v - INFN

Transcription

v - INFN
Statistical modeling, financial data analysis and applications
Venice September2013
Financial data Complexity:
Dependency, Networks and Scaling
Tomaso Aste
Financial Computing & Analytics group
• 
• 
• 
• 
http://fincomp.cs.ucl.ac.uk/
Academic Members
Expertise:
•  Philip Treleaven
big data analytics
statistical modeling
•  Robert Smith
algorithmic trading
•  Antoaneta Serguieva
extreme market risk models
high frequency trading
•  Sebastian del Bano Rollin
price formation
•  Donald Lawrence
behavioral finance
•  Denise Gorse
market microstructure
systemic risk
•  Guido Germano
operation risk
•  Christopher D. Clack
credit derivatives
stochastic analysis
•  Tomaso Aste
portfolio optimization
External Members
market microstructure
•  Guillaume Bagnarosa
agent based simulations
information flow
•  Ariane Chapelle
news impact
•  Piotr Karasinski
network theory
financial mathematics
•  Jessica James
statistical physics
•  William Shaw
applied statistics
MSc Programmes
(….)
•  Financial Risk Management (~40 students)
•  Financial Computing (~30 students)
•  Financial Mathematics (~30 students)
•  (new) Quantitative Regulation / Business data Analytics
Doctoral training
•  PhD centre in financial computing (~ 70 students)
Information
We are witnessing interesting times rich of information, readily
available for us all. Using, understanding and filtering such
information has become one of the major tasks and a crucial
bottleneck for scientific and industrial endeavors
Information content and flow are often associated with large degrees of
redundancy both in time (repeating and scaling patterns) and across
different variables (dependency and causality).
Financial markets are information processing systems where news
propagate and impact on orders, transactions and -ultimately- prices.
Information impacts different operators and different products in different
ways resulting in complex changes that can be seen at different
temporal scales and across different financial products in a complex
network of dependency.
Financial Signals Complexity
•  Several time-scales of the processes
•  Large number of variables
•  Several kinds of interactions
Complexity of each
variable over its
time evolution
Complexity of the
collective
dynamics of all
variables
Scaling
properties
Dependency/
Causality
structure
Complexity of each variable over
its time evolution
Single variable Complexity
1sec-5min
AAPL 1 sec data 3 Dic 2012
AAPL 1 sec data 3 Dic 2012
0
0
10
10
1
10
30
60
300
−1
10
−1
1
10
30
60
300
rescaled
10
relative freq
relative freq
H(2) = 0.34633
−2
10
−3
−3
10
10
−4
−4
10
−2
−1.5
−1
−0.5
0
lor−return
0.5
1
1.5
10
−1.5
2
1min-1h
AAPL 1 min data Nov 2012
F>
relative freq
−2
10
−2
10
−3
−3
10
10
−4
10 −3
10
−2
10
−1
10
Log−returns
0
10
og-returns for the stock prices of Lehman Brothers (left panel) and
reen lines mark respectively one, three and ten standard deviations
l region with the power law function F> (r) ⇥ r
. The estimated
−6
−4
−2
0
log−return
Log-return
2
4
1
2
3
4
5
6
7
8
9
10
12
15
20
25
30
35
40
45
50
55
60
0.5
1
1.5
−3
x 10
AAPL 1 min data Nov 2012
10
rescaled
10
−2
10
−3
10
6
−3
x 10
H(2) = 0.47532
−1
relative freq
−1
−1
0
log−return
0
10
10
−0.5
Log-return/τH(2)
0
10
0
−1
−3
x 10
Log-return
10
−2
10
−6
−4
−2
0
log−return
2
Log-return/τH(2)
4
1
2
3
4
5
6
7
8
9
10
12
15
20
25
30
35
40
45
50
55
60
6
−3
x 10
Scaling and multiscaling: the observation of financial fluctuations at different scales
(seconds, minutes, hours, days, months, years) reveals similarities and differences
showing (non-trivial) connections between different time-scales
Basic Materials
Complexity across time-scales
Quantification of scaling and multi-scaling
K q (τ ) =
x(t + τ ) − x(t)
x(t)
q
q
~ g(q)τ qH (q)
We developed a numerical tool to study directly the scaling properties of the data via the qth-order moments
of the distribution of the increments:
The generalized Hurst exponent method
http://www.mathworks.com/matlabcentral/fileexchange/30076
When H(q)=H constant and independent of q the process is uniscaling or unifractal, H coincides with the Hurst
coefficient or the self-affine index.
When H(q) is not constant the process is multi-scaling (or multi-fractal) and different exponents characterize the
scaling of different q-moments of the distribution.
The nonlinearity of qH(q) is a solid argument against the Brownian, fractional Brownian, Levy, and fractional Levy
models, which are all additive models, therefore giving for qH(q) straight lines or portions of straight lines.
T Di Matteo
Raffaello Morales, T. Di Matteo, Ruggero Gramatica, TA, “Dynamical Hurst exponent as a tool to monitor unstable periods in financial time series”, Physica A, 391 (2012) 3180-3189.
Jozef Barunik, T A, Tiziana Di Matteo and Ruipeng Liu, “Understanding the source of multifractality in financial markets”, Physica A, 391 (2012) 4234–4251 M. Bartolozzi, C. Mellen, F. Chan, D. Oliver,
T. Di Matteo and T.A, "Applications of physical methods in high-frequency futures markets", Proc. SPIE, Vol. 6802, 680203 (Jan. 5, 2008).
Ruipeng Liu, TA and T. Di Matteo, "Multi-scaling Modelling in Financial Markets", Proc. SPIE Vol. 6802, 68021A (Jan. 5, 2008).
M. Bartolozzi, C. Mellen, T. Di Matteo, and T.A, Multi-scale correlations in different futures markets, Eur. Phys. J. B 58 (2007) 207-220.
T. Di Matteo, TA and M. M. Dacorogna, "Long term memories of developed and emerging markets: using the scaling analysis to characterize their stage of development", Journal of Banking & Finance
29/4 (2005) 827-851.
T. Di Matteo, TA and M. M. Dacorogna, "Scaling behaviors in differently developed markets", Physica A 324 (2003) 183-188.
Financial signal are multi-scaling
log(K q (τ )) ~ qH (q)log(τ ) + log(g(q))
K q (τ ) =
H(q) depends on q
H(1) ≠ H(2) ≠ 0.5
multiscaling
T
O
N
.
….
x(t + τ ) − x(t)
x(t)
q
..
…
r
a
e
n
i
L
q
~ g(q)τ qH (q)
Deviations from pure Brownian motion are meaninghful
T. Di Matteo, TA and M. M. Dacorogna, "Scaling behaviors in differently developed markets", Physica A 324 (2003) 183-188.
0.2
1996
1998
2000
2002
t
2004
2006
0.2
1996
2008
1998
2000
2002
t
2004
2006
2008
Multiscaling, switching and market stress
Figure 3:
Weighted Generalized Hurst exponent H w (q = 1) as a function of time for American International Group (AIG).
Left panel:
t = 200 days time-window. Right panel:
t = 400 days time-window. The characteristic time is kept constant
at ✓ = 300 days in both plots. The points are reported in correspondence of the end of the time-window.
0.7
0.7
American International Group
0.5
0.7
0.6
Htw (1)
Htw (1)
0.6
Freddie Mac
0.4
0.7
Fannie Mae
0.6
0.3
2000
2002
2004
t
2006
2008
H tw (1)
H tw (1)
0.5
0.4
0.6
0.5
Lehman Brothers Holdings
0.4
0.3
0.5
2000
2002
2004
t
2006
2008
0.4
2000
H tw (1)
H tw (1)
Figure 4:
Left panel: weighted Generalized Hurst exponent as a function of time for American International Group (AIG).
Freddie
Mac
Fannie Mae
0.7
0.7
Right panel: weighted Generalized Hurst exponent as a function of time for Lehman Brothers Holdings (LBH). Note the abrupt
jump in the value of the GHE at the end of the time-period. The overlapping time-windows are
t = 750 days, with ✓ = 250
days.
The values are plotted in correspondence of the end of the time-window
(solid black line). The shaded areas around the
0.3
0.3
0.6 plot represent the sizes of the standard deviations.
0.6
tick-line
2002
2004
2006
2008
2000
2002
2004
2006
2008
t
t
0.5
0.5
interesting if we compare the two panels. According to [11, 12] these trends might suggest a transition from
The wGHE is
conveying important
information about the
stability of a company
and by tracking its
value in time one has
a further tool to
assess risk
a stable stage of the companies to an unstable one.
Other
same trend are
shown in Fig.6. Again the trend is increasing
0.4 bailed-out companies which show the w
0.4
Figure
5:
Weighted
Generalized
Hurst
exponent the
H (q
= of
1) as
function of time.
Left
panel:
Mac. Right panel:
and crossing
over the
value of
0.5 towards
end
thea time-period
when
the
crisisFreddie
fully unfolded.
Fannie
Mae.
The increasing
trend over
the
whole
period highlights
a transition
values of
H w (1)
< 0.5
tofinancial
values of
We
have
compared
these
results
with
those
obtained
by
looking
at otherfrom
companies
either
from
the
w (1)
0.3
0.3
H
>
0.5.
This
suggests
a
progressive
change
in
the
stability
of
the
companies
under
study.
sector or belonging to other market sectors to test the significance of these results. For example, in the Basic
Materials
sector,2002
we find2004
many companies
whose dynamical wGHE
in
time, thus
an
2000
2006
2008
2000decreases
2002
2004
2006exhibiting
2008
opposite behavior to that shown
by the bailed-out companies in the financial sector. tAn example is reported
t
in Fig.7 where the dynamical wGHE’s for two companies belonging to the sector of Basic Materials are
shown. We notice a very definite overall decreasing trend, as if the companies securities gained persistence
Motors
Washington
Mutual
Corp
0.75: General
0.7
Figure
Weighted
Generalized Hurst exponent H w (q = 1) as a function
of time. Left
panel:
Freddie Mac. Right panel:
5
Fannie Mae.
The increasing trend over the whole period highlights
a transition from values of H w (1) < 0.5 to values of
H w (1) > 0.5. This suggests a progressive change in the stability of the companies under study.
0.5
0.7
0.6
H tw (1)
H tw (1)
0.6
General Motors
0.4
0.7
Washington Mutual Corp
0.4
H tw (1)
0.6
H tw (1)
0.6
0.3
0.5
0.4
0.5
2000
2002
2004
t
2006
0.3
0.5
2008
0.4
2000
2002
2004
t
2006
2008
0.3
0.3
Noble
Energy
Inc
Occidental
Petroleum
Corp
0.7
0.7 of
Figure
6:
Weighed
Generalized
Hurst exponent H w (q = 1) as a function
time. Left
panel: General
Motors, a company
2000
2002
2004
2006
2008Its bankruptcy was classified
2000 as 2002
2004
2006
2008 Right
that went bankrupt
following
Chrysler
in
June 2009.
the fourth
largest in
U.S. history.
t
t
panel: Washington Mutual. The increasing trend over the whole period highlights a transition from values of H w (1) < 0.5 to
w
values of H (1) > 0.5. This suggests a progressive change in the stability of the companies under study.
0.6
0.6
H tw (1)
H tw (1)
Figure 6:
Weighed Generalized Hurst exponent H w (q = 1) as a function of time. Left panel: General Motors, a company
that went bankrupt fol lowing Chrysler in June 2009. Its bankruptcy was classified as the fourth largest in U.S. history. Right
w (1) < 0.5 to
panel:
Washington
The increasing
the
whole period
highlights
transition
from values of
in
going
through Mutual.
the period
of crisis. trend
This over
is in
agreement
with
what ahas
been considered
asH
the
boost of
values of H w (1) > 0.5. This suggests a progressive change in the stability of the companies under study.
0.5
0.5 turning away from the financial sector.
the commodities
market during the crisis, where investors were
There are other sectors that have revealed instead no particular trend in the dynamical wGHE. We stress
in going
period sector
of crisis.
This
is increasing
in agreement
with
what for
hasthe
been
considered
as the boost
of
that
eventhrough
in the the
Financial
itself,
the
trend
found
bailed-out
companies
is not
0.4
0.4
the commodities
market
during the
crisis,
where investors
were turning
away
from
financial
sector.
common
to others;
for instance,
many
companies,
like American
Express
Co
andthe
Morgan
Stanley
show
There behaviors,
are other sectors
that have
revealed
instead
no particular
trend
the
dynamical
wGHE.
