Fardis EC8-3 member models
Transcription
Fardis EC8-3 member models
MODELLING THE BEHAVIOR OF CONCRETE MEMBERS: DEVELOPMENTS SINCE THE COMPLETION OF EN 19981998-3:2005 Michael N. Fardis University of Patras Idealized skeleton curve - envelope to hysteresis loops M Effective elastic Yield stiffness: secant-to-yielding moment Ultimate moment, Mu=My My Mres < 0.8M 0 8Mu member deformation: chord-rotation chord rotation δy section deformation: Yield deformation curvature δu Ultimate deformation δ Practical act ca e expressions p ess o s for the yield & failure properties developed for EN 19981998-3:2005 - their advancement ad ancement since 2005 D. BISKINIS, G. ROUPAKIAS & M.N. FARDIS, Cyclic Deformation Capacity of Shear-Critical RC Elements, Proceeding of fib Symposium, Athens, May 2003. M.N.FARDIS & D.BISKINIS, Deformation Capacity of RC Members, as Controlled by Flexure or Shear. Proceedings of International Symposium on Performance-based Engineering for Earthquake Resistant Structures honoring Prof. Shunsuke Otani University of Tokyo, Sept. 2003, pp. 511-530. D.BISKINIS, G.K. ROUPAKIAS & M.N.FARDIS, Resistance and Design of RC Members for Cyclic Shear, 14th Greek National Concrete Conference, Kos, Oct 2003, Oct. 2003 Vol. Vol B, B pp. pp 363 363-374 374. D.BISKINIS & M.N.FARDIS, Cyclic Strength and Deformation Capacity of RC Members, including Members Retrofitted for Earthquake Resistance, Proc. 5th International Ph.D Symposium in Civil Engineering, Delft, June 2004, Balkema, Rotterdam, p. 1125-1133. D.BISKINIS, G.K. ROUPAKIAS & M.N.FARDIS, Degradation of Shear Strength of RC Members with Inelastic Cyclic Displacements, ACI Structural Journal, Vol. 101, No. 6, Nov.-Dec. 2004, pp.773-783. M.N.FARDIS, S D.BISKINIS, S S A. KOSMOPOULOS, OS O O OS S.N. S BOUSIAS O S S & A.-S. S SPATHIS, S S Seismic S Retrofitting f Techniques for f Concrete C Buildings, Proc. SPEAR S Workshop – An event to honour the memory of Jean Donea, Ispra, April 2005 (M.N.Fardis & P. Negro, eds.) S.N. BOUSIAS, M.N.FARDIS & D.BISKINIS, Retrofitting of RC Columns with Deficient Lap-Splices, fib Symposium, Budapest, May 2005. S.N. BOUSIAS, M.N.FARDIS, A.-S. SPATHIS & D.BISKINIS, Shotcrete or FRP Jacketing of Concrete Columns for Seismic Retrofitting, Proc. International Workshop: p Advances in Earthquake q Engineering g g for Urban Risk Reduction,, Istanbul,, May–June y 2005. D.BISKINIS & M.N.FARDIS, Assessment and Upgrading of Resistance and Deformation Capacity of RC Piers, Paper no.315, 1st European Conference on Earthquake Engineering & Seismology (a joint event of the 13th ECEE & the 30th General Assembly of the ESC), Geneva, September 2006. D.BISKINIS & M.N.FARDIS, Cyclic Resistance and Deformation Capacity of RC Members, with or without Retrofitting, 15th Greek National Concrete Conference, Alexandroupolis, Oct. 2006, Vol. B, pp. 495-506. D BISKINIS M.N.FARDIS, D.BISKINIS, M N FARDIS Effect of Lap Splices on Flexural Resistance and Cyclic Deformation Capacity of RC Members Members, Beton & Stahlbetonbau, Stahlbetonbau 102, 102 2007 th D.BISKINIS & M.N.FARDIS, Cyclic Deformation Capacity of FRP-Wrapped RC Columns or Piers, with Continuous or Lap-Spliced Bars, 8 International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete Structures (FRPRCS-8), Patras, July 2007. D.BISKINIS & M.N.FARDIS, Upgrading of Resistance and Cyclic Deformation Capacity of Deficient Concrete Columns, in “Seismic Risk Assessment and Retrofitting with special emphasis on existing low rise structures” (A.Ilki, ed.), Proceedings, Workshop, Istanbul, Nov. 2007, Springer, Dordrecht. D.BISKINIS & M.N.FARDIS, Cyclic Deformation Capacity, Resistance and Effective Stiffness of RC Members with or without Retrofitting, 14th World Conference on Earthquake Engineering, Beijing, paper 05-03-0153, Oct. 2008. D.BISKINIS & M.N.FARDIS, Chapter 15: “Upgrading of Resistance and Cyclic Deformation Capacity of Deficient Concrete Columns” , in “Seismic Risk Assessment and Retrofitting with special emphasis on existing low rise structures” (Ilki A et al, eds.), Springer, Dordrecht, 2009 D BISKINIS & M.N.FARDIS, D.BISKINIS M N FARDIS Ultimate Deformation of FRP FRP-Wrapped Wrapped RC Members Members, 16th Greek Nat. Nat Concrete Conference Conference, Paphos, Paphos Oct. Oct 2009, 2009 paper 171106 D.BISKINIS & M.N.FARDIS, Flexure-Controlled Ultimate Deformations of Members with Continuous or Lap-Spliced Bars, Structural Concrete, Vol. 11, No. 2, June 2010, 93-108. D.BISKINIS & M.N.FARDIS, Deformations at Flexural Yielding of Members with Continuous or Lap-Spliced Bars, Structural Concrete, Vol. 11, No. 3, September 2010, 127-138. D.BISKINIS & M.N.FARDIS, Effective stiffness and cyclic ultimate deformation of circular RC columns including effects of lap-splicing and FRP wrapping. Paper 1128, 15th World Conference on Earthquake Engineering, Lisbon, Sept. 2012. D.BISKINIS & M.N.FARDIS, Stiffness and Cyclic Deformation Capacity of Circular RC Columns with or without Lap-Splices and FRP Wrapping, Bulletin of Earthquake Engineering, Vol. 11, 2013, DOI 10.1007/s10518-013-9442-7. D.BISKINIS & M.N.FARDIS, Models for FRP-wrapped rectangular RC columns with continuous or lap-spliced bars, Engineering Structures, 2013 (submitted). Experimental Database 1 Range/mean of parameters in tests for calibration of expressions 1. for the member chord rotation and secant stiffness at yielding 1653 rectangular Parameter beams/columns 214 rectangular 229 members of nonnon walls rectangular section 307 circular columns min/max mean min/max mean min/max mean min/max mean section depth or diameter, h (m) 0.1 / 2.4 0.31 0.2 / 3.96 1.4 0.15 /1.83 0.43 shear-span-to-depth ratio, Ls/h 1 / 13.3 3.78 0.45 / 5.53 1.92 0.45 / 8.33 2.03 1.1 / 10 3.77 section aspect ratio, h/bw 0.2 / 4 1.3 16.7 1.0 1.0 40.4 16.7 / 90 36.7 0.06 -0.1 / 0.7 0.137 0.7 0 / 8.83 fc (MPa) 9.6 / 175 axial-load-ratio, N/Acfc -0.05 / 0.9 0.126 transverse steel ratio, w (%) total longitudinal steel ratio tot (%) diagonal steel ratio, d (%) 0 / 3.54 0.4 / 3.0 4 / 30 1.19 10.9 37.7 13.5 / 109 35.8 13.5 / 101.8 0 / 0.86 0.10 0 / 0.50 0.62 0.05 / 2.18 0.54 0.04 / 2.44 0 2 / 8.55 0.2 8 55 1.97 1 97 0.07 0 07 / 4.27 4 27 1.5 15 0 / 1.68 2.5 / 57 0.027 0 / 0.25 0.005 0 205 / 6.2 0.205 62 1 23 1.23 - - 0.86 0 53 / 55.88 2.34 0.53 2 34 - - transverse steel yyield stress fyyw, MPa 118 / 2050 468 220 / 1375 443 160 / 1375 504 200 / 1728 454.2 longitudinal steel yield stress fy, MPa 247 / 1200 440.2 276 / 1273 470 453 240 / 648 414.3 209 / 900 Experimental Database 2. Range/mean of parameters in tests for calibration of 2 expressions for ultimate curvature in monotonic or cyclic loading Parameter 415 rectangular beams/columns 254 monotonic 160 cyclic min/max mean min/max mean section depth or diameter, h (m) 0.12 / 0.8 0.31 0.22 / 2.4 05/2 0.5 59 rectangular walls 13 monotonic min/max mean 0.41 2.39 / 2.41 2.4 46 cyclic min/max mean 1.7 / 2.0 1.99 section aspect ratio, ratio h/bw 0 225 / 3.73 0.225 3 73 1.54 1 54 1 21 1.21 21 2 / 23.4 21.2 23 4 22 4 22.4 13 3 / 28.3 13.3 28 3 13.7 13 7 fc (MPa) 19.7 / 99.4 34.8 17.7 / 102.2 38.6 34.5 / 40.8 35.3 26.2 / 45.6 40.6 0.236 0.063 / 0.077 0.07 0.05 / 0.11 0.07 axial-load-ratio, N/Acfc 0 / 0.78 0.08 transverse steel ratio, w (%) 0 / 2.38 0.345 0.04 / 2.96 0.656 0.41 / 0.82 total longitudinal steel ratio tot (%) 0 / 3.68 1.4 0.37 / 4.19 1.82 t transverse steel t l yield i ld stress t fyw, MPa MP 0 / 596 longitudinal steel yield stress fy, MPa 277 / 596 0 / 0.77 0.66 0.11 / 0.25 0.24 0.88 / 1.76 1.35 0.07 / 0.77 0.63 419 255 / 1402 477.2 477 2 440 / 483 443 3 443.3 465 / 562 502 490 444 / 510 466.6 523 / 580 552 341 / 573 493.3 Experimental Database 3. Range/mean of parameters in tests for calibration of 3 expressions for the member ultimate cyclic chord rotation Parameter 1159 rectangular 95 rectangular 53 members of nonnon 143 circular beams/columns walls rectangular section columns min/max mean min/max mean min/max mean min/max mean section depth or diameter, h (m) 0.1 / 2.4 0.33 0.4 / 2.75 1.15 0.2 / 3.4 1.21 0.2 / 1.83 0.45 shear-span-to-depth ratio, Ls/h 1 / 13.3 3.7 2.85 1.77 / 10 4.22 section aspect ratio, h/bw 0.2 / 6 1.18 2.5 / 28.3 9.75 0.5 / 5.53 2.15 0.65 / 8.33 2.5 / 36 9.95 1.0 1.0 fc (MPa) 12.2 / 175 43.7 13.5 / 109 35.9 20.8 / 83.6 38.5 23.1 / 90 38.0 axial-load-ratio, N/Acfc -0.1 / 0.9 0.165 0.07 -0.09 / 0.7 0.15 0.59 0.1 / 8.83 0.94 0.2 / 6.19 1.32 0.75 / 5.5 2.05 - - transverse steel ratio, w (%) 0 / 0.86 0.116 0 / 0.30 0.015 / 3.37 0.82 0.05 / 2.18 0.63 0.04 / 2.09 total longitudinal steel ratio tot (%) 0 / 6.29 2.08 0.07 / 4.27 1.37 diagonal steel ratio, d (%) 0 / 1.68 0.028 0 / 0.25 0.004 - - t transverse steel t l yield i ld stress t fyw, MPa MP 118 / 1497 497 220 / 1375 435.3 435 3 178 / 1375 513 200 / 1569 482.5 482 5 longitudinal steel yield stress fy, MPa 281 / 1275 467.5 276 / 1273 471.2 331 / 596 438.7 240 / 648 428 Yield e d & failure a u ep properties ope t es o of RC C sections M-φ at yielding of section w/ rectangular p zone (width ( b,, effective depth p d)) – compression section analysis • Yield moment (from moment-equilibrium & elastic σ-ε laws): 2 y Es V y 0.51 1 1 1 1 1 1 y 1 y 1 2 y Ec 3 2 3 2 6 bd • 1, 2 : tension & compression reinforcement ratios, v: “web” reinforcement ratio, ~uniformly distributed between 1, 2 : (all normalized to bd); 1 = d1/d. My • Curvature C t att yielding i ldi off ttension i steel: t l • from axial force-equilibrium & elastic σ-ε laws ( = Es/Ec): y 2B A 2 B 1 2 1 0.5 v 1 1 • Curvature at ~onset of nonlinearity of concrete: A 1 2 v E s 1 y d 1/ 2 A N , A 1 2 v bdff y 2 y fy N bdff y c 1.8 f c y y d E c y d N N 1 2 v , B 1 21 0.5 v 1 1 c Es bd 1.8 bdfc Moment at corner of bilinear envelope to experimental momentdeformation curve vs yield moment from section analysis Left: 2085 beams/columns, CoV:16.3%; Right: 224 rect. walls, CoV:16.9% 10500 median: M y,exp= 0.99M y,pred 4000 9000 median: di M y,exp=1.025M 1 025M y,pred 7500 My,exp (kN Nm) My,exp (k kNm) 3000 2000 1000 6000 4500 3000 1500 0 0 1000 2000 My,pred (kNm) 3000 4000 0 0 1500 3000 4500 6000 7500 9000 10500 My,pred (kNm) Bias by +2.5% +2 5% or -1%, 1% because corner of bilinear envelope of the experimental moment-deformation curve ≠ 1st yielding in section. Same bias considered to apply to predicted yield curvature. Empirical formulas for yield curvature - section w/ rectangular compression zone for beams or columns: for walls: y y 1.54 f y Es d 1.37 f y Es d y y 1.75 f y Es h 1.47 f y Es h Empirical expressions don’t have a bias w.r.to experimental yield moment;; but scatter is larger: y g In ~2100 test beams, columns or walls: CoV: ~18% Flexural failures - columns Flexural failures - beams Conventional definition of ultimate deformation 250 250 200 200 150 150 100 100 50 0 -50 -100 -150 -200 -250 250-125 -100 -75 -50 -100 -150ultimate conventional a -200 deformation-250coincides -125 -100 -75 -50 -25 0 25 -50 -25 w/ 0 25 50 failure 75 100 250 125 real Deflection (mm) Deflection (mm) 150 Applied force (kN) 150 100 50 0 -50 a 50 75 50 0 -50 -100 100 conventional ultimate deformation before “real” failure -200 125 -150 -120 -150 b -200 -75 -50 -25 0 25 Deflection (mm) 50 75 50 0 -50 -150 b -200 -250 -125 -100 100 125 -90 -60 -30 0 30 Displacement (mm) 100 -100 -100 Q RC Q-RC 100 0 200 Ap pplied force (kN) 150 50 200 -250 -125 -100 200 Force (kN N) Applied forrce (kN) Applied forrce (kN) The value beyond which, any increase in deformation cannot increase the resistance above 80% of the maximum previous p (ultimate) resistance. -75 -50 -25 0 25 Deflection (mm) 50 75 100 125 60 90 Ultimate curvature of section with rectangular compression zone, zone from section analysis • C Concrete t σ-ε law: l – Parabolic up to fc, εco, – constant stress (rectangular) for εco< ε < εcu • Steel σ-ε σ ε law: – Elastic-perfectly plastic, if steel strain rather low and concrete t fails f il first; fi t – Elastic-linearly strain-hardening, if steel strains are relatively high and steel breaks at stress and strain ft, εsu. Possibilities for ultimate curvature: 1. Section fails by rupture of tension steel, εs1= εsu, before extreme compression fibers reach their ultimate strain (spalling), εc < εcu → su Ultimate curvature occurs in unspalled section, section due to steel rupture: su 1 su d 2. Compression fibres reach their ultimate strain (spalling): εc = εcu → the confined concrete core becomes now the member section. Two possibilities: i. The moment capacity of the spalled section, ΜRo, never increases above 80% of the