A Bi-Abjective Model for Optimizing Price, Warranty Length, and

Transcription

A Bi-Abjective Model for Optimizing Price, Warranty Length, and
International Journal of Industrial Engineering & Production Management (2014)
July 2014, Volume 25, Number 2
pp. 131-142
http://IJIEPM.iust.ac.ir/
A Bi-Abjective Model for Optimizing Price, Warranty Length,
and Service Capacity Within Queuing Framework: Genetic
Algorithm and Fuzzy System
A. Mahmoudi & H. Shavandi*
Amin Mahmoudi, MSc, Faculty of Industrial and mechanical Engineering, Qazvin branch, Islamic Azad University, Qazvin, Iran
Hassan Shavandi, Associate Professor of Industrial Engineering, Sharif University of Technology, Tehran, Iran
Keywords
Bi-objective optimization,
Pricing, Queuing,
Fuzzy system,
Genetic algorithm,
Warranty,
1 ABSTRACT
In this paper, we have proposed a bi-objective model for pricingqueuing problem under fuzzy environment. The objectives are
maximizing the profit and minimizing the waiting time in system to
receive the service. Price, warranty length, and service capacity
decisions are analyzed for a seller with considering sale and service
channels. To formulate the demand function, a fuzzy system is
developed to estimate the demand value under price and warranty
length variables. Furthermore, a hybrid solution of genetic algorithm
and a fuzzy system is presented to solve the proposed model. At end,
numerical results are analyzed by solving sample problems.
© 2014 IUST Publication, IJIEPM. Vol. 25, No. 2, All Rights Reserved
*
Corresponding author. Hassan Shavandi
Email: [email protected]
‫‪http://IJIEPM.iust.ac.ir/‬‬
‫‪ISSN: 2008-4870‬‬
‫*‬
‫سيستم فازي‪،‬‬
‫الگوريتم ژنتيک‪،‬‬
‫وارانتي‪،‬‬
‫] [‬
‫] [‬
‫] [ ] [‬
‫] [‬
‫امين محمودي‪ ,‬کارشناسي ارشد‪ ،‬دانشکده مهندسي صنايع و مکانيک‪ ،‬واحد‬
‫قزوين‪ ،‬دانشگاه آزاد اسالمي‪ ,‬قزوين‪ ،‬ايران‪[email protected] ،‬‬
‫حسن شوندي‪ ،‬دانشيار دانشکده مهندسي‬
‫صنايع‪ ،‬دانشگاه صنعتي شريف‪[email protected] ,‬‬
‫] [‬
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
L-p metric
-
M/M/1
[ ]
M/M/1
L-p metric
‫‪‬‬
‫‪‬‬
‫‪‬‬
‫‪‬‬
‫‪‬‬
‫] [‬
‫‪‬‬
‫‪Cr ‬‬
‫‪C ‬‬
‫‪D‬‬
‫‪‬‬
‫‪P‬‬
‫‪w‬‬
‫‪‬‬
‫زن يره امين مت رکز‬
‫دم ا‬
‫فرو‬
‫از‬
‫فروشنده‬
‫م‬
‫قي‬
‫و‬
‫ا ا‬
‫را‬
‫‪  . w .D‬‬
‫و دوره‬
‫ارانتي‬
‫مشتريان‬
‫کانا‬
‫دم ا‬
‫فرو‬
‫از‬
‫‪C r .‬‬
‫‪‬‬
‫‪C  .‬‬
‫کانا فرو‬
‫‪-‬‬
Z 1  P .D  C r .  C  .
( )
D  f ( p ,w )
M/M/1
[ ]
Z2 
M
L
FL
VH
M/M/1
1
( )
 
VL
FH
( x  a) (b  a); a  x  b

 X ( x)  1
xb
(c  x) (c  b); b  x  c

H
( )
Max :
Z 1  P .D  C r .  C  .
Min :
Z2 
1
 
( )
Subject to :
C .  C  .
P r
D
 
( x  a) (b  a); a  x  b

 X ( x)  1
b xc
(d  x) (d  c); c  x  d

( )
-
 X ( x)
1
If P is H and W is L Then D is L
b
a
x
c
 X ( x)
[ ]
-
1
a
b
c
x
d
y0 x0
MISO
Y ( y 0 )
X (x 0 )
h2 h1
 j  min(h1 , h2 )
-
( )
w
D
uj
uj
u
j
u0
2
Singleton Fuzzifier
Mamdani Implication
4 Centroid defuzzifier
5 Matching degree
3
1
Multi Input Single Output
P
J
u0 
u
j
 j
j 1
J

