Prezentacja programu PowerPoint
Transcription
Prezentacja programu PowerPoint
Physics of Condensed Matter I 1100-4INZ`PC Faculty of Physics UW [email protected] Summary of the lecture 1. Quantum mechanics 2. Optical transitions 3. Lasers 4. Optics 5. Molecules 6. Properties of molecules 7. Crystals 8. Crystalography 9. Solid state 10. Electronic band structure 11. Effective mass approximation 12. Electrons and holes 13. Carriers 14. Transport 15. Optical properties of solids 2015-11-06 2 Classical and quantum universe Hydrogen atom: Eigenstates of L: 2015-11-06 3 Classical and quantum universe Hydrogen atom: Eigenstates of L: 2015-11-06 Real functions: 4 Classical and quantum universe Hydrogen atom: Eigenstates of L: 2015-11-06 Spherical harmonics Ylm: 5 Classical and quantum universe Eigenstate: Stan 1s E.g. hydrogen wavefunction Quantum numbers! 2015-11-06 6 Electric field Stark effect of hydrogen atom electric field E H ' pE ez E z dipole moment p Eigenfunctions of hydrogen atom for 2p state: 𝜓200 , 𝜓21−1 , 𝜓210 , 𝜓211 ′ 𝑖𝑗 𝜓𝑗 Perturbation 𝐻 = 𝜓𝑖 𝐻′ http://pl.wikibooks.org/wiki/Mechanika_kwantowa/Rachunek_zaburzeń_dla_równania_Schrödingera_niezależnego_od_czasu 2015-11-06 11 Electric field Stark effect of hydrogen atom electric field E H ' pE ez E z dipole moment p Eigenfunctions of hydrogen atom for 2p state: 𝜓200 , 𝜓21−1 , 𝜓210 , 𝜓211 ′ 𝑖𝑗 𝜓𝑗 Perturbation 𝐻 = 𝜓𝑖 𝐻′ http://pl.wikibooks.org/wiki/Mechanika_kwantowa/Rachunek_zaburzeń_dla_równania_Schrödingera_niezależnego_od_czasu 2015-11-06 12 Electric field Stark effect of hydrogen atom electric field E H ' pE ez E z dipole moment p Atom in ligand field http://pl.wikibooks.org/wiki/Mechanika_kwantowa/Rachunek_zaburzeń_dla_równania_Schrödingera_niezależnego_od_czasu 2015-11-06 13 Electric field Stark effect of hydrogen atom electric field E H ' pE ez E z dipole moment p Atom in ligand field Crystal Field Theory (CFT) (magnetic properties as well as color.) http://www.tutorvista.com/content/chemistry/chemistry-iv/coordination-compounds/crystal-field-splitting.php 2015-11-06 14 Magnetic field and spin Magnetic field: 𝐻 ′ = −𝑚𝐵 Here 𝑚 is the magnetic