Introduction to Green functions, the GW approximation, and the

Transcription

Introduction to Green functions, the GW approximation, and the
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Introduction to Green functions, the GW
approximation, and the Bethe-Salpeter equation
Stefan Kurth
1. Universidad del Paı́s Vasco UPV/EHU, San Sebastián, Spain
2. IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
3. European Theoretical Spectroscopy Facility (ETSF), www.etsf.eu
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Outline
One-particle Green functions
Polarization propagator and two-particle Green functions
The GW approximation
The Bethe-Salpeter equation (BSE)
Summary
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Green functions in mathematics
One-particle Green functions
Perturbation theory and Feynman diagrams
Self energy and Dyson equation
One-particle Green functions
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Green functions in mathematics
One-particle Green functions
Perturbation theory and Feynman diagrams
Self energy and Dyson equation
Green functions in mathematics
consider inhomogeneous differential equation (1D for simplicity)
D̂x y(x) = f (x)
where D̂x is linear differential operator in x.
Example: damped harmonic oscillator D̂x =
d2
dx2
d
+ γ dx
+ ω2
general solution of inhomogeneous equation:
y(x) = yhom (x) + yspec (x)
where yhom is solution of the homogeneous eqn. D̂x yhom (x) = 0
and yspec (x) is any special solution of the inhomogeneous equation.
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Green functions in mathematics
One-particle Green functions
Perturbation theory and Feynman diagrams
Self energy and Dyson equation
Green functions in mathematics (cont.)
how to obtain a special solution of the inhomogeneous equation for
any inhomogeneity f (x)?
first find the solution of the following equation
D̂x G(x, x0 ) = δ(x − x0 )
This defines the Green function G(x, x0 ) corresponding to the
operator D̂x .
Once G(x, x0 ) is found, a special solution can be constructed by
Z
yspec (x) =
check: D̂x
R
dx0 G(x, x0 )f (x0 )
dx0 G(x, x0 )f (x0 ) =
CEES 2015 Donostia-San Sebastián: S. Kurth
R
dx0 δ(x − x0 )f (x0 ) = f (x)
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Green functions in mathematics
One-particle Green functions
Perturbation theory and Feynman diagrams
Self energy and Dyson equation
Hamiltonian of interacting electrons
consider system of interacting electrons in static external potential
Vext (r) described by Hamiltonian Ĥ
Z
Ĥ = T̂ + V̂ext + Ŵ =
1
+
2
Z
3
d x
Z
∇2
+ Vext (r) ψ̂(x)
d x ψ̂ (x) −
2
3
†
d3 x0 ψ̂ † (x)ψ̂ † (x0 )
1
ψ̂(x0 )ψ̂(x)
|r − r0 |
x = (r, σ): space-spin coordinate
ψ̂ † (x), ψ̂(x): electron creation and annihilation operators
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Green functions in mathematics
One-particle Green functions
Perturbation theory and Feynman diagrams
Self energy and Dyson equation
One-particle Green functions at zero temperature
Time-ordered 1-particle Green function at zero temperature
iG(x, t; x0 , t0 ) =
† 0 0
N
hΨN
0 |T̂ [ψ̂(x, t)H ψ̂ (x , t )H ]|Ψ0 i
N
hΨN
0 |Ψ0 i
N
N
N
|ΨN
0 i: N -particle ground state of Ĥ: Ĥ|Ψ0 i = E0 |Ψ0 i
ψ̂(x, t)H = exp(iĤt)ψ̂(x) exp(−iĤt) :
electron annihilation operator in Heisenberg picture
T̂ : time-ordering operator
T̂ [ψ̂(x, t)H ψ̂(x0 , t0 )†H ] =
θ(t − t0 )ψ̂(x, t)H ψ̂(x0 , t0 )†H − θ(t0 − t)ψ̂(x0 , t0 )†H ψ̂(x, t)H
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Green functions in mathematics
One-particle Green functions
Perturbation theory and Feynman diagrams
Self energy and Dyson equation
Green functions as propagator
t1 > t2 (t > t0 )
create electron at time t2 at
position r2 and propagate;
