Introduction to Green functions, the GW approximation, and the
Transcription
Introduction to Green functions, the GW approximation, and the
One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Introduction to Green functions, the GW approximation, and the Bethe-Salpeter equation Stefan Kurth 1. Universidad del Paı́s Vasco UPV/EHU, San Sebastián, Spain 2. IKERBASQUE, Basque Foundation for Science, Bilbao, Spain 3. European Theoretical Spectroscopy Facility (ETSF), www.etsf.eu CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Outline One-particle Green functions Polarization propagator and two-particle Green functions The GW approximation The Bethe-Salpeter equation (BSE) Summary CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Green functions in mathematics One-particle Green functions Perturbation theory and Feynman diagrams Self energy and Dyson equation One-particle Green functions CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Green functions in mathematics One-particle Green functions Perturbation theory and Feynman diagrams Self energy and Dyson equation Green functions in mathematics consider inhomogeneous differential equation (1D for simplicity) D̂x y(x) = f (x) where D̂x is linear differential operator in x. Example: damped harmonic oscillator D̂x = d2 dx2 d + γ dx + ω2 general solution of inhomogeneous equation: y(x) = yhom (x) + yspec (x) where yhom is solution of the homogeneous eqn. D̂x yhom (x) = 0 and yspec (x) is any special solution of the inhomogeneous equation. CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Green functions in mathematics One-particle Green functions Perturbation theory and Feynman diagrams Self energy and Dyson equation Green functions in mathematics (cont.) how to obtain a special solution of the inhomogeneous equation for any inhomogeneity f (x)? first find the solution of the following equation D̂x G(x, x0 ) = δ(x − x0 ) This defines the Green function G(x, x0 ) corresponding to the operator D̂x . Once G(x, x0 ) is found, a special solution can be constructed by Z yspec (x) = check: D̂x R dx0 G(x, x0 )f (x0 ) dx0 G(x, x0 )f (x0 ) = CEES 2015 Donostia-San Sebastián: S. Kurth R dx0 δ(x − x0 )f (x0 ) = f (x) Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Green functions in mathematics One-particle Green functions Perturbation theory and Feynman diagrams Self energy and Dyson equation Hamiltonian of interacting electrons consider system of interacting electrons in static external potential Vext (r) described by Hamiltonian Ĥ Z Ĥ = T̂ + V̂ext + Ŵ = 1 + 2 Z 3 d x Z ∇2 + Vext (r) ψ̂(x) d x ψ̂ (x) − 2 3 † d3 x0 ψ̂ † (x)ψ̂ † (x0 ) 1 ψ̂(x0 )ψ̂(x) |r − r0 | x = (r, σ): space-spin coordinate ψ̂ † (x), ψ̂(x): electron creation and annihilation operators CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Green functions in mathematics One-particle Green functions Perturbation theory and Feynman diagrams Self energy and Dyson equation One-particle Green functions at zero temperature Time-ordered 1-particle Green function at zero temperature iG(x, t; x0 , t0 ) = † 0 0 N hΨN 0 |T̂ [ψ̂(x, t)H ψ̂ (x , t )H ]|Ψ0 i N hΨN 0 |Ψ0 i N N N |ΨN 0 i: N -particle ground state of Ĥ: Ĥ|Ψ0 i = E0 |Ψ0 i ψ̂(x, t)H = exp(iĤt)ψ̂(x) exp(−iĤt) : electron annihilation operator in Heisenberg picture T̂ : time-ordering operator T̂ [ψ̂(x, t)H ψ̂(x0 , t0 )†H ] = θ(t − t0 )ψ̂(x, t)H ψ̂(x0 , t0 )†H − θ(t0 − t)ψ̂(x0 , t0 )†H ψ̂(x, t)H CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Green functions in mathematics One-particle Green functions Perturbation theory and Feynman diagrams Self energy and Dyson equation Green functions as propagator t1 > t2 (t > t0 ) create electron at time t2 at position r2 and propagate; then annihilate electron at time t1 at position r1 CEES 2015 Donostia-San Sebastián: S. Kurth t2 > t1 (t0 > t) annihilate electron (create hole) at time t1 at position r1 ; then create electron (annihilate hole) at time t2 at position r2 Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Green functions in mathematics One-particle Green functions Perturbation theory and Feynman diagrams Self energy and Dyson equation Observables from Green functions Information which can be extracted from Green functions ground-state expectation