We stress
stable
with wGHE
values
steadily
fluctuating
about 0.5.
We in
will
see
in the next
paragraph
that
that
even in
the Financial
sector
itself,
thedynamical
increasing
trend are
found
theshowing
bailed-out
companies
the
sectors
exhibiting
a defining
trend
in the
wGHE
alsofor
those
extreme
values is
in not
the
0.3
0.3
common to others; for instance, many companies, like American Express Co and Morgan Stanley show
tail exponents of their distributions of returns. Although the increase or decrease of the wGHE is not simply
stable behaviors, with wGHE values steadily fluctuating about 0.5. We will see in the next paragraph that
related
with
the return
only,
behaviors
are
associated
with
the showing
fluctuations
of the
log-returns
the sectors
exhibiting
defining
trend
in the
dynamical
wGHE
are
also
those
values
2000
2002 a statistics
2004
2006 both
2008
2000
2002
2004 extreme
2006
2008in the
distributions.
tail exponents of their distributions
of returns. Although the increase or decrease of t
the wGHE is not simply
t
related with the return statistics only, both behaviors are associated with the fluctuations of the log-returns
R Morales
distributions.
6
Raffaello
Morales, T. Di Matteo, Ruggero Gramatica, TA, “Dynamical
Hurst exponent as a tool to monitor unstable periods in financial time series”, Physica
Figure 7: Weighed Generalized Hurst exponent H w (q = 1) as a function of time for: Left panel - Noble Energy Inc.; Right
6
A,panel
391 (2012)
3180-3189.
- Occidental Petroleum. The time-window is taken to be
t = 750 days and ✓ = 250 days.
Decomposing financial signals
3.48
3.46
3.44
3.42
3.4
3.38
3.36
3.34
0
50
100
150
200
250
300
350
400
Empirical Mode Decomposition
1.4
0
50
100
150
200
2
a (t) = Cτ (t)
1.2
250
2 H (t )
300
350
400
(Hilbert-Huang Transform)
1
0.8
0.6
0.4
0.2
0
0
Instantaneous Hurst exponent
50
100
150
200
250
300
350
N Nava
400
Anomalous instantaneous scaling
2
log a (t) − 2H log τ (t)
Log prices
Log prices
3.6
3.625
3.58
3.62
3.56
Log Price
Log Price
3.615
3.61
3.605
3.52
3.5
3.48
3.6
3.595
3.54
3.46
0
100
200
300
400
Time
500
600
700
800
0
100
200
Instantaneous var/period
400
Time
500
600
700
800
Instantaneous var/period
-17
-15
IMF1
IMF2
IMF3
IMF4
IMF5
IMF6
-18
-20
IMF1
IMF2
IMF3
IMF4
IMF5
IMF6
IMF7
IMF8
-16
-17
var/period
-19
var/period
300
-18
-19
-21
-20
-22
-23
-21
0
100
200
300
400
Time
500
600
700
800
-22
0
100
200
300
400
Time
500
600
700
800
Complexity of the collective
dynamics of all variables
Measuring dependency and causality
X
•  Granger causality
•  Transfer Entropy
•  Partial Correlations
Y
Z
Non-linearity and kernel measure
•  Kernelized Granger/Geweke’s causality
•  Hilbert-Schmidt Normalised Conditional Independence Criterion (HSNCIC)
8.2. Applying to financial data – Bitcoin
•  Kernelized Transfer Entropy
Chapter 8. Application to real data
Ensemble of methods
TE bitcoin EURJPY
TE EURJPY bitcoin
1.2
1.1
20
1
0.9
30
0.8
40
0.7
0.6
50
1.2
10
time window number, from 1 to 68
time window number, from 1 to 68
10
1.1
20
1
0.9
30
0.8
0.7
50
0.6
0.5
60
0.4
2
4
6
8
10
number of lags, between 0 and 11
SRE
PRG
40
0.5
60
INF
1.3
1.3
0.4
2
4
6
8
10
number of lags, between 0 and 11
SRE − real stock returns
INF − inflation rate
PRG − production growth
IRE − real itnerest rates
IRE
A Zaremba
Information Filtering
Collective Dynamics
pi (t)
401 firms on the US equity market from 01/01/96 to
01/01/2009
data over a window of 250 days with 20 days steps
stocks prices
Dependency structure
Ci, j = (x i − x i )(x j − x j )
x i (t) = log(pi (t + τ )) − log(pi (t))
ρ i, j =
Ci, j
σ iσ j
N(N −1)
= 80200
2
€
I consider ρi,j as a similarity measure
N=64
N=10
N=20
N=5
€
€
O(N2) relations with a lot of redundancy
Distribution of
eigenvalues
λmax = 1+
1
1
+
Q Q
λmin = 1+
1
1
−
Q Q
€
€
€
€
p( λ) =
Q=
T
N
Q (λmax − λ)(λ − λmin )
2π
λ
only order N are significant
We must reduce connectivity without
tresholding
Simplifying Dependency Structure
Information Filtering
By keeping the network of important links only
How can we build such a network?
By embedding on a surface
Why surfaces?
• locally planar
• natural hierarchy
• elementary moves
• computability
Any network can be embedded on a surface!
The embedding of KN is possible on
an orientable surface Sg of genus
(N − 3)(N − 4) 
g ≥ g =


12
∗
any ΓN is a sub-graph of KN and can be embedded on Sg
G. Ringel, Map Color Theorem, Springer-Verlag, Berlin, (1974) cap. 4
P. J. Gilbin, Graphs, Surfaces and Homology, Chapman and Hall, 2nd edition (1981)
G. Ringel and J. W. T. Youngs, Proc. Nat. Acad. Sci. USA 60 (1968) 438-445.
The surface constraints the complexity of the network
€
(the degree of interwoveness)
Planar Maximally Filtered Graph
max(∑ ai, j I i, j )
Sort similarities form the largest to the smallest
Connect the first two nodes on the top line of the list
i, j
Delete the top line from the list
no
Is the resulting graph planar?
yes
no
Keep the edge
Discard the edge
Have we reached the maximum
Results number of edges?
Guido Previde Massara, University
College London
yes
[email protected] [email protected]
Tomaso Aste, University College London
Tumminello,
TA, T. [email protected]
Matteo, R.N. Mantegna, “A tool for filtering
Tiziana Di Matteo, King’s College London
tiziana.di [email protected]
http://www.mathworks.com/matlabcentral/fileexchange/27360
M.
information in complex systems”, PNAS 102 (2005) 10421-10426.
Tetrahedron Maximally Planar Graph
5th September 2013
1
Results and discussion
1
1
0.98
0.96
0.8
0.94
0.92
0.6
0.9
0.4
0.88
0.86
0.2
0.84
0
0.82
(a)
PMFG
(b)
(c)
(d)
Deltahedron heuristic
BMPG
(e)
BMPG+T1
(a)
PMFG
(b)
(c)
Deltahedron heuristic
(d)
(e)
BMPG
BMPG+T1
Algorithm 3: BMP algorithm
input : W — a correlation matrix
output: BMP — a filtered version of W respecting the planarity
constraint
/* Initialise a triangle T1 e.g. by using the highest
correlated vertices
*/
1 T1
Three vertices with highest correlation ;
2 VertexList
List of vertices of W not belonging to T1 ;
3 Calculate Gains(VertexList, T1 ) ;
4 n
number of vertices in VertexList ;
5 i
0 ;
6 while i  n do
7
(Vi , Tabc ) = argmax Gains(Vk , Txyz ) ;
8
Gains(Vi , :) = 0 ;
9
Gains(:, Tabc ) = 0 ;
10
Ta1 , Ta2 , Ta3
triangles created by the insertion of Vi ;
11
Calculate Gains(i + 1 to n, Ta1 ), Gains(i + 1 to n, Ta2 ), and
Gains(i + 1 to n, Ta3 ) ;
12
Evaluate Gain by implementing T1 over Ta1 , Ta2 , Ta3 and execute
13 end
14 return BMP ;
Figure 1: Execution times relative to PMFG of Deltahedron heuristics, DMPG,Figure 2: Sum of weights in the extracted planar graph relative to the sum
and DMPG+T1 on a number of matrices: (a) Real correlation matrix 395x395,of the highest 3(N
2) edge weights of Deltahedron heuristics, DMPG, and
(b) Real correlation matrix 395x395, (c) Real correlation matrix 395x395, (d)DMPG+T1 on a number of matrices: (a) Real correlation matrix 395x395, (b)
Real correlation matrix 395x395 (e) Symmetric random uniform matrix 395x395Real correlation matrix 395x395, (c) Real correlation matrix 395x395, (d) Real
correlation matrix 395x395 (e) Symmetric random uniform matrix 395x395
4 Results and
discussion
The novelty of the method is that we do not longer rely on any particular
ordering
but at
4.1 Analysis of the performance of the new algorithm with
every stage we calculate the gain that would be obtained by adding
any of
the
weighted
measures
remaining vertices inside any triangle, complexity is O(n2) and results improve PMFG
G Previde Massara
1
We have tested the new algorithm for a number of matrices of various sizes and
di↵erent composition. For every type of matrix we compare the time perfor-
market. For each market day in t 2 [ t + 1, T
t + 1] we
peripheral stocks (with the largest values of X + Y ) and
investigate the behavior of a selection of N = 300 stocks with
built a portfolio with either uniform weights or Markowitz
high capitalization and that have performed well over the preweights [4], with or without short-selling (in the present
vious year ( t = 250 market days, see details in Materials and
study this corresponds to a total of 7071 portfolios, with t 2
Methods). Specifically, we computed correlations over a win[ t + 1, ..., T
t + 1]). For each portfolio we observe the redow of six months, reducing the excessive influence of remote
turns, defined as rt (⌧ ) = [P rice(t + ⌧ )
P rice(t)] /P rice(t),
market shocks on present correlations by using exponential
over a year following the investment date (⌧ 2 [1, 250]). The
smoothing [5] (which assigns higher weights to more recent
performance of each investment strategy is measured by comevents and incrementally reduces weights to past events). We
puting the average r̄(⌧ ) and the standard deviation, s(⌧ ) of
then improved the estimator by computing the average correthe returns over the 7071 investment dates. We then used the
)
lation matrix with shrinkage [6] over a period of six months
‘signal-to-noise ratio’, r̄(⌧
, as proxy for performance: good
s(⌧ )
obtaining in this way a robust estimation of the correlations
over the year preceding the investment day t (see details in
Materials and Methods). Such a matrix shows a remarkable
F Pozzi
persistence, with autocorrelation
values ranging around 50%
1.0
1.0
P
m= 5
m= 10
P
even after one year1 . This high persistence
is a very impor0.8
0.8
tant fact implying that measurements from the past are likely
to forecast the future and the ordering of the correlations is
P
0.6
0.6
expected to remain rather stable.
We then used these average
r̄
r̄
weighted correlations with shrinkage
s
s
C to construct the financial
0.4
0.4
filtered networks: M ST and P M F G [2, 3, 7]. An example of
C
C
P M F G is shown in Figure 1.
C
0.2
0.2
We now discuss how an efficient investment strategy can
benefit from the knowledge of such market dependency struc0.0
0.0
0
42
84
126
168
210
252
0
42
84
126
168
210
252
Market days
Market days
P
ture. In particular
we built portfolios from a set of stocks
Portfolio
performance
C
1.0
1.0
selected from the peripheral regions of the financial filtered
m= 20
m= 30
networks and we compared the performance
of these portfoC
0.8
0.8
C
lios with
the
performance of Cportfolios built from Ca selection
C
C
C
of central stocks andC other portfolios
made with randomly se0.6
0.6
C or built by using other traditional methods.
lected stocks
To
C
r̄
r̄
C
s
s
C
C
this purpose, we first must distinguish between
stocks lying in
0.4
0.4
the networks’ central
regions from those lying in the periphC
C
C
eries. Numerous
centrality/peripherality measures have been
0.2
0.2
C
P
proposed in the literature [9, 10, 11, 12, 13]; they reflect difP
P happen that a vertex results central
0.0
0.0
ferent criteria and it can
0
42
84
126
168
210
252
0
42
84
126
168
210
252
Market days
Market days
C
for one measure
and peripheral for another. We have thereP
fore adopted an ‘agnostic’ perspective by looking at some of
Fig. 2. Comparison between the performance of di↵erent portfolios with uniform
6
6
6
the most common centrality/peripherality measures
(namely
P
weights (u) composed of m = 5, 10, 20, 30 stocks. The symbol ⇤ indicate portDegree (D), Betweenness Centrality (BC ), Eccentricity (E),
folios made with m most peripheral
stocks (i.e. with largest
X + Y ). O indicate
85
85
85
C
portfolios made with the m most
central stocks (i.e. with80smallest X + Y ). These
Closeness (C ) and Eigenvector Centrality (EC ) [13] and P
by
80
80
performances are compared with:
(/) portfolios made of m
randomly chosen stocks;
combining them in order to better identify central and pe75
75
75
(.) portfolios made with the 70
m stocks that have achieved70the best performance over
70
ripheral stocks in the financial filtered networks. Specifically,
C
P
the period preceding the investment date. The (tick line) is a ’market portfolio’ made
we constructed two hybrid centrality indices, X and Y , which
40 is the same across the four
40
MKT it
MKT
MKT
by40 taking
all 300 stocksP−pand
figures.
