Preparation of silica nanoparticles
Transcription
Preparation of silica nanoparticles
Preparation of silica nanoparticles Process: Sol - Gel - Synthesis - Precipitation Chemical reactions: Hydrolysis - Polycondensation Hydrolysis: Suspension in ethanol Si(OC2H5)4 + 4 H2O Tetra ethyl orthosilicate (TEOS) Si(OH)4 pH 11 - 12 (NH3) + Silicon tetra hydroxide 4 C2H5OH Ethanol Polycondensation: Suspension in ethanol Si(OH)4 nano- SiO2 (Sol) (S l) + pH 11 - 12 (NH3) Silicon tetra hydroxide Principles: p Silica Nucleation, nucleus ggrowth, Ostwald ripening, p g (agglomeration) gg Controlled double jet precipitation (CDJP) 2 H2O Preparation of silica nanoparticles - Experimental realisation One-step-process - Two-step-process G. Kolbe / W. Stöber / H. Giesche - H. Giesche 0,2 M tetraethylorthosilicate ammonia / water ethanol ethanol particles 50 nm – 10 μm Transmission electron microscopy (TEM) image of Stöber particles tetraethylorthosilicate / ethanol Products: titanium (IV) –oxide, aluminium oxide, zirconium (IV)-oxide nuclear power materials ThO2, UO2, PuO2 Advantages: Disadvantages: often mono disperse, spherical particles of controlled size reaction has to be carried out with low particle concentrations, low produc- Scanning electron microscopy (SEM) imtion output age of Stöber particles G. Kolbe, Das Komplexchemische Verhalten der Kieselsaure, Dissertation, Friedrich-Schiller-Universität Jena, 1956 W. Stöber, A. Fink, E. Bohn, Controlled growth of monodispersed spheres in the micron size range, J. Colloid and Interface Sci. 26 (1968) 62-69 H. Giesche, Synthesis of monodispersed silica powders - 1. Particles properties and reaction kinetics, J. Eur. Ceram. Soc 14 (1994) 189-204 H. Giesche, Synthesis of monodispersed silica powders - 2. Controlled growth reaction and continuous production process, J. Eur. Ceram. Soc. 14 (1994), 205-214 T. Sugimoto: Fine particles-synthesis, characterization, and mechanism of growth, Surfactant Sci. Ser. Vol. 92, Marcel Dekker, New York, 2000 Model of LaMer and Dinegar concentration of a low soluble component + + + + + + + nucleus l formation f i critical i i l super saturation i C0 C0 super saturation growth saturation concentration CS CS growth nucleus formation reaction time V.K. LaMer, R.H. Dinegar, Theory, production and mechanism of formation of monodispersed hydrosols, J. Amer. Chem. Soc.72(1950) 4847-4854 Partticle size d distributio on Q0 in % Stöber process for generating monodisperse silica particles 100 80 Reaction time 2 min 4 min 15 min i 60 40 Temperature : 20 50 °C Supersaturation: 135 0 0 50 100 150 200 250 300 Particle diameter d in nm Particle size distributions Q0 (d): nucleation and growth of silica Scanning electron microscopy (SEM) images of silica particles T. Günther, J. Jupesta, W. Hintz, J. Tomas, Untersuchung der Einflußgrößen auf das Wachstum von Siliziumdioxidpartikeln, Vortrag, GVC-Fachausschußtagung Kristallisation, Boppard, 17.-18.03.2005 Particlee size distriibution Q0 in % Stöber p process for f g generating g monodisperse p silica p particles 100 Reaction temperature 80 20 °C 30 °C 40 °C 50 °C 60 °C 60 40 Supersaturation S = 135 20 0 100 200 300 400 500 600 Particle diameter d in nm Particle size distributions Q0 (d): temperature influence on particle growth Scanning electron microscopy (SEM) images of silica particles T. Günther, J. Jupesta, W. Hintz, J. Tomas, Untersuchung der Einflußgrößen auf das Wachstum von Siliziumdioxidpartikeln, Vortrag, GVC-Fachausschußtagung Kristallisation, Boppard, 17.