ x4 1 $ " x 2 $ 1# ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-T-!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( y = "tan 2 x # $1 5E! y= 5 10"tan 2 x # 4 dy 2 = 5"tan$1 2 x # = 2 dx 1$ 4 x 1$ 4 x2 $1 4 CE!! "cos $1 dy = dx 2 dy = dx 10 x # 1 "cos $1 "cos $1 " ?E!! 2 10 x # 1 $ 100 x $5 10 x # 1 $ 100 x 2 y = %*9 ;$%$B t y = .-;,.9 x B 2E!! dy = dx < x "B $ x # $10 # dy = ;$% ;$%$B t dt " # $B B$ t< dy $t = B$ t< 'dt Y)!!G)*C!6*9!32&6()82!2Q(32@6!%?!''y = .-;%*9 x $ x dy 1 = $1 = 0 dx 1$ x2 dy x = 0, Critical points x = $11 , 1 ( 0 "$1, 0# ; "0,1# dx y = arcsin x $ x 1 No relative extrema Z)!!H:2!76+2!%?!6!/.!?%%(!(6&&!2Q)(!+);*!)+!O.!?22(!67%82!(:2!C3)823D+!292!&282&E!4:2*!563+!632!?63!6=69<!(:2!+);*!)+ !!!!!:63C!(%!326C!7256'+2!%?!(:2!C)+(6*52E!4:2*!(:29!632!5&%+2<!(:2!+);*!)+!:63C!(%!326C!7256'+2!(:2!C3)823!:6+!(% !!!!!&%%I!'0!6(!6!+(220!6*;&2E!H:2!+);*!)+!26+)2+(!(%!326C!=:2*!(:2!C)+(6*52!x!)+!+'5:!(:6(!(:2!6*;&2! 8 !6(!(:2!C3)823D+ !!!!!292!)+!6+!&63;2!6+!0%++)7&2E .)'L-*,&'8 .%',+&':*33&-&9;&'$3'<'*95&-%&',.92&9,%H <='3, E= @= 8 = ,.9$B $ ,.9 $B x x '' /)'L-*,&'.9'&]".,*$9'3$-' d8 dx $E= @= d8 = < $ < ''dx x $ <E== x $ Y== 8 '''''M1*,' B'O*6&'.+&.: @='3, N.- x !!!!!!;)'4+&'%*29'*%'&.%*&%,',$'-&.:'.,',+&'5.6"&'$3'x'')+&-&' 8 '%,$#%'*9;-&.%*92'.9:'%,.-,%':&;-&.%*92H'4+*%'+.##&9% d8 < < '='=H'D*9:'x'.9:';$93*-7'"%*92',+&';.6;"6.,$-H'''''E x $ AE== = @ x $ FE== 1 x = @PHF@= ''3,H '''''''''')+&9' dx !!!! ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-T/!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( Inverse Trig Functions Integration - 1lasswork 1?!u!)+!6!C)??232*()67&2!?'*5()%*!%?!x<!6*C!a!>!.!(:2* du u = %*9 $B $ C < < a a $u # #' a du$ u < -E!! # dx 1$ x sin x $ C dx # YE 5 $ 2x2 a = 5 , u = x 2 , du = 2 dx # x$2 # 4 $ x2 x 4 $ x2 # 2 4 $ x2 x $ 4 $ x $ 2 sin $C 2 2 $1 dx ZE! 5 $ 2x2 1 x 2 1 x 10 sin$1 = sin$1 $C 5 2 5 2 x$2 dx 2 $4 #x x 2 # x $ 4 dx $ # x $ 4 dx ln" x $ 4 # x $ tan $C 2 2 $1 2 2 2 # ex dx 9 $ ex u = ex du = e x dx ln 9 $ e x $ C ^E! 2 dx # 1$ x tan$1 x $ C dx # !]E! dx dx $ 4$x OE! 2 a = 5 , u = x 2 , du = 2 dx 1 x 2 1 x 10 sin$1 = sin$1 $C 5 2 5 2 [E!! B $B u ,.9 $C a a a = 2, u = x, du = dx x sin$1 $ C 2 $1 TE = dx # /E! 2 < #x x3 dx 2 $1 + # -, x $ x x . 0 dx $ 1/ 2 x 2 ln" x $ 1# $C $ 2 2 2 ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-TO!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( Inverse Trig Functions Integration - >omework dx # 1$ 4 x -E! a = 1, u = 2 x, du = 2 dx !!!! 1 $1 tan 2 x $ C 2 # 4$ OE! 2 tan$1 #x YE!! dx 2 " x $ 1# TE! " x $ 1# $ C 2 x dx 4 $ 16 8 tan$1 ZE! !! x2 $C 4 ^E! 0 2 3 2 = tan$1 3 = 0 sin$1 x 1$ x2 dx $1 # 1 1$ x2 dx 2 $C e 2x dx 9 $ e4 x Find the area of the region bounded by the curves -.E!!! 1 , y = 0, x = 0, x = 1 y= 4 $ x2 1 dx 1$ 4 x2 tan$1 "2 x # dt a = 3, u = e 2 x , du = 2e 2 x dx 1 $1+ e 2 x . tan - 0 $ C 6 , 3/ a = 1, u = 2 x, du = 2 dx !!!! 1 # "sin x # ]E!! $ tan$1 "cos x # $ C # 1$ t4 2 a = 1, u = cos x, du = $ sin xdx 3 2 t u = sin$1 x du = sin x dx ! [E! # 1 $ cos2 x !!! # a = 1, u = t 2 , du = 2 tdt !!! 1 $1 2 sin t $ C 2 a = 4, u = x 2 , du = 2 xdx !!! 1 4 $ x2 a = 2, u = x, du = dx x sin$1 $ C 2 a = 2, u = x $ 1, du = dx !!! 1 dx # /E! 2 1 ! 6 ! x = !!!!!! sin 20 6 $1 ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-TT!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( Derivatives of Inverse Functions - 1lasswork g2*236&!S3%7&2@R!G)*C!(:2!C23)86()82!%?!(:2!)*823+2!?'*5()%*!%?! f " x # at x = k . Method 1R!!$)@0&9!?)*C)*;!(:2!)*823+2!?'*5()%*E!H:)+!=%3I+!=:2*!)(!)+!26+9!(%!;2*236(2!(:2!)*823+2!?'*5()%*E 6)!!G)*C!(:2!)*823+2!?'*5()%*!79!)*(235:6*;)*;!x!6*C!y!6*C!+%&8)*;!?%3!y 7)!!H6I2!(:2!C23)86()82!%?!(:)+!*2=!yE!H:6(!=)&&!72!(:2!C23)86()82!%?!(:2!)*823+2!?'*5()%*E 5)!!S&';!)*!9%'3!;)82*!k!86&'2 Method 29!!!U%(!?)*C)*;!(:2!)*823+2!?'*5()%*!7256'+2!)(!)+!(%%!C)??)5'&( 6)!G)*C!(:2!)*823+2!?'*5()%*!79!)*(235:6*;)*;!x!6*C!y!6*C!+%&8)*;!?%3!y dy 7)!?)*C! !)@0&)5)(&9 dx dy 5)!$%&82!?%3! E!1(!=)&&!72!)*!(23@+!%?!yE dx C)!i20&652!(:2!86&'2!%?!k ?%3!x!!)*!9%'3!)*823+2!?'*5()%*!?3%@!+(20!6)!67%82!6*C!+%&82!?%3!y dy 2)!S&';!(:6(!86&'2!%?!y!)*(%! dx Txample9!1? f " x # = x 2 , x < 0 <!!?)*C!(:2!C23)86()82!%?! f $1 " x # at x = 4. MTT>OD 1 6) y = x 2 <!+%!(:2!)*823+2!)+ x = y 2 MTT>OD 2 6)! y = x 2 <!+%!(:2!)*823+2!)+ x = y 2 dy !!!!!!!!!!!!!!!!!(:232?%32! y = x (?)3+(!>'6C36*()!!!!!!!!!!!!!!!7)!1 = 2 y dx dy 1 1 7)! y 4 = = 5)!! dx 2 y 2 x 1 1 5)! y 4" 4 # = = C)! 4 = y 2 1 y = 2"quad I# 2 4 4 1 1 dy 1 = = = 2)! dx 2 y 2"2# 4 f " x# = x 2 !$',.>&',+& -&;*#-$;.6'$3 ,+&'%6$#&'+&-&^ (/<!T) $1 ''''f'''' " x # = x _$"').9,',+& %6$#&'$3',+& ,.92&9,'6*9&'+&-&^ (T<!/) Note9!!1(!=6+!*252++639!(%!32+(3)5(!(:2!C%@6)*!%?! f " x # !(%! x < 0!+%!(:6(!)(+!)*823+2!)+!6!?'*5()%*R!)E2E!(:6( f " x # !)+ %*2,(%,%*2!(06++2+!(:2!:%3)B%*(6&!&)*2!(2+()E ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-TY!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( TxampleR!!G)*C!(:2!C23)86()82!%?!(:2!)*823+2!?'*5()%*!%?! f " x # = x 3 $ 4 x 2 $ 7 x $ 1 at x = 1. a2(:%C!-!=)&&!72!(%%!C)??)5'&(E! y = x 3 $ 4 x 2 $ 7 x $ 1!+%!(:2!)*823+2!)+! x = y 3 $ 4 y 2 $ 7 y $ 1 dy dy 1 1 = 2 !!!6)!!1 = " 3 y 2 $ 8 y $ 7# dx dx 3 y $ 8 y $ 7 3 2 !!!7)!!$2(! y $ 4 y $ 7 y $ 1 = 1E!!g360:)56&&9<!9%'!;2(! y = 0.349. !!!!!!!!!!!!!!!! !!!!!!!!!!!!! !!!!5)! !!!!!!!!!!!!!!!!!!! dy 1 = = .219 2 dx " y= .349# 3".349# $ 8".349# $ 7 TxampleR!G)*C!(:2!C23)86()82!%?!(:2!)*823+2!?'*5()%*!%?! f " x # = e x $ ln x at x = 3. a2(:%C!-!=)&&!72!(%%!C)??)5'&(E! y = e x $ 69 x +%!(:2!)*823+2!)+! x = e y $ ln y + dy y 1 . dy dy 1 or 6)!1 = -e y $ 0 1 = = y dx ye $ 1 y / dx dx e y $ 1 , y y 7)!