moment at spalling, spalling ΜRc: ΜRo< 0.8Μ 0 8ΜRc → cu Ultimate curvature occurs in unspalled section, due to the concrete: cu cu d ii. Moment capacity p y of spalled p section increases above 80% of the moment at spalling: ΜRo> 0.8ΜRc → The confined concrete core is now the member section and Cases 1 and 2(i) - applied li d for f the th confined fi d core - are the th ttwo possibilities ibiliti ffor attainment tt i t of the ultimate curvature → φsu, φcu calculated as above but for the confined core; the minimum of the two is the ultimate curvature. M Rc (1 )( ) 2 1 1 2 bd f c 2 1 1 1 f y ( 1 )(1 ) 3 s cu 2 1 co 3 cu 2 1 co 4 cu 2 Ultimate curvature of section w/ rectangular compression zone su for steel rupture: su 1 su d Steel ruptures before concrete crushes, after compression steel yields, if ν: 1 su y 1 1 su y • co co cu 3 f t 1 f t su y 3 f t 1 f t su 1 1 cu 1 1 2 1 v 2 1 v fy f 2 f y y su y cu su f y 1 1 su cu ξsu calculated from axial force equilibrium for: su 1 1 1 1 1 1 f t v 2 f y f 1 t v f y ft 2 co 3 su fy 1 1 1 co 3 su ν=N/bdfc, ω1, ω 2 : tension & compression mech. reinforcement ratios, ωv: “web” mech. y ); 1=d1/d. reinforcement ratio ~uniform distribution between ω1, ω 2 ((ω= fy/fc); • Steel ruptures before concrete crushes or compression steel yields, if ν: 1 su y 1 1 co 3 f t 1 f t su y v 2 1 su y fy f y 2 su y v f t su 2 ft co 1 1 ξsu from: 3 2 ( 1 ) f E su 1 y s su y ft su f t ft su co ft su f t ft 2 co 2 su 1 1 1 0 1 2 1 1 2 1 1 f f E f f E 3 ( 1 ) 3 2 ( 1 ) 1 1 su y y y s su y su y y y s su y Ultimate curvature of section w/ rectangular compression zone cu for concrete crushing: cu cu d Concrete crushes after tension steel yields, w/o compression steel yielding, if ν : 2 1 • cu v cu y 3 1 1 1 1 1 cu y cu y ξcu from axial force equilibrium, for: cu y 2 2 co v 1 2 cu 1 y 1 1 3 cu 2(1 1 ) cu y co 1 cu 1 y v 1 cu 1 2 0 21 1 y Concrete crushes w/ tension & compression steel yielding yielding, if ν : cu co cu co v cu y v cu y 3 3 1 1 2 1 1 2 1 1 cu y 1 1 cu y 1 1 cu y cu y cu 1 1 1 2 1 1 v • ξcu from: cu Concrete crushes after compression steel yields yields, w/o tension steel yielding yielding, if ν : • 1 1 1 co 3 ξcu from: 2 1 cu 2v co v cu y 3 1 1 1 cu y cu y cu y 2 2 co v 1 2 1 cu 3 cu 2(1 1 ) cu y 1 1 y cu v cu 1 1 0 y 2 1 1 y Unconfined full section – Steel rupture yes no δ1 satisfies Eq.(3.38)? yes ν<νs,y2 - LHS Eq.(3.39)? su from yes ν<νs,c - RHS Eq.(3.39)? Eq.(3.41) no φsu from Eq.(3.36) q( ) no yes ν<νs,c - RHS Eq.(3.39)? Confined core after spalling of concrete cover. Parameters are denoted by an asterisk and computed with: b, d, d1 replaced by geometric parameters of the core: bc, dc, dc1; N, N 1, 2, v normalized li d to t bcdc, instead i t d off bd; bd σ-ε parameters of confined concrete, fcc, cc, used in lieu of fc, cu su from Eq.(3.40) ν*<ν*s,y2 - LHS Eq.(3.39)? no Unconfined full section – Spalling of concrete cover *su from Eq.(3.41) no δ1 satisfies Eq.(3.42a)? yes cu from yes ν*<ν*s,c - RHS Eq.(3.39)? νν< c,y1 c y1 - LHS Eq.(3.48)? Eq.(3.47) no no cu from *su from Eq.(3.40) Failure of compression zone (concrete) no ν< c,y2 - RHS E (3 48)? Eq.(3.48)? Eq (3 46) Eq.(3.46) yes yes cu from ν*<ν*c,y2 - LHS Eq.(3.44)? cu from Eq.(3.45) Eq.(3.49) Compute moment resistances: M Rc (of full, unspalled section) and M Ro (of confined core, after spalling of cover). M Ro 0 8 M Rc R < 0.8 R ? yes φsu from Eq.(3.36) no no ν<νc,y1 - RHS Eq (3 44)? Eq.(3.44)? yes no yes ν<νc,y2 c y2 - LHS Eq.(3.44)? Rupture of tension steel yes no Ultimate curvature of confined core after spalling of concrete cover yes *cu from Eq.(3.47) no φcu from Eq.(3.37) ν*<ν*c,y1 - RHS Eq (3 44)? Eq.(3.44)? yes *cu from Eq.(3.45) no *cu from Eq (3 46) Eq.(3.46) φcu from Eq.(3.37) Test results vs ultimate curvature w/ failure strains for cyclic flexure per EN 1998-3:2005 : Steel: εsu: 2.5%, 5%, 6% for steel class A, B, C per Eurocode 2 εcu,c 0.004 0.5αρs f yw / f cc 08 0,8 0,7 median: φu,exp =0.96φu,pred 0,6 cyclic test results φu,eexp (1/m) 0,5 , Cyclic all Concrete crushing Steel rupture Median 0 96 0.96 0 90 0.90 0 98 0.98 C.o.V. 46.7% 55.1% 38.0% 205 97 108 0,4 0,3 0,2 No No. cyclic, slip 0,1 cyclic, no-slip 0 0 0,1 0,2 0,3 0,4 φu,pred (1/m) 0,5 0,6 0,7 0,8 Test results vs ultimate curvature w/ failure strains for cyclic flexure per Biskinis & Fardis 2010 (adopted in fib MC2010): • Monotonic flexure: •max. available steel strain: (7/12)εsu • Cyclic flexure: •max. available steel strain: (3/8)εsu 1.2 2 10 w * 0.285 cu 0.0035 1 K hc (mm) 2 10 w * 0.2 cu 0.0035 1 K hc (mm) monotonic & cyclic data, no. 474, median=1 00 median=1.00, CoV=49.7% median: φu,exp =φu,pred 1 φu,exp (1 1/m) 0.8 06 0.6 cyclic test data: 0.4 cyclic, slip cyclic, no-slip monotonic, slip monotonic, t i no-slip li 0.2 0 0 0.2 0.4 0.6 φu,pred (1/m) 0.8 1 1.2 Cyclic all Concrete crushing Steel rapture Median 0.99 0.99 1.01 C.o.V. 44.2% 52.6% 34.2% 205 97 108 No. Yield e d & failure a u ep properties ope t es o of RC C members Flexural behavior at member level ((Moment Moment-chord rotation) Definition of chord rotations, θ, at member ends Elastic moments at ends A, B from chord rotations at A, B: • ΜΑ = (2ΕΙ/L)(2θΑ+θΒ), • ΜΒ = (2ΕΙ/L)(2θΒ+θΑ) Fixed-end rotation of member end due to bar slippage from their anchorage zone beyond member end • Sli Slippage off ttension i b bars ffrom region i b beyond d end d section ti ((e.g. ffrom jjoin i or footing) → rigid body rotation of entire shear span = fixed-end rigid-body fixed end rotation rotation, θslip (included in measured chord-rotations of test specimen w.r. to base or joint; doesn’t affect measured relative rotations between any two member sections). • If s = slippage of tension bars from anchorage → θslip= s/(1-ξ)d g length g lb of bar beyond y section of maximum • If bond stress uniform over straight moment → bar stress decreases along lb from σs (=fyL at yielding) at section o maximum M to zero at end of lb → s=σslb/(2Es) • lb= bond b d fforce d demand d per unit it llength th ((=A Asσs/(d /( dbL)=d ) dbLσs/4), /4) divided di id d b by ~bon b strength (assume =√fc) σs/Es)/(1 )/(1-)d = φ • εs((=σ • At yielding of member end section y ,slip y d bL f y 8 fc (fyL, fc in MPa ) Fixed-end rotation of member end due to rebar pull-out from anchorage zone