P−p
P−p
30
30
30
group together the rankings of the previous measures (see deM−p
M−p
M−p
20
20
20
PM−p
PM−p
PM−p
10
10
10
P−c
P−c
P−c
tails in Materials and Methods). In terms of these hybrid
5
5
5
M−c
M−c
M−c
PM−c
PM−c
PM−c
C
1.0
1.0
measures, Csmall values of (X + Y ) are associated with central
Probability
of
negative
returns
m=
10
m=
20
Pvertices whereas large values are associated with peripheral
P
12
12
12
0.8
0.8
vertices. From
the study
of the variation with time
P of these
C
C
85
85
85
centrality indices we observed that central vertices are sta0.6
0.6
80
80
80
C
P
ble with a large likelihood to be persistentlyP observed
in the
r̄
r̄
75
75
75
s
s
P
center over time.
Whereas peripheral vertices tend to be less
0.4
0.4
70
70
70
stable with a larger variability. [un po’ di piu’ e un po’ piu’
2
40
40
40
MKT
MKT
MKT
0.2
quatitativo ] We observe that, in terms of industrial sectors ,
P−p
P−p
P−p
30 0.2
30
30
M−p
M−p
M−p
20
20
20
PM−p
PM−p
PM−p
10
10
10
the peripheries are mainly populated
by companies belonging
P
P−c
P−c
P−c
5
5
5
M−c
M−c
M−c
0.0
PM−c 84
PM−c 0.00
PM−c 210
0
42
126
168
210
252
42
84
126
168
252
to “Electric, Gas, and Sanitary Services” (representing 20%
Market days
Market days
of peripheral companies vs. 11% of all companies), “Oil
and
Fig. 5. Probability of non negative returns (expressed in per-cent values) after six months from the date when the investment was made (upper panel)
F. Pozzi,
T. Di Matteo, and
TA , “Spread
of risk “Petroleum
across financialRefining
markets:
the
peripheries”,
Reports
1665.
Fig. in3.
Comparison
between
performance
di↵erent
portfolios
obtained (ns
by) and wi
Gas Extraction”
(7.0%
vs. 4.8%),
and
from the better
date
whento
theinvest
investment
was
made
(lower panel).
TheScientific
cases the
with uniform
weights (3
uof
),(2013)
Markowitz
solutions
with no short-selling
Efficient diversification / risk hedging
Correlation networks can be used for efficient portfolio differentiation
by selecting stocks from the periphery of the PMFG
P
.
.
.
.
.
.
.
.
.
.
.
.
.
P
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
P
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
P
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
P
.
.
.
.
.
.
.
.
.
.
.
P
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
u
ns
s
u
ns
s
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
P
P
.
.
.
.
.
.
.
P
.
.
.
.
.
.
.
.
.
.
.
.
.
P
.
.
.
.
.
.
.
.
.
.
.
P
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
P
Dynamical evolution
BDK
RHDC GRA
GAS
FRE
MT
0.5
HNZ
MI FJ
FDX
LO
JNJ
VVI
LNC
NTRS
CTB
CI
GAP
KOCVS
RYI
FC
HUM
WBADM
0.45
FTLA
JO
HM
AIG
GPC
FISV
BJS DOV
AXPCA
MCDEFX
NMK FOCISCO
FRX
NSM
MRK
JCI
WFCA
CR MEL FNMAETAT
NAV
CGP
MWV KW
KRB
CINF
GAP
KSU
AEP
DUK
BGG MU
GFS/
AVY
CCE
BLS ANDW
CYL
IMNX
MER
CIC
MAT
BF/A
CAH
USB
EMR
DDS
GR
LLY
CPQVZ
NSI
ETR
HNZ
CVX KR
PHA
IKN
ALTRHON
APD
BW
LLTC
FPL
1132Q
BNI
EP
BNY DLX
AS
MMC
CSX
DOW HRZI AVP
FDXFWLT
GPUI
BA
ENRNQCNP
MILMMM
MI
JWNNBL
GE T
JO KRIBACJPM CS FMC
AA
EQT
AMR
HUM LO TAP
IGT
JNJ
JP
IR
NBR
DPS
L
LTD
BHI
FLMIQ
BDX
BMS
JPM
AL
ADSK
NOC
BBS
BDK NI
GTEC
ALXA
ACV
CHRSMT
AIGHST INTC
EFU
GPS
MCI
CLX
MO
CTAS
CMS
VVI
BR
MYL
BMET
MDT CIN
CTX
DG
FISV
CEG
LUK
HPQ
GT
DIG
MDP
SNI
NSCHP
FJ
HLT
KOCI
GIS
AI HOU
ONE
DCNAQ
NTRS
NEM
FC
HPC HDLM
CY
LUB
CCTYQ
KBHBA BC
LOW
CCK
FHN
HCA
AYE
GLW
CHIR
GDW CRAYHES
ADI
LDG
HBAN MYG
ACKH
HNW
BMC
ITW
NKE
CB
ABT ADM
ECL
HRBBEV
AMATCPB
CVS
GAS
HRS
AMD
GSWCOEQ
AAPL
HAL
MI
DD
HTMXQ
CAT
DTE
WBAGN DE
BGEN
AH
BLL
DELL
DTVMEE
68335Q
PKI NWL
IP
KMRTQ
GCI
KEY
AFL1357Q
CAR
GP
BSC
CSC
CMCSA
DALRQ
INGRADBE
MS
APA
FDO
N
NC
LPX
JECAR BOL
APCRHDC
HOG
BNL
A
BFO MAS BF/B
AOC
CL
BMY
MSFT
AGC
MOT
IBM
CN
AM APCC
LNC BAX
EK
MI DHR
BSET
LSI
THC
F
AM
OMX
IFF
CAG
FITB
GLK
K DJ
BUD
MUR
GENZ
FRE
ETN
MAY
GRA
D
CTB
BK
MOLXDG
BHMSQ
CMI
CMA
TGT
ADP
FLTWQ
CH
NL
MDR
EDS
GD
HLS
XOM
MALK
AMGN
HI
CNW
HSY
0.35
HLS
MMM
EQT
GE
FLMIQ
WYE
NRTLQ
WYE
MZIAQ
BEN
HAS
MCD
GPUI
LDWI
GR
GDCBEHM
GM BMG
IPG
SA KSE
LIZ
BRNO
FTLA
WYE
RYI MZIAQ
HD HAS
FMC
AS
TAP BNL
INTC
JNJDUK
ITW HRS
DE
LLTC
VZ
MT DPS
BDK
JWN
MS KBH
CIC
AIG
BLLFC CAGFDX GTEC
CHRS CLX
IP
ACKH
MSFT
CCE
AM HLT
GAS
JEC
NTRS CVS
NI
DG
FWLT
BAX
GTMI
NBL
LOW
CEG ADM EK JPM
BAC
CN DTV
BDX
BOL
LUK
NBR
ABTCAH
FJ LO
VVI
MEL
KRI
CCK
LSI CMI
DWD
AH
AVP
HRZI
GRA
ADI
LUB
RHDC
THC
NOC
RYI
FLTWQ
CSCO
DOW
BLS
JPMTGT
HSTACVBA
DJ
MDP
AVY
DLX
CGPCTAS
CNP
ADP
ENRNQ
MRM
JHBMET
IKN
ALMER
PKI
ANDW
LEG
HNZ
CS
EFU
H MHP
NWL MOLX
EP MDT
NCC
GDG
MAY
CMA ED
IGT
FRE
FPC
ADSKCAT
MMC
T
CMCSA
RRD
AMAT
MN
GAP AMR
HPC
BWS
JO
AOC AM CRAY
K ARB
ABX
CBCCTYQ
BF/A
ECOBCR
NC
LDWI
HDLM 68335Q
HCA
UCM
FHNBC
HUM
BBS
HES
DALRQKO
MI
IBMGPS HAL GLK
BHI
ASO
EDS
KEY
CI IFF LTD
MIMCIHBAN
D
MAS
BR
CAR
LLY AZA KRB HOG
HOU CPB
HI
GLW APC CY AI
GCI CHIR
BGEN IR CH
ADBE
AMGN
JP
LPXWCOEQ
XOM
ONE
GS BNY
ALXA
BMC
MYGAPCC
APA
GP
CMS
GE
A
NKE
CTX
AFL HON
MEE KMRTQ BFOHRB
MALK
USB
CNW
ETN
EMR
DELL
BF/B
EQT
CYL
MO
MIL
BMS
KSU
AA
HPA BEV
NSI
FLS
MU
BANSC
ALL
HSY
GR
INGR
CVX
BUD
BJS
ETR
CSC
GFS/
PGN
NAV
1357QGIS
CR
KR CSX
DHR
MMM
AEPOMX BNI
DD
AT
FRX
BK FITB
MAT
AET
FLMIQ
MUR
CL BMY
BHMSQ
AXP
NL MDR
DDSFO
FDO
MRK
APD
FPL
CTL
KW
NSM
HLS
EC
WFC
CISCO
MWV FNM
F
MYL
CPQ
GPUI
1132Q
FISV
NMK
EFX
RF2
HPQ
BGG
NRTLQ
KMB
PHA
HM
CA
KMG SA
BEN
DOV
GENZ
LIZ IPG
L JCI
KSE
HAS
WYE
ASH GD GWW
GR MZIAQ
CBE
ABS FTLA
HD GM
ONE
NSI
MMM
HLS
CYL
CTL
MALK
HPC
APD
FHNCL
CMI
MCI
HDLM
MIL
BW
KEY CIN AOC
FLS
ETN