$2(! e $ ln y = 3E!!g360:)56&&9<!9%'!;2(! y = 1.074. 5)! dy 1 = = .259 dx " y=1.074 # e1.074 $ 1 1.074 Note:!\?(23!9%'!;360:)56&&9!)*(23+25(<!9%'!56*!26+)&9!;2(!(:2!6*+=23!79!*V23)8(_-<o<o) 2 Txample9 G)*C!(:2!C23)86()82!%?!(:2!)*823+2!?'*5()%*!%?! y = e x , x ( 0. Inverse Function : x = e y $%&'()%*R!! ln x = y 2 2 y = ln x = "ln x # 1 2 $1 1 dy 1 1 = "ln x # 2 = dx 2 x 2 x "ln x # 12 Sample Problems9!!!G)*C!(:2!C23)86()82!%?!(:2!)*823+2!?'*5()%*!%?!!('+2!@2(:%C!/!%*&9!)?!@2(:%C!-!=%*D(!=%3I) Method I y = x 3 $ 1 at x = 9 y = x 3 $ 5 x $ 1 at x = 5 Meth. II y = x $ sin x at x = ! Meth. II dy 1 3 3 = !!7)! Inv : x = y $ 5 y $ 1 = 5 1 y = 1 !!5)!! Inv : x = y $ sin y = ! 1 y = ! !6)!! Inv : y = x $ 1 1 dx 3" x $ 1# 2 3 dy 1 1 dy 1 = 2 = = = DNE dy 1 dx " y =1# 3 y $ 5 8 dx " y = !# 1 $ cos y = dx " x = 8# 12 ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-TZ!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( Derivatives of Inverse Functions - >omework G%3!(:2!03%7&2@+!72&%=<!?)*C!(:2!C23)86()82!%?! f $1 !?%3!(:2!?'*5()%*! f !6(!(:2!+025)?)2C!86&'2!%?!xE!U%!56&5'&6(%3+E -E! f " x # = x 3 $ 2 x $ 1 at x = 2 /E! f " x # = 2 x 5 $ x 3 $ 1 at x = 4 Inv : x = y 3 $ 2 y $ 1 = 2 1 y = 1 !!!! dy 1 1 = 2 = dx " y =1# 3 y $ 2 5 Inv : x = 2 y 5 $ y 3 $ 1 = 4 1 y = 1 !!!!! dy 1 1 = = 4 2 dx " y =1# 10 y $ 3 y 13 ! ! 1 =x= at x = 2 2 2 $1 Inv : x = sin y 1 y = sin x 1 2 dy dy = 1 = or 2 dx dx " x = ! 6# 3 1$ x ! 1 !!!! Inv : x = sin y = 1 y = 2 6 dy 1 2 = = + !. dx -, y = 0/ cos y 3 6 OE!! f " x # = sin x YE!! f " x # = x 3 $ $ 4 x x (0 at x = 6 TE!! f " x # = cos2 x $ ! ! =x= 2 2 at x = 1 cos$1 x 2 dy dy $1 1 = DNE or 2 dx " x = ! 6# !!! dx " x =1# 2 1 $ x Inv : x = cos 2 y = 1 1 y = 0 dy $1 = = DNE dx " y = 0# 2 sin 2 y Inv : x = cos 2 y 1 y = ZE!!! f " x # = x $ 4 at x = 2 Inv : x = y $ 4 1 y = x 2 $ 4 dy dy = 2x 1 4 dx " x = 2# dx " x = 2# 4 =61 y =2 y 1 1 = = 4 3 y 2 $ 2 13 y Inv : x = y 3 $ !!! dy dx " y = 2# or !! Inv : x = y $ 4 = 2 1 y = 8 dy = dx " y = 8# 1 =4 1 2 y$4 G%3!(:2!03%7&2@+!72&%=<!?)*C!(:2!C23)86()82!%?! f $1 !?%3!(:2!?'*5()%*!f!6(!(:2!+025)?)2C!86&'2!%?!xE!c+2!56&5'&6(%3+E [E!! f " x # = x 3 $ 2 x 2 $ 5 x $ 1 at x = 2 Inv : x = y 3 $ 2 y 2 $ 5 y $ 1 = 2 1 y = .737 dy 1 = 2 = .272 dx " y = .737# 3 y $ 4 y $ 5 x $ sin 2 x at x = 3 2 y Inv : x = $ sin 2 y = 3 1 y = 4.309 2 !! dy 1 = = 0.818 1 dx " y = 4.309# $ 2 sin y cos y 2 ^E!! f " x # = ]E!! f " x # = 3 3 x $ 5 at x = $3 Inv : x = 3 3 y $ 5 = $3 1 y = $7.333 ]E! dy = dx " y =$7.333# 1 =9 1 23 "3y $ 5# -.E! f " x # = xe cos x at x = 3 Inv : x = ye cos y = 3 1 y = 4.335 1 -.E!! dy = cos y = 0.287 dx " y = 4.335# ye "$ sin y # $ e cos y ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-T[!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( 1urves Defined by Parametric Tquations - 1lasswork c*()&!*%=<!=2!:682!722*!32032+2*()*;!;360:+!79!+)*;&2!2>'6()%*+!)*8%&8)*;!863)67&2+!x!6*C!yE!42!=)&&!*%=!+('C9 03%7&2@+!=)(:!=:)5:!O!863)67&2+!632!'+2C!(%!32032+2*(!5'382+E!H:2+2!2>'6()%*+!632!56&&2C!parametric equations. $'00%+2!6!;%&?23!+(3)I2+!6!;%&?!76&&!(:6(!)+!03%02&&2C!)*(%!(:2!6)3!6(!6*!6*;&2!%?!TY%E!1?!(:2!)*)()6&!82&%5)(9!%?!(:2!76&& $x 2 )+!ZT!?22(!023!+25%*C<!(:2!%7X25(!?%&&%=+!(:2!06367%&)5!06(:!;)82*!79! y = $ xE 128 d%=2823<!6&(:%';:!9%'!:682!(:2!06(:!%?!(:2!%7X25(<!9%'!C%!*%(!I*%=!when!(:2!%7X25(!)+!6(!6!;)82*!()@2E!1*!%3C23!(% C%!(:)+<!=2!)*(3%C'52!6!(:)3C!863)67&2!t<!56&&2C!6!parameterE!"%(:!863)67&2+!x!6*C!y 632!=3)((2*!6+!6!?'*5()%*!%?!t< 6*C!9%'!%7(6)*!(:2!0636@2(3)5!2>'6()%*+R x = 32 t 2 and y = $16 t 2 $ 32 t 2 G3%@!(:)+!+2(!%?!2>'6()%*+<!=2!56*!C2(23@)*2!(:6(!6(!(:2!()@2!t!=!.<!(:2!76&&!)+!6(!(:2!0%)*(!(.<!.)E!$)@)&63&9!6(!(:2 ()@2!t!=!-<!(:2!76&&!)+!6(!(:2!0%)*(! 32 2 , 32 2 $ 16 E " # Definition of a Plane 1urve 1?!f!6*C!g!632!5%*()*'%'+!?'*5()%*+!%?!t!%*!6*!)*(2386&!I<!(:2*!(:2!2>'6()%*+ !!!!!!!!!!!!!!!!! x = f " t # and y = g" t # 632!56&&2C!parametric equations!6*C!t!)+!56&&2C!(:2!0636@2(23E!H:2!+2(!%? 0%)*(+! " x, y # !%7(6)*2C!6+!t!863)2+!%823!(:2!)*(2386& " t1, t 2 # !)+!56&&2C!(:2!;360: %?!(:2!0636@2(3)5!2>'6()%*+E!H:2!0636@2(3)5!2>'6()%*+!6*C!(:2!;360:!(6I2* (%;2(:23!)+!56&&2C!6!0&6*2!5'382E 4:2*!+I2(5:)*;!6!5'382!79!:6*C!32032+2*(2C!79!0636@2(3)5!2>'6()%*+<!9%' '+2!)*5326+)*;!86&'2+!%?!tE!H:'+!(:2!5'382!=)&&!72!(3652C!%'(!)*!6!+025)?)5 C)325()%*E!H:)+!)+!56&&2C!(:2!orientation!%?!(:2!5'382E!_%'!'+2!633%=+!(% +:%=!(:2!%3)2*(6()%*E PQ6@0&2!-)!$I2(5:!(:2!5'382!C2+53)72C!79!(:2!0636@2(3)5!2>'6()%*+R 3t x = t 2 $ 1 and t = , $ 2 = t = 3 2 t $2 $1 0 1 2 3 !!!!!!! x 3 0 $1 0 3 8 y $3 $1.5 0 1.5 3 4.5 ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-T]!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( PQ6@0&2!/)!$I2(5:!(:2!5'382!C2+53)72C!79!(:2!0636@2(3)5!2>'6()%*+R x = 4 t 2 $ 1 and t = 3t, $ 1 = t = 1.5 t $1 $0.5 0 0.5 1 1.5 0 $1 0 3 8 !!! x 3 y $3 $1.5 0 1.5 3 4.5 !!!!!!!!!!!!!!!!!!!!!!!!!! U%(2!(:6(!7%(:!2Q6@0&2+!(3652!%'(!(:2!2Q65(!+6@2!;360:E!"'(!(:2!+022C!)+!C)??232*(E!PQ6@0&2!/D+!;360:!)+!(3652C %'(!@%32!360)C&9E!H:'+!)*!600&)56()%*+<!C)??232*(!0636@2(3)5!2>'6()%*+!56*!72!'+2C!(%!32032+2*(!863)%'+!+022C!6( =:)5:!%7X25(+!(3682&!6&%*;!06(:+E!!G)*C)*;!6!325(6*;'&63!2>'6()%*!(:6(!32032+2*(+!(:2!;360:!%?!6!+2(!%?!0636@2(3)5 2>'6()%*+!)+!56&&2C!eliminating the parameterE!d232!)+!6!+)@0&2!2Q6@0&2!%?!2&)@)*6()*;!(:2!0636@2(23E PQ6@0&2!O)!!P&)@)*6(2!(:2!0636@2(23!)*! x = t 2 + 3 !!!!! e!$%&82!?%3!t!)*!(:2!+25%*C!2>'6()%*+ y !!! t = 2 and y = 2t !!!!!e!$'7+()('(2!)*!(:2!+25%*C!2>'6()%*+!6*C!+)@0&)?9 y2 x = $ 3 1 y = ) 4 x $ 12 !!!!!! 4 1 t and y = , t ( $4 PQ6@0&2!T)!V2+53)72!