j
j 1
H
H
M
M
VL
VL
H
VH
M
H
L
VL
FL
VL
H
FH
M
VL
L
L
H
VH
H
VL
L
M
H
VH
VH
VL
M
H
H
M
VL
L
M
VH
H
H
L
L
VL
VL
VH
H
M
L
FL
L
VH
FH
H
L
FL
M
VH
FH
VH
L
L
H
VH
L
VL
M
M
VH
VH
M
L
M
-
-
-
M
M
M
X (x )
VL
1
X
min
L
X (x )
1
M
x2
x1
H
L
VH
x4
x3
‫د شد‬
VL
‫ان‬
Y ( y )
‫يم‬
‫يم‬
M
X
max
x5
VL
1
L
y2
y1
y min
Y ( y )
‫ا‬
H
VH
h1
‫شد‬
VL
1
‫و د‬
M
H
y3
y4
‫ان‬
L
‫و د‬
M
H
 Z (z )
VH
1
y5
FL
L
M
H
FH
z1
z2
z3
z4
z5
z6
0
y max
‫ا‬
VL
‫و ا د ود‬
 Z (z )
VH
VL
1
L
z7
z
Z max
‫ن‬
M
H
FH
u4
u5
u6
VH
j
Min
h2
FL
VH
u 'j
X min
x1
x2
x4
x3
‫يم‬
‫ام‬
‫د‬
x5
‫م‬
X
max
‫ي‬
y min
‫ان‬
y2
y1
‫و د‬
‫ام‬
y4
y3
‫د‬
‫م‬
y5
y max
0
u1
u2
u3
‫ي‬
L-p metric
-
MODM
[ ]
u7
z
U max
max : F (x )  f 1 (x ), f 2 (x ),..., f k (x )
Subject to: x  X
( )
X Rk
[ ]
K
MODM
L-p metric
GA
[ ] [ ]
GA
L-p metric
[ ]
k

Min : L  p    j
 j 1


-
Subject to:
t
 f (x * )  f (x ) 
j
 j

*


f
(
x
)
j


1
 t




( )
x X  R k
j
P
W

fj(x*)
j
1t  
µ
w
w p
p
Min: Z2
Max: Z1
Max: Z 2'  1 Z 2
b  ( Z 1, Z 2* )
L-p metric
1
Roulette Wheel
j
Min: Z2
a  ( Z 1* , Z 2 )
t
‫‪p‬‬
‫‪w‬‬
‫وليد‬
‫‪-‬‬
‫عي‬
‫اولي از ‪ , w ،p‬‬
‫‪ P, w‬‬
‫‪w P‬‬
‫مت ير اي ورودي‬
‫‪1‬‬
‫‪0‬‬
‫‪0‬‬
‫‪1‬‬
‫‪0‬‬
‫‪1‬‬
‫‪2‬‬
‫‪w2‬‬
‫‪P2‬‬
‫‪1‬‬
‫‪w1‬‬
‫‪P1‬‬
‫‪1‬‬
‫‪w2‬‬
‫‪P2‬‬
‫‪2‬‬
‫‪w1‬‬
‫‪P2‬‬
‫سيستم فازي‬
‫سيستم فازي‬
‫د‬
‫دد‬
‫‪‬‬
‫فازي ساز‬
‫ي اد‬
‫مو‬
‫فرآيند استنتا‬
‫فازي‬
‫ايگاه قوا د فازي‬
‫ير فازي ساز‬
‫مو‬
‫ي‬
‫ين ا ا‬
‫ارزيا ي کروموزو‬
‫ا وس‬
‫انت ا والدين‬
‫گر ا ع‬
‫گر ه‬
‫ير‬
‫‪p‬‬
‫‪w‬‬
‫‪‬‬
‫‪p‬‬
‫‪w p‬‬
‫‪w‬‬
‫‪‬‬
‫‪Tournament replacement‬‬
‫‪1‬‬
‫شر‬
‫و قف‬
‫ان ا شد‬
‫ا ع رازند ي‬
u0
-
L-p metric
 1  3 t=2   1 C   150 C r  40
2 1
‫يم‬
X (x )
VL
1
360
L
460
M
760
‫ان‬
Y ( y )
H
1554
1154
VH
1961
1
2041
VL
0.056
‫و د‬
L
0.44
2
M
H
4.12
6
U (u )
VH
1
8
0
9.7
VL
FL
L
M
16
166
333
500
H
FH
666
833
VH
u
980 1000
4
u0
4
u
j
 j

 j u j
j
j 1
u
j
j
j 1
P
D
W
P
H
M
L
FH
H
L
M
M
M
H
H
M
C r .  C  .
Z 1*  380071
D
 
Z 2*'  2020 ( Z 2*  0.000495)
p metric L-
Max: Z 2'  1 Z 2
Min: Z2
1
L-p metric
Min : L  p
Matlab
2
2 2
  *
 Z *'  Z '  
Z1  Z1 