beyond member end, at member yielding φy,measured/(φy,predicted+y,slip,/lgauge) no.160 measurements w/ slip: median = 1.0, C.o.V = 34% 2.5 2.25 2 φy,exxp / (φy,1st-priinciples+φ y,duee to slip) Ratio: experimental-topredicted yield curvature t (w/ ( / correction for fixed-endfixed end rotation) in terms of gauge length 1.75 1.5 1.25 1 0.75 0.5 0.25 0 0 0.25 0.5 0.75 lgauge / h 1 1.25 1.5 Chord rotation of shear span at yielding of end section per EN 1998-3:2005 • Rect. beams or columns: Ls aV z h y y 0.0014 1 1.5 3 Ls • Rect. R t or non-rect. t walls: ll Ls aV z y y 0.0013 asl y , slip 3 “Shift Shift rule”: rule : asl y , slip Diagonal cracking shifts value of force in tension reinforcement to a section at a distance from member end equal to z (internal lever arm) • z = d-d d d1 in beams beams, columns columns, or walls of barbelled or T T-section, section • z = 0.8h in rectangular walls. – av = 0, if VRc > My/Ls; – av = 1, 1 if VRc ≤ My/Ls . VRc = force at diagonal cracking per Eurocode 2 (in kN, dimensions in m, fc in MPa): 0.2 1 / 6 0.2 1 / 3 N 1/ 3 f c 0.15 VR ,c max 180 100 1 , 35 1 f c 1 bwd d d Ac – asl = 0, if no slip from anchorage zone beyond end section; – asl = 1, if there is slip from anchorage zone beyond end section. Test-model comparison – θy Beams/rect. columns, no. tests: 1653 3.5 3 median=1.01, CoV=32.1% θy,exp (% %) 2.5 median: θy,exp=1.01θy,pred 2 1.5 1 0.5 rect. beams / columns 0 0 0.5 1 1.5 2 θy,pred (%) 2.5 3 3.5 1,2 1,2 1 1 0,8 0,8 θy,exp (%) θy,exp (%) Test-model comparison – θy Walls, a s, no. o tests: tests 386 median: θy,exp=0.97θy,pred 0,6 04 0,4 0,2 median: θy,exp =1.01θy,pred 0,6 04 0,4 0,2 Rectangular walls Rectangular walls Non-rectangular Walls 0 Non-rectangular Walls 0 0 0,2 0,4 0,6 θy,pred (%) 0,8 1 1,2 0 0,2 0,4 0,6 0,8 1 1,2 θy,pred (%) Expression in EN 1998-3:2005 Modified expression adopted in MC2010 median=0.97, CoV=31.1% Ls aV z 5h y y 0.00045 0 00045 1 asl y , slip 3 3Ls median=1.01, CoV=30.9% Test-model comparisons - θy Circular columns - not in EN 1998-3:2005: no. tests: 291 Ls aV z 2 Ls y y 0.0027 1 min 1; asl y , slipp 3 15D 2,5 median=1.00,, CoV=31.7% median: θy,exp=θy,pred θy,exp (%) 2 1,5 1 0,5 circular 0 0 0,5 1 1,5 θy,pred (%) 2 2,5 Effective elastic stiffness, EIeff (for linear or nonlinear analysis) Part 1of EC8 (for design of new buildings): EIeff : secant stiffness at yielding =50% of uncracked gross-section stiffness. - OK in force-based design of new buildings (safesided for forces); - Unsafe in displacement-based assessment for displacement demands). More realistic: EI eff M y Ls 3 y secant stiffness at yielding of end of shear span Ls=M/V Test-model comparison – EIeff Beams/rect. columns, no. tests: 1616 600 500 EI eff M y Ls 3 y (MyLs/3 3θy)exp (M MNm2) median=1.00, CoV=32.1% median: (MyLs/3θy)exp =MyLs/3θy)pred 400 300 200 100 rect. beams / columns 0 0 100 200 300 400 (MyLs/3θy)pred (MNm2) 500 600 Test-model comparison – EIeff Walls, no. tests: 386 detail M y Ls EI eff 3 y 1500 median: (My Ls/3θy )exp =1.035(My Ls/3θy )pred median: (My Ls/3θy )exp =1.035(My Ls/3θy )pred 1250 3000 2000 1000 non-rectangular walls (MyLs/3θy)exp (M MNm2) With expression i ffor θy in EN 1998-3:2005 median=1 035 median=1.035 CoV=42.8% (MyLs/3θy)exp (M MNm2) 4000 1000 750 500 250 non-rectangular walls rectangular walls rectangular walls 0 0 0 1000 2000 3000 0 4000 2) ( yLs/3θ (M / θy)pred (MNm ( 250 1500 median: (My Ls/3θy )exp =0 0.98(M 98(My Ls/3θy )predd 750 1000 1250 1500 detail median: (My Ls/3θy )exp =0 0.98(M 98(My Ls/3θy )predd 1250 3000 2000 1000 non-rectangular walls (M MyLs/3θy)expp (MNm2) With new expression for θy of walls (adopted in MC2010) median=0.98 CoV=41.1% (M MyLs/3θy)expp (MNm2) 4000 500 2) ( yLs/3θ (M / θy)pred (MNm ( 1000 750 500 250 non-rectangular walls rectangular walls 0 rectangular walls 0 0 1000 2000 (MyLs/3θy)pred 3000 (MNm2) 4000 0 250 500 750 (MyLs/3θy)pred 1000 1250 (MNm2) 1500 Test-model comparison – EIeff Circular columns - not in EN 1998-3:2005,, no. tests: 273 EI eff M y Ls 3 y median=0.99, ed a 0 99, Co CoV=31.2% 3 % 4000 175 median: (My Ls/3θy )exp =0.99(M 0.99(My Ls/3θy )pred 3500 150 (M MyLs/3θy)eexp (MNm m2 ) (M MyLs/3θy)eexp (MNm m2 ) 3000 2500 2000 1500 1000 500 median: (My Ls/3θy )exp =0.99(M 0.99(My Ls/3θy )pred 125 100 75 50 25 detail circular 0 circular 0 0 500 1000 1500 2000 2500 3000 3500 4000 (MyLs/3θy)pred (MNm2) 0 25 50 75 100 125 150 (MyLs/3θy)pred (MNm2) 175 Empirical secant stiffness to yielding, EIeff, independent of amount of reinforcement - not in EN 1998-3:2005 EI eff Ls N a 0.8 ln max ;0.6 1 0.048 min[ 50; ( MPa)] Ec I c Ac h (all variables known before dimensioning the longitudinal reinforcement) – If there is slippage of longitudinal bars from their anchorage zone beyond the member end: • a = 0.081 for columns;; • a = 0.10 for beams or non-rectangular walls (barbelled, T-, H-section); • a = 0.115 for rectangular walls; • a = 0.12 for members with circular section. – If there is no slippage of longitudinal bars: effective stiffness x 4/3 Test-model comparison – Empirical EIeff, independent of amount of reinforcement - not in EN 1998 1998-3:2005 3:2005 600 Beams/columns no. tests: 1616 median=1.00 CoV=36 1% CoV=36.1% 500 (M MyLs/3θ θy)exp (M MNm2) median: ((M yLs/3θy)exp =EIpred 400 300 200 100 0 0 100 200 300 400 EIpred (MNm2) 500 600 4000 median: (My Ls/3θy )exp =EIpred 3000 2000 1000 non-rectangular non rectangular walls 1000 500 non-rectangular non rectangular walls rectangular walls rectangular walls 0 0 0 1000 EIpred 2000 3000 4000 0 EIpred 175 median: (My Ls/3θy ) exp =EIpred 3500 2500 2000 1500 1000 500 detail 150 ((MyLs/3θy)exxp (MNm2) 3000 ((MyLs/3θy)exxp (MNm2) 500 (MNm2) 4000 Circular columns no tests: 273 no. median=0.995 CoV=31.4% detail detail median: (MyLs/3θy ) exp =EIpred (M MyLs/3θy)exxp (MNm2) Walls no tests: 386 no. median=1.00 CoV=44.6% 1500 (M MyLs/3θy)exxp (MNm2) Test-model comparison – Empirical EIeffff independent of reinforcement , not in EN1998-3: 2005 1000 1500 (MNm2) median: (My Ls/3θy ) exp =EIpred 125 100 75 50 25 circular circular 0 0 0 500 1000 1500 2000 2500 3000 3500 4000 EIpred (MNm2) 0 25 50 75 100 EIpred (MNm2) 125 150 175 Flexure-controlled ultimate chord rotation from curvature & plastic hinge length per EN 1998-3:2005 