-18.03.2005 Particcle size disstribution n Q0 in % Stöber process for generating monodisperse silica particles 100 80 Reaction time 60 a) Addition of TEOS 5 min 30 min 60 min b)) Addition off TEOS 5 min 40 20 0 0 50 100 150 200 250 Particle diameter d in nm Particle size distributions Q0 (d): Particle growth after further Addition of TEOS (Temperature: 50 °C, Supersaturation : 35.7, Critical radius : 0.5 Scanning electron microscopy (SEM) images of silica particles T. Günther, J. Jupesta, W. Hintz, J. Tomas, Untersuchung der Einflußgrößen auf das Wachstum von Siliziumdioxidpartikeln, Vortrag, GVC-Fachausschußtagung Kristallisation, Boppard, 17.-18.03.2005 Growth mechanisms of particles Reaction – limited cluster aggregation RLCA reaction rate : pH of suspension : Hydrolysis >> polycondensation pH in an acid range Formation of polymer - like networks, porous particle with small pores Reaction – limited monomer cluster growth RLMC (Eden growth) reaction rate : pH of suspension : Hydrolysis << polycondensation pH in an alkaline range Formation of large, nonporous particles, colloidal gel with large pores Morphology of silica nanoparticles Si(OH)4 Dimers pH < 7 or pH 7 - 10 with salts Cycles Particles pH 7 - 10 without salt p 1 nm 5 nm 10 nm 30 nm 3 – dimensional gel network 100 nm Sol (Stöber – Particles) Brinker, C.J.; Scherer, G.W. : Sol-Gel-Science, The Physics and Chemistry of Sol-Gel-Science, Academic Press, San Diego, 1990 Stöber process for generating monodisperse silica particles particle fformation models p Model according LaMer and Dinegar (1950) concentrations of sparely soluble compounds + sparely soluble monomers and oligomers + + + + + + fast homogenuous nucleation nucleation fractal structures of oligomers critical supersaturation C0 C0 growth process by diffusion growth supersaturation i saturation concentration CS CS monomer addition onto particle surface growth nucleation Model according Bogush and Zukoski (1992) “explosive” nucleation process + + process time rearrangement and disaggregation stable spherical particles + + + particle formation by densification of fractals stable spherical particles Model according Bailey (1992) + + “fluffy” larger aggregates process time V.K. LaMer,, R.H. Dinegar, g , Theory, y, production p and mechanism off formation f off monodispersed p hydrosols, y , J. Amer. Chem. Soc.72(1950) ( ) 4847-4854 J.K. Bailey, M.L. Mecartney, Formation of colloidal silica particles from alkoxides, Colloids and Surfaces 63 (1992) 151-161 G.H. Bogush, C.F. Zukoski, Uniform silica particle precipitation: an aggregative growth model, J. Colloid Interface Sci. 142 (1992) 19 -34 Parrticle size d distribution n Q0(d) in % Stöber process for generating monodisperse silica particles S d d particle Seeded i l - growth h process 100 80 Seeded particles 60 Reaction time of particle formation 12 hours 25 hours 36 hours 50 hours 72 hours 40 20 20 μm 0 0 1 2 3 4 5 P ti l diameter Particle di t d in i μm Light microscopy image of Stöber particles i l (d50,0 = 2,1 2 1 μm)) Particle size distributions Q0(d) for the seed particle - growth process of silica particles, Seeded particles d50,0 = 344 nm, Zeta-potential -58,9 mV, end particles d50,0 = 2,1 μm, Zeta-potential -83,5 mV a „critical specific particle surface area“ is necessary during the growth process to avoid secondary nucleation, r (hydrolysis) < r (condensation onto the particle surface) Ak = f ( cTEOS , k hydrolysis y y , k condensation ) 2 D ( CS − C ) d (Chen 1996) (Chen, Population balance model for particle formation and aggregation (Nagao) Classical kinetic theory: kij Particle formation: B0(t) i - mer + j - mer i + j - mer = k - mer,, i,, j ≥ 1 ….max Aggregation: Particle formation: max d Ck 1 k−1 = ∑( 1 + δi ,k−i ) ki ,k−i Ci Ck−i − Ck ∑( 1 + δi ,k )kik Ci d t 2 i=1 i =1 + δk1 ⋅ B0 ( t ) mit δi , j = 1 für i = j und δi , j = 0 für i ≠ j 0 B0 ( t ) ∝ k Hydrolysis ⋅ CTEOS exp( − k Hydrolysis ⋅ t ) Smoluchowski process: Increase of k - mers by aggregation of particles of size i and k – i with i = 1, 2 ... k - 1 Decrease of k - mers by aggregation with particles of size i = 1, 2 .... max Introduction of the particle - particle interactions: k ij = f ( k ijD , k ijR ) aggregation kernel in the model depends on the diffusion process and the surface reaction 2 ∞ 1 2 k T ( ri + r j ) k ij0 D ⎛ ϕ ( a ) ⎞ da k = W ij = = ( ri + r j ) ∫ exp ⎜ total ⎟ 2 and ϕ total ( a ) = ϕ attr ( a ) + ϕ rep ( a ) Diffusion: ij W with 3η r r kT k ⋅ a ij van-der-Waals van de Waals att attraction: action: i j ϕ attr ( a ) = − ij AH 6 ri + r j ⎝ ⎠ ⎛ 2ri r j 2ri r j a 2 − ( ri + r j )2 ⎞ ⎜ ⎟ + + ln ⎜ a 2 − ( r + r )2 a 2 − ( r − r )2 a 2 − ( ri − r j )2 ⎟⎠ i j i j ⎝ electrostatical repulsion: ϕ rep ( a ) = 4π ε 0 ε r ri r j a ψ 02 ln (1 + exp ( − κ ( a − ri − r j ) ; su surface face reaction: eaction: ⎛ ϕ total ( ri + r j k ijR = k S0 exp ⎜⎜ − kT ⎝ )⎞ ⎟⎟ ( ri + r j )2 ⎠ D. Nagao, T. Satoh, M. Konno, A generalized model for describing particle formation in the synthesis of monodisperse oxide particles based on the hydrolysis and condensation of tetraethyl orthosilicate, J. Colloid Interface Sci. 232 (2000) 102-110 100 Experimental results: 80 90 s Reaction time 20 min Reaction time 120 min Reaction time 60 Modelled distributions (Nagao) 40 90 s Reaction time 20 min Reaction time 120 min Reaction time 20 0 10 100 Particle diameter d in nm 1000 Particle sizze frequency ddistribution q0(d) in nm-1 Partiicle size distrribution Q0(dd) in % Stöber process for generating monodisperse silica particles Modelling of the particle growth process 0,05 Experimental results 90 s Reaction time 0 04 0,04 Modelled distribution 90 s Reaction time 0,03 0,02 0,01 0,00 10 100 Particle diameter d in nm Comparison p off experimental p p particle size z distributions Q0((d)) with simulated p particle size z distributions Q0((d), ), -1 ( C = 0.34 mol L ), and particle size frequency distribution q0(d) for a reaction time of 90 s, respectively NH 3 Influence of pH and drying conditions on the morphology of silica particles sols gels agglutination drying coagulation T < TF T > TC T < TC cryogel aerogel xerogel coacervation peptisation silica silica Preparation of titania nanoparticles Process: Sol - Gel - Synthesis - Redispersion Chemical reactions: Hydrolysis - Polycondensation - Redispersion Hydrolysis : Ti(OC3H7)4 + aqueous suspension, 50 °C C 4 H2O Titanium tetra isopropoxide TTIP pH 1,3 (0,1 M HNO3) Ti(OH)4 + 4 C3H7OH Titanium tetra hydroxide Isopropanol Polycondensation : Ti(OH)4 Titanium tetra hydroxide aqueous suspension, 50 °C pH 1,3 1 3 (0,1 (0 1 M HNO3) TiO2 + 2 H2O Titania Redispersion : TiO2 (Gel) aqueous suspension, 50 °C nano - TiO2 (Sol) H 