(:2!5'382!32032+2*(2C!79!(:2!2>'6()%*+! x = t$4 t$4 1 1 1 t$4 = 1 t$4= 2 1 t = 2 $4 e!c+2!(:2!x!2>'6()%*<!+%&82!?%3!t x x x e!$'7+()('(2!t!)*(%!(:2!y!2>'6()%*!6*C!2&)@)*6(2!(:2!5%@0&2Q!?365()%*+E 1 $4 2 x y= = 1 $ 4 x 2 ... a parabola opening downward 1 $4$4 x2 e!i26&)B2!(:6(!t >,T<!@26*)*;!(:6(!! lim x " t # = 0 t 23 PQ6@0&2!Y)!$I2(5:!(:2!5'382!32032+2*(2C!79!!!!!!! x = 5 sin 8 and e!$%&82!?%3! cos8 !!6*C! sin 8 !!)*!7%(:!2>'6()%*+E!!! sin 8 = 0 = 8 < 2! y = 3 cos8 x 5 cos8 = y 3 e!c+2!(:2!?65(!(:6(!''%*9 < 8 $ ;$%< 8 = B!(%!?%3@!6*!2>'6()%*!'+)*;!%*&9!x!6*C!y. x2 y2 $ =1 25 9 e!H:)+!)+!6!;360:!%?!6*!2&&)0+2!52*(232C!6(!(.<!.)!=)(:!823()52+!6(!(Y<.!)!6*C!(,Y<!.)!6*C!@)*%3!6Q)+ !!!!!!!!!!!!!!2*C0%)*(+!6(!(.<!O)<!(,.<!,O)E!U%(2!(:6(!(:2!2&&)0+2!)+!(3652C!counterclockwise!6+ 8 ;%2+!?3%@!.!(%!/"E e!4:6(!=%'&C!%55'3!)?!(:2!2>'6()%*+!=232! x = 5 sin 8 and y = 5 cos8 ? Circle ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-T^!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( c+)*;!(:2!(25:*)>'2!)*!(:2!2Q6@0&2!67%82!9%'!56*!5%*5&'C2!(:6(!(:2!;360:!%?!(:2!0636@2(3)5!2>'6()%*+ !!!!!!!! x = h $ a sin 8 " x $ h# 2 " y $ k# 0 = 8 < 2! )+!(:2!2&&)0+2!((3652C!5&%5I=)+2)!;)82*!79 y = k $ b cos8 and 2 = 1 =:)5:!:6+!52*(23! " h8 k # !6*C!2*C0%)*(+! " a, 0#, "$a, 0#, "0, b# and "0, $b# . '' a b2 P&)@)*6()*;!(:2!0636@2(23!)+!6*!6)C!(%!5'382!+I2(5:)*;E!1?!(:2!0636@2(3)5!2>'6()%*+!32032+2*(!(:2!06(:!%?!6!@%8)*; %7X25(<!(:2!;360:!6&%*2!)+!*%(!+'??)5)2*(!(%!C2+53)72!(:2!%7X25(D+!@%()%*E!_%'!+()&&!*22C!(:2!0636@2(3)5!2>'6()%*+!(% (2&&!9%'!(:2!position<!direction<!6*C!speed!6(!6!;)82*!()@2E 2 $ PQ6@0&2!Z)!G)*C!6!+2(!%?!0636@2(3)5!2>'6()%*+!(%!32032+2*(!(:2!;360:!%?! y = x $ x 2 '+)*;!265:!%?!(:2!?%&&%=)*; dy !!!!!!!!0636@2(23+R!!!!6)! t = x !!!!!!!!!!7E!!(:2!+&%02! m = 6(!(:2!0%)*(! " x, y # dx 2 !!!!!!6)!H:)+!%*2!)+!26+9E!p'+(!&2(! t = x !)*!(:2!2>'6()%*R!!! x = t, y = t $ t 1$ m dy dy = m = 1$ 2x 1 x = !!!!!!7)!!$)*52! m = <!C)??232*()6(2!(:2!2>'6()%*!6*C!+%&82!?%3!x 2 dx dx 2 1 $ m +1 $ m . m $ m 2 $U%=!+'7+()('(2!?%3!x!)*!(:2!%3);)*6&!2>'6()%*E!! y = 0 = , 2 / 2 4 !!!!!!!U%(2!(:6(!=:2*!;360:2C!)*!0636@2(3)5!@%C2<!(:2!5'382!:6+!6!3);:(!(%!&2?(!%3)2*(6()%*!C2(23@)*2C!79 !!!!!!!!!!!!!!!!!!!(:2!C)325()%*!%?!)*5326+)*;!86&'2+!%?!+&%02!mE!G%3!063(!6)<!(:2!5'382!:6+!(:2!%00%+)(2!%3)2*(6()%*E PQ6@0&2![)!\(!6*9!()@2!t!=)(:! = = t = B= <!(:2!5%%3C)*6(2+!%?!S!632!;)82*!79!(:2!0636@2(3)5!2>'6()%*+R x = t $ 2 sin t and y = 2 $ 2 cos t !!!!!!!!$I2(5:!(:)+!'+)*;!9%'3!56&5'&6(%3E t=3 t=9 t=4 t=2 t=10 t=8 t=1 t=5 t=7 t=0 t=6 G'W$*9,%';$--&%#$9:*92',$'*9,&2&-'5.6"&%'$3','.-&' ''%+$)9H'Q,','='B8'W'+.%';$$-:*9.,&%'$3'(0HCP8H'Y<)a'.,' '',+*%'*9%,.9,8'W'*%'+&.:*92'.67$%,':"&'9$-,+H G'4+&'3"66';"-5&'*%'9$,',+&'2-.#+'$3'.'3"9;,*$9a'%$7& '''1'5.6"&%'+.5&'7$-&',+.9'$9&'('5.6"&H G'4+&'#*;,"-&'%+$)%',+&'10'.9:'(0'.1&%'/",'9$',0.1*%H G'4+&'/"66&,%'$9',+&'2-.#+'.##&.-'.,'&]".6',*7&' '''*9,&-5.6%'/",'9$,'.,'&]".6':*%,.9;&%'3-$7'&.;+'$,+&-' '''/&;."%&'W'%#&&:%'"#'.9:'%6$)%':$)9'.%'*,'7$5&%H' '''L&')*66'%$$9'%&&'+$)',$';.6;"6.,&',+&'%#&&:'$3'. '''#.-.7&,-*;';"-5&'.,'.'#$*9,H PQ6@0&2!])!S636@2(3)5!5'382+!@69!:682!&%%0+<!5'+0+<!823()56&!(6*;2*(+!6*C!%(:23!025'&)63!?26('32+E and 0=t=5 !!!!!!!g360:!6)!! x = 2 cos t $ 2 cos" 4 t # y = sin t $ sin" 4 t # 0 = t = 2! !!!!!!!7)!! x = sin"5 t # and y = sin"6 t # t=5 !!!!!!!!!!!!!6E!! t=0 !!!!!!!!!!!!!!!!!!!7E!!!! !!H:)+!)+!56&&2C!6!Lissajou curveE ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-Y.!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( 1urves Defined by Parametric Tquations - >omework -E!!!#%*+)C23!(:2!0636@2(3)5!2>'6()%*+! x = t and y = 2t $ 1 6)!#%@0&2(2!(:2!(67&2 !!!!!!!!!!!!!!!!! 7)!S&%(!(:2!0%)*(+!(x<!y)!)*!(:2!(67&2!6*C!+I2(5:!6!;360:!%?!(:2!0636@2(3)5!2>'6()%*+E!1*C)56(2!(:2 !!!!%3)2*(6()%*!%?!(:2!;360:E 2 2 5)!G)*C!(:2!325(6*;'&63!2>'6()%*!79!2&)@)*6()*;!(:2!0636@2(23E!! x = t 1 y = 2 x $ 1, x < 0 %$! ! ( /E!!!#%*+)C23!(:2!0636@2(3)5!2>'6()%*+! x = 4 cos8 and y = 6 sin 2 8 !%*! ' , * & 2 2) 6)!#%@0&2(2!(:2!(67&2!! 7)!S&%(!(:2!0%)*(+!(x<!y)!)*!(:2!(67&2!6*C!+I2(5:!6!;360:!%?!(:2!0636@2(3)5!2>'6()%*+E!1*C)56(2!(:2 !!!!%3)2*(6()%*!%?!(:2!;360:E 5)!G)*C!(:2!325(6*;'&63!2>'6()%*!79!2&)@)*6()*;!(:2!0636@2(23E x y2 x2 y2 cos2 8 = ,sin 2 8 = 1 $ =1 16 6 256 6 OE!!1*!(:2!?%&&%=)*;!2Q235)+2+<!2&)@)*6(2!(:2!0636@2(23!6*C!5%*?)3@!;360:)56&&9!(:6(!(:2!325(6*;'&63!2>'6()%*+ !!!!!9)2&C!(:2!+6@2!;360:!6+!(:2!0636@2(3)5+E!"2!+'32!9%'!(6I2!C%@6)*!6*C!36*;2!%?!(:2!0636@2(3)5!)*(%!655%'*(E 6E! x = 4 t $ 1 and y = 2 t $ 3 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!7E!!! x = t $ 3 and y = t2 + y $ 3. y$3 1 x = 40 $1 2 , 2 / 2 !!!!!! t = x $ 3 1 y = " x $ 3# !!!!!!! x$7 x = 2y $ 6 $1 1 y = 2 2 3 5E!! x = t and y = 3 $ t !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!CE!!! x = t 2 $ t and y = t 2 $ t t= t 2 = x $ t, t 2 = y $ t 1 x $ t = y $ t 1 t = 3 6 !!!!!!!!! x = t 1 y = 3 $ x !! y$x 2 2 + y $ x. y $ x y =0 $ , 2 / 2 (Cannot solve for y ) ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-Y-!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( t t $2 x$2 t = x$21 y = x x = t $ 2 and 2E!! x = t$3 y= ?E!! ;E! and y=t$3 t = y $ 3 1 x = y $ 3$ 3 1 x = y $6 y = x $ 6 or y = 6 $ x, x < 0 x = cos8 x = sec 2 8 and y = tan 2 8 x = 1 $ tan 2 8 1 x = 1 $ y 1 y = x $ 1 :E!! and y = 4 sin 8 x 2 = cos2 8, y 2 = 16 sin 2 8 1 y2 $ x2 =1 16 y = )4 1 $ x 2 TE!!c+2!9%'3!56&5'&6(%3+!(%!;360:!(:2!5'382!32032+2*(2C!79!(:2!0636@2(3)5!2>'6()%*+E!1*C)56(2!(:2!%3)2*(6()%*!%?!(:2 5'382E!1C2*()?9!6*9!0%)*(+!6(!=:)5:!(:2!5'382!)+!*%(!