0.5L pl pl θu θ y θu θ y (φu φ y ) L pl 1 L s cu,c su • y: yield curvature (section analysis); , u min cu,c d c (1 su )d Option 1: Confinement per Eurocode 2 O ti Option 2: 2 New, N per EN 1998 1998-3:2005 3 2005 αρsx f yw 0.05 f c : f cc f c 5αρsx f yw 0.86 αρsx f yyw 0.05 f c : f cc 1.125 f c 2.5αρsx f yyw f cc f c 1 3.7 sx f yyw / f c cu ,c co 0.2sx f yw / f c Lpl 0.1Ls 0.17 h 0.24 d b f y cu ,c 0.004 0.5sx f yw fc /f cc Lpl Ls / 30 0.2h 0.11d b f y / f c 2 : confinement effectiveness: sh sh bi index c: confined; 1 1 α 1 – rectangular section: ρs: stirrup ratio; 2bc s 2 2hc 6bc hc h – circular section & hoops: α 1 Ls=M/V: shear span at member end; 2 D c sh: centerline spacing of stirrups, h: section depth; Dc, bc, hc: confined core dimensions to centerline of hoop; db: bar diameter; bi: centerline spacing along section perimeter of longitudinal fy, fc: MPa bars (index: i) engaged by a stirrup corner or cross-tie. Test-model comparison – ultimate chord rotation from curvatures & plastic hinge length per EN 1998-3:2005, no. tests: 1100 Option 1: confinement per EC2 median=0.88, CoV=52.3% Option 2: new confinement per EC8-3 median=0.91, di 0 91 CoV=52.2% C V 52 2% 17,5 Cyclic loading 15 median: θu,exp =0.88θ =0 88θu,pred 12 5 12,5 12,5 median: θu,exp =0.91θ =0 91θu,pred 10 θu,eexp (%) θu,eexp (%) Cyclic y loading g 10 7,5 7,5 5 5 2,5 beams & columns rect. walls non-rect. sections 0 0 2,5 5 7,5 10 θu,pred (%) 12,5 15 17,5 2,5 beams & columns rect. walls non-rect. sections 0 0 2,5 5 7,5 θu,pred (%) 10 12,5 Flexure-controlled ultimate chord rotation of rect. beams, columns, walls, non-rect. walls & circular columns from curvatures & plastic hi hinge length l th by b Biskinis Bi ki i & Fardis F di 2010, 2010 2013 - adopted d t d in i fibMC2010 Flexure-controlled ultimate chord rotation, accounting separately for slippage in yield-penetration yield penetration length, from yielding till ultimate deformation: u y a sl u ,slip L pl ( u y ) L pl 1 2 Ls Confinement per fib MC2010: 34 w f yw f cc f c 1 3.5 fc – Monotonic loading g - Rect. beams,, columns,, walls,, non-rectangular g walls: 2 αρw f yw 10 7 εcu,c 0.0035 0.57 , su , mon su ,no min al f cc 12 ho ( mm ) Ls L pl,m on h1.1 0.04 min i 9; h 2 αρ f 3 0.4 w yw , su ,cy su ,no min al – Cyclic loading: 10 εcu,c 0.0035 f cc 8 ho ( mm ) • Rect. beams/columns/walls, non-rect. walls: L • Circular columns: L pl ,cy,cir 1 Ls pl,cy 0.2h 1 3 min 9; h 1 Ls 0.6 D1 min 9; 6 D Post-yield fixed-end rotation of member end due to bar slippage from yield penetration length beyond member end, from yielding till ultimate lti t flexural fl l deformation d f ti per Biskinis Bi ki i & F Fardis di 2010, 2010 2013 adopted in fibMC2010 (not in EN 1998-3:2005) • Monotonic loading: u , sli p 9 .5d bL u or u , slip li 5.5d bL u or • Cyclic loading: Complete C l t pull-out ll t off beam bars, due to short anchorage in corner joint ← → 10d bL y u / 2 16d bL y u / 2 Test-model comparison – Cyclic ultimate chord rotation from curvatures & plastic hinge length per Biskinis & Fardis 2010, 2012 Rect. beams/columns/walls, non-rect. walls - no. tests: 1100 median=1.00, CoV=43.2% Circular columns – no. tests: 143, median=1.00, CoV=30.3% 16 C li loading Cyclic l di 12,5 median: θu,exp =θu,pred 14 12 θu,exp (%) 10 θu,expp (%) median: θu,exp=θu,pred 7,5 5 10 8 6 4 2,5 beams & columns rect. walls non-rect. o ect sections sect o s 0 2 circular 0 0 2,5 5 7,5 θu,pred (%) 10 12,5 0 2 4 6 8 10 θu,pred (%) 12 14 16 Empirical cyclic flexure-controlled ultimate chord rotation of rect. beams/columns/walls, non-rect. walls in EN1998-3:2005 & fibMC2010 θum or: max (0.01; ω' ) fc 0.016 (0.3 ) max (0.01; ω) ν 0.225 Ls h 0.35 0, 3 f yw αρ sx fc 25 (1.25100 ρd ) 0.35 f αρ yw sx f c max(0.01; ω' ) 0.2 Ls pl θum f θum θy 0.0145 (0.25ν ) c 25 h max(0.01; ω) (1.275100 ρd ) , ': : mechanical ratio of tension (including web) & compression steel; p zone; N>0 for compression); p ) N/bhfc ((b: width of compression Ls/h : M/Vh: shear span ratio; α: sx: d: sh s 1 h confinement effectiveness factor : α 1 2bc 2hc Ash/bwsh: transverse steel ratio // direction of loading; ratio of diagonal reinforcement. • Walls: W ll • Cold-worked brittle steel: bi2 1 6b h c c 1st expression i di divided id d b by 1 1.6; 6 2nd multiplied lti li d b by 0 0.6 6 1st expression divided by 1.6; 2nd by 2.0 Non-seismically detailed members with continuous bars • Plastic part, plum=θum-y, of ultimate chord rotation: divided by 1.2. Test-model comparison – Empirical cyclic ultimate chord rotation of members with seismic detailing per EN 1998-3:2005 – no. tests 1100 Model for total um Model with um=y+pl median=1.00, CoV=37.8% median=1.00, CoV=37.6% Cyclic loading Cyclic loading median: θu,exp , p =θu,pred ,p 12,5 , 12,5 10 θu,,exp (%) 10 θu,exp (%) median: median:θθu,exp =θu,pred , p =θ ,p u,exp u,pred 7,5 5 5% f ractile: θ u,exp=0.5θ u,pred 2,5 beams & columns 0 7,5 5 5% f ractile: θ u,exp=0.52θ u,pred 2,5 beams & columns rect. walls rect. walls non-rect. sections non-rect. sections 0 0 2,5 5 7,5 θu,pred (%) 10 12,5 0 2,5 5 7,5 θu,pred (%) 10 12,5 Test-model comparison – Empirical cyclic ultimate chord rotation of members without seismic detailing per EN 1998-3:2005 – no. tests 48 Model for total um Model with um=y+pl median=1.00, CoV=30.6% median=0.99, CoV=31.8% 9 9 median: θu,exp =θu,predd 8 7 7 6 6 θu,exxp (%) θu,exxp (%) 8 5 4 5 4 3 3 2 2 1 1 0 0 0 1 2 3 4 5 θu,pred (%) 6 7 8 9 median: θu,exp =0.99θu,pred 0 1 2 3 4 5 θu,pred (%) 6 7 8 9 General empirical ultimate chord rotation of rect. beams/columns/ walls & non-rect. walls per Biskinis & Fardis 2010, adopted in fib MC2010 (not in EN1998-3:2005) EN1998 3:2005) 1 3 w f yw f c 1.225100 d h max(0.01;2 ) L 0 . 2 pl hbw s min 9; fc 25 u st (1 0.525acy )1 0.6asl 1 0.052max1.5; min10; 0.2 h max(0.01;1) bw cyclic loading median: θ median: θu,exp =θu,pred u,exp=θ u,pred 12,5 10 θu,exp (%) αsthbw: 0.022 for hot-rolled hot rolled or Tempcore bars; 0.0095 for brittle cold-worked bars; αcy: = 1 ffor cyclic li lloading, di = 0 for monotonic; αsl: = 1 if slippage of long. bars from anchorage zone is possible, = 0 otherwise; bw: width of (one) web 7,5 5 5% f ractile: θ u,exp=0.51θ u,pred 25 2,5 b beams & columns l rect. walls non-rect. sections 0 0 25 2,5 5 75 7,5 10 12 5 12,5 Non-seismically detailed members: θu,pred (%) pl • um=θum-y divided by 1.2. no. tests: 1100, median=1.00, CoV=37.6% Effect ect o of laplap ap-sp splicing c g the t e column co u bars in the plastic hinge region Members with ribbed bars lap-spliced over length lo inside the plastic hinge region per EN 1998-3:2005 or other options • EN 1998-3:2005: 1. Both bars in pair of lapped compression bars count as compression steel. 