moment clasically: 𝑚 = 𝐼 𝑆Ԧ = 𝑒 2 𝑒 𝑒 𝜋𝑟 = 𝜋𝑟 2 = 𝑟𝑣 [Am2] 𝑇 2𝜋𝑟/𝑣 2 m r v 𝐿 = 𝑟Ԧ × 𝑚0 𝑣Ԧ 𝐿 = 𝐿 𝑥 , 𝐿 𝑦 , 𝐿 𝑧 2015-11-06 15 Magnetic field and spin Magnetic field: 𝐻 ′ = −𝑚𝐵 Here 𝑚 is the magnetic moment clasically: 𝑚 = 𝐼 𝑆Ԧ = 𝑒 2 𝑒 𝑒 𝜋𝑟 = 𝜋𝑟 2 = 𝑟𝑣 [Am2] 𝑇 2𝜋𝑟/𝑣 2 m thus: 𝑒 𝜇𝐵 𝑚=− 𝐿=− 𝐿 2𝑚0 ℏ Bohr magneton 𝜇𝐵 = r v ℏ𝑒 2𝑚0 𝐿 = 𝑟Ԧ × 𝑚0 𝑣Ԧ 𝜇𝐵 = 9,274009994(57)×10−24 J/T 𝜇𝐵 ′ 𝐻 = −𝑚𝐵 = 𝐿 𝐵 ℏ 2015-11-06 𝜇𝐵 = ℏ𝑒 2𝑚0 𝐿 = 𝐿 𝑥 , 𝐿 𝑦 , 𝐿 𝑧 16 Magnetic field and spin Magnetic field: 𝐻 ′ = −𝑚𝐵 = for 𝐵 = 0,0, 𝐵𝑧 we have: 𝐻 ′ = 𝜇𝐵 𝐿 𝐵 ℏ Here 𝑚 is the magnetic moment 𝜇𝐵 𝐿 𝐵 ℏ 𝑧 𝑧 = 𝜇𝐵 𝐵𝑧 𝑚 where 𝑚 = −𝑙, −𝑙 + 1, … 𝑙 − 1, 𝑙 m Here 𝑚 is the quantum number |𝑛, 𝑙, 𝑚ۧ r 𝑚=1 the base: |𝑙, 𝑚ۧ v 𝐿 = 𝑟Ԧ × 𝑚0 𝑣Ԧ 𝑙=1 𝑚=0 𝑚 = −1 𝐵=0 2015-11-06 𝐵≠0 17 Magnetic field and spin Magnetic field: 𝐻 ′ = −𝑚𝐵 = for 𝐵 = 0,0, 𝐵𝑧 we have: 𝐻 ′ = 𝜇𝐵 𝐿 𝐵 ℏ Here 𝑚 is the magnetic moment 𝜇𝐵 𝐿 𝐵 ℏ 𝑧 𝑧 = 𝜇𝐵 𝐵𝑧 𝑚 where 𝑚 = −𝑙, −𝑙 + 1, … 𝑙 − 1, 𝑙 m Here 𝑚 is the quantum number |𝑛, 𝑙, 𝑚ۧ r 𝑚=1 the base: |𝑙, 𝑚ۧ v 𝐿 = 𝑟Ԧ × 𝑚0 𝑣Ԧ 𝑙=1 𝑚=0 𝑚 = −1 𝐵=0 2015-11-06 𝐵≠0 18 Magnetic field and spin Stern-Gerlach experiment (1922 r.) http://hyperphysics.phy-astr.gsu.edu 2015-11-06 19 What is the „spin”? • What is „mass”? Mariusz Pudzianowski http://www.pudzian.pl/ 2015-11-06 20 What is the „spin”? • What is „momentum”? 2015-11-06 21 What is the „spin”? • What is „charge”? http://www.chaseday.com 2015-11-06 22 What is the „spin”? http://www.floridahistory.com/[email protected] • Spin? Sebastian Münster, Cosmographia in 1544 2015-11-06 Disney 23 http://geomag.usgs.gov/ The history 2015-11-06 24 The history Magnetyt (z 1750 r.) typowy ferryt i magnes z ziem rzadkich. Każdy z nich o gęstości energii 1J. http://www.azom.com/details.asp?ArticleID=637 http://www.tcd.ie/Physics/Schools/what/materials/magnetism/seven.html A lodestone magnet from the 1750's and typical ferrite and rare earth used in modern appliances. Each of these produce about 1J of energy. 