+@%%(:E!!Do not take these problems lightly. Your task is to come up with an appropriate window to view them. Let your t run from 0 to 2!, 4!, 8!, etc. ! ! 6E!#95&%)CR!!H:2!5'382!(3652C!79!6!0%)*(!%*!(:2!!!!! !!!5)35'@?232*52!%?!6!5)35&2!6+!)(!3%&&+!%*!6!+(36);:(!&)*2E 7E!S3%&6(2!#95&%)CR!$6@2!6+!6)!2Q520(!(:2!0%)*( !!!;%2+!72&%=!(:2!&)*2!(36)&3%6C!(365I) !!!!!!!! x = 2"8 $ sin 8 # !!!! x = 28 $ 4 sin 8 and y = 2 $ 4 cos8 and y = 2"1 $ cos8 # !!!!!!!!!!!!!!! 5E!d90%595&%)CR! x = 3 cos3 8 and y = 3 sin 3 8 !!!!!!!!!!!!!!!!!!CE!!#'3(6(2!595&%)CR! x = 28 $ sin 8 and y = 2 $ cos8 !!!!!!!!!!!!!!! 2E!4)(5:!%?!\;*2+)R! x = 2 cot 8 and y = 2 sin 2 8 ?E!!G%&)'@R! x = 3t 3t 2 and y = 1$ t3 1$ t3 !!!!!!!!!!!!! ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-Y/!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( Using 1alculus With Parametric Tquations - 1lasswork 1?!6!+@%%(:!5'382!C!)+!;)82*!79!(:2!2>'6()%*+ x = f " t # and y = g" t # <!(:2*!(:2!+&%02!%?!C!6(! " x8 y# !)+ ' dy dy = dt , dx dt > 0 dx dx dt !!U%(2!(:6(!(:2!+&%02!?%3@'&6!)+!)*!(23@+!%?!t<!*%(!xE!+%!9%'!*22C (%!?)*C!(:2!86&'2!%?!t!5%332+0%*C)*;!(%!(:2!0%)*(!(x<!y) PQ6@0&2!-)!G)*C! dy ?%3!(:2!5'382!;)82*!79! x = cos t and y = $ sin t dx dy $ cos t = = cot t dx $ sin t !!!!!!!!G)*C!(:2!+&%02!%?!(:)+!5'382!6(!(:2!0%)*(!(-<!.)!6*C!(.<!,-) ? ! 3! B x = 0, t = 0, 2 , 2 ? x = 1, t = 0 1 cot t DNE @ 1 cot t = 0 @ A y = 0, t = 0 B y = $1, t = ! A 2 dy "256'+2 )+!6!?'*5()%*!%?!t!<!9%'!56*!'+2!(:2!3'&2!67%82!32026(2C&9!(%!?)*C dt higher-order derivatives. !G%3!)*+(6*52R d %d2y ( d % dy ( ' * d 3 y d % d 2 y ( dt & dx 2 ) d 2 y d % dy ( dt '& dx *) = = = ' * = dx dx dx 3 dx & dx 2 ) dx 2 dx '& dx *) dt dt 2 d y G)*C!(:2!+25%*C!C23)86()82! 2 !%?!(:2!0636@2(3)5!2>'6()%*!67%82E dx d 2 y $ csc 2 t 1 = = 3 2 dx $ sin t sin t 1 2 "t $ 2t # <!?)*C!(:2!+&%02!6*C!5%*568)(9!6(!(/<!T) 2 First, you need to find the value of t when 1 t = 2 and y = " t 2 $ 2 t # = 4. You know that from the x - equation, t = 4. 2 And t = 4 satisfies the y - equation as well. PQ6@0&2!/)!?%3!(:2!5'382!;)82*!79! x = t and y = + 1 . 2- t1 2 $ 1 2 0 dy t $1 d y , 2t / = = 2" t 3 2 $ t1 2 #, 2 = = 4t $ 4 1 1 dx dx $1 2 $1 2 t t 2 2 2 slope = 12,concavity = 12 ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-YO!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( M1.7#6&'@)''4+&'#.-.7&,-*;';"-5&'*%'2*5&9? x = t $ 2 sin t and y = 2 $ 2 cos t dy dx dy $2 sin t = $2 sin t, = 1 $ 2 cos t, = dt dt dx 1 $ 2 cos t 6)!?)*C!(:2!+&%02!6(!t!=!-E dy $2 sin1 = = 20.879 !!!!!!!!!!!!!!!! dx 1 $ 2 cos1 !!!!!7)!4:232!)+!(:2!5'382!:%3)B%*(6&M 5)!=:232!)+!(:2!5'382!823()56&M 2 sin t = 0 1 $ 2 cos t = 0 1 cos t = 1 2 t = 0, !, 2!,... t = ! 3, 5! 3, 7! 3,... 42!I*%=!=2!56*!?)*C!(:2!635!&2*;(:!%?!6!5'382!C!;)82*!79! y = h " x # !%823!(:2!)*(2386&! & x1, x 2 % !79!! x2 s= # 2 x2 2 1 $ & h 4" x #% dx = + dy . 1 $ - 0 dx , dx / # x1 x1 1?!C#)+!32032+2*(2C!79!(:2!0636@2(3)5!2>'6()%*+! x = f " t # x2 !s= # x2 2 1 $ & h 4" x #% dx = x1 # x1 x2 Arc Length # s = x1 2 + dy . 1 $ - 0 dx <!9%'!56*!=3)(2 , dx / 2 + dy . 1 $ - 0 dx = , dx / 2 b = "dx dt # $ "dy # 2 "dx dt # a b = and y = g" t #, a = t = b # a 2 2 2 x2 + dy dt . 1$ 0 dx , dx dt / # x1 2 dt # + dx . - 0dt = , dt / + dx . + dy . - 0 $ - 0 dt = , dt / , dt / b b # a 2 "dx dt # 2 2 $ " dy dt # + dx . - 0dt + dx . , dt / - 0 , dt / # & f 4"t #% $ &g4"t #% 2 dt a Note that this formula only works when the curve does not intersect itself on the interval a = t = b and the curve must be smooth. PQ@0&2!T)!\!5)35&2!%?!36C)'+!r!:6+!325(6*;'&63!2>'6()%*! x 2 $ y 2 = r 2 !6*C!0636@2(3)5!2>'6()%*+! !!!!!!!!!!!!!!!!!! x = r cos8 y = r sin 8 E!$:%=!(:6(!)(+!635!&2*;(:!(5)35'@?232*52)!)+!/"!'+)*; !!!!!!6)!i25(6*;'&63!635!&2*;(:!?%3@'&6 !!!!!!!!!!!!!!!!!!!!!!!!!!7)!S636@2(3)5!635!&2*;(:!?%3@'&6 dy $x y = r2 $ x 2 1 = dx 1$ x2 dx dy r r = $r sin 8, = r cos8 x2 r2 dt dt A = 4 # 1$ 2 dx = 4 # dx 2 2 2 r $ x r $ x ! !2 2 0 0 2 2 2 2 4 A = 4 # r sin 8 $ r cos 8 d8 = # r d8 r !!!!!!!!!!!!!!!!!!!!!! % $1 x ( 1 0 0 A = 4r # dx = r 4 sin '& r2 $ x 2 r *)0 0 +!. !2 A = 4 r8 % 0 = 4- 0 = 2! + . ! ,2/ A = 4 r sin$1 1 $ 4 r sin$1 0 = 4 r- 0 = 2! ,2/ ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-YT!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( PQ6@0&2!Y)!!\!5)35&2!%?!36C)'+!-!3%&&+!63%'*C!(:2!5)35'@?232*52!%?!6!&63;23!5)35&2!%?!36C)'+!YE!H:2!20)595&%)C !!!!!!!!!!!!!!!!!!!!!(3652C!79!6!0%)*(!%*!(:2!5)35'@?232*52!%?!(:2!+@6&&23!5)35&2!)+!;)82*!79 x = 5 sin t $ sin 5 t and y = 5 cos t $ cos 5 t .)'V-.#+',+&'#.-.7&,-*;'&]".,*$9%'3$-' &$6, 6%, &$6, 6% t = 0 to 2! b*&)'*,'c$$7'%]".-&H !!!!!!! 7)!U%(2!(:2!5'382!:6+!5'+0!0%)*(+!=:2*! t = 0 and t = ! 2 E!"2(=22*!(:2+2!0%)*(+<! dx dt and dy dt 632 !!!!*%(!+)@'&(6*2%'+&9!B23%!(5'+0+)E!$%!(:2!0%3()%*!%?!(:2!5'382!;2*236(2C!?3%@! t = 0 and t = ! 2 !)+ !!!!+@%%(:E!$%<!(%!?)*C!(:2!(%(6&!C)+(6*52!(3682&2C!79!(:2!0%)*(!=2!56*!?)*C!(:2!635!&2*;(:!)*!(:2!-+( !!!!>'6C36*(!6*C!@'&()0&9!(:2!32+'&(!79!TE!4:)&2!)(!@69!72!0%++)7&2!X'+(!(%!)*(2;36(2!?3%@!.!(%!/"!(6*C!)(!)+!)* !!!!!!!!!!!!!!!!!(:)+!56+2<!)(!56*!72!C6*;23%'+E!1(!)+!26+)23!(%!)*(2;36(2!%*!+25()%*+!9%'!632!+'32!)(!)+!C)??232*()67&2E !2 L=4# "5 cos t $ 5 cos 5t # 2 2 $ "$5 sin t $ 5 sin 5 t # dt 0 !2 L = 4 # 25 cos2 t $ 50 cos t cos 5 t $ 25 cos2 5 t $ 25 sin 2 t $ 50 sin t sin 5 t $ 25 sin 2 5 tdt 0 !2 !2 !2 L = 4 # 50 $ 50 sin t sin 5 t $ 50 cos t cos 5 tdt = 20 # 2 $ 2 sin t sin 5 t $ 2 cos t cos 5 t dt = 20 # 2 $ 2 cos 4 tdt 0 0 !2 0 !2 !2 L = 20 # 2 $ 2 cos 2"2 t # dt = 20 # 2 $ 2"1 $ 2 sin 2 2 t # dt = 20 # 2 sin 2 t dt = 40 0 0 0 Area of a surface of revolution 1?!6!+@%%(:!5'382!C!)+!;)82*!79! x = f " t # and y = g" t #, a = t = b <!6*C!C C%2+!*%(!)