2. For the yield properties (My, y , θy), the stress fs of tension bars is: fs = fy(lo/loy,min), if lo< loy,min=(0.3fy/√fc)db (fy, fc in MPa) 3. Ultimate chord rotation θu=y+plu(lo/lou,min), if lo < lou,min = dbfy/[(1.05+14.5αrsωsx)√fc], – fy, fc in MPa, ωsx=ρsxfyw/fc: mech. transverse steel ratio // loading, – αrs=(1-sh/2bo)(1-sh/2bo)nrestr/ntot (nrestr/ntot: restrained-to-total lap-spliced bars). • Or, O Eligehausen Eli h & Lettow L tt 2007 ffor fib MC2010: 0.55 0.25 lb f c 20 f s 51.2 d b 20 max(d b ; 20 mm ) • cd = min[a/2; [ ; c1; c]] ≥ db , cd ≤ 3db • cmax = max[α/2; c1; c] ≤ 5db • fy, fc in MPa 0.2 c 1/ 3 c 0.1 1 k s nl Ash max d kKtrt f y , kKtr d b cd nb d b sh Test-model comparison: Yield moment & chord rotation, effective stiffness, ultimate cyclic chord rotation - lapped ribbed bars per EN 1998-3:2005 2 2000 median: θy,exp =1.05θy,pred median: My,exp =My,pred 1750 median=1.00 CoV=11.8% 1,5 1250 no.tests: 92 1000 My 750 500 median=1 05 median=1.05 θy,exp (%) no.tests: 114 My,eexp (KNm) 1500 θy 0,5 CoV=20% 250 1 0 0 0 250 500 750 1000 1250 1500 1750 2000 0 0,5 1 My,pred (KNm) 1,5 2 θy,pred (%) 250 12 median: θu,exp =1.035θu,pred median: (M yLs/3θy)exp=0.955(M yLs/3θy)pred no tests: 92 no.tests: median=0.955 CoV=24.8% 10 8 150 θu,exp (%) (M MyLs/3θy)exp (MNm2) 200 100 4 EIeff 50 0 0 50 100 150 200 (MyLs/3θy)pred (MNm ) 2 6 250 no tests: 81 no.tests: 2 median=1.035 0 CoV=39.3% θu 0 2 4 6 8 θu,pred (%) 10 12 Test-model comparison: Yield moment & chord rotation, effective stiffness, - lapped bars, steel stress per Eligehausen & Letow 2007 2000 median: di My,exp =0.98M 0 98My,pred 1750 no.tests: 114 Median=0.98 CoV=12% no tests: 92 no.tests: My,exp (KNm m) 1500 1250 1000 750 500 median=1.03 250 CoV=20.5% CoV 20.5% 0 0 250 500 750 1000 1250 1500 1750 2000 My,pred (KNm) 2 250 median: θy,exp =1.03θy,pred median: (M yLs/3θy)exp=0.97(M =0 97(M yLs/3θy)pred 200 1 0,5 θy no tests: 92 no.tests: median=0.97 0 0 0,5 1 θy,pred (%) 1,5 2 CoV=24.6% (M MyLs/3θy)exp (MNm2) 1,5 θy,exp (%) My 150 100 EIeff 50 0 0 50 100 (M L /3θ ) 150 d 200 (MNm2) 250 Members with smooth hooked bars, with or without lap splice (of length lo) in the plastic hinge per EN 1998-3:2005 Provided that lapping lo ≥ 15db: 1 Yield properties My, y, θy: 1. – As in members with continuous ribbed bars. 2 Ultimate cyclic chord rotation: 2. – For continuous bars: • 0.8θum (: ~0.95 for smooth bars /1.2 for no seismic detailing) or • θum=y+0.75plum (: ~0.9 for smooth bars /1.2 for no seismic detailing) – For lapping lo ≥ 15db : • um x 0.019(10+min(40, lo/db)) or • θum=y+plum x 0.019 min(40, lo/db) – Ls for o plum not ot reduced educed by lo T t Test-model-ratio d l ti for f θum no laps laps M di Median 1 015 1.015 1 03 1.03 C.o.V. 33.3% 33.4% 34 11 no tests no. (ultimate condition not necessarily controlled by region right above the lap) Cyclic Cyc cs shear ea resistance es sta ce o of RC C members Cyclic shear resistance per EN 1998-3:2005 • Shear resistance in p pl. hinge g after flex. yyielding, g, as controlled byy stirrups p (linear decay of Vc & Vw with cyclic plastic rotation ductility ratio θpl=(-y)/y>0 hx L pl VR min N ; 0.55 Ac f c 1 0.05 min 5; μθ 0.16 max( 0.5;100 ρtot )1 0.16 min 5; s 2 Ls h f c Ac Vw Vw=ρwbwzfyw, due to stirrups (bw: web width, z: internal lever arm; ρw: shear reinf. ratio) ρtot: total t t l longitudinal l it di l reinforcement i f t ratio ti h: section depth x : depth p of compression p zone at yyielding g Ac= bwd • Shear resistance as controlled by web crushing (diagonal compression) Walls, before flexural yielding (θpl = 0) or after (cyclic θpl > 0): VR 0.85 1 0.06 min 5, pl 1 1.8 min 0.15, N 1 0.25 max((1.75, 100 tot ) 1 0.2 min 2, Ls f c bw z A f h c c Squat columns (Ls/h ≤ 2) after flexural yielding (cyclic θpl > 0): VR 4 1 0.02 min 5, pll 7 1 1.35 ANf c 1 0.45 100 tot min f c , 40 bw z sin 2 c δ: angle between axis and diagonal of column (tanδ=0.5h/Ls) Test-model comparison: Cyclic shear resistance in plastic hinge (after flexural yielding) as controlled by stirrups, per EN 1998-3:2005 1000 no. tests: 306 median=0.995 CoV=14.7% 800 Vexp (kN N) 600 400 Rectangular Circular walls & piers 200 0 0 200 400 600 Vpred (kN) 800 1000 Test-model comparison: Cyclic shear resistance as controlled by web crushing (diagonal compression), per EN 1998-3:2005 Walls Squat columns 2500 800 2000 600 Vexp (kN) Vexp (kN) 1500 400 1000 200 500 0 0 0 500 1000 1500 2000 Vpred (kN) no. tests: 62, median=1.00, CoV=19.3% 2500 0 200 400 600 Vpred (kN) no. tests: 40, median=1.00, CoV=9.6% 800 FRP Jackets per EN1998EN1998-3:2005 Experimental Database 4 Range and mean values of parameters in the tests of 4. FRP-jacketed rectangular columns in the database Parameter 219 columns with continuous bars (145 with CFRP, 24 with GFRP, 27 with AFRP and 23 with other composite) p ) min-max mean effective depth, d (mm) 170-720 296 shear-span-to-depth shear span to depth ratio, ratio Ls/h 11-77.44 3 55 3.55 concrete strength, fc (MPa) 10.6-90 31.8 vertical bar yield stress, fy (MPa) 295-816 431 stirrup yield stress stress, fyw (MPa) 200 750 200-750 388 axial-load-ratio, N/Acfc 0-0.85 0.255 0-1.18 0.24 transverse steel ratio, w (%) 0 81 0.815-7.6 6 2 08 2.08 total vertical steel ratio, tot (%) geometric ratio of FRP, ρf (%) 0.01-5.31 0.605 nominal FRP strength (MPa) 113-4830 2755 elastic modulus of FRP, Ef (GPa) 5.8-390 166 lapping-to-bar-diameter ratio, lo/db - 45 columns with lapspliced bars (42 with CFRP,, 3 with GFRP)) min-max mean 180-720 393 22-66.66 45 4.5 11.7-55 31 331-617 492 280 535 280-535 442 0-0.4 0.143 0-0.445 0.212 0 81 3 9 0.815-3.9 1 88 1.88 0.13-7.5 1.04 532-4430 2621 17.8-390 184 15-45 30.4 FRP-wrapping of plastic hinges in rectangular per EN 1998-3:2005 members with continuous bars p • MR, My: Enhanced by FRP jacket (by 9% w.r.to calculated w/o confinement) – EN 