then annihilate electron at time t1
at position r1
CEES 2015 Donostia-San Sebastián: S. Kurth
t2 > t1 (t0 > t)
annihilate electron (create hole) at
time t1 at position r1 ;
then create electron (annihilate
hole) at time t2 at position r2
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Green functions in mathematics
One-particle Green functions
Perturbation theory and Feynman diagrams
Self energy and Dyson equation
Observables from Green functions
Information which can be extracted from Green functions
ground-state
expectation values of any single-particle operator
R
Ô = d3 x ψ̂ † (x)o(x)ψ̂(x)
P
e.g., density operator n̂(r) = σ ψ̂ † (rσ)ψ̂(rσ)
ground-state energy of the system
Galitski-Migdal formula
Z
∂
i
∇2
3
N
d x lim lim
i −
E0 = −
G(rσ, t; r0 σ, t0 )
2
∂t
2
t0 →t+ r0 →r
spectrum of system: direct photoemission, inverse
photoemission
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Green functions in mathematics
One-particle Green functions
Perturbation theory and Feynman diagrams
Self energy and Dyson equation
Spectral (Lehmann) representation of Green function
use completeness relation 1 =
transform w.r.t. t − t0 −→
P
N,k
N
|ΨN
k ihΨk | and Fourier
Lehmann representation
G(x, x0 ; ω)
=
X
gk (x)gk∗ (x0 )
k
ω − (EkN +1 − E0N ) + iη
+
X
fk (x)fk∗ (x0 )
k
ω + (EkN −1 − E0N ) − iη
with quasiparticle amplitudes
−1
fk (x) = hΨN
|ψ̂(x)|ΨN
0 i
k
N +1
i
gk (x) = hΨN
0 |ψ̂(x)|Ψk
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Green functions in mathematics
One-particle Green functions
Perturbation theory and Feynman diagrams
Self energy and Dyson equation
Spectral information contained in Green function
Green function contains spectral information on single-particle
excitations changing the number of particles by one! The poles of
the GF give the corresponding excitation energies.
direct photoemission
CEES 2015 Donostia-San Sebastián: S. Kurth
inverse photoemission
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Green functions in mathematics
One-particle Green functions
Perturbation theory and Feynman diagrams
Self energy and Dyson equation
Spectral function
Spectral function
1
A(x, x0 ; ω) = − Im GR (x, x0 ; ω) =
π
X
gk (x)gk∗ (x0 )δ(ω +E0N −EkN +1 )+fk (x)fk∗ (x0 )δ(ω +EkN −1 −E0N )
k
A(x, x0 ; ω): local density of states
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Green functions in mathematics
One-particle Green functions
Perturbation theory and Feynman diagrams
Self energy and Dyson equation
Perturbation theory for Green function
0 0 †
N
Green function G(x, t; x0 , t0 ) = −ihΨN
0 |T̂ [ψ̂(x, t)H ψ̂(x , t )H ]|Ψ0 i
is a complicated object, it involves many-body ground state |ΨN
0 i
−→ perturbation theory to calculate Green function: split
Hamitonian in two parts
Ĥ = Ĥ0 + Ŵ = T̂ + V̂ext + Ŵ
treat interaction Ŵ as perturbation −→ machinery of many-body
perturbation theory: Wick’s theorem, Gell-Mann-Low theorem,
and, most importantly, Feynman diagrams
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Green functions in mathematics
One-particle Green functions
Perturbation theory and Feynman diagrams
Self energy and Dyson equation
Feynman diagrams
Feynman diagrams: graphical representation of perturbation series
elements of diagrams:
Green function G0 of noninteracting system (Ĥ0 )
Green function G of interacting system
Coulomb interaction vClb (x, t; x0 , t0 ) =
CEES 2015 Donostia-San Sebastián: S. Kurth
δ(t−t0 )
|r−r0 |
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Green functions in mathematics
One-particle Green functions
Perturbation theory and Feynman diagrams
Self energy and Dyson equation
Diagrammatic series for Green function
Perturbation series for G: sum of all connected diagrams
=
+
+
+
+
+
+
+
+
+
....