2015-11-06 25 What is the „spin”? How magnets work? http://lucy.troja.mff.cuni.cz/~tichy/elektross/magn_pole/stac_mp.html 2015-11-06 26 What is the „spin”? How magnets work? http://lucy.troja.mff.cuni.cz/~tichy/elektross/magn_pole/stac_mp.html 2015-11-06 27 What is the „spin”? How magnets work? 2015-11-06 28 What is the „spin”? How magnets work? 2015-11-06 29 What is the „spin”? How magnets work? 2015-11-06 30 What is the „spin”? How magnets work? Moving charges produce a magnetic field… 2015-11-06 31 What is the „spin”? How magnets work? 2015-11-06 32 What is the „spin”? How magnets work? 2015-11-06 33 What is the „spin”? How magnets work? 2015-11-06 34 What is the „spin”? How magnets work? 2015-11-06 35 What is the „spin”? How magnets work? These smal magnets are electrons 2015-11-06 36 What is the „spin”? How magnets work? These smal magnets are electrons 2015-11-06 37 What is the „spin”? Skąd się biorą magnesy? A więc płynie jakiś prąd? 2015-11-06 38 What is the „spin”? How magnets work? The movement of electrons around the nucleus? The spin of electrons around it’s own axis? So, there is a current? Internal property of electrons? 2015-11-06 39 What is the „spin”? How magnets work? The spin of electrons around it’s own axis? The movement of electrons around the nucleus? So, there is a current? Internal property of electrons? 2015-11-06 ! internal angular momentum SPIN 40 Albert Einstein - Johannes Wander de Haas, Berlin 1914, internal angular momentum Internal property of electrons 2015-11-06 ! http://www.ptb.de/en/publikationen/jahresberichte/jb2005/nachrdjahres/s23e.html What is the „spin”? 41 What is the „spin”? projections of the spin on axis 2015-11-06 42 What is the „spin”? projections of the spin on ANY of axes has only TWO values: 2015-11-06 http://hyperphysics.phy-astr.gsu.edu43 Magnetic field and spin Stern-Gerlach experiment (1922 r.) http://hyperphysics.phy-astr.gsu.edu 2015-11-06 44 Magnetic field and spin Spin, spin-orbit interaction Spin operators 𝑆መ𝑥 , 𝑆መ𝑦 , 𝑆መ𝑧 , 𝑆መ 2 𝜓 𝑟, Ԧ 𝑆𝑧 = 𝜓 𝑟Ԧ 𝜒 𝑆𝑧 Spinor 𝑆መ𝑥 , 𝑆መ𝑦 = 𝑖ℏ𝑆መ𝑧 , etc. Pauli matrices: 𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧 1 1 0 𝑆መ𝑥 = ℏ𝜎𝑥 = ℏ 2 2 1 1 0 𝑆መ𝑦 = 1 1 0 −𝑖 ℏ𝜎 = ℏ 2 𝑦 2 𝑖 0 𝑆መ𝑥 = 1 1 1 ℏ𝜎𝑧 = ℏ 2 2 0 2015-11-06 0 −1 projections of the spin on the axis 𝑧 1 0 𝜒↑ = , 𝜒↓ = 0 1 45 Magnetic field and spin Spin, spin-orbit interaction Spin operators 𝑆መ𝑥 , 𝑆መ𝑦 , 𝑆መ𝑧 , 𝑆መ 2 𝜇𝐵 𝐻 = 𝐿 + 𝑔𝑆መ 𝐵 ℏ ′ 𝑆መ𝑥 , 𝑆መ𝑦 = 𝑖ℏ𝑆መ𝑧 , etc. 