1998-3:2005: increase neglected. • Effective (elastic) stiffness EIeff: unaffected by FRP; pre pre-damage: damage: 35% drop • EN1998-3:2005: Flexure-controlled ultimate chord rotation, θu: Confinement byy FRP increases that due to the stirrups p by y αfρfff,e f e/fc, where: – ρf=2tf/bw : FRP ratio // direction of loading; – ff,e: FRP effective strength: min f u,f , εu,f Ef ρf f f,e min f u,f , εu,f Ef min 0.5; 1 0.7 fc fu,f, Ef : FRP tensile strength & Modulus; εu,f: FRP limit strain. CFRP/AFRP: εu,f=1.5%; GFRP: εu,f=2% – FRP-confinement FRP confinement effectiveness: 2 2 h 2 R b 2 R f 1 3bh b, h: sides of section; R: radius at section corner Test-model comparison - yield properties for FRP-wrapping of rectangular columns with continuous bars per EN 1998-3:2005 no.tests: 203 (pre-damaged or not) median=1.09, CoV=19.4% no.tests: 159 (no pre-damage) median=1.03, CoV=37.3% 3 2500 median: My,exp =1.09M =1 09My,predd 2000 non-predamaged predamaged median (non-predamaged) median (predamaged) 2,5 1500 θyy,exp (%) My,exp (KNm) 2 1000 1,5 1 500 My 0 0 500 1000 1500 My,pred (KNm) 2000 θy 05 0,5 2500 0 0 05 0,5 1 15 1,5 θy,pred (%) 2 25 2,5 EIeff (no pre-damage), no.tests: 159, median=1.02, CoV=30% 3 Yield properties for FRP-wrapping of the plastic hinge and continuous bars – Biskinis & Fardis 2007, 2013 • Yield moment, My: – Strength of FRP-confined concrete fcc, instead of fc, in section-analysis for φy, My, including the calculation of the concrete Elastic Modulus Modulus, Ec; – Ec may be estimated per fibMC2010, using fcc instead of fc: 2 Ec=10000(f 0000( cc((MPa)) a))1/3 f cc bx a f f f u , f 1 3 .3 – fcc from (widely used) Lam & Teng 2003: b f f c fu,f: effective strength of FRP: fu,f=Ef(keffεu,f) Ef: Elastic Modulus of FRP, εu,f: FRP failure strain, keffff: FRP effectiveness factor factor, equal to 0 0.6 6 per Lam & Teng y c (~same results using other FRP-confinement models: Teng et al 2009, Samaan et al 1998, Bisby et al 2005, Ilki et al 2008, Wang et al 2012) • Chord rotation at yielding, θy, effective stiffness, EIeff : – Yield curvature φy calculated with fcc (as above) & multiplied times correction factor 1.06 – EIeff = MyLs/3y Test-model comparison - yield properties for FRP-wrapping of rect. columns with continuous bars per Biskinis & Fardis 2007, 2013 no.tests: 203 (pre-damaged or not) median=1.06, CoV=19.3% no.tests: 159 (no pre-damage) median=1.01, CoV=37.3% 2500 3 median: My,exp =1.06My,pred non-predamaged predamaged median (non-predamaged) median (predamaged) 2.5 2000 1500 θy,exp (% %) My,exxp (KNm m) 2 1000 1.5 1 500 My 0.5 0 0 500 1000 1500 My,pred (KNm) ( ) 2000 2500 θy 0 0 0.5 1 1.5 θy,pred (%) 2 2.5 EIeff (no pre-damage): no.tests: 159, median=0.99, CoV=30.4% 3 Extension of empirical ultimate plastic chord rotation of rect. columns with continuous bars & FRP-wrapping Biskinis & Fardis 2007, 2013 • Pre-damaged or not: L a ν max0.01, ω' f c0.2 s θupl 0.0185 1 0.52acy 1 sl 0.25 h 1.6 max0.01, ω 0.3 0.35 αρ f w yw αρfu f fc c 25 with: ρ f fu , f aρfu a f c f min i 0.4; f fc c f , eff ρ f fu , f i 0.4; 1 0.5 min fc cf=1 1.8 8 for CFRP or polyacetal fiber (PAF) sheets sheets, cf=0.8 for GFRP or AFRP. fu,f=Ef(keffεu,f): effective FRP strength f ,eff 1.275100 ρd Test-model comparison – ultimate cyclic chord rotation for FRP-wrapping of rect. columns with continuous bars: no. tests 128 (pre-damaged or not) EN 1998 1998-3:2005 3:2005 v Biskinis & Fardis 2007 2007, 2013 EN 1998-3:2005 median=1 09 CoV=30.6% median=1.09, CoV=30 6% Biskinis & Fardis 2013 median=1 025 CoV=30.4% median=1.025, CoV=30 4% 25 25 median (all): θu,exp =1.09θu,pred median (all): θu,exp =1.025θu,pred 20 θu,eexp (%) θu,eexp (%) 20 15 10 15 10 CFRP jacket CFRP jacket AFRP jacket 5 0 0 5 10 15 θu,pred (%) AFRP jacket 5 GFRP jacket GFRP jacket PAF jacket PAF jacket 20 0 25 0 5 10 15 θu,pred (%) 20 25 Alternative ultimate cyclic chord rotation for continuous bars & FRP-wrapping – per GCSI (KANEPE) f cc 1 .125 1 .25 wd fc Test-to-predicted ultimate cyclic chord rotation, θu – no.tests: 128, median=1.75, di 1 75 CoV=54.5% C V 54 5% ωwd: FRP volumetric l t i ratio ti α: FRP-confinement effectiveness factor 25 CFRP (adopted here also for AFRP and PAF): cu 0 .0035 f cc f c 2 20 cu 0 .007 f cc f c 2 FRP effective strength: f f ,e f u , f ψ: reduction factor for number of layers (k); ψ 1 for k<4 ψ=1 k 1 4 for k≥4 θu μθ μ δ μ φ 2 3 θy θu,eexp (%) GFRP: median (all): θu,exp 1.75θ 75θu,pred e p =1 pred 15 10 CFRP jjacket AFRP jacket 5 GFRP jacket PAF jacket 0 0 5 10 15 θu pred (%) 20 25 FRP-wrapped rectangular members with ribbed bars lap-spliced over length lo in the plastic hinge: EN 1998-3:2005 & other options • EN 1998-3:2005: 1. Both bars in pair of lapped compression bars count as compression steel. 2. For the yield properties (My, y , θy), the stress fs of tension bars is: fs=fy(lo/loy,min), if lo< loy,min=(0.2fy/√fc)db (fy, fc in MPa), loy,min: one-third shorter th without than ith t FRP FRP. 3. Ultimate chord rotation θu=y+plu(lo/lou,min), ) if lo < lou,min = dbfy/[(1.05+14.5 /[(1 05+14 5 αlρf ff,e)√fc], – fc: MPa, ρf=2tf/bw: FRP ratio // loading, – αl = αf(4/ntot) ff,e: effect. FRP strength (MPa), (ntot: total lap-spliced bars; only the 4 corner bars restrained) restrained). • Or, Eligehausen & Lettow 2007 for fibMC2010: 0.55 0.25 lb f c 20 f s 51.2 d b 20 max(d b ; 20 mm ) • cd = min[a/2; [ ; c1; c]] ≥ db , cd ≤ 3db • cmax = max[α/2; c1; c] ≤ 5db • fy, fc in MPa 0.2 c 1/ 3 c 0.1 d max kKtr f y , kK 1 tr d b cd nb d b k s nl Ashh k f n f t f E f s Es h Test-model comparison - Yield properties for FRP-wrapping of rect. columns with bars lap-spliced over length lo per EN1998-3:2005, no.tests 45 My: median=1.075, CoV=10.5% θy: median=1.075, CoV=17.7% 2 2000 median: My,exp =1.075y,pred 1.75 1500 1.5 1250 1 25 1.25 θy,exp (%) My,exp (KNm) 1750 median: θy,exp =1.075θy,pred 1000 750 1 0.75 0.5 500 My 250 θy 0.25 0 0 0 250 500 750 1000 1250 1500 1750 2000 My,pred (KNm) 0 0 25 0.25 05 0.5 0 75 0.75 1 1 25 1.25 θy,pred (%) 15 1.5 1 75 1.75 2 no.tests: 42 median=1.00 no tests: 42 no.tests: 5000 median: My,exp =My,pred 4000 My,exp ((KNm) Test-model comparison - yield properties of FRP-wrapped circular columns l with ith lap-spliced l li d bars b per EN1998-3:2005 (Biskinis & Fardis 2007, 2013) 3000 