Lots of diagrams!
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Green functions in mathematics
One-particle Green functions
Perturbation theory and Feynman diagrams
Self energy and Dyson equation
Self energy: reducible and irreducible
Self energy insertion and reducible self energy
Self energy insertion: any part of a diagram which is
connected to the rest of the diagram by two G0 -lines, one
incoming and one outgoing
Reducible self energy Σ̃: sum of all self-energy insertions
=
+
+
+
+
CEES 2015 Donostia-San Sebastián: S. Kurth
+
+
+
+
....
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Green functions in mathematics
One-particle Green functions
Perturbation theory and Feynman diagrams
Self energy and Dyson equation
Self energy: reducible and irreducible
Proper self energy insertion and irreducible (proper) self energy
Proper self energy insertion: any self energy insertion which
cannot be separated in two pieces by cutting a single G0 -line
Irreducible self energy Σ: sum of all proper self-energy
insertions
=
+
+
CEES 2015 Donostia-San Sebastián: S. Kurth
+
....
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Green functions in mathematics
One-particle Green functions
Perturbation theory and Feynman diagrams
Self energy and Dyson equation
Dyson equation
=
+
=
+
=
+
+
+
Dyson equation
G(x, x0 ; ω) = G0 (x, x0 ; ω)
Z
Z
3
+ d y d3 y 0 G0 (x, y; ω)Σ(y, y0 ; ω)G(y0 , x0 ; ω)
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
+....
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Green functions in mathematics
One-particle Green functions
Perturbation theory and Feynman diagrams
Self energy and Dyson equation
Skeletons and dressed skeletons
Skeleton diagram: self-energy diagram which does contain no
other self-energy insertions except itself
Dressed skeleton: replace all G0 -lines in a skeleton by G-lines −→
irreduzible self energy: sum of all dressed skeleton diagrams
−→ Σ becomes functional of G: Σ = Σ[G]
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Green functions in mathematics
One-particle Green functions
Perturbation theory and Feynman diagrams
Self energy and Dyson equation
Equation of motion for Green function
Lehmann representation for G0
=
G0 (x, x0 ; ω)
X θ(εk − εF )ϕk (x)ϕ∗ (x0 )
k
k
ω − εk + iη
+
X θ(εF − εk )ϕk (x)ϕ∗ (x0 )
k
ω − εk − iη
k
2
act with operator ω − ĥ0 (x) = ω − (− ∇2x + vext (x)) on G0
Equation of motion for non-interacting Green function G0
X
(ω − ĥ0 (x))G0 (x, x0 ; ω) =
ϕk (x)ϕ∗k (x0 ) = δ(x − x0 )
k
−→ G0 is a mathematical Green function !
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Green functions in mathematics
One-particle Green functions
Perturbation theory and Feynman diagrams
Self energy and Dyson equation
Equation of motion for Green function (cont.)
act with ω − ĥ0 (x) on Dyson equation for G
Equation of motion for interacting Green function G
0
0
Z
(ω − ĥ0 (x))G(x, x ; ω) = δ(x − x ) + d3 y 0 Σ(x, y0 ; ω)G(y0 , x0 ; ω)
or with time arguments
∂
i − ĥ0 (x) G(x, t; x0 , t0 ) = δ(x − x0 )δ(t − t0 )
∂t
Z
Z
3 0
+ d y
dt00 Σ(x, t; y0 , t00 )G(y0 , t00 , x0 ; t0 )
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Linear density response
Two-particle Green function and polarization propagator
Particle-hole propagator: diagrammatic representation
Hedin’s equations
Polarization propagator and
two-particle Green functions
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Linear density response
Two-particle Green function and polarization propagator
Particle-hole propagator: diagrammatic representation
Hedin’s equations
Linear density response
Suppose we expose our interacting many-electron
R system to an
external, time-dependent perturbation V̂ (t) = d3 x δV (x, t)n̂(x)
we are interested in the change of the density
N
δn(x, t) = hΨN (t)|n̂(x)|ΨN (t)i − hΨN
0 |n̂(x)|Ψ0 i
to linear order in δV (x, t)
time-dependent Schrödinger equation
∂
i |ΨN (t)i = Ĥ + V̂ (t) |ΨN (t)i
∂t
in Heisenberg picture |ΨN (t)iH = exp(iĤt)|ΨN (t)i −→
i
∂ N
|Ψ (t)iH = V̂ (t)H |ΨN (t)iH
∂t
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Linear density response
Two-particle Green function and polarization propagator
Particle-hole propagator: diagrammatic representation
Hedin’s equations
Linear density response (cont.)