*(23+25(!)(+2&?< !(:2*!(:2!6326 %?!(:2!+'3?652!%?!328%&'()%*!67%'(!(:2!5%%3C)*6(2!6Q2+!)+!;)82*!79R t= b S = 2! # g"t # t= a t= b S = 2! # f "t # t= a 2 2 2 2 + dx . + dy . - 0 $ - 0 dt - Revolution about x - axis : g" t # < 0 , dt / , dt / + dx . + dy . - 0 $ - 0 dt - Revolution about y - axis : f " t # < 0 , dt / , dt / PQ6@0&2!Z)!G)*C!(:2!+'3?652!6326!=:2*! x = 4 sin t and y = 4 cos t !3 S = 2! # 3 sin t "$3 sin t # 2 0=t= ! !)+!3%(6(2C!67%'(!(:2!x!6Q)+E 6 2 $ " 3 cos t # dt 0 !3 !3 S = 2! # 3 sin t " 3# dt = 18! # sin t dt 0 0 +1 . !3 S = 18!&$ cos t % 0 = $18!- $ 10 = 9! ,2 / ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-YY!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( Using 1alculus With Parametric Tquations - >omework 2 1*!(:2!?%&&%=)*;!2Q235)+2+<!?)*C! dy dx and d y dx 2 6*C!286&'6(2!265:!6(!(:2!)*C)56(2C!86&'2!%?!(:2!0636@2(23EE x= t x = 3t and y = 4t $ 1 t =2 -E! dx dy dy 4 d 2 y =3, =41 = , =0 dt dt dx 3 dx 2 and y = 4t $1 t=4 2 dx 1 dy dy d 2 y 8"1 2 t # = , =41 = 8 t, 2 = =8 !!!!!!!!!!!!!!!!!!!!!!!/E! dt 2 t dt dx dx 1 2t 2 dy d2y = 16, 2 =8 dx & t = 4 % dx & t = 4 % 5! x = 2 t $ 2 and y = t $ 4 t t =1 4 2 $1 dx dy dy 2 t $ 4 d y 1 dx dy dy d2y , = $ 2 sin = 2 cos 1 = $ cot , = 2 , = 2 $ 4 1 = = $ 2 , = t t t t t 2= OE! !!!TE 2 2 sin 3 t 2 2 dt dt dx dx dt dt dx dx dy d2y 1 dy d2y = $1, 2 = 2 = $1, 2 = dx & t =1% dx & t =1% 2 dx & t = 5 ! 4 % dx & t = 5 ! 4 % x = 2 cos t 2 x= t and y = t$2 and y = 2 sin t t= t =1 dx 1 dy 1 dy = , = 1 = dt 2 t dt 2 t $ 2 dx 1 t $1 " 2 d 2 y 2 t $ 2 " t $ 2# YE!! 2 = 1 dx 2 t t t$2 x = sin 3 t !!!!!!! dy 1 d2y $1 1 = , 2 = dx & t =1% 3 dx & t =1% 9 3 and y = cos3 t t= 3! 4 dx dy = 3 sin 2 t cos t , = $3 cos2 t sin t dt dt !ZE!! 2 csc 2 t dy d y 1 = $ cot t, 2 = = 2 4 dx dx 3 sin t cos t 3 sin t cos t 2 $8 dy d y = 1, 2 = dx & t = 3 ! 4 % dx & t = 3 ! 4 % 3 2 1*!(:2!?%&&%=)*;!/!2Q235)+2+<!?)*C!(:2!2>'6()%*!%?!(:2!(6*;2*(!&)*2!6(!(:2!)*C)56(2C!0%)*(!%*!(:2!5'382E 2 and y = 2 sin 2 8 at "2,1# tan 8 dx $2 dy = 2 , = 4 sin 8 cos8 dt sin 8 dt x= [E! dy = $2 sin 3 8 cos8, dx y $1 = + 2 . + 2 . $1 !! dy ! ! x = 2,8 = , y = 1,8 = 1 = $2- 0 - 0 = dx & t =! 4 % 4 4 , 2 /, 2 / 2 3 $1 " x $ 2# 2 ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-YZ!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( ( x = !4 cos$ and y = 3 + 2 sin $ at !2,3 + 3 ) dx dy = 4 sin $ , = 2 cos$ dt dt 8. dy 1 dy " " 3 x = !2,$ = , y = 3 + 3,$ = # = cot $, = dx 2 dx [ t =" 3 ] 3 3 6 ( ) y ! 3+ 3 = 3 ( x + 2) 6 In the following exercises, find all points of horizontal and vertical tangency to the curve. x = 2 ! t and y = t2 dx dy = !1, = 2 t 9. dt dt Horiz : t = 0 Point (2,0) Vert : None x = 8 cos2 $ and y = !4 sin $ dx dy = 16 cos$ sin $, = !4 cos$ dt 11. dt Horiz : None Vert : t = 0, ", 2",… Point : (8, 0) x = t 2 + t ! 4 and y = 2t 3 ! 6t dx dy = 2 t + 1, = 6 t 2 ! 6 dt dt 13. Horiz : t = ±1 Points : (!2, !4 ), (!4, 4 ) !1 Vert : t = , 2 % !17 11( Point : ' , * & 4 4) © www.MasterMathMentor.com BC Solutions x = t + 4 and y = 2t 2 + 6t + 1 dx dy = 1, = 4 t + 6 dt dt 10. % 5 !7 ( !3 Horiz : t = Point : ' , * &2 2 ) 2 Vert : None x = 2$ and y = 2(1 ! cos$ ) dx dy = 2, = 2 sin $ 12. dt dt Horiz : t = 0, ", 2",… Points : (0, 0), (2", 4 ), ( 4 ", 0), (6", 4 ),... Vert : None x = 2 cos$ and y = !2 sin 2$ dx dy = !2 sin $, = !4 cos 2$ dt dt 14. " 3" 5" Horiz : t = , , ... Pts : 2 , !2 , ! 2 , 2 , 4 4 4 Vert : t = 0, ", 2",… Point : (2, 0), (!2, 0) ( - 157 - )( )( )( ) 2 , !2 , ! 2 , 2 Illegal to post on Internet G)*C!(:2!635!&2*;(:!%?!(:2!;)82*!5'382!%*!(:2!)*C)56(2C!)*(2386&E!#6&5'&6(%3+!023@)((2C!%*!-Y!6*C!-ZE x = t 2 $ t and -YE! y = 4t3 + 2 ,% &$11 x= t dx dy = 2 t $ 1, = 12 t 2 dt dt -ZE! 1 L= 4 t 2 $ 4 t $ 1 $ 144 t 4 dt = 8.842 # $1 x = 2e$ t sin t and y = 2e$ t cos t ! L= # & 2 % & 2e$ t "cos t $ sin t # $ 0 ! L= and y=3 t &1, 2% dx 1 dy 1 = 12, = 23 dt 2 t dt 3t 2 1 1 L= # $ 4 3 dt = 0.489 4 t 9t 1 &0, !% % 2e$ t "$ sin t $ cos t # 2 dt 2e$2 t "cos2 t $ 2 sin t cos t $ sin 2 t # $ 2e$2 t "sin 2 t $ 2 sin t cos t $ cos2 t # dt # 0 ! L= -[E!! 4 e$2 t dt # Expand - cancellation and sin 2 t $ cos2 t = 1 0 ! L = 2 # e$ t dt = &$2e$ t % 0 ! 0 +1 . + 1. L = $2- ! $ 10 = 2-1 $ ! 0 ,e / , e / t5 1 x = $ 3 and y=t 10 6 t dx t 4 1 dy = $ 4, =1 dt 2 2 t dt 3 L= # 1 3 L= -]E!!! # 1 t8 1 1 $ $ 8 +1 dt = 4 2 4t 2 + t4 1 . - $ 4 0 dt = , 2 2t / &1, 3% 3 # 1 t8 1 1 $ $ 8 dt 4 2 4t 3 + t4 1 . # -, 2 $ 2t 4 0/ dt 1 3 % t5 1 ( 243 1 1 1 L = ' $ 3* = $ $ $ = 24.361 &10 6 t )1 10 162 10 6 The graph of this parametric is a horizontal line whose length is x " 3# $ x "1#. ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-Y]!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( -^E!!H:2!06(:!%?!6!+%5523!76&&!)+!@%C2&2C!79!(:2!!2>'6()%*+! x = "100 cos 30 o # t and y = "100 sin 30 o # t $ 16 t 2 !!!!!!!!!=:232!x!6*C!y!632!@26+'32C!)*!?22(E!!!g360:!(:2!06(:!%?!(:2!03%X25()&2!6*C!'+2!(:2!)*(2;36()%*!56067)&)()2+ !!!!!!!!%?!(:2!56&5'&6(%3!(%!6003%Q)@6(2!(:2!635!&2*;(:!%?!(:2!06(:!6*C!(:2!C)??232*52!72(=22*!(:2!635!&2*;(: !!!!!!!!6*C!(:2!36*;2!%?!(:2!+%5523!76&&E Range : 100 sin 30 o t $ 16 t 2 = 0 3.125 L= t "50 $ 16 t = 0# 1 t = 3.125 sec !!!!!! x = 100 cos 30 o " 3.125# = 270.633 ft o 2 # "100 cos 30 # $ "50 $ 32t # 2 dt 0 !! L = 284.994 ft C Difference = 14.361 ft 3t 3t 2 and y = , t < 0 <!+I2(5:!)(!%*!9%'3!56&5'&6(%3E!!H:)+!;360: 1$ t3 1$ t3 !!!!!!!)+!56&&2C!6!?%&)'@E!1(!&%%I+!&)I2!6!&26?!(?%&)6;2)E /.E!!g)82*!(:2!0636@2(3)5!2>'6()%*+! x = !!!!!!!!!6)!V2(23@)*2!=:6(!86&'2+!%?!t!;)82!6!:%3)B%*(6&!(6*;2*(E 3 3 2 2 dy "1 $ t #"6 t # $ 3t " 3t # 6 t $ 6 t 4 $ 9 t 4 3t "2 $ t # = = = 2 2 2 !!! dt "1 $ t 3 # "1 $ t 3 # "1 $ t 3 # Horizontal tangents at t = 0, t = 3 2 !!!!!!!!!7)!