NSI APD A
CAR GCI
MU
KRB
AOC
CAR
MHP
ONE
BMSCA
MWV
ANDW
RF2
GFS/LOW
BLS
BGG
JCI
MEL
MI
CAH
PHA
HI
MEE AFL
AMBNI
CS AIG D BK
MURFITB
DTE
NRTLQ
NL
ALXA
NC
LDWI
A CLX
CR
HOG
GE
AAPL
NSM
FLTWQF
AGN
L
GR
SNI AEP WFC
1357Q
HNZ
GDW
LLYCAGWCOEQ
TGT
ECL AGC
HRBBNY
CMS
DALRQ
NAV FO
WB
MYG
CPB
MS
HES
DE
DTVBEV
OMX CISCO
AT
MCD ECO
IP
IBM
HP EMR
MAS HUM
FPL
CTX
HNW
GRA
AXP
NWL
CIC
MDT IKN
MRK
BHI
CAT
BA LLTC
HRS
BUDADP
GP
N
JPBSC
68335Q
BHMSQ
HST FRX
JH
GPUI
LSI HPQ
BSET
CL BF/B KBH
BOL
RYI
APA
DWD
LPXEDBFO GPS
GAP
RRD
GLW
BMY
AVY
CHIR
IGT MATKRI
BNL
BMG
CCTYQ BR DJHAL
EFU
FREADBE
NCC
HDLM
GLK
ADIEP PKI
FHN EK
CI
KMG
AMR
DHR
MMC
APC
CVX
ADM
MDPBMET MCI
KO
FLEGR
CBE
JNJ ENRNQ RHDC
BDK
JPMNSC
CMA
ADCT
GENZ
T
KSE
BJS
LNC
JPM
ACV
FDO
AI
KMRTQ
BCR
CH CY HRZI
AH BC
VZ
GAS
BRNO
ABT
CTB
K
ABXTAP BGEN
BBS
HM
BA
APCC
CINF
CNPCTAS
LIZASH
DGGS GTEC
LDG BF/A
HPC
WYE
BAC
MZIAQ
INTC
FMC ACKH
CRAY GT
H
CSXHCA AM JO
MYL
GM
CHRS LTD
FISV
FDX
THC
BAX
HDFTLA
HLT
ALTR
CN
BLL
BMC 1132Q
NEM
VVI LUK
CPQ
LO
MOT
NOC
IPG ABS
AMAT
AYE AS
AL
FJMRM
AR
FWLT
IFF
HAS
JECMI DLX
GPCDUK
EDS
HBAN MOLX
BEN
DIG
SACCE
LEG
GD GIS
MDR
DPS
MN
CMCSA
MT
G
NKE
ITW
MI NBR AMD
INGR NI
AVP
CVS
FPC
DELL LUB
CGP JWN HTMXQ
NBL IMNX
DG
BDX
CB HOU
CSCO
NTRS
DOWCCK FC CEGARB
MO
BWS
HONIR
ADSK
DD
MAY
CSC
MSFT
CNW
KR
GWW
ETN
D
MER
ASO
XOM
AMGN
EQT
UCM
PGN
DCNAQ
0.15
ETR
HSY
AA
ALL
FLMIQ
KEY
AZA
EC
ADCT
KSE FTLA
WYE
ABS
BRNO
GR
MOT
AR
BDK
GP
EC
CB
DIGAMIKN
BFOBF/A
GPUI
HLS
CTL
AZA
AXP
BGG
CR
L FO
FNM
HPQ
AET
DDS
EFX
DTV
BAX
EQT
ALXA
JP
CLX JO
ACKH HRS
LLTC
BSET
ADM AIG AGC
SNIA
DCNAQ
BNL
BOL
NKE
HLT
DELL
MS
KMB
CAH
LOW
LTD
MOT
AR
DTE CINF
APD
MIL
GDW DTE
ABT CINF
AGN
HI
HLS
CYLCTL
MMM
XOM
MALK
CNW
AA
MI
LIZ
ABX
ALXA
FISV
GE
GPUI
ABX
WB
HLT
GE
JP
UCM
ALL
AGC
BSET
BNL GDW HNW
ABTMOTECL
AR
ALXA
MMM
EC
JNJ
CI
HONIR
CMA
KO
BW
FITB
ETR
PKI CCTYQ
KR
AVP
CCE
JWN AT
GTEC
ENRNQ
CAH
AS AI
MU
CA
KRB
LTD
BHI
LNC
CYL MMM EQT
AA
MI
HLS
FLMIQ
ALL
JP
CTL
AA
GM
1998
HI ASO
UCM
USB
EC
IBM
BNY AZA AET NMK
KMB
ETR
FO
DDS
CVX BGG
CR
KSU
CIN
NAV
MRK
EMRL
CGP
IKN
JCI
GFS/
EQT
FLE
AFL
INGR
MN
MOLX
XOM
FPC
BWS
MAY
WB
BHI
CYL
GE
CTX
UCM
HSY
MIL
AA
APD AMGN
ASO
HI
JPEQT ALL
MMM FLMIQ XOM
CNW
HLS
PGNMAT CTL
ADCT
1132Q
BEN
PHA
GPC
BRNO
GWW
HD
GD
IMNX
ABS
HAS
GR
MCD
ADCT
GPUI
BMG
LNC
NRTLQ
MMC
LDG ALTR
IP DIG MIFC GAS
AYE
CVS
BLL AMD
AH
NCRYIHUM
DALRQ
HM
HOU
KMG
THC
IPG FTLA
GPS
ADSK
LTD
FLTWQ
CTBGRA
LIZ
BMET
CCTYQ
ECL
A
KBH
KSE
MSFT
FISV
CEGNTRS
GDW
IGTT CCE
RHDC
CBE
ADP
H
AGN CA
SA JEC
DUKLUKVVI
CSCO
MZIAQ
DWD
APA ADM CINF
NBR
MN
FJ
ASH
BF/A
FLE
AMR ITW DJ
TAPGTEC
MEL
HTMXQAOC
MHP
LSI
AVY
ENRNQ JNJ JWN AL BJS
CN
LUB LDWI
ED
MDTEDS
MT
BAX BDX
JPM
HNW
TGT
VZ BNL NI
DD DG
MAY
DPS
NOC
LEG
INTC
CTAS
JH
DTE
BA
NBL
FDX
HBAN
FMC SNI
CSC
WB HRS
DTV
MOLX
JPMRRD
ARB
DGUSB
KRI
AS
FWLT
AAPL
FPC
NKE
CHRS
LO
CMS
LOW
AGC
G MRM
CNP
DCNAQ
NCC
MS
MO CLX
BOLEP
NWL
BSC
AVP
HON
GT
AI
IR
CIC
ECO
FRX
DELL
HRZI
K
HNZ
BMS
BCR
BSET
ACKH
DE
MDPNEM
EK BAC HAL
ACV
FRE
LLTC
BR
JO
BC
ADI
IBMCB MCI
CRAY
FHN
CAH
CAG
HPC
GFS/
HDLM HLT
CMCSA
BNICS
MER
KRB
GAP
NSM
HPQ
AM
MAS
AEP KMRTQ CL EMR
CVX
NSC BHMSQ
RF2
ADBE
N BDK CHIR
HOG NL
CCK
GS BNY
68335Q
IFFCPB
KO
BUD
LLY
FITB
F
APC
MDR CMAGIS
CH
PKI
MRK
AIGCY CI
CGP
BK
NAV
ABT
BF/BGP GENZ
BGEN
HRB
IKN
MYL
A ETR
MU NMK
CPQ
EC
EFU
GLK
BLS ONE
KSU
FNM
HCA
CR WFC
HST
BA KR
BFO
ANDW
FDO
FO KW
GLW
GR
INGR
AET
BEV
CAT
AT KMB
DDS JCI
CISCO
HESBW1357Q
APCC
FPLMEE
DOW BGG
LPXAXP OMXDHR
BMC
DOV
EFXL
MUR
DLX BMYMWV
MI
BBS
AMAT
WCOEQ
CMI
MYG
ETNHP
GCI
CSX
D
AZA
CAR
GM
WYE
MOT
AR
KEY
BWS
AM
CNW NSI
CIN
AFL
HSY
ALLFLS
MIL
APD AMGN
UCM XOM ASO
GE
MALKHI
MMM
AA FLMIQ
FNM
ABX
MER
CAH
NWL
JH BCR NCC
LDWI
RRD
MRM
BMYDD
JO
DTV CSC
EDS
ALXA
ABX
MI
ANDW
BLS
MU
KRB
KW
DOV
ALXA CTX
MI
FLMIQBHI
AA
ALL
CTL
PGN
MI
ALXA
BHI
JP
KRI
CTX
CYL
PGNMAT
INGR
CISCO
WFC
FRX
GR
ADSK
ENRNQ
RF2 BJS
CMA
FPL
LLY
CSX CNP MWV
IPGGPC
FISV
HM
GIS
DHR
KMG
GPUI MZIAQ
AXP
BRNO
MCD
HD
ADCT HAS
NL
FTLA
ASHKSE
BUD
ABS
EFU
RYI
GM
LOW
BA
NBR
HST
GD
CBE SA
JPM EP
MMC
HNZ
WYE
BDK
GRBMG
MDP
BDX
GWW
LIZ
IR
CH
BEN
GAP
HOG
CEG
ECO
AVP
AH GPS
BMET JWNF
CSC
HON
CIC
ADM
NKE
AEP
HRZI
ACV
NWL
DUK
CI
MHP
MT
BW
KO
MYL
CCTYQ
NBL
CS
RRD
G DDDELL
MDR
GTECFJ
CMCSA
MO MN
68335Q
JNJ
NI
NEM ED
MUR
MOLX
FWLT
APAFDO
K LDWI
JPM
H
FRE
CYLADBE AVY
HCA
NSC
LO
CSCO
CHRS
BF/B
DPS
TAP
GLKNCC
BABMC
NOC
BCR DG
FITB ADI
FMC
A
JH
HLT
THC
RHDC HP 1357Q GS
FDX
CTAS
BKBGEN BEV
ARB MRM LEG
INTC
VZ
BFO
CYCMS
MDT
MEE
ACKH
IFF
LSI
T
KR
DJ
GPKMRTQ HRB
AS
CATGLW
AMR
CN
HOU
GENZ
WCOEQ
GRA IGT
BAC
CLX
FLTWQ
NBF/A
FPCBWS
AM BHMSQ
EK
WB
LPX
KBH LUB
ADP
CB
MS
CRAY ONE HAL
ITW AI
DIG AYEDWD IP
BMY OMX
CL
MAY
MCI
BC
NTRS
HBAN
LLTC
CTBSNI ECL
CPB APC
HDLM
JO
CAG
MI
HPQ BR
HES
MAS
ALTR
BBS DALRQ
AGN
FHN
PKI LNC
APCC HPC
GCI
EDS
TGT
IMNX
A AAPL
NSIAL AFL
VVI
CCK
GDW
APD
HUM
MSFT CHIR
AIG
ETNCAR
DTE
BLL
DCNAQ
CMILUK
FC AMD
HNW
NRTLQ
CVS
MYG
HLS
CTL
HLS
2002
BNL
AOCCAR
LTD
MAT
JP GE
MMM
MIL
CNW
HSY
AMGN
2000
MI
WCOEQKEY DE
D
ABX
FLS
XOM
MALK
HLS
SA
MALK
NSI
BRNOMCD
IP
AMAT
CCE CPQ MEL
EFX NSM BMS
CA
AT
EQT
PGN
CTX
UCM
FLS
GE
GPCBMG
FLE
ABX
KSU
CA
FO
AT
CTL
HD
KBHNSM
BA AM
BDX
LTD
HOG
GR
HES BLS
A
ECO BFO
KR
AEP
LLY
EK CCE
CR
FITB
LPXWFC
U
MURMCI
BMC BUD
KMRTQ DG EMR CISCO
1357Q
GIS DE
ADBE
ENRNQ BR
ETR
BBS
CB
MU
ADI
BEVGENZ
CAT GLW CL BF/BHST
HBAN
MEL
BSC
KSU
A
CY
APCC
GP
NBR MWV
HN
CRAY
HAL HP
CMI
BS
HRS JCI
MEE
NSC
IBM BC
HDLM
GDW
AG
GS
FHN ABX
A AA
ONE BNI MYL IGT
AGC HPC
FPL FLTWQ
MDP AMR DCNAQ
S
CMCSA
CA
WCOEQ
DTV
IP
PKI
EFX CL
RF2