−→ to linear order in δV (x, t) we have
Z t
N
0
0
|Ψ (t)i = exp(−iĤt) 1 − i
dt V̂ (t )H |ΨN
0 i
0
R∞
and for δn(x, t) = d3 x0 0 dt0 χ(x, t; x0 , t0 )δV (x0 , t0 ) with
R
linear density response function
iχ(x, t; x0 , t0 ) = iΠR (x, t; x0 , t0 )
= θ(t − t0 )
N
ˆ
ˆ 0 0
hΨN
0 |[ñ(x, t)H , ñ(x , t )H ]|Ψ0 i
N
N
hΨ0 |Ψ0 i
ˆ t)H = n̂(x, t)H − hΨN |n̂(x)|ΨN i
with ñ(x,
0
0
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Linear density response
Two-particle Green function and polarization propagator
Particle-hole propagator: diagrammatic representation
Hedin’s equations
Linear density response (cont.)
Lehmann representation of linear density response function
χ(x, x0 ; ω) = ΠR (x, x0 ; ω) =
N ihΨN |ñ(x
X hΨN |ñ(x)|Ψ
ˆ
ˆ 0 )|ΨN i
0
k
−
k
k
0
ω − (EkN − E0N ) + iη
Ni
X hΨN |ñ(x
ˆ 0 )|ΨN ihΨN |ñ(x)|Ψ
ˆ
0
k
k
k
0
ω + (EkN − E0N ) + iη
note: the poles of χ are at the optical excitation energies of the
system, i.e., excitations for which the number of particles does not
change!
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Linear density response
Two-particle Green function and polarization propagator
Particle-hole propagator: diagrammatic representation
Hedin’s equations
Macroscopic response in solids
Optical absorption from macroscopic dielectric function M (ω)
δV ext (r, t) = V ext (q)e−i(ωt−qr) ,
qG
In a periodic system, induced potential δV ind contains all
components with k = q + G
X
VGind (q)ei(q+G)r
δV ind (r, t) = e−iωt
G
Fourier component of the total potential in a solid:
VGtot (q) = δG,0 V ext (q)+VGind (q) = [δG,0 + vG (q)χG,0 (q, ω)] V ext (q)
with response function in momentum representation
Z
0
χG,G0 (q, ω) = dr1 dr2 ei(q+G)r1 χ(r1 , r2 , ω)e−i(q+G )r2
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Linear density response
Two-particle Green function and polarization propagator
Particle-hole propagator: diagrammatic representation
Hedin’s equations
Macroscopic response in solids
Macroscopic field and macroscopic dielectric function
Macroscopic (averaged) potential:
tot (q) = V tot (q)
VM
G=0
Macroscopic dielectric function:
tot
V ext (q) = M (q, ω)VM
(q)
M (q, ω) =
1
1 + vG=0 (q)χ0,0 (q, ω)
optical absorption rate
Abs(ω) = lim Im M (q, ω)
q→0
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Linear density response
Two-particle Green function and polarization propagator
Particle-hole propagator: diagrammatic representation
Hedin’s equations
Two-particle Green function and polarization propagator
Two-particle Green function
i2 G(2) (x1 , t1 ; x2 , t2 ; x3 , t3 ; x4 , t4 ) =
1
N
hΨN
0 |Ψ0 i
†
N
†
hΨN
0 |T̂ [ψ̂(x1 , t1 )H ψ̂(x2 , t2 )H ψ̂ (x3 , t3 )H ψ̂ (x4 , t4 )H ]|Ψ0 i
Polarization propagator
iΠ(x, t; x0 , t0 ) =
N
ˆ
ˆ 0 0
hΨN
0 |T̂ [ñ(x, t)H ñ(x , t )H ]|Ψ0 i
N
N
hΨ0 |Ψ0 i
relation between the two:
+
i2 G(2) (x1 , t1 ; x2 , t2 ; x1 , t+
1 ; x2 , t2 ) = iΠ(x1 , t1 ; x2 , t2 )+n(x1 )n(x2 )
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Linear density response
Two-particle Green function and polarization propagator