\003%Q)@6(2!(:2!635!&2*;(:!%?!(:2!5&%+2C!&%%0E!$2(!'0!(:2!)*(2;36&!6*C!'+2!9%'3!56&5'&6(%3!6003%03)6(2&9 3 L= # 0 2 2 % d + 3t .( % d + 3t 2 .( $' dt = 4.915 ' 3 0* 3 0* & dt ,1 $ t /) & dt ,1 $ t /) /-E!!G)*C!(:2!6326!%?!(:2!+'3?652!;2*236(2C!79!328%&8)*;!(:2!5'382!67%'(!(:2!;)82*!6Q2+E!!!c+2!56&5'&6(%3!%*!6)E x = 6 cos8 and y = 6 sin 8, x = t and y = 8 $ 4 t, i) x $ axis 6)! 2 A = 2! # "8 $ 4 t # 17 dt 0 A = 207.25 &0, 2% i) x $ axis ii) y $ axis 2 A = 2! # t 17 dt 0 A = 51.812 !2 7E!! A = 2! # 6 sin t 36 dt 0 !2 &0,! 2% ii) y $ axis !2 A = 2! # 6 cos t 36 dt 0 !2 A = 72! # sin t dt A = 72! # cos t dt A = 72! A = 72! 0 0 ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-Y^!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( Polar Tquations - 1lasswork 42!:682!6&=69+!'+2C!(:2!#63(2+)6*!(*6@2C!6?(23!i2*22!V2+563(2+)!5%%3C)*6(2!+9+(2@E!H:)+!+92(2@!)+!76+2C!%*!6 ;3)C!%?!02302*C)56&63!&)*2+E!a6*9!(%=*+!6*C!5)()2+!632!@%C2&2C!(:)+!=69E!H:2!polar coordinate system!)+!76+2C %*!6!5)35'&63!@%C2&E!H:2!5)(9!%?!S63)+!)+!@%C2&2C!=)(:!0%&63!5%%3C)*6(2+!=)(:!(:2!\35!C2!H3)%@0:2!6+!(:2!52*(23E H%!?%3@!(:2!0%&63!5%%3C)*6(2!+9+(2@<!=2!+(63(!=)(:!6!0%)*(!H 56&&2C!(:2!0%&2!%3!(:2!%3);)*E!P65:!0%)*(!P!)*!(:2 0&6*2!)+!6++);*2C!0%&63!5%%3C)*6(2+! " r,8 # !6+!?%&&%=+R!!r!)+!(:2!C)325(2C!C)+(6*52!?3%@!H!(%!P!6*C! 8 !)+!(:2!C)325(2C 6*;&2C<!5%'*(235&%5I=)+2!?3%@!0%&63!6Q)+!(%!+2;@2*(! OP E!!H:2!C)6;36@!72&%=!+:%=+!(:322!0%)*(+!%*!(:2!0%&63 5%%3C)*6(2!+9+(2@E!1(!)+!5%*82*)2*(!(%!&%56(2!0%)*(+!=)(:!32+025(!(%!6!;3)C!%?!5%*52*(3)5!5)35&2+!)*(23+25(2C!79!36C)6& &)*2+!(:3%';:!(:2!0%&2E!!H:2!&)*2! 8 = 0)+!56&&2C!(:2!polar axis. ![< (A8<![@) (@8![C) = ! (A8'0![A)'$-'(0A8@![A) @![< !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! H%!5%*823(!(%!6*C!?3%@!(:2!0%&63!+9+(2@!(%!(:2!5%%3C)*6(2!+9+(2@<!9%'!@'+(!I*%=!(:2!?%&&%=)*;!32&6()%*+:)0+E " x .y # or "r,8 # r y x < < < ''y = r %*9 8''''''''''''''''r = x $ y x = r ;$%8''''''''''''''' ,.9 8 = y 8 PQ6@0&2!-)!#%*823(!(:2!?%&&%=)*;!0%&63!0%)*(+!(%!325(6*;'&63!5%%3C)*6(2+E + !. 7E!! -2 3, 0 6E! "5,!# , 6/ " # !!!!!! 3, 3 !!!!!!! "$5, 0# PQ6@0&2!/)!#%*823(!(:2!?%&&%=)*;!325(6*;'&63!0%)*(+!(%!0%&63!5%%3C)*6(2+E 6E!!(,Y<!,Y) 7E!(.<!,/) + 5! . + 3! . !!!!!!!! -5, 0 !!!!!!!! -2, 0 , 4/ , 2/ PQ6@0&2!O)!#%*823(!(:2!?%&&%=)*;!0%&63!2>'6()%*+!(%!325(6*;'&63!2>'6()%*+E 6)!!r!=!/ 7)!! 8 = 2! 3 2 2 2 2 !!!!! x $ y = 2 1 x $ y = 4 !!!! tan 8 = $ 3 1 PQ6@0&2!T)!#%*823(!(:2!?%&&%=)*;!0%&63!2>'6()%*+!(%!325(6*;'&63!2>'6()%*+E 3 r= 1 $ sin 8 r = $2 csc 8 6)! $2 r= 1 r sin 8 = $2 1 y = $2 sin 8 y = $ 3 1 y = $x 3 x 2 2 2 2 7)! r $ y = 3 1 x $ y $ y = 3 1 x $ y = 3 $ y 9 $ x2 x $ y = 9 $ 6y $ y 1 y = 6 2 2 2 ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-Z.!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( To find the slope of a tangent line to a polar graph, suppose we have a differentiable function given by r = f (! ) . To convert to polar form, we know that x = r cos! and y = r sin ! . So, it follows that: x = r cos! = f (! ) cos! and y = r sin ! = f (! ) sin ! dy given in the previous section, the slope of a differentiable function of ! = dx f (! ) cos! + f "(! ) sin ! dy dy d! dx $ 0 at ( r,! ) = = provided that dx dx d! d! # f (! ) sin ! + f "(! ) cos! Using the parametric form of From the above theorem, we can make the following observations: dy dx = 0 provided that $0 • to find horizontal tangents to polar equations, set d! d! dx dy • to find vertical tangents to polar equations, set = 0 provided that $0 d! d! dy dx • if and are simultaneously zero, we make no conclusion about tangent lines. d! d! Example 5) Find horizontal and vertical tangent lines to r = 2(1 # sin ! ) x = 2(1 # sin ! )(cos! ) = 2(cos! # sin ! cos! ) r = 2 sin !, 0 % ! % & x = 2 sin ! cos! dx = 2[sin ! (# sin ! ) + cos! (cos! )] d! & 3& sin 2 ! = cos2 ! ' ! = , (Vertical) 4 4 a. 2 y = 2 sin ! dy & = 4 sin ! cos! ' ! = 0, , &(Horiz) d! 2 dx = 2 # sin ! # (# sin 2 ! + cos2 ! ) dt dx = 2[# sin ! + 2 sin 2 ! # 1] = 2(2 sin ! + 1)(sin ! # 1) dt 7& 11& &/ != , , (Vertical) 6 6 2/ [ b. ] y = 2(1 # sin ! )(sin ! ) = 2(sin ! # sin 2 ! ) dy = 2(cos! # 2 sin ! cos! ) = 2 cos! (1 # 2 sin ! ) dt & 5& &/ 3& ! = , , , (Horiz) 6 6 2/ 2 If r = f (! ) = 0 at ! = ( and f "(( ) $ 0, then the line ! = ( is tangent to the pole. Example 6) Find the tangent lines at the pole to r = 4 cos 3! . Confirm graphically. & 3& 5& 7& 9& 11& cos 3! = 0 ' 3! = , , , , , 2 2 2 2 2 2 & & 5& 7& 3& 11& != , , , , , 6 2 6 6 2 6 © www.MasterMathMentor.com BC Solutions - 161 - Illegal to post on Internet Polar Tquations - >omework G%3!265:!%?!(:2!?%&&%=)*;!0%&63!5%%3C)*6(2+<!?)*C!(:2!5%332+0%*C)*;!325(6*;'&63!5%%3C)*6(2+E + !. -E!! -6, 0 = "0, 6# , 2/ + 7! . + $ 2 $ 2 . , /E! -$1, 0 = 0 , 4/ , 2 2 / + $! . OE! -$4, 0 = $2, 2 3 , 3/ " # G%3!265:!%?!(:2!?%&&%=)*;!325(6*;'&63!5%%3C)*6(2+<!?)*C!two!5%332+0%*C)*;!0%&63!5%%3C)*6(2+E + 1 $ 3 . + $! . + 5! . + + 3! . + $! . 3! . + 7! . YE!! - , TE!! "$3, 3# = - 3 2 , 0,- 3 2 , 0 0 = -1, 0,-1, 0 !!!!!!!!!!!!!!!!!ZE! "0, $4 # = - 4, 0,- 4, 0 , , 2 /, 2 / 4 /, 4/ ,2 2 / , 3 / , 3 / G%3!265:!%?!(:2!?%&&%=)*;!325(6*;'&63!2>'6()%*+<!5:6*;2!)(!(%!0%&63!?%3@!6*C!5%*?)3@!%*!9%'3!56&5'&6(%3E xy = 12 5x $ y = 7 [E!! 5 r cos8 $ r sin 8 = 7 7 r= 5 cos8 $ sin 8 " x $ 1# 2 "r cos8 #"r sin8 # = 12 ]E!!! r 2 sin 8 cos8 = 12 r=) $ y2 =1 x2 $ y2 $ 4x = 0 x2 $ 2x $ 1$ y2 = 1 2 2 2 2 ^E! E! r cos 8 $ 2 r cos8 $ r sin 8 = 0 12 sin 8 cos8 -.E!! 2 r $ 2 r cos8 = 0 r 2 $ 4 r cos8 = 0 1 r 2 $ 4 r cos8 $ 4 cos2 8 = 4 cos2 8 "r $ 2 cos8 # 2 = 4 cos2 8 r $ 2 cos8 = )2 cos8 1 r = $4 cos8 r" r $ 2 cos8 # 1 r = 2 cos8 G%3!265:!