11,3 3 (0,1 (0 1 M HNO3) pH Titania Titania Parrticle size ffrequencyy distributtion q0 (logg d) in nm m-1 Particle size distribution of titania nanoparticles Method : Dynamic light scattering DLS Instrument : Zetamaster (Malvern) 4.0 Particle size distribution of titania suspension after the redispersion process of 24 hours 3.0 • 2.0 Characteristic shear rate γ : 437 s-1 Reynolds number Re: 6,650 Specific power consumption PV: 0.1 kW m-3 Mean particle diameter: 1.0 dm, (volume mean)) m 3 = 18.6 nm ( dm, 0 = 12.0 nm (number mean) 5 10 50 Particle diameter in nm 100 Stabilisation of titania nanoparticles in suspension Zetta - Poteential in n mV 40 Zeta - Potential in mV 30 20 OH2+ + H+ 10 Ti OH2+ OH2+ OH 0,5 Ti OH acid OH2+ 0 0,0 O- OH +OHO- base O- OH 1,0 1,5 Ti 2,0 2,5 pH - value of suspension Zeta potential of TiO2 ranging from + 20 mV to + 40 mV for a pH < 3.0 O- Experimental Design Experimental p setup p Stirred tank reactor with a six-blade disk turbine • DIN 28139 T2 standard DIN 28131 standard Conc. Nitric acid HNO3: 437 s-1 … 3426 s-1 Reynolds number Re: 6,650 … 25,250 turbulent fluid flow Specific power consumption / dissipation rate ε : Optimal reaction parameters Reaction temperature: Characteristic shear rate γ : 0 1 kW m-3… 7.0 0.1 7 0 kW m-3 50 °C 0.1 M HNO3 (pH 1.3) Conc. Titanium tetra isopropoxide (TTIP): 0.23 M Conc. of solid particles TiO2: ≈ 1.8 % w/w in suspension ⎛ ⎞ Characteristic shear rate: γ = ⎜ ε ⎟ ⎜ν ⎟ ⎝ ⎠ • Reynolds number: Number of revolutions n: 500 rpm … 1900 rpm Circumferential speed: 0.58 m s-1… 2.2 m s-1 Re = 1 2 ( ref . Camp , Stein ) n D2 ν Specific power consumption PV of stirrer: P N P ρ n3 D5 PV = = V V Camp, T.R.; Stein, P.C.: Velocity Gradients and Internal Work in Fluid Motion, Journal of the Boston Society of Civil Engineers 30, 219 - 237 (1943) Particle size distribution of titania nanoparticles Agglom merate size distribution n Q3 in % Method : Instrument : Mastersizer 2000 -1 shear rate 437 s -1 shear rate 1309 s -1 shear rate 2403 s -1 shear rate 3426 s 100 80 60 (Malvern) Mean agglomerate diameter : 40 20 0 1 10 Laser diffraction 100 1000 γ& = 437 s-1 d50,3 = 214.5μm γ& = 1309 s-1 d50,3 = 175.1 μm γ& = 2403 s-1 d50,3 = 114.9 μm γ& = 3426 s-1 d50,3 = 87.6 μm Agglomerate diameter d in μm Agglomerate size distributions Q3(d) for different shear rates in the initial state of redispersion The sequence of applied shear rates in relation to its effects of creating smaller particle size is 3426 s-11 > 2403 s-11 > 1309 s-11 > 437 s-11 Particle size distributions during redispersion Ag gglomerrate sizees d in μm quantiles 600 500 d10,3 10 3 with Q3 (d10,3 ) = 10 % 10 3 d50,3 Q3 (d50,3) = 50 % d90,3 Q3 (d90,3) = 90 % Method : Laser diffraction Instrument : Mastersizer 2000 (Malvern) Hydrodynamics : 400 300 Shear rate: γ& = 1309 s-1 200 Reynolds number: Re = 13290 100 Specific power consumption: PV = 1.01 kW m-3 0 0 50 100 150 200 Redispersion time in min Agglomerate sizes during the redispersion process (shear rate γ& = 1309 s-1) Aggglomeratte size disstribution n Q0 in % Particle size distributions during g redispersion p 100 reaction time of redispersion 80 6 hours 7 hours h 8 hours 9 hours 10 hours 60 40 20 0 0 10 20 30 40 50 60 70 80 Agglomerate diameter d in nm Agglomerate size distributions Q0 (d) during the redispersion process (shear rate γ& = 437 s-11) Morphology of silica nanoparticles Si(OH)4 Dimers