Particle-hole propagator: diagrammatic representation
Hedin’s equations
Lehmann representation of polarization propagator
Π(x, x0 ; ω) =
N ihΨN |ñ(x
X hΨN |ñ(x)|Ψ
ˆ
ˆ 0 )|ΨN i
0
ω−
k
−
k
(EkN
−
k
E0N )
0
+ iη
Ni
X hΨN |ñ(x
ˆ 0 )|ΨN ihΨN |ñ(x)|Ψ
ˆ
0
ω+
k
k
N
(Ek −
k
E0N )
0
− iη
compare with Lehmann representation of linear density response
χ(x, x0 ; ω) = ΠR (x, x0 ; ω) =
N ihΨN |ñ(x
X hΨN |ñ(x)|Ψ
ˆ
ˆ 0 )|ΨN i
0
k
−
k
k
0
ω − (EkN − E0N ) + iη
Ni
X hΨN |ñ(x
ˆ 0 )|ΨN ihΨN |ñ(x)|Ψ
ˆ
0
k
CEES 2015 Donostia-San Sebastián: S. Kurth
k
k
ω + (EkN − E0N ) + iη
Introduction to Green functions, GW, and BSE
0
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Linear density response
Two-particle Green function and polarization propagator
Particle-hole propagator: diagrammatic representation
Hedin’s equations
Particle-hole propagator: diagrammatic representation
Definition of particle-hole propagator
The particle-hole propagator is the two-particle Green function with
a time-ordering such that both the two latest and the two earliest
times correspond to one creation and one annihilation operator
Diagrammatic representation:
x 4, t
L(x1 , t1 ; x2 , t2 ; x3 , t3 ; x4 , t4 )
4
x 1, t
1
=
x 4, t
4
x 1, t
1
x 2, t
2
x 3, t
3
+
x 2, t
2
x 3, t
3
Diagrammatic representation of polarization propagator:
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Linear density response
Two-particle Green function and polarization propagator
Particle-hole propagator: diagrammatic representation
Hedin’s equations
Polarization propagator and irreducible polarization
insertions
Irreducible polarization insertion
A diagram for the polarization propagator which cannot be reduced
to lower-order diagrams for Π by cutting a single interaction line
Def:
−→ Dyson-like eqn. for full
polarization propagator
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Linear density response
Two-particle Green function and polarization propagator
Particle-hole propagator: diagrammatic representation
Hedin’s equations
Effective interaction and dielectric function
Effective interaction
W =: ε−1 vClb = vClb + vClb P W
Dielectric function
ε = 1 − vClb P
CEES 2015 Donostia-San Sebastián: S. Kurth
Inverse dielectric function
ε−1 = 1 + vClb Π
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Linear density response
Two-particle Green function and polarization propagator
Particle-hole propagator: diagrammatic representation
Hedin’s equations
Vertex insertions
Vertex insertion
(part of a) diagram with one external in- and one outgoing G0 -line
and one external interaction line
Irreducible vertex insertion
A vertex insertion which has no self-energy insertions on the inand outgoing G0 -lines and no polarization insertion on the external
interaction line
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Linear density response
Two-particle Green function and polarization propagator
Particle-hole propagator: diagrammatic representation
Hedin’s equations
Irreducible vertex and Hedin’s equations
Irreducible vertex
Hedin’s equations (exact!)