%?!(:2!?%&&%=)*;!0%&63!2>'6()%*+<!5:6*;2!)(!(%!325(6*;'&63!?%3@!6*C!5%*?)3@!%*!9%'3!56&5'&6(%3E tan 2 8 = 9 r=4 --E! x 2 $ y 2 = 16 -/E! y = ) 16 $ x 2 r = 4 sin 8 + y. r = 4- 0 1 x 2 $ y 2 = 4 y ,r/ 2 2 -OE!! y $ 4 y $ 4 = 4 $ x " y $ 2# 2 = 4 $ x2 y = 2 ) 4 $ x2 y2 =9 x2 y = )3 x 1 1 $ cos8 r $ x =1 r= -TE!! x2 $ y2 = x $1 x2 $ y2 = x2 $ 2x $ 1 y = ) 2x $ 1 ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-Z/!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( G%3! r = 2 $ 3sin 8 <!?)*C! dy 6*C!(:2!+&%02!%?!(:2!(6*;2*(!&)*2!6(!(:2!?%&&%=)*;!0%&63!0%)*(+E dx y = sin 8 "2 $ 3 sin 8 # = 2 sin 8 $ 3 sin 2 8 x = cos8 "2 $ 3 sin 8 # = 2 cos8 $ 3 sin 8 cos8 dx dy = $2 sin 8 $ 3 cos2 8 $ 3 sin 2 8 = 2 cos8 $ 6 sin 8 cos8 d8 d8 dy 2 cos8 $ 6 sin 8 cos8 = dx $2 sin 8 $ 3 cos2 8 $ 3 sin 2 8 " # " -YE!! 5, 5! 2 1 m = 0 # -ZE! $1, 3! 2 1 m = 0 -[E! "2,!# 1 m = $2 3 G%3!265:!%?!(:2!?%&&%=)*;<!?)*C!(:2!0%)*(+!%?!:%3)B%*(6&!6*C!823()56&!(6*;2*59!()?!6*9) r = 3 $ sin 8 x = cos8 " 3 $ sin 8 # = 3 cos8 $ sin 8 cos8 dx = $3 sin 8 $ cos2 8 $ sin 2 8 d8 -]E!! $3 sin 8 $ 1 $ 2 sin 2 8 = 0 y = sin 8 " 3 $ sin 8 # = 3 sin 8 $ sin 2 8 dy = 3 cos8 $ 2 sin 8 cos8 d8 cos8 " 3 $ 2 sin 8 # = 0 ! 3! Horiz : 8 = , 2 2 2 sin 2 8 $ 3 sin 8 $ 1 = 0 Vert : 8 = .284, 2.857 r = sin 8 cos2 8 -^E!! 0 =8 '! x = sin 8 cos3 8 dx = cos4 8 $ 3 sin 2 8 cos2 8 d8 cos2 8 "cos2 8 $ 3 sin 2 8 # = 0 1 2 !+ ! 5! Vert : 8 = , , 2+ 6 6 cos8 = 0,sin 8 = ) y = sin 2 8 cos2 8 dy = 2 sin 2 8 cos3 8 $ 2 sin 3 8 cos2 8 d8 2sin8 2 cos8 2 "cos8 $ sin 8 # = 0 !+ ! 3! Horiz : 8 = 0, , , 2+ 4 4 G)*C!(:2!&)*2+!(6*;2*(+!6(!(:2!0%&2!(% r = 4 "1 $ cos8 # !!/.E!! 1 $ cos8 = 0 8 =0 r = 3 sin 28 sin 28 /-E!! 28 = 0, !, 2!, 4 ! ! 3! 8 = 0, , !, , 2! 2 2 ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-ZO!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( Area, Arc Length a Surface Area in Polar Tquations - 1lasswork 4+&'.-&.'$3'.'%&;,$-'$3'.';*-;6&')*,+'-.:*"%'-'.9:';&9,-.6'.926&''8 1 *%'2*5&9'/(' A = 8 r 2 #-$5*:&:',+.,' 8 *%'7&.%"-&:'*9'-.:*.9%H 2 r 8 r H%!?)*C!(:2!6326!%?! r = f "8 # !72(=22*!(=%!86&'2+!%?!(:2!6*;&2<!*6@2&9! D and E <!063()()%*!(:2!)*(2386&! &D , E % !)*(% n!2>'6&!+'7)*(2386&+R!! D ' 81 ' 8 2 ' 8 3 ' ... ' 8 n $1 ' 8 n ' E E E $D = 58 i26&)B2!(:6(!(:2!36C)'+!%?!(:2!i(:!+25(%3!=! f "8 i # !6*C!(:6(!(:2!52*(36&!6*;&2!%?!(:2!i(:!+25(%3!)+! n n n + 1. + 1. 2 2 $%<! A 6 F- 0 58 & f "8 i #% !6*C!(:'+! A = lim F- 0 58 & f "8 i #% !!=:)5:!&26C+!(%!(:2!?%&&%=)*;R n 23 , 2/ , 2/ i= 1 i= 1 1?! f !)+!5%*()*'%'+!6*C!*%*,*2;6()82!%*!(:2!)*(2386&! &81,8 2 % <!(:2*!(:2!6326!%?!(:2!32;)%*!7%'*C2C!79!(:2 ;360:!%?! r = f "8 # !72(=22*!(:2!36C)6&!&)*2+! 8 = 81 and 8 = 8 2 !)+!;)82*!79 8 8 2 1 2 1 2 2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! A = # & f "8 #% d8 = A = # r d8 2 81 2 81 PQ6@0&2!-)!G)*C!(:2!6326!%?!%*2!02(6&!%?!(:2!3%+2!5'382!;)82*!79! r = 4 cos 38 E K$,&',+.,'-*2+,'#&,.6'*%',-.;&:'.% 8 *%',-.;&:'3--$7'0![C',$'![CH'!$')&' ;.9'"%&',+&'#-&;&:*92'3$-7"6.',$' 3*9:',+&'.-&.H' !!!!!!!!G)3+(<!&2(D+!;360:!)(E!!!!!!!!!!!!!!! !6 + 1 .! 6 2 2 !!!!!!!!$2(!'0!(:2!)*(2;36&R!!! A = 2- 0 # 16 cos 38 d8 = 16 # cos 38 d8 , 2/ 0 0 !!!!!!!!1(!C%2+!*%(!600263!(:6(!(:)+!56*!72!)*(2;36(2CE!"'(!'+2!(:2!0%=23!32C'5)*;!?%3@'&6! 1 $ cos 28 cos2 8 = 2 !6 !6 + 1. A = 2- 0 # 16 cos2 38 d8 = 16 # cos2 38 d8 , 2/ 0 0 !6 !6 !6 +1 $ cos 68 . %4 ( !6 16 # 0 d8 = 8 # "1 $ cos 68 # d8 = &88 % 0 $ ' sin 68* = 4.189 , / &3 )0 2 0 0 !!!!!!buestionR!H%!?)*C!(:2!(%(6&!6326!&9)*;!)*+)C2!6&&!O!02(6&+<!=:9!56*D(!9%'!)*(2;36(2!?3%@!.!(%!/"M r switches from positive to negative in this region. ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-ZT!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( PQ6@0&2!/)!G)*C!(:2!6326!%?!(:2!32;)%*!&9)*;!72(=22*!(:2!)**23!6*C!%'(23!&%%0+!%?!(:2!&)@6q%*! r = 2 sin 8 $ 1E 8 _$"')*66'9&&:',$'3*9:',+&'5.6"&%'$3''''''')+&-&',+&' *99&-'6$$#'%,.-,%'.9:'%,$#%'.9:')+&-&',+&'$",&-' 6$$#'%,.-,%'.9:'%,$#%H''L+.,'.-&',+&(d !!!!!!!!! 2 sin 8 $ 1 = 0 1 sin 8 = !!!!!!!!$2(!'0!(:2!)*(2;36&!?%3!(:2!)**23!&%%0E 1 ! 5! 18 = , 2 6 6 !!!!!!!!!!!!!!!!!!!!!!$2(!'0!(:2!)*(2;36&!?%3!(:2!%'(23!&%%0E + 1 .! 2 2 2- 0 # "2 sin 8 $ 1# d8 = .544 , 2 /! 6 + 1 .3 ! 2 2 2- 0 # "2 sin 8 $ 1# d8 = 8.881 , 2 /5 ! 6 $%!(:2!(%(6&!6326!)+M!! 8.337 PQ6@0&2!O)!G)*C!(:2!5%@@%*!)*(23)%3!%?! r = 1 $ cos8 and r = 1!E !+.:&'*9',+&';$77$9'*9,&-*$-'$3',+&',)$'2-.#+%H '''''' !!!!!!!!! !$%!(:2!(%(6&!6326!)+!;)82*!79!(:2!2Q032++)%*R!! ! + 1. ! 2 $ 2- 0 # "1 $ cos8 # d8 = 1.927 2 , 2 /! 2 Points of intersection of a polar graph "256'+2!6!0%)*(!@69!72!32032+2*(2C!)*!@%32!(:6*!=69!'+)*;!0%&63!5%%3C)*6(2+<!9%'!@'+(!72!5632?'&!)*!?)*C)*; )*(23+25()%*!0%)*(+!%?!(=%!0%&63!;360:+E!_%'3!56&5'&6(%3!C%2+!*%(!:682!6*!1UHPi$P#H1WU!?'*5()%*!)*!0%&63 @%C2E!$%<!9%'!:682!(%!C%!)(!6&;2736)56&&9<!7'(!=)(:!6!I*%=&2C;2!%?!(:2!;360:E PQ6@0&2!T)!!G)*C!(:2!)*(23+25()%*!%?!(:2!;360:+! r = 2 $ 4 cos8 and r = 2 E!!L2(D+!C%!)(!79!+'7+()('()%*E !! ! 3! 2 $ 4 cos8 = 2 1 2 cos8 = 0 1 8 = , 2 2 ! @! _$"'%&&',+.,'($"'2&,'8 = 8 H < < e",',+&-&'.-&';6&.-6(',+-&&'#$*9,%'$3'*9,&-%&;,*$9H'4+&'-&.%$9',+.,',+&',+*-:'#$*9,' ).%'9$,'3$"9:'*%',+.,'*,':*:'9$,'$;;"-')*,+',+&'%.7&';$$-:*9.,&%'.%',+&',)$'2-.#+%H' H:2!0%)*(+!%?!)*(23+25()%*!632! "2, ! 2# and "2, 3 ! 2# E!H:2!(:)3C!0%)*(!)+!2)(:23! "2, !# or "$2, 0# E _%'!56*!5%@0632!(:2!03%7&2@!%?!?)*C)*;!)*(23+25()%*+!%?!(=%!0%&63!;360:+!=)(:!(:2!03%7&2@!%?!?)*C)*;!5%&&)+)%* 0%)*(+!%?!3652!563+!;%)*;!63%'*C!6!(365I!%3!+6(2&&)(2+!5)35&2)*;!(:2!263(:E!H:2!563+!%3!+6(2&&)(2+!@69!%55'09!(:2!+6@2 0%)*(!)*!+0652!7'(!=)&&!*%(!5%&&)C2!6+!