𝑔-factor for the agreement with experiments Pauli matrices: 𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧 1 1 0 𝑆መ𝑥 = ℏ𝜎𝑥 = ℏ 2 2 1 1 0 𝑆መ𝑦 = 1 1 0 −𝑖 ℏ𝜎 = ℏ 2 𝑦 2 𝑖 0 𝑆መ𝑥 = 1 1 1 ℏ𝜎𝑧 = ℏ 2 2 0 2015-11-06 0 −1 projections of the spin on the axis 𝑧 1 0 𝜒↑ = , 𝜒↓ = 0 1 46 Magnetic field and spin Spin, spin-orbit interaction Spin operators 𝑆መ𝑥 , 𝑆መ𝑦 , 𝑆መ𝑧 , 𝑆መ 2 𝜇𝐵 𝐻 = 𝐿 + 𝑔𝑆መ 𝐵 ℏ ′ 𝑆መ𝑥 , 𝑆መ𝑦 = 𝑖ℏ𝑆መ𝑧 , etc. 𝑔-factor for the agreement with experiments Pauli matrices: 𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧 1 1 0 𝑆መ𝑥 = ℏ𝜎𝑥 = ℏ 2 2 1 1 0 𝑆መ𝑦 = 1 1 0 −𝑖 ℏ𝜎 = ℏ 2 𝑦 2 𝑖 0 𝑆መ𝑥 = 1 1 1 ℏ𝜎𝑧 = ℏ 2 2 0 2015-11-06 0 −1 𝑔 = −2.00231930436182 ± 0.00000000000052 projections of the spin on the axis 𝑧 1 0 𝜒↑ = , 𝜒↓ = 0 1 47 QED – Quantum ElectroDynamics 𝑔 = −2.00231930436182 ± 0.00000000000052 2015-11-06 48 Magnetic field and spin Spin, spin-orbit interaction Spin operators 𝑆መ𝑥 , 𝑆መ𝑦 , 𝑆መ𝑧 , 𝑆መ 2 𝜇𝐵 𝐻 = 𝐿 + 𝑔𝑆መ 𝐵 ℏ ′ 𝑔-factor for the agreement with experiments መ the base |𝑗, 𝑚𝑗 ൿ Total angular momentum operator 𝐽መ = 𝐿 + 𝑆, =𝑀 𝐿 + 𝑀 𝑆 = −𝑔𝐿 𝜇𝐵 𝐿 −𝑔𝑆 𝜇𝐵 𝑆መ Total magnetic moment 𝑀 ℏ ℏ =1 =2 ≠ 𝐽መ - magnetic anomaly of spin 𝑀 2015-11-06 49 Magnetic field and spin 𝑆𝑂 = 𝜆𝐿 𝑆መ with the base |𝑛, 𝑙, 𝑠, 𝑚𝑙 , 𝑚𝑠 ۧ Spin-orbit interaction 𝐻 For 𝑠-states 𝐿 = 0 ⇒ 𝐿 𝑆መ = 0 መ the base |𝑗, 𝑚𝑗 ൿ Total angular momentum operator 𝐽መ = 𝐿 + 𝑆, 𝑆𝑂 = 𝜆𝐿 𝑆መ = 𝜆 𝐻 fine-structure constant 𝐸𝑆𝑂 = 2015-11-06 1 2 1 2 2 𝐽 − 𝐿 − 𝑆 = 𝜆 𝐿𝑧 𝑆𝑧 + 𝐿+ 𝑆− + 𝐿− 𝑆+ 2 2 𝑍𝛼 2 1 𝜆 = ℎ𝑐 𝐴 = 𝑅𝑦 = ℎ𝑐𝑅∞ 2 𝑟3 𝑚𝑒 𝑒 4 2 𝑒 1 𝑅∞ = 8𝜀2 ℎ3 𝑐 0 𝛼= ≈ 4𝜋𝜀0 ℏ𝑐 137.037 𝑅∞ = 1,097 × 107 m-1 න 𝜓∗ 𝐻𝑆𝑂 𝜓 𝑑𝑉 𝑍 = 2 137 2 න 𝜓∗ 𝐿 𝑆መ 𝜓 𝑑𝑉 𝑟3 50 Magnetic field and spin 𝑆𝑂 = 𝜆𝐿 𝑆መ with the base |𝑛, 𝑙, 𝑠, 𝑚𝑙 , 𝑚𝑠 ۧ Spin-orbit interaction 𝐻 For 𝑠-states 𝐿 = 0 ⇒ 𝐿 𝑆መ = 0 መ the base |𝑗, 𝑚𝑗 ൿ Total angular momentum operator 𝐽መ = 𝐿 + 𝑆, 1 2 1 2 2 𝐽 − 𝐿 − 𝑆 = 𝜆 𝐿𝑧 𝑆𝑧 + 𝐿+ 𝑆− + 𝐿− 𝑆+ 2 2 1 𝑍𝑒 2 𝑔𝑠 𝐿 𝑆መ = 2 4𝜋𝜖0 2𝑚2 𝑐 2 𝑟 3 1 𝑍3 1 = 𝑟3 𝑛3 𝑎𝐵3 𝑙 𝑙 + 1 𝑙 + 1 2 2 ℏ 𝐿 𝑆መ = 𝑗 𝑗 + 1 − 𝑙 𝑙 + 1 − 𝑠(𝑠 + 1) 2 𝑆𝑂 = 𝜆𝐿 𝑆መ = 𝜆 𝐻 e.g. for 𝜓210 we get 𝐸𝑆𝑂 = 2015-11-06 1 𝑟3 = 1 𝑍 3 24 𝑎0 4 and for