CCTYQ
T DTE
NL
MMCCN
BHI
NAV
CMS
AM
HSY
MO
MS
LOW
BCR L
BKNCBAX
BOL
CSCF
GT
LLTC CYL
68335Q
CAHKRI
BNY
CG
BWCPQ HLT
MIL
MIAMGN
DHR
ABT
CNW
AR
MOT
ASO GCI
GPS
BMET
MYG
AC
IKN
BNL
JP
EQT
HI
APD
FLMIQ
GE ALXA
BSET
BSC
AGC
LOW
BOL
DE
DTV
WBBAX
DWD
MS CN
DTE CHRS PGNNCHRS
DUK ABT
HLTCMI
LLTC
FJ
IMNX
JEC
NBL AAPL
WFC
THC LO LSI MYL
IFF
ACKH
BMY
ADP
HNZ
GDW
BHMSQ
AMR
BNL
TGT
CEGLUK IGT ADI BDK CH
APCIKN
CLX
CCTYQ
KBH
BNY
NBR
BDX
CVS NTRSDLX
VVI
HRZI JO MDR
FC
AYE
HUM DELL
HNW DJPKI CS
GPSCGP GRA
LDG
MOT
DD MER
1132Q
AVP
NKE
RYI
ENRNQ
BA
ALTR
CSX
RHDCCSC
CIC
CVX
NRTLQ
KRB
HST
ARB
FMCNOCACV
ED
ADSK
FPC
GISEFU MDP
NEM
CPB
MYG
BMS
GCI
LAS
CMCSA MAS
CSCO
CRAY
CCE
BF/A
HCA
CTAS
MAY
MMC
BMET
EDS
MOLX
RRD
EP
MO
LEG
CNP
MN NCC
APD
AFL
AOC
DALRQ
ADBE INTC
JPM
AMAT
HPC
AEP
CB
CAT
DG LDWI
MDTGAPAVY
FPL
K
ETN
JH
KEY
BNI
BR LLY
H
GR
CL
MCI
ECO MHP
KSU
G BCR
NAV
GLK
BCHBAN
AL NSI
ETREMR
HDLM
LPXBUDNWL MEL
RF2
BEV
AM
ANDW
BGG
APCC
GFS/
KRI
FHN F GENZ CHIR KR BLS
A
MRM
CAR
DDS
CAH
MRK
AET
HAL
AI
BWS
CAG
BFO
CISCO
BF/B
MI
FRX
GLW
INGR
USB
CR
BBS
NSM
AZA
IBM
AXP
HP
A
LUB
JCI FO
KMRTQ
DOW
HES
AT
GS OMX
68335Q
D
1357Q
IR
CA MU
NMK
FRE
ADCT
MUR
MAT
GP BMCHRB
BK
MEE
ONE ADM
NL
FDO
KW
FITB
MWV
HOU
NSCCCKCI
BJS
APA
HON
BA CY
FNM
WCOEQ
KO
BMG
N
GPC
DHR
KMB
CMS
GWW
EC DOV
EFX
HOG
HPQ
HD
CMA BGEN
KMG
ITW
KSE FISVGDBEN
GM WYE
IPG
LIZ
MI EK
AMD
BAC
DG
HTMXQ
ARBLL
GT
GAS
BW
MSFT
CINPHA
DIG
FLMIQ
MIL
CBE
BRNO
KMG
MAT
PGN
GPUI
K
AMAT
DG
AV
N
APA
ACV
APC
NOC
CPBETN
B
FMCIFF
AH
BF/A MI BMS CAG
DD
CVX
BWS
NCC
CS
KRB
LDWI ED LUB
AOC
ECDLX GLKHCA
RRD
CSCO
CAR
D BGEN
CNP
JECEFU
BMY
H
MHP
CTAS
AH LTDJNJ
DCNAQ
AM
DPSTAPVZCINF
GTEC
CTB AIG
FWLT
SNI
ECL
MT
LNC
FDX
JWN
NI JPM
AGN
T FLTWQ
BHI
CTX
CBE
ASH
GR
HM CPQ
SAMZIAQ
HASABSFLE
BRNO
GPUI
FTLA
MCD
EFX
AET NMK
BNY
NAV
DDS
BLS
KMB
CR
KW
AZA
DOV
BSC BOL
MRK
ACKHDCNAQ
RF2
BMET
MMC
BGG
HRS
KBH
FNM
CLX
CVX ANDW
MSDTVCRAY AAPL
GR
MU
FPL
L
BAX
BDX
CCK
JCI USB
AMR
IGT SNI AEP
CCE
CN LLY
CISCO
NBR
GS
GENZ
NL
GAP
FRE
RYI
F
MEL
IBMAMATCS
EMR
NRTLQ
IKN
DHR
BAC
ADM
CIC CGP
MWVNSM GFS/
JPM
GPUIBMYFITB MDR
LLTC
CMCSA
CI
CVS
KR
MYG NBL
JPM
MHPBMS
HST
1132Q
FRX
CAH
CMS MCD
GLK
JWN
NWL
AXP
CEG
MO
PHA
AI
CY
JO
ACV
FC
GIS
FISV
ED
CSCOJEC
HRZI
FJ CAG
BA BJS PKI
ADCT
WFC
IPG
FMC
ADSK
MZIAQ
AL
MN
K
AVP
MER
EK
BW
GD
FTLAHCA
NEM
ENRNQ
MDT
CSX
LTD
NI
EFU
GTEC INTC
MYL
BMG
BGEN
GPC
JH NCC
CMA
CH
KO
HOG
IP
EP
KSE
DELL
LDWI
KRITAP
RRD
ASH
CHRS
ECO
DLXBDK
AS DUK
CTAS
NKE
ADI
HON
ABS
BLL
LSI EDS
BCR
CNP
DG
AVY
LO MTBF/BJNJ
DIG
ALTR
LIZ HAS
BWS
MEEBMC
H
DPS FWLT
KMRTQ
NOC
MI
GR
HNZ MRM
HP68335Q
HOU
MDP
HES
G
NTRS KRB
AYE FDX
GWW
IR
LEG
VZ
DALRQ
MAT
ALPX
ARB
WYE
HTMXQ
CSC
A
GT AMD
MOLX
FPC
HUM
T
AIG CPB
HM
AM ADBE
CYL
MAS
DG
LOW
CCTYQ
APC
DD
NCTHC AH
GPS
LUK
N
BEN
FDOCAT
HPQ
FLE
BFO AM
MSFT
BR
BC
GLW CMI
LUB
CIN GP
NSCBNI DOW
GAS
FLTWQ
BK MUR
BF/A HAL
IFF
DJ
INGR
HRB
CL
DWDIMNX
BEV
BA
ADP RHDC
APA
VVI
OMX
LDG
1357Q
LNC
HPC
BHMSQ
HDLM
MCI HBAN
BBS APCC
AFLFHN
ONE
BUD
ETN
CB
GRA
GCI
TGT CTB
ITW
CHIR CPQ
MAY
ASO
MIL
XOM
CNW
EFU
AVY
FMC BMY
INGR
HNZ AMR INTC RYI
GT
CSFJ
ALTR
CHRS
MO
DIG
MCD
BNI
LLY T
CY
NOC MDP
HRZI
H
CPB
GS
VVI
LUK
BDX
CAT
ADSK HP
KRI
BMS
DG
CLX
ACV HST CTAS
BF/B
BMET
CMS
MYL
IGT
BMC
AYE
BA
CIC
HLT
KBH
DCNAQCTX
MHP
NBR
APA
HRB
BA 1357Q
GP
FC
MS
AMAT
GLW
ADM
KMRTQ
SNI
EP NEM JPM
ACKH
LLTC
N
HNW
K
LDG LDWI
GENZ ADBE
L
NSC
WB
CVS
ECO
NTRS
HES
OMX CCK
MUR
ECL
BDK
BCRARB
LOW
BNL
CEG
LUB BGEN
BFO
DTV
WCOEQ BEV
GIS
RRD
AH HBAN
HAL
IBM
BSC AAPL
GDW
FDO CL LPX
CSX HTMXQ BLL
BSET
AGN
MN
68335Q
ANDW
HCA
BOL
NC CPQ
AIG IFF
CNP
ED
IP
HOG
CB
GAS
BAX
EDS
KEY
JEC
BLS
MCI
CMI
DTE
JH
MAY
HRS
NCC
MAS
AOC
HDLM
HPC
ONE
NWL
CSCO
MRM
AGC
AMBR
ARCINF
MI
APC
ABT
DELL
BUD MDT
FHN
APCC
LEG DJ
DE
AMD
D
LNC
A
PHA
ETN HPQ
HOU1132Q
IKN
MSFT NKE
MOT
AM
EK FPC
CH
BHMSQ
NL
MI
FLTWQ
DALRQ CSC
MOLX
GCI
CAR
DD
FRE
NSI
RHDC
G
BAC
BC
WFC
AFL
LSI
ADP
CRAY
JODG
CTB
GLK
BK
ITW
CGP
BWS
THC
CAG
CMCSA
DHR
F
MER
CIN
MEE
NRTLQ
MDR
GRA
MYG
IMNX
APD
TGT
CHIR
DWD
EQT
JP
CN
MAT PGN
ADCT
BMG CBE
GPC
ASH HD
WYE
MZIAQGWW
KSE
SA
KMG
IPG
GR
HAS
ABS
GM
HM
BEN
ALL
FLMIQ
BRNO
FLE
ETR
MALK
CTX
HSY
AAPL
HNW
MI
CNW
BHIAMGN
HI
HSY
AMGN
KRB
JEC
FLS
XOM
FLS
ENRNQ
ADSK
GD
FTLA
ASO
UCM
MU
BMET
AGNECL
UCM
FLSASO
MALK
BGG
KMB
EC
A
KSU NMK
LO
AXP
FO
CR
VZ
NBLMEL RF2
EMR
BF/A DPS
DLX
MMC TAP
MRK
GR
FDX FWLT NSM
JCI
DDS
ADIDUK
BJS
JPMCISCO
AEP GFS/
CVX
AET
NAV
MTFNM
FRX
DOW BNY GPSNI
AL
USBEFX
MWV
GAP
FPL
BBS
DOVKW
EC
CSX KSU
CA
NI
JWN
EDS
MEL
NMK
USB
MEEMDR
DUK VZ
AS
MWVAET
EFX
INTC
CCE CI
FJ CHRS
NBL FDX
FWLT
A
MRK DDS
FNM
KW
LO MT
FMC
CSADI
ETR
HCAKO
DHR
EFU
JCI
GR
GPS CMA MDP
BLS
GIS CISCO
NAV
KMRTQ
BGEN
FPLDOV
GTEC
CNP
BKCY
OMX
JNJ
EKLLY
WCOEQ
AT
CMS
BJS
FRX
HNZ
MCD
APA
INGR
ADBE
ANDW
AVP BA
HST
HP
ABX
N
NSC
RF2
JPM EP IMNX KRI
GENZ
FITB CCTYQ
NEM
HRB
MMC
NSM
RYI
APC FHN AL
CPQ
BFO MUR
T
GAP AH CB
PKINOC BDK
BMC
ITW
IGT
CIN
ONE
HBAN
BF/B
NBR
BW BAC
GLWCMI1357Q CPB
AMR
IFFMAS FDO
DD
HRZI
CYL
DALRQ
BDX HOU MO CSC
BCRHDCAFL GPCH
CTAS
BCR
NWL LDWI
AOC
KEY 68335Q
BHMSQ ACV
ECO
HAL
BA
CIC
AVYBBS
DJ
BEV CAT GLK
HDLM
RRD
ED
DG
CRAYCAR
ETN
H
NC LSI
DLX
MIHPC
DOW
AM CL CMCSA
NSI
DIG
GS
BNI
K LEG
AYE NCC
IBM AEP
GCI BR
MN
LPXMYG
THC
APD
APCC
JH
BUDBNY
CSCO
AMAT
D
BLL
MCI HES
MRM
IR
GRA
MHP
MAY
IKN
HTMXQCTB
LUB ADP
HON
FLTWQ
FPC
ARB MOLX
NRTLQ
1132Q
BMS
LNC
VVI DG NTRS
HOG
KRMDT
CEG
MI
ALTR
NL
CCK
G
AMD
CVXCGP GT
CVS
LDG
PHA
FRE
DE
TGT
GAS
LUK
BWS
FC
DWD MER
MSFT
WB
CHIR
KBH
CAG
CN BSC
WFC
IP AM
F
MI CTX
AA
FLMIQ
BHI
ALL
GE
CS MDR
KSU