values of any single-particle operator R Ô = d3 x ψ̂ † (x)o(x)ψ̂(x) P e.g., density operator n̂(r) = σ ψ̂ † (rσ)ψ̂(rσ) ground-state energy of the system Galitski-Migdal formula Z ∂ i ∇2 3 N d x lim lim i − E0 = − G(rσ, t; r0 σ, t0 ) 2 ∂t 2 t0 →t+ r0 →r spectrum of system: direct photoemission, inverse photoemission CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Green functions in mathematics One-particle Green functions Perturbation theory and Feynman diagrams Self energy and Dyson equation Spectral (Lehmann) representation of Green function use completeness relation 1 = transform w.r.t. t − t0 −→ P N,k N |ΨN k ihΨk | and Fourier Lehmann representation G(x, x0 ; ω) = X gk (x)gk∗ (x0 ) k ω − (EkN +1 − E0N ) + iη + X fk (x)fk∗ (x0 ) k ω + (EkN −1 − E0N ) − iη with quasiparticle amplitudes −1 fk (x) = hΨN |ψ̂(x)|ΨN 0 i k N +1 i gk (x) = hΨN 0 |ψ̂(x)|Ψk CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Green functions in mathematics One-particle Green functions Perturbation theory and Feynman diagrams Self energy and Dyson equation Spectral information contained in Green function Green function contains spectral information on single-particle excitations changing the number of particles by one! The poles of the GF give the corresponding excitation energies. direct photoemission CEES 2015 Donostia-San Sebastián: S. Kurth inverse photoemission Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Green functions in mathematics One-particle Green functions Perturbation theory and Feynman diagrams Self energy and Dyson equation Spectral function Spectral function 1 A(x, x0 ; ω) = − Im GR (x, x0 ; ω) = π X gk (x)gk∗ (x0 )δ(ω +E0N −EkN +1 )+fk (x)fk∗ (x0 )δ(ω +EkN −1 −E0N ) k A(x, x0 ; ω): local density of states CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Green functions in mathematics One-particle Green functions Perturbation theory and Feynman diagrams Self energy and Dyson equation Perturbation theory for Green function 0 0 † N Green function G(x, t; x0 , t0 ) = −ihΨN 0 |T̂ [ψ̂(x, t)H ψ̂(x , t )H ]|Ψ0 i is a complicated object, it involves many-body ground state |ΨN 0 i −→ perturbation theory to calculate Green function: split Hamitonian in two parts Ĥ = Ĥ0 + Ŵ = T̂ + V̂ext + Ŵ treat interaction Ŵ as perturbation −→ machinery of many-body perturbation theory: Wick’s theorem, Gell-Mann-Low theorem, and, most importantly, Feynman diagrams CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Green functions in mathematics One-particle Green functions Perturbation theory and Feynman diagrams Self energy and Dyson equation Feynman diagrams Feynman diagrams: graphical representation of perturbation series elements of diagrams: Green function G0 of noninteracting system (Ĥ0 ) Green function G of interacting system Coulomb interaction vClb (x, t; x0 , t0 ) = CEES 2015 Donostia-San Sebastián: S. Kurth δ(t−t0 ) |r−r0 | Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Green functions in mathematics One-particle Green functions Perturbation theory and Feynman diagrams Self energy and Dyson equation Diagrammatic series for Green function Perturbation series for G: sum of all connected diagrams = + + + + + + + + + .... Lots of diagrams! CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Green functions in mathematics One-particle Green functions Perturbation theory and Feynman diagrams Self energy and Dyson equation Self energy: reducible and irreducible Self energy insertion and reducible self energy Self energy insertion: any part of a diagram which is connected to the rest of the diagram by two G0 -lines, one incoming and one outgoing Reducible self energy Σ̃: sum of all self-energy insertions = + + + + CEES 2015 Donostia-San Sebastián: S. Kurth + + + + .... Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Green functions in mathematics One-particle Green functions Perturbation theory and Feynman diagrams Self energy and Dyson equation Self energy: reducible and irreducible Proper self energy insertion and irreducible (proper) self energy Proper self energy insertion: any self energy insertion which cannot be separated in two pieces by cutting a single G0 -line Irreducible self energy Σ: sum of all proper self-energy insertions = + + CEES 2015 Donostia-San Sebastián: S. Kurth + .... Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Green functions in mathematics One-particle Green functions Perturbation theory and Feynman diagrams Self energy and Dyson equation Dyson equation = + = + = + + + Dyson equation G(x, x0 ; ω) = G0 (x, x0 ; ω) Z Z 3 + d y d3 y 0 G0 (x, y; ω)Σ(y, y0 ; ω)G(y0 , x0 ; ω) CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE +.... One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Green functions in mathematics One-particle Green functions Perturbation theory and Feynman diagrams Self energy and Dyson equation Skeletons and dressed skeletons Skeleton diagram: self-energy diagram which does contain no other self-energy insertions except itself Dressed skeleton: replace all G0 -lines in a skeleton by G-lines −→ irreduzible self energy: sum of all dressed skeleton diagrams −→ Σ becomes functional of G: Σ = Σ[G] CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Green functions in mathematics One-particle Green functions Perturbation theory and Feynman diagrams Self energy and Dyson equation Equation of motion for Green function Lehmann representation for G0 = G0 (x, x0 ; ω) X θ(εk − εF )ϕk (x)ϕ∗ (x0 ) k k ω − εk + iη + X θ(εF − εk )ϕk (x)ϕ∗ (x0 ) k ω − εk − iη k 2 act with operator ω − ĥ0 (x) = ω − (− ∇2x + vext (x)) on G0 Equation of motion for non-interacting Green function G0 X (ω − ĥ0 (x))G0 (x, x0 ; ω) = ϕk (x)ϕ∗k (x0 ) = δ(x − x0 ) k −→ G0 is a mathematical Green function ! CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Green functions in mathematics One-particle Green functions Perturbation theory and Feynman diagrams Self energy and Dyson equation Equation of motion for Green function (cont.) act with ω − ĥ0 (x) on Dyson equation for G Equation of motion for interacting Green function G 0 0 Z (ω − ĥ0 (x))G(x, x ; ω) = δ(x − x ) + d3 y 0 Σ(x, y0 ; ω)G(y0 , x0 ; ω) or with time arguments ∂ i − ĥ0 (x) G(x, t; x0 , t0 ) = δ(x − x0 )δ(t − t0 ) ∂t Z Z 3 0 + d y dt00 Σ(x, t; y0 , t00 )G(y0 , t00 , x0 ; t0 ) CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Linear density response Two-particle Green function and polarization propagator Particle-hole propagator: diagrammatic representation Hedin’s equations Polarization propagator and two-particle Green functions CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Linear density response Two-particle Green function and polarization propagator Particle-hole propagator: diagrammatic representation Hedin’s equations Linear density response Suppose we expose our interacting many-electron R system to an external, time-dependent perturbation V̂ (t) = d3 x δV (x, t)n̂(x) we are interested in the change of the density N δn(x, t) = hΨN (t)|n̂(x)|ΨN (t)i − hΨN 0 |n̂(x)|Ψ0 i to linear order in δV (x, t) time-dependent Schrödinger equation ∂ i |ΨN (t)i = Ĥ + V̂ (t) |ΨN (t)i ∂t in Heisenberg picture |ΨN (t)iH = exp(iĤt)|ΨN (t)i −→ i ∂ N |Ψ (t)iH = V̂ (t)H |ΨN (t)iH ∂t CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Linear density response Two-particle Green function and polarization propagator Particle-hole propagator: diagrammatic representation Hedin’s equations Linear density response (cont.) −→ to linear order in δV (x, t) we have Z t N 0 0 |Ψ (t)i = exp(−iĤt) 1 − i dt V̂ (t )H |ΨN 0 i 0 R∞ and for δn(x, t) = d3 x0 0 dt0 χ(x, t; x0 , t0 )δV (x0 , t0 ) with R linear density response function iχ(x, t; x0 , t0 ) = iΠR (x, t; x0 , t0 ) = θ(t − t0 ) N ˆ ˆ 0 0 hΨN 0 |[ñ(x, t)H , ñ(x , t )H ]|Ψ0 i N N hΨ0 |Ψ0 i ˆ t)H = n̂(x, t)H − hΨN |n̂(x)|ΨN i with ñ(x, 0 0 CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Linear density response Two-particle Green function and polarization propagator Particle-hole propagator: diagrammatic representation Hedin’s equations Linear density response (cont.) Lehmann representation of linear density response function χ(x, x0 ; ω) = ΠR (x, x0 ; ω) = N ihΨN |ñ(x X hΨN |ñ(x)|Ψ ˆ ˆ 0 )|ΨN i 0 k − k k 0 ω − (EkN − E0N ) + iη Ni X hΨN |ñ(x ˆ 0 )|ΨN ihΨN |ñ(x)|Ψ ˆ 0 k k k 0 ω + (EkN − E0N ) + iη note: the poles of χ are at the optical excitation energies of the system, i.e., excitations for which the number of particles does not change! CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Linear density response Two-particle