pH < 7 or pH 7 - 10 with salts p Cycles Particles pH 7 - 10 without salt 1 nm 5 nm 10 nm 30 nm 3 – dimensional gel network 100 nm Sol ((Stöber – Particles)) Brinker, C.J.; Scherer, G.W. : Sol-Gel-Science, The Physics and Chemistry of Sol-Gel-Science, Academic Press, San Diego, 1990 Granulometric properties of solid titania powder Solid titania powder: Redispersion p ffor 24 hours in 0.1 M HNO3, Freeze-drying z y g for f 48 hours Drying for 24 hours at 80 °C Calcinations for 2 hours at 250 °C and 500 °C polydisperse particle size distribution (d50,3 : 210 μm - 450 μm) not treated 3.2 g cm-33 solid particle density ρS specific surface area (BET) drying calcinations 80 °C 250 °C 500 °C 4.0 g cm-33 4.0 g cm-33 4.0 g cm-33 185 m2 g-1 188 m2 g-1 84 m2 g-1 7 8 nm 7.8 7 9 nm 7.9 18 3 nm 18.3 surface f weighted i ht d diameter di t d32 Differential Scanning Calorimetry / Thermo Gravimetry (crystalline modifications) 244 °C C TiO2 (amorph) 380 °C C TiO2 (anatase) TiO2 (rutile) Pore volume ffrequency q y distribution inside the titania agglomerates gg Pore volume frequency distribution Porre volumee in cm3//g adsorbbent /nm ppore diameter 0 04 0,04 Pore volume frequency distribution B Barrett-Joyner-Halenda tt J H l d (BJH) method th d 0,03 applying Kelvin equation: 0,02 rk = − 2 ⋅ σ ⋅ V mol ⋅ cos Θ P R ⋅ T ⋅ ln P0 0,01 0,00 Solid titania powder: 2 4 6 8 Pore diameter in nm 10 Redispersion for 24 hours in 00.1 1 M HNO3 , Freeze-drying for 48 hours hours, Drying for 24 hours at 80 °C Structure of agglomerates in the suspension Model of agglomerate structure Image of scanning electron microscopy of titania nanoparticles produced in a 0.1 M agglomerate (porous) DLS HNO3 suspension (pH 1.3) primary particles (nonporous) BET (solid agglomerates obtained by freeze-drying) Kinetics of particle agglomeration and redispersion Agglomeration Redispersion C1 Agglomerate colloidal particle k14 k11 b13 C4 Ci, Cj, Ck Particle concentration of i, j, k - mers kij Agglomeration gg rate constant off i - mer + j - mer bij Redispersion rate constant of k - mer to i - mer + j - mer Population balance model of the particle agglomeration and redispersion Classical kinetic theory: kij i - mer + j - mer i + j - mer = k - mer, i, j ≥ 1 ….max bij Agglomeration: Smoluchowski - process max d Ck 1 k−1 = ∑( 1 + δ i ,k−i ) ki ,k−i Ci Ck−i − Ck ∑( 1 + δ i ,k )kik Ci d t 2 i=1 i =1 with δi , j = 1 for i = j and δi , j = 0 Redispersion: reverse Smoluchowski - process max d Ck 1 k −1 = − Ck ∑ ( 1 + δ i ,k −i ) bi ,k −i + ∑ ( 1 + δ ik ) bik Ci +k dt 2 i =1 i =1 for i ≠ j Smoluchowski - process : Increase of k - mers by agglomeration of particles of size i and k – i with i = 1, 2 ... k - 1 Decrease of k - mers by agglomeration with particles of size i = 1, 2 ... max Reverse Smoluchowski - process : Decrease of k - mers by redispersion to particles of size i and k – i with i = 1, 2 ... k - 1 Increase of k - mers by redispersion to particles of size k and i = 1, 2 ... max von Smoluchowski, M : Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Z. Phys. Chem. 92 (1918) 129 - 168 Population balance model of the particle agglomeration and redispersion To calculate the change in the particle number concentration, a nonlinear differential equation system, system which includes all particles with 1 … ∞ primary particles particles, has to be solved. solved Kernels of convection - controlled (orthokinetic) system: Agglomeration rate constant: k ij = k D ( ri + r j ) 3 Redispersion rate constant: bij = bD ri3+ j with ri and rj radii of agglomerating and redispersing particles. Approach for a convection - controlled agglomeration kernel kD kD = 1 Wij 8π 15 ⎛ε ⎜ ⎜ν ⎝ ⎞ ⎟ ⎟ ⎠ 1 2 turbulent shear–induced agglomeration, in absence of viscous i retardation d i andd agglomerate l structurall effects ff Wij stability factor, agglomerate interactions taken into account Reference: Saffman, P.G.; Turner, J.S.: On the collision of drops in turbulent clouds, J. Fluid Mech., 1, 16-30 (1956) Approach for the particle size frequency calculation Number of primary particles NPP Number of agglomerates N0 in a single agglomerate (k-mer): in the suspension: N PP qr(d) : 3 d DLS = (1−ε ) 3 d BET q3 ( d ) N0 ρ S π 3 = ⋅ d DLS q0 ( d ) mti tan a 6 Particle size frequency distribution based on quantity r : mass (3), (3) number (0) N b off all Number ll agglomerates l t N0 in i the th suspension i and d th the number b based b d concentrations Ci, Cj, Ck ... of the i, j, k - mers can be calculated Particle size distributions during redispersion Particle n P number ffraction μ in % 0 40 reaction time off redispersion p 35 6 7 8 9 10 30 25 20 hours hours ou s hours hours hours 15 10 5 1 2 4 8 16 32 Number of primary particles per single aggregate Distributions of particle number fractions µ0 vs. vs number of primary particles per single aggregate (shear rate γ& = 437 s-1) Optimisation problem of the population balance equation for the reaction system in the equilibrium state : kD K = as well as C b D dC k = 0 dt KC = with KC equilibrium constant : max 1 k−1 3 Ck ∑( 1 + δ i ,k−i ) rk − ∑( 1 + δ ik ) ri3+k Ci +k 2 i=1 i =1 max 1 k−1 3 ( 1 + δ i ,k−i ) ( ri + rk−i ) Ci Ck−i − Ck ∑( 1 + δ ik ) ( ri + rk )3 Ci ∑ 2 i =1 i =1 for the reaction system in the non-equilibrium state : kD Agglomeration rate constant bD Redispersion p rate constant dCk + f [ Ck ( bD , kD , ri , rj , t )] = 0 dt Ci, Cj, Ck ... Particle concentrations of i, i j, j k - mers, mers experimentally obtained from DLS Kinetic constants of the agglomeration / redispersion process Polydisperse system: Agglomeration kD = 3.0 10-3 s-1 Redispersion bD = 6.9 10-13 cm-3 s-1 with kij = k D ( ri + r j )3 bij = bD ri3+ j Turbulent agglomeration kernel without particle interactions 8π 15 k D ,0 = • γ St bilit factor Stability f t Wij Wij = k D ,0 kD 1 2 ⎛ε ⎞ γ = ⎜⎜ ⎟⎟ = 437 s −1 with ⎝ν ⎠ • k D ,0 = 565 s −1 agglomerate l t interactions i t ti l d to lead t slow l coagulation l ti from experiment Wij = 1.9 105 (corresponding energy barrier ≈ 15 kT) Monodisperse system: ri = rj = 3,9 nm (only primary particles) Agglomeration kij = 14.6 10-22 cm3/s (ref. Vorkapic kij = 7,9 10-22 cm3/s) Redispersion bij = 8.4 10-6 s-1 (ref. Vorkapic bij = 4,6 10-6 s-1) Equilibrium constant KC = 1.7 10 -16 cm 3 with KC = k ij bij Reference : Vorkapic, D.; Matsoukas,T. : J. Colloid Interface Sci. 214, 283-291 (1999) Sol - gel processing dehydratisation chemical reaction chemical reaction Precursor Sol coating dipping Cryogel drying Gel organic i suspension i Thin layer structure drying surfactants spherical particle in gel structure Calcination Aerogel Xerogel Calcination Calcination Powder Ceramics C.J. Brinker, G.W. Scherer: Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing, Academic press, San Diego, 1990 precursor SiO 2 nano particle