HSY
GFS/
EMR
HUM DPS
MYL
TAP JPM BF/A
BMY
AI
FISV
CNW
MMM
MIL MAT
HSY
GLK
NSI
0.1
LIZ
HAS
XOM
FLS
MALK
UCM
ASO
HI
AMGN
DOV
KW
AMGNHI
AZA
HUM
PGN
CNP
USB
NMK
KMB
FNM
DOV
EFX
AT
HM FLE
SA
ASH KMG
HD
CBE
GM GWWGPCMZIAQ
BEN IPG GD
BMG
CTB
LDG
AXP
NMK
AET
KW
NSM
USB FO
HNW
NAV
BHI
CTX
ALXA SNI
MRK
CISCO
FRE
CSC
DCNAQ
FPL DDS
NCFRXDD
GRA
L
MS BNL DELL
HLT
IP GENZ
MWV
KBHHRBLLTC EK
NKE
CLX
CMCSA ACKH
HRS
HNZ
ADSK
MAT
A
CNDTV BSET TGT MMC APC
MHP
EFU
ADP
AVY
CH MDT
NCC
AEP
GPS
T
APA PKI ED
CIC
BCR
BOL
ALTR
BA
ECO
GAPCCTYQ
BDX
RRD
BKMEE
JH
HUM
BSC
AHBMY
K
LUB
ADI
NBR
BF/BLDWI
CRAY
CMS
CSX
LLY HST
CSCO
FPC
BAX
MN
ARB
JO
FLTWQ
AYE GIS
CAH
VVI
G
WCOEQ
BMET MDP
INGR
MOLX
AM HOGFDO
1357Q
MCD
CPB
LOW
68335Q
BEV
BNI
HBAN
CCE
GCI
LDG
LEG
FITB DG
LSI
BWS
OMX DPS
BGEN
DUK
JPM
CA
AFL
IR
BMC
AS
AIG CPQ IFF
HCA
MYLMRM
NICY
LTD
BW
RHDC
GAS
TAP
DJ MERCMA
MAY
BHMSQ CYL
BBS
HON
VZ HP
CAT
THC KR
EDS
CHIR
HTMXQ
JEC
CCK
AI HAL ADM
PHA
ABXFJCAG
CHRSFMC
HPQ IMNX
JWN
NSC
APCC
BC
NBL
CMI
LUK
MT
CEG CVS
DLX
LO CI
ACV
KO
BR
JNJFWLT
HRZI
GTECGS AVP
N
NRTLQ
AMAT
WFC
MI
DE MAS
1132Q
HOU
MI
AL
MODHR JPM
ENRNQ
BJS
NEM
DOW
ITW
NTRS
IBM AMDINTC CGP
GLW
MSFT
GT DG
BLLNWL FC JP NLCIN CTASBA
EP
KRIMI FDX BUD
BAC
KMRTQ
ADBE
H
KRB F HESMUR
LPX
NOC
DALRQ
GPC
ALTR
AMD
MOT
NCC
WB
AGC
MYG
0.25
ETR
KSU
KMB
DTEGDW
HI XOM CINF
AGNCTB ANDW
HSY
BNY
ABT
ECL
LNC GR MEL
AAPLDWD
A
CR
BMS
EMR
BGGJCI
RF2
BLS
PGN
GPUI
CTL
FISV
ASH
FLE
GM
BSC
DIG
AYE
CIN
ABX
BCR
ED
ABS
KMG
IGT
GWW
GPC
AMR
ADCT
GR
MCD
HAS
GD
NBL
NI
CEG AS
HPQBHMSQMAS
N
DIG
BA CCK
LUK
LDG ALTR LEG
INTC
MDT
NEM
BBSDG
K
BWIMNX CCE ED
LLTC
ARB G
BF/AA
CN
FISVFDO BLSAL
HES
GT AMAT GENZ
IFF
DELL DG
RYI
APC
CEGAM
DPS KRB HOU THC
FTLA CPQ
APCC
LTD
NKE
BNY
TAP
FLE
KBH
MEL
IBMAGC
ANDW VVI
JWN
MAS
L
LUK
LSI
BLL
APA
JNJ
AS
CAG
CMS
LEG
LDGHTMXQ NTRS
ITWFMC
DJ
MSFT
JPM
AMD
BNI
VZ DIG
INTC
HNZ
ADSK
FDX
LO
GTEC
NEM
ALTR
DUK
CVS
GAS
GAP
DCNAQ NI
USB
MT FC
CHRS
MI AYE EMR
AEP
NBL
SNI CLXFWLT
HRS
MSACV
MHP
BSC
MDP
CIC
CMCSA
HCSX
NCIP
ABT
HRZICVX
GDW
AVP
ACKH
AOC
DEHST
GPS
AGN
CMA RHDC
BSET CCTYQ BA
BDK
AAPL
DWD
EFX IGT
PHA
NRTLQ AMR
TGTEFU
CPB
HNW
IR
ADILUB
1132Q
DTE
MODALRQ
HON
GRAADP
D
ECL
EP
CHIR
JPMNOC
FRE
AH
MI
CNP LOW
MDT
CAR HLT
FRX
CR
AIG ETN KRI
BNL CS
BDX
JEC
DOV
NBR
KEY
ADM KSU
GIS DOW
BGG
CTAS AXP
JCI NMK
CSCOBMC
ENRNQ
FO
CTB
BF/B
LNC
DDS
BJS
AM
MRK
AET
KMB
GLW T
FPL
BA BFO A MMC
AT
BK
DHR
FNM
KO
CI AVY
BHMSQ
HPQ
EC
MEE
CH GP
AI
KW
CY WFC
HPMER
BMS
KRNHBAN
PKI
CB IKN
CAH NAV
FLTWQ
1357Q
CL
AR
HUM
CAT
BEV HPC
ADBE
ETR
HAL NSC
HRB GLK CA
MOT
CINF
BGEN
LPXHOG
RF2
CGP
WCOEQ
LLY
MUR 68335Q
BMET MDR MYLMCI FHN
INGR
HCA
MU
GS
KMRTQ
FJ
HDLM OMX
BAC
DLX
NSMNL
FITB
GCI
BUD
EK
F
CMI
BR
BC
GFS/
CCK
ECO
CISCO
GR
MYG
CRAY
AZA
AFL CIN
FLS
NSI
MWV
MALK
IPG
HM
BOL
ASH
ONE
AAPLDCNAQ
DTE
NEM AGC N
IMNX
WB
BSET
AR
BW
CSCOLEG MN
JH DWD
RRD
ECO
ARB
CVX GFS/
CBE
GR
ECLHNW
GDW
SNI
AGN
CINF
HTMXQ
BWS MHP
G
FPC MRM
ASO
MU
MIL
KMG
GWW
BRNO
ABS
SA
LIZ
ADCT
HDGD
BMG
H
BEN
ADCT
C
1132Q
MDRCIC
AA
ALL
HLS
HD
AVP
FWLT
GTEC
BLL CHIR
OMX
CIN
ALXA
MMM
CTL
KSE
HTMXQ
AMD
DUK
VZ
HRZI
ADP
DWD
CHRS
TGT
JPM
EP AYEPHA
AI LSI
DALRQNRTLQ
AL
HOU
CSX ITW
BAX
KSE
AZA
0.3
ABS
KMG
BEN
AA
MALK
UCM
BMG
FLE
HAS GMADCT
BMG
ASH
KSE WYEFLE
ABS
SA
IPGBRNO
GWW
GR
RYI
MZIAQ
HM
CTL ALL
FTLA
LIZ
ALL
AMGN
FLS
CNW
BEN
SA
KMB AZA
RF2
GPC HD
CBE
ASO
FLS
LIZ
ASH
MZIAQGM
PGN
KMG
UCM
0.4
FRX
HRB
CBE
GWW
IPG
BRNO
NKE
DELL
EC
0.2
MSFT
TAP
JPM
DPSJWN
DTV
BOL
BAX
PHA
1132Q
D
KEYMI
AOC
BSC
DE
BNI
ARCINF
MOT
NC
DLX
LDG DG GAS
ABT
HTMXQ
DOW
GT
EQT
2004
2006
2008
JEC
AM
BSETHRS
AGC
T. Aste, W. Shaw and T. Di Matteo “Correlation structure and dynamics in volatile markets”, New Journal of Physics 12 (2010) 085009 1-21.
T. Di Matteo, F. Pozzi, T. Aste, "The use of dynamical networks to detect the hierarchical organization of financial market sectors", Eur. Phys. J. B 73 (2010) 3–11.
Complexity reduction: DBHT
We extract clusters and hierarchies form the PMFG in 5 main
steps built around the properties of 3-cliques in maximal planar
v4!
graphs
v4!
Won-Min Song, T. Di Matteo, TA, Nested
hierarchies in planar graphs, Discrete
Applied Mathematics 159 (2011)
2135-2146.
k2!
{v2,v4,v5}!
v4!
k1!
{v2,v3,v4}!
v2!
v7! v5!
v2!
v9!
3-cliques
v8!
v6!
v5!
v2!
v3!
v4!
k3!
{v3,v4,v6}!
v6!
v3!
v3!
Some cliques contain inside others providing a natural hierarchy
Example of PMFG for Eurodollar rates
3-cliques on Maximal
Planar Graphs have a
unique property:
They contain other
cliques inside or/and
they are contained
inside the other
cliques.
Eurodollars
≥ 2 years
16 interest rates
with maturity dates
between 3 months
and 4 years.
T. Di Matteo and T. Aste,
"How does the Eurodollar
Interest Rate behave?",
Journal of Theoretical and
Applied Finance, 5 (2002)
122-127. (arXiv:cond-mat/
0101009, 2001).
< 2 years
DBHT
The clique structure provides automatically a classification
into communities organized into a nested hierarchy
v5!
v4!
v4!
v7! v5!
v2!
v6!
v7! v5!
v8!
b3!
v7!
v2!b3! v
4! k
2!
v6!
b2!
v8!
b1!
v3! v2!
v3!
v1!
v2!
v4!
v2!
v4!
k1!
v3!
k3!
!
α
v
v3!v5!6!
v9!
k3!
v4!
v6!
b4!
v8!
v3!
!
β
b
2!
bα= b1!
k1!
k2!
bβ = b4!
Directed Bubble Hierarchical Tree
v1
!
v2
bα!
!
v3
v5
b2!
!
v4
v6
bβ!
!
v8
v7!
b3!
!
We capture both local clustering and global hierarchical organization
without introducing any characteristic scale
Won-Min Song, T. Di Matteo, Tomaso Aste, Nested hierarchies in planar graphs, Discrete Applied Mathematics 159 (2011) 2135-2146.