&%*;!6+!(:2!3265:!(:2!0%)*(+!%?!)*(23+25()%*!6(!C)??232*(!()@2+!( 8 !86&'2+)E!\ 5%&&)+)%*!%55'3+!%*&9!6(!(:2!0%)*(+!%?!)*(23+25()%*!(:6(!632!3265:2C!6(!(:2!+6@2!()@2!( 8 !86&'2)E ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-ZY!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( Arc Length in Polar Form L2(! f !!72!6!?'*5()%*!=:%+2!C23)86()82!)+!5%*()*'%'+!%*! &81,8 2 % E!H:2!&2*;(:!%?!(:2!;360:!?3%@! 8 = 81 to 8 = 8 2 !)+ 82 !!!!!!!!!!!!!!!!!!!!!!!!!!!!! s = # & f "8 #% 2 2 $ & f 4"8 #% d8 = 81 82 # 81 2 + dr . r $ - 0 d8 , d8 / 2 PQ6@0&2!Y)!!G)*C!(:2!&2*;(:!%?!(:2!635!?3%@! 8 !=!.!(%! 8 !=!/"!?%3!(:2!563C)%)C! f "8 # = r = 2 $ 2cos8 !6*C!?)*C !!!!!!!!!!!!!!!!!!!!(:2!C)??232*52!72(=22*!(:6(!6*C!(:2!5)35&2!=)(:!36C)'+!Yf/E!$2(!'0!6*C!(:2*!'+2!(:2!56&5'&6(%3E !!!!!!!!!!!!!!!!!!!!!!!!!!!!563C)%)C !!!!!!!!!!!5)35&2 r = 2 $ 2 cos8 r= 5 2 !!!!! r4 = $2 sin 8 !!!!!!!!!!!!!!!!!!!! ! L=2# "2 $ 2 cos8 # 2 ! + 5. C = 2!- 0 = 15.708 , 2/ $ 4 sin 2 8 d8 0 ! L = 2 # 4 $ 8 cos8 $ 4 cos2 8 $ 4 sin 2 8 d8 0 ! L = 2 # 8 $ 8 cos8 d8 = 16 0 Surface Area in Polar Form L2(! f !72!6!?'*5()%*!=:%+2!C23)86()82!)+!5%*()*'%'+!%*! &81,8 2 % E!H:2!6326!%?!(:2!+'3?652!?%3@2C!79!328%&8)*;!(:2 ;360:!%?! r = f "8 # !?3%@! 8 = 81 to 8 = 8 2 67%'(!(:2!)*C)56(2C!&)*2!)+R 82 S .A. = 2! # f "8 # sin 8 81 2 82 + dr . 2 2 4 f 8 $ f 8 d 8 = 2 ! & " #% & " #% # r sin8 r 2 $ -, d8 0/ d8 !!!!!!!!!!!!!,!67%'(!(:2!&)*2! 8 = 0 81 82 S .A. = 2! # f "8 # cos8 & f "8 #% 81 2 2 82 + dr . 2 ! 4 $ & f "8 #% d8 = 2! # r cos8 r 2 $ - 0 d8 !!!!!!!!!!!!,!67%'(!(:2!&)*2! 8 = , d8 / 2 81 ! PQ6@0&2!Z)!G)*C!(:2!+'3?652!6326!?%3@2C!79!328%&8)*;!(:2!5)35&2! f "8 # = r = $cos8 !67%'(!(:2!&)*2! 8 = $ E 2 4+*%'*%'.';-$%%'%&;,*$9'$3',+&'$/f&;, ;-&.,&:'/(':$*92',+&'-$,.,*$9H'L+., 3.7*6*.-'$/f&;,':$&%',+*%';-&.,&'*9'@Sd '' bagel, doughnut, torus ! % $! 2 ( S = 2 '2! # $ cos8 cos8 cos2 8 $ sin 2 8 d8* & 0 ) $! 2 S = 4! 2 # $ cos 8 d8 = 9.870 0 ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-ZZ!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( Area, Arc Length a Surface Area in Polar Tquations - >omework 1*!(:2!?%&&%=)*;<!;360:!%*!9%'3!56&5'&6(%3!6*C!?)*C!(:2!6326!%?!(:2!32;)%*E!$2(!'0!6*C!'+2!(:2!56&5'&6(%3E r = 6 cos 38 + 1 .! 6 2 -E!!W*2!02(6&!%?!! A = 2- 0 # 36 cos 38 d8 , 2/ 0 r = 2 sin 28 1 /E!W*2!02(6&!%?! A = 2 A = 9.425 2 # 4 sin 28 d8 0 A = 1.571 r = sin 58 1 OE!!W*2!02(6&!%?! A = 2 !2 r = 2 $ sin 8 (above polar axis) !5 2 # sin 58 d8 0 1 TE!!1*(23)%3!%?! A = 2 ! # "2 - sin8 # 2 d8 0 A = 3.069 A = 0.157 Between the loops of r = 1 $ 2 cos8 r = 1 $ 2 cos8 + 1 .! 3 2 YE!1**23!&%%0!%?! A = 2- 0 # "1 $ 2 cos8 # d8 , 2/ 0 A = .544 ZE + 1. ! 2 Outer : A = 2- 0 # "1 $ 2 cos8 # d8 = 8.881 , 2 /! 3 + 1 . 2! 2 Inner : A = 2- 0 # "1 $ 2 cos8 # d8 = .544 , 2 /5 ! 3 Difference = 8.337 G)*C!(:2!0%&63!0%)*(+!%?!)*(23+25()%*!%?!(:2!;360:+!%? r = 2 $ cos8 and r = 2 $ cos8 2 $ cos8 = 2 $ cos8 [E!! 2 cos8 = 0 ! 3! + ! . + 3! . 8 = , 1 -2, 0,-2, 0 , 2/ , 2 / 2 2 r = 1 $ 2 cos8 and r = 4 cos8 1 $ 2 cos8 = 4 cos8 ^E!! 2 cos8 = 1 1 cos8 = 1 2 ! 5! + ! . + 5! . 8 = , 1 -2, 0,-2, 0 , 3/ , 3 / 3 3 r = 1 $ cos8 and r = 1 $ sin 8 1 $ cos8 = 1 $ sin 8 ]E!! $ cos8 = sin 8 1 tan 8 = $1 3! 7! + 2 3! . + 2 7! . 8= , 1 -1 $ , 0,-1 $ , 0 4 4 2 4 /, 2 4/ , r = 10 sin 28 and r = 5 10 sin 28 = 5 1 ! 5! 13! 17! , -.E!! sin 28 = 1 28 = , , 2 6 6 6 6 ! 5! + ! . + 5! . + 13! . + 17! . 8 = , 1 -5, 0,-5, 0,-5, 0,-5, 0 , 12 / , 12 / , 12 / , 12 / 3 3 ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-Z[!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2( c+2!9%'3!56&5'&6(%3+!(%!;360:!(:2!0%&63!2>'6()%*+!6*C!?)*C!(:2!6326!%?!(:2!)*C)56(2C!32;)%*E Common interior of r = 4 "1 $ sin 8 # and Outside r = 2 sin 8 and inside r = 2 r = 4 "1 $ sin 8 # + 1 .! 2 2 ! 2 A 4 2 = ! $ --E!! -/E! - 0 # 4 sin 8 d8 + 1. 2 , / 2 0 A = 4- 0 # & 4 "1 $ sin 8 #% d8 , 2/ 0 A = 4 ! $ ! = 3! A = 11.398 Inside the lemniscate of r = 25 cos 28 !4 + 1. -OE! A = 4- 0 # 25 cos 28 d8 , 2/ 0 The sonar signal from a submarine is modeled by r = a cos2 8 . Find the area of the geographical !!!!!!!!-TE! region between the two curves for a = 4 and a = 6 + 1 .! 2 A = 4- 0 # " 36 cos4 8 $ 16 cos4 8 # d8 , 2/ 0 A = 25 A = 23.562 c+2!9%'3!56&5'&6(%3+!(%!;360:!(:2!0%&63!2>'6()%*+!6*C!?)*C!(:2!&2*;(:!%?!(:2!5'382!655'36(2!(%!O!C25)@6&!0&652+E ! r = 38 0 =8 = r = 2 $ sin 8 0 = 8 = 2! 2 2! -YE!! A = # "2 $ sin8 # 2 !2 2 -ZE!! A = $ cos 8 d8 A = 6.238 A = 13.365 r = sec 8 0 =8 = !4 -[E!! # ! (No calculator) 4 2 2 sec 8 $ "sec 8 tan 8 # d8 !4 # 0 r = e8 !4 sec 2 8 "1 $ tan 2 8 # d8 = !4 A = tan 8 % 0 = 1 # sec 0 = 8 = 2! (No calculator) 2! -]E!! A = 0 A= 98 2 $ 9 d8 0 0 A= # 2 # e 28 $ e 28 d8 0 8 d8 0 A = 2e8 % 2! 0 = 2 "e 2 ! $ 1# "graphs a straight line# c+2!9%'3!56&5'&6(%3+!(%!;360:!(:2!0%&63!2>'6()%*+!%823!(:2!;)82*!)*(2386&!6*C!?)*C!(:2!+'3?652!6326!=:2*!3%(6(2C 67%'(!(:2!;)82*!&)*2E ! ! ! r = 2 sin 8 0 = 8 = 8= "No calculator# r = e$8 0 =8 = 8 =0 2 2 2 !2 -^E!! A = 2! # 2 sin 8 cos8 4 sin 2 8 $ 4 cos2 8 d8 0 !2 A = 8! # sin 8 cos8 d8 0 1 A = 4!% 0 = 4! !2 /.E!! A = 2! # e$8 sin8 e$28 $ e$28 d8 0 !2 A = 2! # 2 sin 8 e$28 d8 0 "surface area of sphere# A = 1.624 ! www.MasterMathMentor.com!! "#!$%&'()%*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-Z]!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Illegal! (%! 0%+(! %*! 1*(23*2(
Similar documents
Coalition of Ogaden Civil Societies paper to the hearing on the
*+$,-(! &1! '4-! ($>-! #)! '4-! ! '-33&'#3N! &(4$R&'-,! RN! /#>$%&1! <(,-3! 8'4&$(! #00<2$'(_!! ,-%&>&'-,! $'! '4-! 1#<'4! RN! '4-! ^-(N$! R#3,-3! R-'S--(! '4-! J#S(! #)! [#N$%-! $(,! [$(,-3$!...
More information