general 𝑛 (principal quantum number) 𝑍 𝑗 𝑗 + 1 − 𝑙 𝑙 + 1 − 𝑠(𝑠 + 1) 2𝑙(𝑙 + 1/2)(𝑙 + 1) 2 137 2 𝑎03 𝑛3 51 Magnetic field and spin 𝑆𝑂 = 𝜆𝐿 𝑆መ with the base |𝑛, 𝑙, 𝑠, 𝑚𝑙 , 𝑚𝑠 ۧ Spin-orbit interaction 𝐻 For 𝑠-states 𝐿 = 0 ⇒ 𝐿 𝑆መ = 0 መ the base |𝑗, 𝑚𝑗 ൿ Total angular momentum operator 𝐽መ = 𝐿 + 𝑆, 𝐿ത 𝑆ҧ = 1 2 1 ҧ𝐽 − 𝐿ത2 − 𝑆ҧ 2 = 𝐿𝑧 𝑆𝑧 + 𝐿+ 𝑆− + 𝐿− 𝑆+ 2 2 2𝑃 3/2 𝐿 = 1; 𝑆መ = 3 1 2 2𝑃 1/2 2 3 the base: |𝑛, 𝑙, 𝑠, 𝑗, 𝑚𝑗 ൿ shortly: |𝑗, 𝑚𝑗 ൿ 2015-11-06 52 Fine structure The fine structure means the splitting of the spectral lines of atoms due to electron spin and relativistic corrections to the Schrödinger equation. We got corrections to the value of energy levels. • Kinetic energy relativistic correction • Spin-orbit coupling • Darwin term 2015-11-06 53 Fine structure The fine structure means the splitting of the spectral lines of atoms due to electron spin and relativistic corrections to the Schrödinger equation. We got corrections to the value of energy levels. • Kinetic energy relativistic correction • Spin-orbit coupling • Darwin term 2015-11-06 54 Fine structure The fine structure means the splitting of the spectral lines of atoms due to electron spin and relativistic corrections to the Schrödinger equation. We got corrections to the value of energy levels. • Kinetic energy relativistic correction 𝐸= The correct description of the atom requires taking into account 𝑝Ԧ2 𝑐 2 + 𝑚02 𝑐 4 the relativistic effects which lead to the Dirac Hamiltonian. The square root can be expanded into a series: 𝐸 = 𝑚0 𝑐2 𝑝2 𝑝4 1+ − +⋯ 2𝑚02 𝑐 2 2𝑚04 𝑐 4 thus kinetic energy can be expressed as and the Hamiltonian is: 2015-11-06 = 𝑚0 𝑐2 𝑝2 𝑝4 + − +⋯ 2𝑚0 8𝑚03 𝑐 2 𝑝2 𝑝4 𝐸𝐾 = 𝐸 − 𝑚0 𝑐 = − +⋯ 2𝑚0 8𝑚03 𝑐 2 2 𝜕 ℏ2 2 ℏ4 𝑖ℏ Ψ 𝑟, Ԧ𝑡 = − 𝛻 + V 𝑟Ԧ − 𝛻 4 Ψ 𝑟, Ԧ𝑡 3 2 𝜕𝑡 2𝑚 8𝑚0 𝑐 55 Fine structure 𝜕 ℏ2 2 ℏ4 𝑖ℏ Ψ 𝑟, Ԧ𝑡 = − 𝛻 + V 𝑟Ԧ − 𝛻 4 Ψ 𝑟, Ԧ𝑡 3 2 𝜕𝑡 2𝑚 8𝑚0 𝑐 Using perturbation theory one can find correction due to the relativistic mass change for each principal quantum number and corresponding energy 𝐸𝑛. 𝑚0 79 𝑚= For instance the electron speed of 1𝑠 in gold Au 𝑣 = 53% 𝑐! 