W.M. Song, T. Di Matteo and T. Aste, “Hierarchical information clustering by means of topologically embedded graphs”, PLoS ONE, 7 (2012) e31929
WM Song
Clustering and Hierarchy - DBHT
PHA
PMFG-DBHT
16 clusters
CBE
NL
CN
BNL
MS
BW HLT
CY
KO
FITB MYL
NRTLQ
DOW
CVX
1132Q
GS BNY CI
AL
ITW
WCOEQ
H HRB
F
APA
GENZ
AOC
BMC
AMAT
AVY
MUR
CL BUDHOG
D
HP
OMX
INGR
DE
CLX
WB
AGN
BSET
BAX
AMOT
AR ACKH
ABS BMG
CINF
NC
HNW
GWW
HM BMET
BSC
FTLA
SNI
ECL
AGC
BOL
FLE
AIG
AAPL
MER
ASH
DTE
KSE MZIAQ
BFO
CAR
AM
HOU
DTV
GPBGEN
HRS
1357Q
NSC
CMA
BMY
SA
LLTC
CAT
ADM
IP GDW
BF/B IFF
DJ HCA
LIZ
KEY
IPG
ABTWFC DCNAQ
ADBE
MI
AH
FDO
KMRTQ
GM
GLW
KBH
CA ETR
HPC
N
MAS
GR
GPC
DELL
GPUI
IKN
ADCT
CMS
HPQ
LPX
CGP
BC
MDT
BLS ANDW
JEC
EDS
APCC
FISV
NBR
ETN
BEN
BMS
AM
A
USB
HAS
CSX
HES
JO
LSI
AFL
HON
NSI
NSM
THC
CPQ
MU
KMG
CTL
CCK
AEP
GIS
CIN
CYL
IR
MDR
HAL
BDX CAG
CMCSA
APC
HLS
FO
MCD
WYE
CIC
JCI MRK
CB 68335Q
MMC
BK
T
HBAN
MEL
CS
GLK
HD GD
IGT
ACV
AMR
ADSK
BEV
MCI
KR
CMI
BHMSQ
CR
DIG
BAFLTWQ
BR
GR
CH LLY
GCI
GAP ALTR
BJS
NKE
ENRNQ
NAV
GE
MEE
FRX
BBS
APD
PGN
EMR
DALRQ
CCTYQ
AXP
ADI
MYG
NOC
RF2
MAT
FHN
PKI NEM
EK
ABX
CTAS
HDLM
KSU
CPB
IBM
L KRI
EQT
CNP
MWV
IMNX
BGG
CRAY
AI
HRZI KRB
FLMIQ
FPL
ED
NCC
HST MDP
BHI
LDWI
AVP
JH
GFS/
EP
BA
DHR
ALXA
MMM
NWL
MO
K
BCR
CSC
GPS
CTX
AA
BF/ABDKEFU DWD
ALL
HUM
RYI
MN
DD
CHRS
DLX
MHP
ADP
JP
AYE
GRA
BNI
MRM
DG
RRD
FWLT
HSY MI
CAH
CCE
CNW
JNJ
G ARB
MAY
MOLX
LOW
CSCO
LEG
ECO
HNZ
BWS
BAC
JPM
LO
GTEC
AMGN
MALK
JPM
MIL
NBL
XOM
TGT
JWN
FDX MIVZ
LUB
FPC
ONE
CVS NI
INTCAS
HI
RHDC
GAS
DPS
FMC DUK
BLL
FLS
VVI
MT
CHIR
LUK
ASO
BRNO
UCM
LDG
401 stocks on US market 1996-2009
NTRS
CTB
AMD
GTFRE
DG
LNC
HTMXQ
CEG
FJ FC
TAP
LTD
MSFT
AET
KMB
DDS
AT
FNM
EFX
NMK
KW
EC
DOV
AZA
16
14
12
10
8
6
4
0
2
0
RAGAK
VCBPZCCIRCTNHC
SIHCSAGCOMAIA
RITDNPLCA
RMPBGTCIEDDCNBCAC
KA/SFYPFETM
U
CQISKAEPMLG
YEMKKI LYRDPAHBJ C
SINVUBAH
PTMCMC NE
D
IPEHQYRANRKCMRI
LXAI NEBLDHL
WZTPPNSRDWOHTGALDR
ADTGUDBH
CBCN
CDCRKCDSECR
G
DPCDHRPCMFE
G
OLOWLMEOBLNBM
CYGXSARWAMAMLC
MHNBWJMCDDS
ISONPJTJ
PJNJINFAAWMLF
SV
DCEZTNLPOJC
OIHF
XMRMDEWTCFG
TTGCLLBVFENCG
CSSUANDI
CKIGMRTDCTLLN
SBTNVFL
C
EIKVGRU A
DLGTLFMDBSMMTH
QTFXRN
MK2SARRJSBNMF A
VXLPLDBFN
WS JE
CG
R/LIASEXCMGFMABM
PVRWMUK
SBSZAB
RRUGACTMGAE
UE D
STMDF NF
TVMKOAOMENEDKCD
CF
WQBXINPGAKSAENAHA
NLCNDG
WFWETNBTIDAAIC
AGAAM
TWBMROEWGBSBAB
CTCRDSBCHA
E
HNSLOLMKCCB
XSNH A
THLELCBUBLDKBH
DLGPO
XFPNA31
ALPQXGMU75HMO
BRRMCGBCW
TWCCQASFELENBOG
OPNH
OZIYYCTVNCKICBF
BXGMB 6
VSLARYEBAK5G3BB3HMI8K
NQL/FRN
QAKRBMGGKTWMICC
NF
RCPEOI MH
TNPRDEDBACNBMC
RSXXLSISGECNCD
ALEKAJLL
CGOCTIEBJ
CXPATNHDFI
NVMMBBA
RCMH
CIBCPIALAD
QNSFAFARLRMHDPCHAB
YMCSECEAHGB B
AOYNHCMDDSEMHMF HF
SP
RQDHDT L
QCJSISABWLHBAC
CM
CHSRLMOAEKCA
DI ETM
TYUYNLAAVO2AT3PH1R1N
QAQHLOTID
WWBM
AEKEHDIDZAM
QRTECBYAGKAWB
MESSBMCAB
MZTEGIESDLWMG
WMARGGHF
DL HK
SEGUAPMPGG
DICHVLSHSNTIABIRFFB
AGNOFEPGAM
ILCYA
DIGSXPNBCLA
AH A
XTPI QBTJAELF
ILMLIMM
MQLASTALGMMCHMP
TDNLAYGCPCCC A
NIQENMHLIGAAMUM
MIK SCMXC
WYOLMISLONFH
S
GKAA
CHNTCRCRCIZCPBV
AIMOCACSSI
ANCLAGNPDRHPTI
D
CCABCDECSTIMGBR
MGTEPFMYF/KQUKA
PCI
CHBJALPDEYLASKEYI
HABURVNMKS
ENMCCDMTPI
RCR E
IMDKNABRYQHPII
LHNELXAL
DRGAHTOWDRNSWPPTZ
HBLDUGDBAT
NCCCCR
SCK
MRFDREHGDCDD
EP
NMOMCWGOOCP
LB EALXL
MAMWG
CLSDMRAJMHCSBY
DCWN
JTJWPANNOSJII
FP
OLMNAVTFNCSZJ
CJPL ED
GFCTWFHEMDIMORXT
GDCNEAVFBLGCCSLT
NILNTDUTMCSKI
CLNRTGS
FLVUVCB
HTMABMDGRDKETI
MRSXFLGL
NMSFQT2
ANFNBFRRAJMSXK
BDPLWVL
GEMJCCS
MBMAWFGXESRAPLI/
UKAMSRSV
BEGCZUAB
AMTGRR
NFDMFDEOUST
DCKDENMEOFAMCKVT
AHANEASKGANWQXBI
GCDANDCTPWNL
AINBWET
MAIGF
BABSWBGAOWMRAT
AHCBDSROECCEBT
CCKNHSL
ABDKBHMBNLLSXL
HLOUBCHDET
13APNPGXFL
OM5G L
WCBGHCMMUR7QRXPBA
GONBEELHFSAWQCCT
NO
FBCICKNCOPYZI
6 MBGVTYXB
K8MH3BBG3KAB5EYRASVL
INCRFGTL/QNBK
WHMCIMGKFQNRA
MOECRP
CMNCBADBEDIRNPT
DNCEGSSIRXXS
LCLAKJLGEAL
J TO
BECC
FDIBHNATICPVX
ABMN
DAHAMCPCMRB
HCMDLIRAFQCNFI
ABPHRLEAMS
BH GBHFMCAECHNCSY
E
FLMMHDSPDDQOSYA
TBWHDRJ
CAHLMBASCCQSI
COSL
AKEAMRHC
N1R1HMA3OTEVAANDYTI
DPTOH2LQQUAYL
ITW
MAZMDDHBEWKEA
WIAYCRT
ABKGSBMQE
BGAMCMDLBGEES
WHSEWIMATZ
GMR
GKGHFPMGALDES
BFRFAIHSPUGCDI
BTINPSLOHV
MAGEFGNAL
AALNYPCGDI
CABXHSAI
FLEAQBTJPXTI
MCMMALMIQLI
PMHGLTMSAL
AMCCCGPCYAQNDELT
MUAGMIN
CXAMNCSLHMONKII
HFOSWMIL
LSY
4
6
8
01
21
41
61
2
50
100
150
200
250
300
350
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
G
KR
AP
C
BV
CHNATCRC
C
AIZC
O
SSI
AIM
C
H
G
ACD
T
LAN
PTIDR
BPRI
ABNC
G
CC
M
DEFEC
S
TPYF/U
K
MG
A
MPKQ
I
S
EYLAC
CH
JBALPD
I
K
KSEY
HABURVNM
CC
ENM
TPI
DYM
E
RCRA
PI
H
IMDKNN
Q
R
BLALI
LAH
ENX
HOD
PZ
SW
R
RDG
W
T
P
LD
ATT
GD
H
U
B
B
N
C
CC
R
C
K
S
C
D
RDEG
M
D
D
PHG
EFCR
CP
MNOM
O
OL
LW
L
B
B
E
X
AG
MW
A
SBY
RRAC
CLMSDM
H
DJCPJWM
N
JTWANNOSJII
F AFN
SZPJ
OLM
VTC
ED
CJFHPN
LM
DIO
GFCTWEM
R
XT
CNEVFBLG
G
SLT
AC
DNU
C
S
I
NLTDTMC
K
RTGSI
LC
LVN
B
F
U
RVC
KEI
G
HTMABM
DTL
SDXFLG
MR
NSFQT2
M
FNBRJM
SXKV
CAINSBFDRAPLW
C
SL
J
E
O
GFM
CCR
AI
AG
S
E
MBM
X
PL/
MRS
UW
V
SZU
B
BKEAGC
A
R
AMTEG
R
U
T
NFDM
FDAOS
D
N
KT
OM
DCKEM
E
V
C
F
K
B
N
X
AHAEASG
APNW
Q
NLI
C
G
D
AN
CD
ET
W
BTW
IAN
G
MAAOIM
AF
R
BABSB
W
W
G
BT
C
SREC
AH
D
CBC
ESTL
O
K
CLN
H
XL
ABD
S
KBHM
BBNLH
HLOU
ELT
CG
D
P
13O5ANPXF
G
M
7 XPLA
HM
U
WCBG
RQ
R
M
B
C
N
AC
GOBEELH
CT
FSNW
Q
O
P
KNCOZI
C
FB
CIG
B
BKVETYYX
6 H3M
S
B
K8M
R
3FAB
AVL
5LQ
N
IB
RG
N
C
/R
BK
M
CG
W
KTFQ
G
M
N
HMIO
PA
E
C
R
AEDIR
N
B
CMN
PT
D
X
DC
CGBSSIR
X
S
L
K
LCNE
A
EAL
G
JLEJTO
C
B
C
N
I
PX
FDIBHATC
V
N
ABM
R
DAH
AMC
B
LDIRPAFCC
HCM
NFI
Q
S
LEAM
PHRC
BAG
SY
A
BH BFHM
C
ECH
N
E
D
A
M
Y
DO
HS
FLM
S
P
D
TTBW
R
HDQ
J
C
L
CAHM
BASCQ
SLI
CO
S
C
A
H
MR
AEE
D
ATVAAN
N1R1HKM
YYTI
O
3
T
L
2
P
U
DOHLQ
A
ITW
W
M
MAZDDHB
A
K
E
WIAYE
CQ
R
T
AGB
E
K
B
M
CM
S
BGAM
GEE
DLBSEIM
WHSW
ATZ
G
R
GLM
HFM
D
GKG
E
AS
PUG
BFR
FAPINH
I
C
S
D
H
VA
BATIPESLO
N
MAGYFCG
L
I
ALNPG
SD
CBXBTH
A
AXII
E
Q
FL AJMPT
MALIQLI
MC
HM
A
PM
TM
G
M
SLT
C
CLYAN
D
AMMCCG
P
EL
IQ
N
GLM
N
I
HM
C
CXUAHAM
S
K
IOLI
OSW
FN
M
LSY
10
8
6
Kruskal-Wallis test p-values
0.000000
Energy
0.000000
Financial
0.000000
Technology
0.550930
Conglomerates
0.000001
Consumer Cyclical
12
oil industry
energy exploration & services
mining
energy production & distribution
rail roads
retailers & consumer products
car & transportation
pharmaceutical health beauty
beauty
food
semiconductors electronics
computers telecommunications
banks
retailers
14
constructions
16
finance & banking
meaningfulness
4
2
0
Two main factors contributing to financial
data complexity:
Complexity of
each variable
over its time
evolution
Complexity of
the collective
dynamics of
all variables
Are them related?
3
Are dependency Hierarchy and Multifractality related?
he hierarchical order is defined as the cardinality of i , ni = card( i ). In the example reproduced in
e stock
labeled by i,T.we
2, 4,
5, 8, 10}, i = {a
, a8 , aScaling
set of nodesof Financial Time Series Are Related
i = {1,
1 , a2 , a4 , a5and
10 }, i.e. the
R Morales,
Dihave
Matteo,
TA,
Dependency
Structure
Properties
red dots and ni = 6.
q-fin arXiv:1309.2411
Hierarchical order
e of hierarchical structure. The path highlighted in red is
Multifractality
ΔH=H(2)-H(1)
i,
while the thick red bullets are the nodes
R Morales
H(1, 2) = H(1) H(2),
(1)
0.8
r q = 1, 2 is the generalised Hurst exponent computed from the linear scaling of the empirical16q-moments
Section for more details). We have removed from the analysis all stocks whose multifractality
cannot
14
y distinguished from zero, which correspond to weak multifractal behaviour and hence would not be
12Methods).
s context. The benchmark value for multifractal stocks has been set to H(1, 2) > 0.015 (see
0.6
0.4
!ρ" t
N c ,t
Dependency Hierarchy and Multifractality are related!
10
0.2
6
8
Financial Sector
Industrial Sector
0
6
0.05
0.04
2006
t
2008
2010
−0.2
2012
0.035
0.025
8
10
12
14
n
16
2004
8
0.035
Cluster no. 2
14
2006
t
2008
2010
2012
!n" t
0.025
0.04
0.015
0.035
0.02
0.03
8
10
12
14
16
18
n
14
16
14
16
Cluster no. 3
0.02
0.01
120.035
0
0.03
110.025 −0.01
0.025
0.02 −0.02
0.015
0.02
10
0.015
0.015
6
12
0.03
0.04
0.045
∆H(1, 2)
!∆H (1, 2)" t
∆H(1,
2)
13
342 most capitalised stocks continuously
traded in the NYSE in the period 2-01-1997 to
31-12-2012.
10
0.045
0.03
0.05
0.02
!∆H (1, 2)"
6
4
2002
0.03
0.025
FIG. 4. Coalescence
of the hierarchy in time and dynamical correlation.