Green function and polarization propagator Particle-hole propagator: diagrammatic representation Hedin’s equations Macroscopic response in solids Optical absorption from macroscopic dielectric function M (ω) δV ext (r, t) = V ext (q)e−i(ωt−qr) , qG In a periodic system, induced potential δV ind contains all components with k = q + G X VGind (q)ei(q+G)r δV ind (r, t) = e−iωt G Fourier component of the total potential in a solid: VGtot (q) = δG,0 V ext (q)+VGind (q) = [δG,0 + vG (q)χG,0 (q, ω)] V ext (q) with response function in momentum representation Z 0 χG,G0 (q, ω) = dr1 dr2 ei(q+G)r1 χ(r1 , r2 , ω)e−i(q+G )r2 CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Linear density response Two-particle Green function and polarization propagator Particle-hole propagator: diagrammatic representation Hedin’s equations Macroscopic response in solids Macroscopic field and macroscopic dielectric function Macroscopic (averaged) potential: tot (q) = V tot (q) VM G=0 Macroscopic dielectric function: tot V ext (q) = M (q, ω)VM (q) M (q, ω) = 1 1 + vG=0 (q)χ0,0 (q, ω) optical absorption rate Abs(ω) = lim Im M (q, ω) q→0 CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Linear density response Two-particle Green function and polarization propagator Particle-hole propagator: diagrammatic representation Hedin’s equations Two-particle Green function and polarization propagator Two-particle Green function i2 G(2) (x1 , t1 ; x2 , t2 ; x3 , t3 ; x4 , t4 ) = 1 N hΨN 0 |Ψ0 i † N † hΨN 0 |T̂ [ψ̂(x1 , t1 )H ψ̂(x2 , t2 )H ψ̂ (x3 , t3 )H ψ̂ (x4 , t4 )H ]|Ψ0 i Polarization propagator iΠ(x, t; x0 , t0 ) = N ˆ ˆ 0 0 hΨN 0 |T̂ [ñ(x, t)H ñ(x , t )H ]|Ψ0 i N N hΨ0 |Ψ0 i relation between the two: + i2 G(2) (x1 , t1 ; x2 , t2 ; x1 , t+ 1 ; x2 , t2 ) = iΠ(x1 , t1 ; x2 , t2 )+n(x1 )n(x2 ) CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Linear density response Two-particle Green function and polarization propagator Particle-hole propagator: diagrammatic representation Hedin’s equations Lehmann representation of polarization propagator Π(x, x0 ; ω) = N ihΨN |ñ(x X hΨN |ñ(x)|Ψ ˆ ˆ 0 )|ΨN i 0 ω− k − k (EkN − k E0N ) 0 + iη Ni X hΨN |ñ(x ˆ 0 )|ΨN ihΨN |ñ(x)|Ψ ˆ 0 ω+ k k N (Ek − k E0N ) 0 − iη compare with Lehmann representation of linear density response χ(x, x0 ; ω) = ΠR (x, x0 ; ω) = N ihΨN |ñ(x X hΨN |ñ(x)|Ψ ˆ ˆ 0 )|ΨN i 0 k − k k 0 ω − (EkN − E0N ) + iη Ni X hΨN |ñ(x ˆ 0 )|ΨN ihΨN |ñ(x)|Ψ ˆ 0 k CEES 2015 Donostia-San Sebastián: S. Kurth k k ω + (EkN − E0N ) + iη Introduction to Green functions, GW, and BSE 0 One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Linear density response Two-particle Green function and polarization propagator Particle-hole propagator: diagrammatic representation Hedin’s equations Particle-hole propagator: diagrammatic representation Definition of particle-hole propagator The particle-hole propagator is the two-particle Green function with a time-ordering such that both the two latest and the two earliest times correspond to one creation and one annihilation operator Diagrammatic representation: x 4, t L(x1 , t1 ; x2 , t2 ; x3 , t3 ; x4 , t4 ) 4 x 1, t 1 = x 4, t 4 x 1, t 1 x 2, t 2 x 3, t 3 + x 2, t 2 x 3, t 3 Diagrammatic representation of polarization propagator: CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Linear density response Two-particle Green function and polarization propagator Particle-hole propagator: diagrammatic representation Hedin’s equations Polarization propagator and irreducible polarization insertions Irreducible polarization insertion A diagram for the polarization propagator which cannot be reduced to lower-order diagrams for Π by cutting a single interaction line Def: −→ Dyson-like eqn. for full polarization propagator CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Linear density response Two-particle Green function and polarization propagator Particle-hole propagator: diagrammatic representation Hedin’s equations Effective interaction and dielectric function Effective interaction W =: ε−1 vClb = vClb + vClb P W Dielectric function ε = 1 − vClb P CEES 2015 Donostia-San Sebastián: S. Kurth Inverse dielectric function ε−1 = 1 + vClb Π Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Linear density response Two-particle Green