TiO nanoparticle 2 SiO 2 nano particle TiO agglomerate 2 SiO 2 nano particle dense, closed homogeneous layer of heterogeneous layer of mono-disperse TiO2 polydisperse TiO2 particles TiO2 layer Schematic representation of possible coating processes Application of titania as a photocatalyst * Project in cooperation with the Bulgarian Academy of Sciences, Sofia Titania generates with UVA irradiation (320 - 400 nm): activated electrons and holes (h+ + e-) TiO2 + hν TiO2 (h+ + e-) h+ OH● + OH- OH● acts as an oxidising agent for organic compounds: manufacturing of thin layers on a substrate modification of thin layers by laser irradiation or chemical doping characterisation of the modified thin layers evaluation of the photo catalytic properties for degradation of • organic compounds hazardous to environment • biological materials *Yordanova,V.; Starbova, K.; Hintz,W.; Tomas, J.;Wendt,U.: Excimer laser induced photo-thermal changes of sol-gel TiO2 thin film, Journal of optoelectronics and advanced materials (Bukarest) 7 (2005) 2601-2606 *Starbova, K.; Yordanova, V.; Nihtianova, D.; Hintz, W.; Tomas, J.; Starbov, N.: Excimer laser processing as a tool for photocatalytic design of sol-gel TiO2 thin films, Applied Surface Science, 254 (2008) 4044-4051 Hetero-agglomeration process for coating silica particles with titania Zeta-potential in mV 40 stable silica particles titania particles 20 p.z.c. of TiO2 at pH 6.8 0 instable -20 p.z.c. of SiO2 at pH 2.3 stable -40 2 4 Surface modification 6 8 pH value 10 12 Zeta-potential of silica and titania particles in dependence of the pH value Schematic representation of experimental procedure Tetraethylorthosilicate HNO3 Ammonia, Isopropanol, Water (pH 11. 0 - 12.0) 0.1 M Nitric acid (pH 1.0) Tetraisopropylorthotitanat Hydrolysis, Polycondensation Hydrolysis, Polycondensation, Redispersion Silica (Stöber) particles dm,0 = 332 nm, 500 nm, 800 nm Nano-scaled titania particles - dm,0 = 12.0 nm Amorphous titania sol at pH 1.3 SiO2 suspension centrifugation - 10 min, 1000 g drying at 80 °C for 3 hours conversion to crystalline modification Anatase ( temperature > 220 °C) SiO2 particles redispersion in water (1 % wt/wt) adjusting to pH 1.6 with HNO addition of titania suspension to SiO2 Titania coated silica particles Zeta-potential in mV Zeta-potential of coated and non-coated silica particles 40 silica particles TiO2/SiO2 2 wt% TiO2/SiO2 10 wt% 20 TiO2/SiO2 20 wt% 0 -20 -40 1 2 3 4 5 6 7 pH value Zeta-potential of coated and non-coated 332 nm silica particles - coating with 2 % wt/wt, 10 % wt/wt, 20 % wt/wt TiO2 on SiO2 Apparent surface coverage of TiO2 particles on silica surface Apparent surface coverage of TiO2 on SiO2 surface Apparent surface coverage of TiO2 in% 70 60 50 40 30 apparent surface cov erage = M SiO2 ( p .z .c SiO2 − p .c .z .TiO2 / SiO2 ) 20 10 M SiO2 ( p .z .cTiO2 / SiO2 − p .c .z .SiO2 ) − M SiO2 ( p .z .c SiO2 − p .c .z .TiO2 / SiO2 0 0 5 10 15 20 25 30 35 Mass of TiO2 in % (wt/wt) of SiO2 in suspension Apparent surface coverage of TiO2 on 332 nm silica particle surface relating to the mass percentage of TiO2 to SiO2 in suspension Surface morphology of Titania modified Silica particles SEM image for coated 332 nm silica with 2 % (wt/wt) i i SEM image for coated 332 nm silica with 20 % (wt/wt) SEM image for coated 332 nm silica with 10 % (wt/wt) i i SEM image for coated 332 nm silica with 30 % (wt/wt)