(Left) The number of cluster Nc,t as a
0.03
function of time is plotted in time in blue empty circles. The dashed red line is the best fit over the entire time period
0.025
2-01-1997
to 31-12-2012, while the magenta line is the fit over the shorter
period
preceding
the 2007/2008 financial crisis
0.02
0.05reported as too small to be visible. (Right)
September0.02
2002 through November 2007. Standard errors on the circles are not
Dynamical evolution of the average correlation (thick dots) in the same time period. The dashed coloured lines represent the
0.015
0.015
2.5%, 25%,
75%, 97.5%-quantiles, taken from the distribution of all the observed
correlation coefficients.
0.04
0.03
!∆H (1, 2)"
2004
∆H(1, 2)
NYSE
0.035
4 0.045
2002
∆H(1, 2)
0.035
20
0.01
8
10
12
14
16
−0.03
8
18
10
12
5 200610
20
n2008 15
2006n 2008 2010 2012
2002 2004
2010 2012
t
t
FIG. 3. Correlation
between
multifractality
and
hierarchical order
inin
single
sectors
and clusters.
We plot in
black
FIG. 3. Correlation
between
multifractality
and
hierarchical
order
single
sectors
and clusters.
We
plot i
dots
H (1, 2) against the hierarchical order n for stocks in the Financial (top left) and Industrial (top right) sectors and cluster
dots
H (1,22)
against
the
hierarchical
orderright).
n for In
stocks
in the
Financial
(top
left)
and
Industrial
(top
right)
sectors
(bottom
left)
and
cluster 3 (bottom
all plots
the blue
line is the
best
fit of
thediamonds
dots, while
the
red
squares
are theand
0.04
FIG.
5.
Average
multifractality
and
hierarchical
order
in
time.
(Left)
The
blue
are
values
of
the
average
0.12
5. Average
multifractality
hierarchical
order
in time.
(Left)
The
blue
arethe
values
of the
0.07
2 (bottom
left)
and
3 for
(bottom
right).
In all plots
the blue
line is the
best
fit of
thediamonds
dots, while
red squares
averages
ofcluster
H (1, 2)
each and
fixed
order.
0.05 FIG.
over
50 overlapping
time
windows.
The
dashed green
green line
the
best
fit over
the entire
period
onstration that multifractality and hierarchical order are positively
correlated.
(Color
We
averages
ofmultifractality
H
(1,online)
2)
each
fixed time
order.
multifractality
over
50for
overlapping
windows.
The
dashed
lineis is
the
best
fit over
the time
entire
time2-01-1997
period 2to 31-12-2012, while the blue line is the fit over the shorter period preceding the 2007/2008 financial crisis, September 2002
cles with error bars the multifractal indicator h H(1, 2)i averaged over
sharing through
the same
hierarchical
31-12-2012,
while
the blue
line
is the
fitred
over
theareshorter
preceding
the order
2007/2008
financial crisis,
Septemb
0.04 thetostocks
November
2007.
(Right)
circles
values ofperiod
the average
hierarchical
over 50 overlapping
time windows.
0.035The
0.06
C.
A Multivariate Dynamical Hierarchical Model
through
2007.
The
circles
values
of the2-01-1997
average to
hierarchical
orderthe
over
overlapping
the hierarchical
order n. The blue solid line is the linear fit over the averages,
while the November
orange
horizontal
dashed
0.1
The
dashed
green
line is the
bestred
fit over
the are
entire
time period
31-12-2012,
while
blue50
line
is the fit overtime
the w
p (Right)
dashed
greenFigure
line
ispreceding
the
best
fit2007/2008
over the
entire
time
period
2-01-1997
to 31-12-2012,
while
the blue
lineerror
is the
fit o
period
the
financial
crisis,
September
2002
through
November
2007.
In hierarchical
both
plots the
bars
limit up to which the increasing trend is observed. The error bars 0.03
are theThe
standard
errorsshorter
computed
as
s/
N,
from
LSE
(see
3
in
SM).
The
two
Asian
markets
show
a
much
wider
range
of
order
due
p
In order to explain the mechanism underlying the observed link between multifractality and correlation hierarchy we
are
the
standard
mean
error
on0.03
thefinancial
mean
s/ crisis,
N , withSeptember
swhose
the standard
deviation.
shorter
period
preceding
the
2007/2008
2002
through
November
2007.
In bothThis
plots
thebia
err
appearance
of
one
very
large
hub
in
the
correlation
network,
which
includes
most
the stocks.
hub
standard
deviation over the stocks having same hierarchical order.
introduce
a dynamical
hierarchical
model
(DHM),
main
novelty
with respect
to of
standard
multivariate
models
0.05
!∆H (1, 2)"
!∆H (1, 2)"
n
TSE detrended
TSE
LSE
!∆H (1, 2)"
2004
HKSE
p
!∆H (1, 2)"
n order
Hierarchical
2002
[5]
in
theerror
introduction
of a order.
perturbation
term
on
correlation
matrix
associated
to can
its hierarchical
structure.
evaluation
of lies
the
proper
hierarchical
bythe
detrending
the
time
series we
remove the
large hub
the standard
mean
on the mean
s/ NHowever,
, with
s the
standard
deviation.
0.02 are
0.08
model
returns
of stock
as
forWe
TSE
data
and only
fori the
at least
small hierarchical orders, retrieve a similar behaviour to that observed in
p
volatility
0.025
Figure
5 in factor
Supplementary
Material). As explained
in detail
in the SM though, detrending the series
se
igure 20.04
the mean value h H(1, 2)i with standard error s/ N0.01
(with2s (see
the standard
deviation
on theas
ri,t = ✏Y
(2)
i,t i,t ,
scaling
properties of the data and the overall trend
H (1, 2)i vs n is fundamental
K in the plots h
ch observed hierarchical order on all stocks analysed (see Methods fora↵ects
details). the
We observe
a positive
=
x
e
,
(3)
C.
A
Multivariate
Dynamical
Hierarchical
Model
i,t
t
0.06
Nonetheless
we mention
report inmultivariate
Figure 4 in
SM) that
without
detrending
series
positive
depe
where
✏i,t = (✏t )i(and
is a stationary
Gaussian
random
variable,
i.e. ✏t ⇠ Nthe
(0, ⌃)
with the
⌃ the
covariance
m2
etween0.03
the two variables up to n = 14, followed by some noisier0 flatbetween
trend. The positive
correlation
0.02
matrix
and
is is
a volatility
factor.
from
usual
multivariate
models,
H (1, 2)
and
observed
(for Di↵erently
small n) in
both
TSE
and HKSE
data.
i,t n
i,t is not common to all stocks but
depends
explicitly
on
the
hierarchical
structure
of
the
market.
We
suppose
there
is
a
volatility
factor
x
common
to
(1, 2)i and n is also confirmed by performing a t-test on the
correlation
validated
p-the
We
have
detected
samerandom
positive
dependence
betweenlink
hierarchical
order
and
multifractality
on specific
where
Kmwith
are
Bernoulli
variables
with
pm between
associated
to the
nodes
am and
along
thet hierarchical
In coefficient
orderalso
to
the
mechanism
underlying
the probabilities
observed
−0.01 sectors
all explain
stocks
and
then
a latent hierarchical
structure
of risks
am with
m
= 1,Q
. . .multifractality
,N
1, associated
withcorrelation
the nodes of hierar
the
(i)
(i)
and
on
clusters
found
through
DBHT
clustering
algorithm.
We
show
in
the
top
of
Figure
3
plots
K
0.04
3. All0.02
stocks with hierarchical order in the range [5, 14] (which accounts
for 90% ofatree
all
stocks)
exhibit
therefore
take
the form
= ✏whose
xtmain
, wherenovelty
Ystochastic
e
.autocorrelated
It istoworth
remarking
that the
the
dendrogram.
The
process x
chosen
as rai,tstationary
process
in time,
with
i . Returns
i,t Yn,t log-normal
t is
introduce
dynamical
hierarchical
model
(DHM),
respect
standard
multivariate
n,t = with
m2
0.015
multifractality
indicator
versus
the
hierarchical
order
computed
on 1stocks
to Financial
and Ind
autocovariance
as a power law,
i.e. Cov(x
, in line belonging
with a sweeping
amount of studies
(i)
t xt+h ) ⇠ h
properties increasing along with their depth in the hierarchy−0.02
of correlations.
OnThe
the
other
hand,
the function
hierarchical
term
Y
introduces
a single
richer
structure
ofthe
dependence,
where
the topology
of{a
the
risk
organisation
plays
[5]
lies in
the
introduction
of
a decaying
perturbation
term
on
correlation
matrix
associated
to
its
hierarchical
str
sectors.
black
dots
are
values
stocks
whereas
the hierarchical
red
squares
arei the
average
multifractal
ind
n,t
on multi
fractals
in
finance
[21,for
22].
For the
arbitrary
stock
i with
path
=
,
m
2
}
we
define
the
m
i
uration observed for orders larger than 14 suggests that the hierarchical
ofreturns
cross-correlations
forstructure
each order.
We
plot
We
model
of also
stock
i asthe best fit on the dots (thick blue line). Both sets of stocks show a very well d
0.02
0.01
between the hierarchical
order n and the multifractality
H (1, 2), which is eviden
nsible 0.01
for the multifractal
properties
of the stocks
only up to−0.03
a certainpositive
order.
Letcorrelation
us
in particular
5
10
15
2 indicator
4
6
8
10
5
10
15
20
5 positive
10 note
15
20
trend recovered in both examples. Again,
is found to be significant
with p-value p =
ri,tthe
= ✏dependence
n order n > 14 is too small to allowthe
n
n
n
i,t i,t ,
ber of stocks found with hierarchical
any
robust
statistical
conclusion,
In Figure 3 we also report the trends observed on two of the largest clusters found through the DBHT. Th
the reason why standard errors in Figure 2 are very large for n > 14. positive correlation between multifractality and hierarchical order is observed on the clusters best identifiable w
m
i
m
i
3
Model
he hierarchical order is defined as the cardinality of
e stock labeled by i, we have i = {1, 2, 4, 5, 8, 10},
red dots and ni = 6.
i,
i
ni = card( i ). In the example reproduced in
= {a1 , a2 , a4 , a5 , a8 , a10 }, i.e. the set of nodes
ri,t = εi,tσ i,t
σ i,t = xt ∏ e
Km
m∈γ i
0.25
!∆H (1, 2)"
e of hierarchical structure. The path highlighted in red is i , while the thick red bullets are the nodes
ch correspond to the risks stock i is exposed to. Note that the risk a1 is common to all stocks, while other
s of stocks only. The dashed branches of the dendrogram indicate an arbitrary hierarchy.
e conjecture that the hierarchical order ni can be actually viewed as a measure of the riskiness of
of its positive dependence with multifractality. This entails that the cross-correlation properties of
dataset are somehow entangled with the stylised facts displayed by the univariate time series. In
erarchical structure of correlation provides likewise a snapshot of the hierarchy of risks in the market.
ur knowledge, up to now no attempt to uncover this kind of underlying structure has been made in
II.
A.
0.2
0.15
RESULTS
Cluster detection and sectors
idered daily stock prices comprising the 342 most capitalised stocks continuously traded in the NYSE
01-1997 to 31-12-2012. Data have been provided by Bloomberg. The dataset includes stocks from
et sectors, according to the Bloomberg classification. The taxonomy of the stocks in the respective
in the Supplementary Material (SM), where we also report details on the clusters detected through
g algorithm. We have chosen to perform the clustering through DBHT after having verified that it
an other methods including the Single Linkage Cluster Analysis (SLCA) [33] in recovering a wellrchical structure: SLCA in fact tends to produce very large hubs of stocks that bias the correlation
er.
0.1
0.05
2
3
4
5
n
6
7
8
9
Conclusions and Perspectives
Complexity in the evolution in time of a variable
Complexity in the dynamics of all variables
Quantification of multi-scale temporal complexity
- Empirical mode decomposition
Noemi Nava
Quantification of hierarchical dependency and causality
- Kernel methods
Anna Zaremba
Information filtering through networks
- Embedded graphs
Guido Previde Massara
Modeling risk propagation
- Statistical mechanics approach
Annika Wipprecht
- Simulation and empirical study
Satjaporn Tungsong
Modeling financial processes with large fluctuations and non-linear dependency
- Scaling laws
Peter Divós
Thank YOU!
Si l’ordre satisfait la raison, le désordre fait les délices de l’imagination
Paul Claudel