function and polarization propagator Particle-hole propagator: diagrammatic representation Hedin’s equations Vertex insertions Vertex insertion (part of a) diagram with one external in- and one outgoing G0 -line and one external interaction line Irreducible vertex insertion A vertex insertion which has no self-energy insertions on the inand outgoing G0 -lines and no polarization insertion on the external interaction line CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Linear density response Two-particle Green function and polarization propagator Particle-hole propagator: diagrammatic representation Hedin’s equations Irreducible vertex and Hedin’s equations Irreducible vertex Hedin’s equations (exact!) Hedin’s equations Σ = vHart + iGW Γ iP = GGΓ G = G0 + G0 ΣG W = vClb + vClb P W L. Hedin, Phys. Rev. 139 (1965) CEES 2015 Donostia-San Sebastián: S. Kurth Γ=1+ δΣ GGΓ δG Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Band gaps and quasiparticle bands in GW Optical absorption in GW The GW approximation CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Band gaps and quasiparticle bands in GW Optical absorption in GW GW approximation In the GW approximation the vertex is approximated as: Γ ≈ 1 Hedin’s equations (exact) CEES 2015 Donostia-San Sebastián: S. Kurth GW approximation Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Band gaps and quasiparticle bands in GW Optical absorption in GW GW approximation Perturbative GW corrections ĥ0 (r)ϕi (r) + Vxc (r)ϕi (r) = i ϕi (r) Z ĥ0 (r)φi (r) + dr0 Σ(r, r0 , ω = Ei ) φi (r0 ) = Ei φi (r) First-order perturbative corrections with Σ = GW : Ei − i = hϕi |Σ − Vxc |ϕi i Hybertsen and Louie, PRB 34, 5390 (1986); Godby, Schlüter and Sham, PRB 37, 10159 (1988) CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Band gaps and quasiparticle bands in GW Optical absorption in GW GW propaganda slide: improvement of gaps over LDA Schilfgaarde, PRL 96, 226402 (2006) CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Band gaps and quasiparticle bands in GW Optical absorption in GW GW quasiparticle bands in copper dashed: LDA, solid: GW, dots: expt. Marini, Onida, Del Sole, PRL 88, 016403 (2001) CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Band gaps and quasiparticle bands in GW Optical absorption in GW Absorption by independent Kohn-Sham particles Independent transitions: Im[(ω)] = P 8π 2 2 ij |hϕj |e · v̂|ϕi i| δ(εj − εi − ω) ω2 CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Band gaps and quasiparticle bands in GW Optical absorption in GW Absorption by independent Kohn-Sham particles Independent transitions: Im[(ω)] = P 8π 2 2 ij |hϕj |e · v̂|ϕi i| δ(εj − εi − ω) ω2 Particles are interacting! CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Band gaps and quasiparticle bands in GW Optical absorption in GW Optical absorption in GW: Independent quasiparticles Independent transitions: Im[(ω)] = P 8π 2 2 ij |hϕj |e·v̂|ϕi i| δ(Ej −Ei −ω) ω2 CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Band gaps and quasiparticle bands in GW Optical absorption in GW Optical absorption in GW: Independent quasiparticles Independent transitions: Im[(ω)] = P 8π 2 2 ij |hϕj |e·v̂|ϕi i| δ(Ej −Ei −ω) ω2 Something still missing: the vertex, i.e., particle-hole interactions! CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Band gaps and quasiparticle bands in GW Optical absorption in GW Absorption Neutral excitations → poles of two-particle Green’s function L in GW: excitonic effects, i.e., electron-hole interaction missing CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Band gaps and quasiparticle bands in GW Optical absorption in GW Absorption Neutral excitations → poles of two-particle Green’s function L in GW: excitonic effects, i.e., electron-hole interaction missing CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Band gaps and quasiparticle bands in GW Optical absorption in GW Absorption Neutral excitations → poles of two-particle Green’s function L in GW: excitonic effects, i.e., electron-hole interaction missing CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Derivation of BSE Standard approximations to BSE The Bethe-Salpeter equation (BSE) CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Derivation