𝑣2 1− 2 𝑐 2 2𝑍2 𝐸 4𝑛 𝛼 𝑛 3 𝑛 2 Δ𝐸𝑛′ = − − 3 = − 𝐸 − 𝑒 1 𝑛 2 4 1 4 2𝑚𝑐 𝑙 + 1 2𝑛 𝛼 = ≈ 𝑙+ 4𝜋𝜖0 ℏ𝑐 137 2 2 2015-11-06 Tadeusz Stacewicz Correction from this perturbation: • Small for light atoms • Rapidly decreases with the principal quantum number 𝑛 • Significant for large 𝑍 𝑚𝑐 2 𝛼 2 𝑍 2 𝐸𝑛 = − 2 𝑛2 56 Fine structure The fine structure means the splitting of the spectral lines of atoms due to electron spin and relativistic corrections to the Schrödinger equation. We got corrections to the value of energy levels. • Kinetic energy relativistic correction • Spin-orbit coupling • Darwin term 𝑆𝑂 = 𝜆𝐿 𝑆መ = 𝜆 𝐻 e.g. for 𝜓210 we get 𝐸𝑆𝑂 = 2015-11-06 1 𝑟3 1 2 1 𝐽 − 𝐿2 − 𝑆 2 = 𝜆 𝐿𝑧 𝑆𝑧 + 𝐿+ 𝑆− + 𝐿− 𝑆+ 2 2 1 𝑍𝑒 2 𝑔𝑠 𝐿 𝑆መ = 2 4𝜋𝜖0 2𝑚2 𝑐 2 𝑟 3 1 𝑍 3 = 24 𝑎 0 4 𝑍 2 137 2 𝑎03 𝑛3 and for general 𝑛 (principal quantum number) 𝑗 𝑗 + 1 − 𝑙 𝑙 + 1 − 𝑠(𝑠 + 1) 2𝑙(𝑙 + 1/2)(𝑙 + 1) 57 Fine structure The fine structure means the splitting of the spectral lines of atoms due to electron spin and relativistic corrections to the Schrödinger equation. We got corrections to the value of energy levels. • Kinetic energy relativistic correction • Spin-orbit coupling • Darwin term Darwin term is the non-relativistic expansion of the Dirac equation: 3 𝛽𝑚𝑐 2 + 𝑐 𝛼𝑛 𝑝𝑛 𝑛 𝜓 𝑟, Ԧ 𝑡 = 𝑖ℏ 𝜕𝜓 𝑟, Ԧ𝑡 𝜕𝑡 Negative 𝐸 solutiuons to the equation → antimatter https://pl.wikibooks.org/wiki/Mechanika_kwantowa/Relatywistyczna_teoria_kwant%C3%B3w_Diraca 2015-11-06 58 Fine structure The fine structure means the splitting of the spectral lines of atoms due to electron spin and relativistic corrections to the Schrödinger equation. We got corrections to the value of energy levels. • Kinetic energy relativistic correction • Spin-orbit coupling • Darwin term Darwin term is the non-relativistic expansion of the Dirac equation: 3 𝛽𝑚𝑐 2 𝛼𝑛 𝑝𝑛 +𝑐 𝑛 0 𝛼𝑥 = 0 0 1 1 0 0 0 0 𝛽= 0 1 0 0 0 −1 0 0 0 0 −1 0 0 1 0 0 1 0 0 1 0 0 0 𝜕𝜓 𝑟, Ԧ𝑡 𝜓 𝑟, Ԧ 𝑡 = 𝑖ℏ 𝜕𝑡 0 𝛼𝑦 = 0 0 𝑖 0 0 −𝑖 0 𝑖 0 −𝑖 0 0 0 0 0 𝛼, 𝛽 – matrices 4 × 4 0 𝛼𝑧 = 0 1 0 0 1 0 0 0 −1 0 0 0 −1 0 0 https://pl.wikibooks.org/wiki/Mechanika_kwantowa/Relatywistyczna_teoria_kwant%C3%B3w_Diraca 2015-11-06 59 Fine structure The fine structure means the splitting of the spectral lines of atoms due to electron