2000 My 1000 C V 15 2% CoV=15.2% median=0.98 0 0 CoV=22% CoV 22% 1000 2000 4000 5000 My,pred (KNm)) y pred ( 1000 2 3000 θy,exxp (%) median θy,exp =0.98θ median: 0 98θy,pred 1 no.tests: 42 θy 0,5 median=0.96 (MyLs/3θy)exxp (MNm2) 800 15 1,5 EIeff 600 400 median: (M yLs/3θy)exp=0 0.96(M 96(M yLs/3θy)pred 200 CoV=22.2% 0 0 0 0,5 1 θy,pred (%) 1,5 2 0 200 400 600 800 (MyLs/3θy)pred (MNm2) 1000 Extension of empirical ultimate plastic chord rotation for rectangular members with lap-spliced bars & FRP-wrapping – Biskinis & Fardis 2007, 2013 • Required lapping for no adverse effect of lap-splice on ultimate deformation lou , min db f y 1.05 14.5 2 n tension 2 aρ f u fc f , eff f c ρ f fu , f i 0.4; a f c f min f fc c f , eff with: aρfu ρ f fu , f i 0.4; 1 0.5 min fc fu,f=Ef(keffεu,f) ntension: number of lapped bars on tension side of section • If lo<lou,min, θupl is reduced as: lo min 1, lou ,min i ≤0.5 upl,lap • (αρfu/fc )f,eff neglected in θupl if 2/ntension pl u Test-model comparison – ultimate cyclic chord rotation of FRP-wrapped of rectangular columns w/ lap-spliced bars, no.tests 44 (pre-damaged or not) EN1998-3:2005 v Biskinis & Fardis 2007 2007, 2013 Biskinis & Fardis 2013 median=1 005 CoV=23.2% median=1.005, CoV=23 2% EN 1998-3:2005 median=0 89 CoV=36.3% median=0.89, CoV=36 3% 12 12 median: θu,exp =1.005θu,pred 10 10 8 8 θu,exxp (%) θu,exxp (%) median: θu,exp , p =0.885θu,pred ,p 6 4 6 4 2 2 0 0 0 2 4 6 θu,pred (%) 8 10 12 0 2 4 6 θu,pred (%) 8 10 12 Extension of ultimate plastic chord rotation model with curvatures and plastic hinge length to circular columns with l lap-spliced li d bars b & FRP-wrapping FRP i – Biskinis Bi ki i & F Fardis di 2013 u y (u y )Lpl 1 0.5Lpl Ls asl u, slip u , slip 5 .5 d bL u Lpl, fcc, εcu as in members (FRP-wrapped or not) with continuous bars 6 Steel strain at ultimate deformation of member depends on lap length, if lo< lou,min i : f l l with: lou,min o lou, min 5 y 0.2 su o loy, min Es d bL f y 5 6 6a sh f yh / f c fc 4 θu,exp (% %) su,l 1.2 median: θu,exp =0.97θu,pred 3 2 1 Test-to-prediction ratio, no.tests: 37 median=0.97, CoV=38.6% 0 0 1 2 3 θu pred (%) 4 5 6 Cyclic shear resistance of FRP-wrapped rectangular members as controlled by diagonal tension, per EN1998-3:2005 VR hx L min N , 0.55 Ac f c 1 0.05 min 5, pl 0.16 max( 0.5, 100 tot )1 0.16 min 5, s f c Ac Vw V f 2 Ls h • Vf=min(ε ( u,f y shear resistance: u fEu,f u f, fu,f u f)ρf bwz/2 : FRP-contribution to cyclic • ρf :FRP ratio, ρf = 2tf/bw; • fu,f:FRP tensile strength. Vw=ρwbwzffyw: contribution t ib ti off web b steel t l (bw: web b width, idth z: iint. t llever arm; ρw: steel t l ratio) ti ) ρtot: total longitudinal steel ratio 1,4 p h: section depth 12 1,2 x : depth of compression zone 1 Ac= bwd Test-to-prediction ratio vs μ, no. tests 12 median=0.99,, CoV=14.8%: Vu,exp /V Vu,pred • • • • • 0,8 0,6 0,4 0,2 0 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 d tilit ductility • In a FRP-retrofitted member the shear resistance as controlled by diagonal tension cannot exceed the shear resistance of old member as controlled by web crushing 5 RC jackets per EN1998EN1998-3:2005 Concrete Jackets (continued/anchored in joint; w/ or w/o lap splices in old member) Calculation assumptions: • • • • • • • Fullll composite F it action ti off jacket j k t & old ld concrete t assumed d (jacketed (j k t d member: b monolithic”), even for minimal shear connection at interface (roughened interface, steel dowels epoxied into old concrete: useful but not essential); fc of “monolithic monolithic member”= member = that of the jacket (avoid large differences in old & new fc) Axial load considered to act on full, composite section; Longitudinal reinforcement of jacketed column: mainly that of the jacket. Vertical bars of old column considered at actual location between tension & compression bars of composite member (~ “web” longitudinal reinforcement), with its own fy; Only the transverse reinforcement of the jacket is considered for confinement; For shear resistance, resistance the old transverse reinforcement taken into account only in walls, if anchored in the (new) boundary elements The detailing & any lap-splicing of jacket reinforcement are taken into account. Then: MR & My of jacketed member: θy of jacketed member for pre-yield (elastic) stiffness: Sh Shear resistance i t off jacketed j k t d member: b Flexure-controlled ultimate deformation θu: ~100% ~105% ~100% 100% ~100% those of “monolithic member” calculated w/ assumptions p above. If jacket bars are not continued/anchored in the joint: The jacket is considered only to confine fully the old column section. of of off of 54 jacketed members w/ or w/o lap splices: test-to-calculated as monolithic 1.8 1.2 1.6 1.4 M y,exp/ My,calc θ y,exp/ θ yy,Eq.(1)&(2) 1 0.8 0.6 0.4 My 0.2 continuous bars plain 15db laps deformed 15db laps plain 25db laps deformed 30db laps deformed 45db laps non-anchored jacket bars group average st. dev. of group mean 1.2 1 0.8 0.6 04 0.4 0.2 0 2.5 0 1.6 2.25 1.4 θy 2 pl Eq.((3)) 1.2 1.5 y + θu θ u,exp / ( θ* EIexp / EI*eff 1.75 1.25 1 0.75 EIeff 1 0.8 06 0.6 0.4 0.5 0.2 0.25 0 θu a b c d e f g h i j 0 k a b c d e f g h i j a: no treatment, b: no treatment, predamage, c: welded U-bars, d: dowels, e: roughened, f: roughened / predamage, g: U-bars+ roughened, h: U-bars+roughened / predamage, i: roughened+dowels, j: roughened+dowels / predamage Steel jackets per EN1998EN1998-3:2005 Steel Jackets (not continued/anchored in joint) J k t stops Jacket t before b f the th joint j i t (several ( l mm gap to t joint j i t face) f ) • Flexural resistance, pre-yield (elastic) stiffness & flexurecontrolled ultimate deformation of RC member is not enhanced by jacket (flexural deformation capacity ~same as i old in ld member b iinside id jjacket, k t no b benefit fit ffrom confinement); fi t) • 50% of shear resistance of steel jacket, Vj=Ajfyjh, can be relied upon for shear resistance of retrofitted member (suppression of shear failure before or after flexural yielding); ) • Lap-splice clamping via friction mechanism at jacketmember interface, if jacket extends to ~1.5 times splice length and is bolt-anchored to member at end of splice region & ~1/3 its height from the joint face (anchor bolts at third-point of side)