2
2
 3  
  1 
 
*
 Z 2*'  
  Z 1 


Subject to:
Matlab
Z2
L-p metric
Z1

W
P
L-p metric
-
M/M/1
[1]
Padmanabhan, V., “Warranty Policy and Extended
Service Contracts: Theory and an Application to
Automobiles”, Marketing Science, 1993.
[2]
Boulding, W., Kirmani, A., “A Consumer-Side
Experimental Examination of Signaling Theory: do
Consumers Perceive Warranties as Signals of
Quality”, Journal of Consumer Research, 1993.
[3]
Li, K., Chhajed, D., Mallik, S., Design of Extended
Warranties in Supply Chains. Working Paper, 2005,
Free Replacement Policy in the Static Demand
Market, Omega, 2009, 37, 29 – 39.
[16]
Gross, D., Harris, C, M, Fundamental of Queuing
Theory (3rd ed), New York, 1998, NY: WileyInterscience.
[17]
Zimmermann. H. J, Fuzzy Set Theory – and its
Applications (3rd ed.), Kluwer Academic
Publishers, 1996.
[18]
Deb. K, Multi-objective Optimization Using
Evolutionary Algorithms, Chichester, UK: Wiley,
2001.
[19]
Stadler.
W, Applications of Multicriteria
Optimization in Engineering and the Sciences (A
Survey). In: Zeleny, M. (ed.) Multiple Criteria
Decision Making – Past Decade and Future Trends.
Greenwich, CT: JAI, 1984.
[20]
Holland. J. H, Adaptation in Natural and Artificial
Systems: An Introductory Analysiswith Application
to Biology, Control and Artificial Intelligence.
University of Michigan Press, 1975.
[21]
Holland. J. H, Adaptation in Natural and Artificial
Systems (2nd ed.), MID Press, 1992.
available: at
http:// www.business.uiuc.edu/Working
Papers/papers/05-0128.pdf, last accessed July 2008.
[4]
Kim, B., Park, S., “Optimal Pricing, EOL (End of
Life) Warranty, and Spare Parts Manufacturing
Strategy Amid Product Transition”, European
Journal of Operational Research, 188(3), 2007,
723–745.
[5]
Chunga, C.J., Wee, H.M., An Integrated
Production-Inventory Deteriorating Model for
Pricing Policy Considering Imperfect Production,
Inspection Planning and Warranty-Period- and
Stock-Level-Dependant Demand, International
Journal of Systems Science, 2008, Vol. 39, 823–
837.
[6]
Chun, Wu., C, Yu Chou. C, Huang. C, Optimal
Price, Warranty Length and Production Rate for
Free Replacement Policy in the Static Demand
Market, Omega, 2009, 37, 29 – 39.
[7]
Boyaci, T., Ray, S., Product Differentiation and
Capacity Cost Interaction in Time and Price
Sensitive Markets, Manuf Serv Oper Manage, 2003,
5(1):18–36.
[8]
Yoon. S, Lewis. M, Optimal Pricing and Admission
Control in a Queueing System with Periodically
Varying Parameters, Queueing Systems, 2003, 47,
177–199.
[9]
Basar, Cil. E, Karaesmen. F., Lerzan Örmeci. E,
Dynamic Pricing and Scheduling in a Multi-Class
Single-Server Queuing System, Queuing System,
2011, 67, 305–331.
[10]
Son, J.-D., Optimal Admission and Pricing Control
Problem with Deterministic Service Times and
Sideline Profit, Queuing Syst, 2008, 60, 71–85.
[11]
Pangburn, M., Stavrulaki, E, Capacity and Price
Setting for Dispersed, Time-Sensitive Customer
Segments, European Journal of Operational
Research, 2008, 184, 1100–1121.
[12]
Abouee-Mehrizi, H., Sahar Babri, S., Berman, O.,
Shavandi, H., Optimizing Capacity, Pricing and
Location Decisions on a Congested Network with
Balking, Math Meth Oper Res, 2011.
[13]
Hayel, Y., Mohamed Ouarraou, M., Tuffin, B.,
Optimal Measurement-Based Pricing For an M/M/1
Queue, Netw Spat Econ, 2006, 7, 177–195.
[14]
Zadeh, L. A, Fuzzy Sets, Information and Control,
1965, 8, 338–353.
[15]
Chun Wu. C, Yu Chou. C, Huang. C, Optimal
Price, Warranty Length and Production Rate for

Similar documents

بسمه تعالي تاريخ - دانشكده مهندسي پزشكي

بسمه تعالي تاريخ - دانشكده مهندسي پزشكي 91- Towhidkhah, F., Gander, R.E., Wood, H.C, “Optimal Joint Position Control Using Model Predictive Control and Impedance Tuning” 7th Iranian Annual Conf. on Biomed. Eng, Sharif Univ, Tehran, PP. 1...

More information

Efficiency Evaluation of Foreign Currency Branches of Bank

Efficiency Evaluation of Foreign Currency Branches of Bank improve their efficiency have been presented. Finally, with the use of hybrid model AHP/DEA, all of the foreign currency branches of Bank Keshavarzi of Iran were full ranked. © 2014 IUST Publicatio...

More information