spin and relativistic corrections to the Schrödinger equation. We got corrections to the value of energy levels. • Kinetic energy relativistic correction • Spin-orbit coupling • Darwin term Darwin term is the non-relativistic expansion of the Dirac equation: ℏ2 𝑍𝑒 2 𝐻𝐷𝑎𝑟𝑤𝑖𝑛 = 4𝜋 𝛿 𝑟Ԧ 8𝑚2 𝑐 2 4𝜋𝜖0 ℏ2 𝑍𝑒 2 𝐻𝐷𝑎𝑟𝑤𝑖𝑛 = 4𝜋 𝜓 𝑟Ԧ = 0 2 2 2 8𝑚 𝑐 4𝜋𝜖0 Only for s-orbit, because: 𝜓 𝑟Ԧ = 0 = 0 for 𝑙 > 0 2015-11-06 60 Fine structure The fine structure means the splitting of the spectral lines of atoms due to electron spin and relativistic corrections to the Schrödinger equation. We got corrections to the value of energy levels. 𝐸𝑛2 4𝑛 𝛼 2𝑍2 𝑛 3 ′ Δ𝐸𝑛 = − −3 = − − 2 4 𝐸𝑛 1 1 4 2𝑚𝑐 2𝑛 𝑙+ 𝑙+ • Kinetic energy relativistic correction 2 2 • Spin-orbit coupling • Darwin term 𝑍4 𝑗 𝑗 + 1 − 𝑙 𝑙 + 1 − 𝑠(𝑠 + 1) 𝐸𝑆𝑂 = 2𝑙(𝑙 + 1/2)(𝑙 + 1) 2 137 2 𝑎03 𝑛3 Total effect: 𝐸𝐷𝑎𝑟𝑤𝑖𝑛 ℏ2 𝑍𝑒 2 = 4𝜋 8𝑚2 𝑐 2 4𝜋𝜖0 𝜓 𝑟Ԧ = 0 2 2𝑍2 𝛼 𝑛 3 Δ𝐸𝑛′ = − 2 𝐸𝑛 − 1 𝑛 𝑗+2 4 2015-11-06 61 Fine structure 2015-11-06 Tadeusz Stacewicz Paul Dirac calculations: 62 Fine structure Paul Dirac (Nobel 1933) calculations: Bohr 3P3/2 and 3D3/2 Dirac 2015-11-06 Tadeusz Stacewicz 2S1/2 and 2P1/2 63 Fine structure Willis Lamb (Nobel 1955) calculations: 2S1/2 and 2P1/2 QED – Quantum ElectroDynamics – Lamb shift due to the interaction of the atom with virtual photons emitted and absorbed by it. In quantum electrodynamics the electromagnetic field is quantized and therefore its lowest state cannot be zero (𝐸𝑚𝑖𝑛 = Coulomb potential. 2015-11-06 ℏ𝜔 ), 2 which perturbs 64 2015-11-06 http://backreaction.blogspot.com/2007/12/hydrogen-spectrum-and-its-fine.html Fine structure 65 http://backreaction.blogspot.com/2007/12/hydrogen-spectrum-and-its-fine.html Fine structure 10.2 eV Lamb shift – (Willis Lamb) QED size of the proton! (hydrogen vs muonic hydrogen) [about 1 GHz] 2015-11-06 for Hydrogen the order of 0.000045 eV (magnetic field of electron 𝐵 ≈ 0.4T) Hyperfine interaction: interaction with nuclear moment [21 cm (1420 MHz) for atomic H] 66 Fine structure The Maxwell wave function of the photon M. G. Raymer and Brian J. Smith, SPIE conf. Optics and Photonics 2005 2015-11-06 67