Hedin’s equations
Σ = vHart + iGW Γ
iP = GGΓ
G = G0 + G0 ΣG
W = vClb + vClb P W
L. Hedin, Phys. Rev. 139 (1965)
CEES 2015 Donostia-San Sebastián: S. Kurth
Γ=1+
δΣ
GGΓ
δG
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Band gaps and quasiparticle bands in GW
Optical absorption in GW
The GW approximation
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Band gaps and quasiparticle bands in GW
Optical absorption in GW
GW approximation
In the GW approximation the vertex is approximated as: Γ ≈ 1
Hedin’s equations (exact)
CEES 2015 Donostia-San Sebastián: S. Kurth
GW approximation
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Band gaps and quasiparticle bands in GW
Optical absorption in GW
GW approximation
Perturbative GW corrections
ĥ0 (r)ϕi (r) + Vxc (r)ϕi (r) = i ϕi (r)
Z
ĥ0 (r)φi (r) +
dr0 Σ(r, r0 , ω = Ei ) φi (r0 ) = Ei φi (r)
First-order perturbative corrections with Σ = GW :
Ei − i = hϕi |Σ − Vxc |ϕi i
Hybertsen and Louie, PRB 34, 5390 (1986);
Godby, Schlüter and Sham, PRB 37, 10159 (1988)
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Band gaps and quasiparticle bands in GW
Optical absorption in GW
GW propaganda slide: improvement of gaps over LDA
Schilfgaarde, PRL 96, 226402 (2006)
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Band gaps and quasiparticle bands in GW
Optical absorption in GW
GW quasiparticle bands in copper
dashed: LDA, solid: GW, dots: expt.
Marini, Onida, Del Sole, PRL 88, 016403 (2001)
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Band gaps and quasiparticle bands in GW
Optical absorption in GW
Absorption by independent Kohn-Sham particles
Independent transitions:
Im[(ω)] =
P
8π 2
2
ij |hϕj |e · v̂|ϕi i| δ(εj − εi − ω)
ω2
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Band gaps and quasiparticle bands in GW
Optical absorption in GW
Absorption by independent Kohn-Sham particles
Independent transitions:
Im[(ω)] =
P
8π 2
2
ij |hϕj |e · v̂|ϕi i| δ(εj − εi − ω)
ω2
Particles are interacting!
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Band gaps and quasiparticle bands in GW
Optical absorption in GW
Optical absorption in GW: Independent quasiparticles
Independent transitions:
Im[(ω)] =
P
8π 2
2
ij |hϕj |e·v̂|ϕi i| δ(Ej −Ei −ω)
ω2
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Band gaps and quasiparticle bands in GW
Optical absorption in GW
Optical absorption in GW: Independent quasiparticles
Independent transitions:
Im[(ω)] =
P
8π 2
2
ij |hϕj |e·v̂|ϕi i| δ(Ej −Ei −ω)
ω2
Something still missing: the vertex, i.e., particle-hole interactions!
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Band gaps and quasiparticle bands in GW
Optical absorption in GW
Absorption
Neutral excitations → poles of two-particle Green’s function L
in GW: excitonic effects, i.e., electron-hole interaction missing
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Band gaps and quasiparticle bands in GW
Optical absorption in GW
Absorption
Neutral excitations → poles of two-particle Green’s function L
in GW: excitonic effects, i.e., electron-hole interaction missing
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Band gaps and quasiparticle bands in GW
Optical absorption in GW
Absorption
Neutral excitations → poles of two-particle Green’s function L
in GW: excitonic effects, i.e., electron-hole interaction missing
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Derivation of BSE
Standard approximations to BSE
The Bethe-Salpeter equation (BSE)
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Derivation of BSE
Standard approximations to BSE
Derivation of the Bethe-Salpeter equation (1)
Propagator of e-h pair in a many-body system:
1st step: Dressing one-particle propagators (Dyson equation)
Propagation of dressed interacting electron and hole:
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Derivation of BSE
Standard approximations to BSE
Derivation of the Bethe-Salpeter equation (2)
2nd step: Classification of scattering processes
Identify two-particle irreducible blocks
where γ(1234) is the electron-hole stattering amplitude
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Derivation of BSE
Standard approximations to BSE
Derivation of the Bethe-Salpeter equation (3)
Final step: Summation of a geometric series
−→ Bethe-Salpeter equation
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Derivation of BSE
Standard approximations to BSE
Derivation of the Bethe-Salpeter equation (3)
Final step: Summation of a geometric series
−→ Bethe-Salpeter equation
Analytic form of the Bethe-Salpeter equation (j = {xj , tj })
L(1234) = L0 (1234)+
Z
L0 (1256)[v(57)δ(56)δ(78) − γ(5678)]L(7834)d5d6d7d8
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Derivation of BSE
Standard approximations to BSE
The Bethe-Salpeter equation: Approximation
BSE determines electron-hole propagator L(1234), provided that
self-energy Σ(12) and e-h scattering amplitude γ(1234) are given.