of BSE Standard approximations to BSE Derivation of the Bethe-Salpeter equation (1) Propagator of e-h pair in a many-body system: 1st step: Dressing one-particle propagators (Dyson equation) Propagation of dressed interacting electron and hole: CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Derivation of BSE Standard approximations to BSE Derivation of the Bethe-Salpeter equation (2) 2nd step: Classification of scattering processes Identify two-particle irreducible blocks where γ(1234) is the electron-hole stattering amplitude CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Derivation of BSE Standard approximations to BSE Derivation of the Bethe-Salpeter equation (3) Final step: Summation of a geometric series −→ Bethe-Salpeter equation CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Derivation of BSE Standard approximations to BSE Derivation of the Bethe-Salpeter equation (3) Final step: Summation of a geometric series −→ Bethe-Salpeter equation Analytic form of the Bethe-Salpeter equation (j = {xj , tj }) L(1234) = L0 (1234)+ Z L0 (1256)[v(57)δ(56)δ(78) − γ(5678)]L(7834)d5d6d7d8 CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Derivation of BSE Standard approximations to BSE The Bethe-Salpeter equation: Approximation BSE determines electron-hole propagator L(1234), provided that self-energy Σ(12) and e-h scattering amplitude γ(1234) are given. Standard approximation: Approximate Σ by GW diagram: Σ(12) = G(12)W (12) = = + Approximate γ by W : γ(1234) = W (12)δ(13)δ(24) CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Derivation of BSE Standard approximations to BSE The Bethe-Salpeter equation: Approximation Approximate Bethe-Salpeter equation Analytic form of the approximate Bethe-Salpeter equation Z L(1234) = L0 (1234) + L0 (1256)[v(57)δ(56)δ(78)− W (56)δ(57)δ(68)]L(7834)d5d6d7d8 L0 (1234) = G(12)G(43) and W (12) from GW calculation CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Derivation of BSE Standard approximations to BSE BSE calculations A three-step method 1 LDA calculation ⇒ Kohn-Sham wavefunctions ϕi 2 GW calculation ⇒ GW energies Ei and screened Coulomb interaction W 3 BSE calculation solution of L = L0 + L0 (v − γ)L ⇒ e-h propagator L(r1 r2 r3 r4 ω) ⇒ spectra M (ω) CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Derivation of BSE Standard approximations to BSE Results: Continuum excitons (Si) Bulk silicon G. Onida, L. Reining, and A. Rubio, RMP 74, 601 (2002) CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Derivation of BSE Standard approximations to BSE Results: Bound excitons (solid Ar) Solid argon F. Sottile, M. Marsili, V. Olevano, and L. Reining, PRB 76, 161103(R) (2007) CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Derivation of BSE Standard approximations to BSE Summary Green functions: important concept in many-particle physics Diagrammatic analysis of Green functions (deceptively) simple, actual calculation of specific diagrams much harder GW approximation for self energy Bethe-Salpeter equation: captures excitons in optical absorption CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Derivation of BSE Standard approximations to BSE Literature endless number of textbooks on Green functions My favorites E.K.U. Gross, E. Runge, O. Heinonen, Many-Particle Theory (Hilger, Bristol, 1991) A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971) and later edition by Dover press G. Stefanucci, R. van Leeuwen, Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction (Cambridge, 2003) CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Derivation of BSE Standard approximations to BSE Literature on GW and BSE G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002) S. Botti, A. Schindlmayr, R. Del Sole, and L. Reining, Rep. Progr. Phys. 70, 357 (2007) CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Derivation of BSE Standard approximations to BSE Thanks Ilya Tokatly and Matteo Gatti for some figures YOU for your patience! CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Derivation of BSE Standard approximations to BSE Thanks Ilya Tokatly and Matteo Gatti for some figures YOU for your patience! CEES 2015 Donostia-San Sebastián: S. Kurth Introduction to Green functions, GW, and BSE