Standard approximation:
Approximate Σ by GW diagram: Σ(12) = G(12)W (12)
=
=
+
Approximate γ by W : γ(1234) = W (12)δ(13)δ(24)
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Derivation of BSE
Standard approximations to BSE
The Bethe-Salpeter equation: Approximation
Approximate Bethe-Salpeter equation
Analytic form of the approximate Bethe-Salpeter equation
Z
L(1234) = L0 (1234) +
L0 (1256)[v(57)δ(56)δ(78)−
W (56)δ(57)δ(68)]L(7834)d5d6d7d8
L0 (1234) = G(12)G(43) and W (12) from GW calculation
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Derivation of BSE
Standard approximations to BSE
BSE calculations
A three-step method
1
LDA calculation
⇒ Kohn-Sham wavefunctions ϕi
2
GW calculation
⇒ GW energies Ei and screened Coulomb interaction W
3
BSE calculation
solution of L = L0 + L0 (v − γ)L
⇒ e-h propagator L(r1 r2 r3 r4 ω)
⇒ spectra M (ω)
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Derivation of BSE
Standard approximations to BSE
Results: Continuum excitons (Si)
Bulk silicon
G. Onida, L. Reining, and A. Rubio, RMP 74, 601 (2002)
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Derivation of BSE
Standard approximations to BSE
Results: Bound excitons (solid Ar)
Solid argon
F. Sottile, M. Marsili, V. Olevano, and L. Reining, PRB 76, 161103(R) (2007)
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Derivation of BSE
Standard approximations to BSE
Summary
Green functions: important concept in many-particle physics
Diagrammatic analysis of Green functions (deceptively)
simple, actual calculation of specific diagrams much harder
GW approximation for self energy
Bethe-Salpeter equation: captures excitons in optical
absorption
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Derivation of BSE
Standard approximations to BSE
Literature
endless number of textbooks on Green functions
My favorites
E.K.U. Gross, E. Runge, O. Heinonen, Many-Particle Theory
(Hilger, Bristol, 1991)
A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle
Systems (McGraw-Hill, New York, 1971) and later edition by
Dover press
G. Stefanucci, R. van Leeuwen, Nonequilibrium Many-Body
Theory of Quantum Systems: A Modern Introduction
(Cambridge, 2003)
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Derivation of BSE
Standard approximations to BSE
Literature
on GW and BSE
G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601
(2002)
S. Botti, A. Schindlmayr, R. Del Sole, and L. Reining, Rep.
Progr. Phys. 70, 357 (2007)
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Derivation of BSE
Standard approximations to BSE
Thanks
Ilya Tokatly and Matteo Gatti for some figures
YOU for your patience!
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE
One-particle Green functions
Polarization propagator and two-particle Green functions
GW approximation
Bethe-Salpeter equation (BSE)
Derivation of BSE
Standard approximations to BSE
Thanks
Ilya Tokatly and Matteo Gatti for some figures
YOU for your patience!
CEES 2015 Donostia-San Sebastián: S. Kurth
Introduction to Green functions, GW, and BSE