Nutrigenómica y Obesidad. Alfredo Martínez
Transcription
Nutrigenómica y Obesidad. Alfredo Martínez
NUEVOS ENFOQUES EN EL TRATAMIENTO DE LA OBESIDAD. ¿ESTAMOS EN EL BUEN CAMINO? NUTRIGENÓMICA DE LA OBESIDAD Y NUTRICION PERSONALIZADA BASADA EN GENOTIPO J Alfredo Martínez • University of Navarra. Pamplona ¿NUTRIGENÓMICA Y PERSONALIZACION DE LA OBESIDAD ? 1 SNC Neuropéptidos R Adctividad Fisica estructure BMR VITs INGESTA Termogeneis Lipidos Protein as Alcohol mins Señales eferentes CHO Señales aferentes DEMANDAS Genética / hábitos / Estado neuroendocrino Balance Nutricional BALANCE ENERGÉTICO Balance E. = Grasa? ¿Obesidad? Ingesta Alimentos Bebidas - Gasto. Metabolismo Basal Actividad física Termogénesis ¿Genética/Habitos? 2 FUNCIONES de NUTRIENTES Nutrientes Energía Elementos Reguladores Funciones Estructurales Proteínas EXPRESSIÓN GÉNICA: CONTROL DNA Transcripción Ac. Grasos Retinoides Vitamina D Glucosa Energía mRNA Translación Aminoácidos Hierro Selenio Proteínas Postranslación Minerales Vitaminsa 3 EXPRESSION GENICA: CONTROL Cascada quinasas FT RE Nutrientes Nutrientes & Metabolitos ● Nutrients Mechanismos : - Receptores (membrana/núcleo) - Metabolismo intermediario - Factores Transcripción (FT): afinidad & concentración GENOTIPO → FENOTIPO DNA RNA Transcription PROTEINAS Translation Expresión Génica= f(DNA × factores entorno) 4 HOMEOSTASIS: INTERACCIONES GENÉTICA Nutrición Hormonas Homeostasis Act. Física Sistema Nervioso F. Ambientales NUTRICIÓN MOLECULAR Nutrigenética Polimorfismos Genes Nutrientes Nutrigenómica Expresión de genes NUTRICION PERSONALIZADA 5 GENÉTICA Genética estudia cómo los organismos vivos heredan rasgos de sus antepasados y averigua cómo se transmiten estas características de generación en generación NUTRICION PERSONALIZADA La genética determina necesidades nutricionales únicas y las respuestas a los diferentes alimentos y nutrientes Basado en: - La secuenciación del genóma humano, - Análisis de la subsecuenciación de las variaciones humanas, - Estudio de la asociación de variantes genéticas con marcadores de enfermedad - Impacto of nutrición en expresión genica 6 GENOTIPO & FENOTIPO: INTERACCIONES Genotipo Estado Nutricional Expresión génica GENETICA de la OBESIDAD Sindromes Mendelianos • Autosomal dominante • Autosómico recesivo • X-ligado Modelos Animales • Obesidad en animales • Animales transgénicos • Q Rasgos Loci (QTL) Asociación y Ligamiento Genes candidato • Segregación • GWAS • 7 LIGAMIENTO GENETICO Framingham Fenotipo Canada BMI Noruega BMI/Pliegue n r2 0,19 3138 0,12 23936 0,12 Padres/hijos 4027 0,23 7194 0,20 43586 0,20 Hermanos 0,28 3924 0,34 19157 0,24 Esposos n r2 1163 IMC 992 n r2 MODELOS GENETICOS ANIMAL Tipo HUMANO Chr Loci Herencia Chr Gene Product Diabetes (db) 4 Lepr Recesivo 1 leptina receptor Fat (fat) 8 Cpe Recesivo 4 carboxìpeptidasa E Obese (ob) 6 Lep Recesivo 7 leptina Tubby (tub) 7 Tub Recesivo 11 Desconocido? Agouti yellow 2 Ay Dominante 20 proteina agouti 8 MODELOS GENETICOS Alteraciones metabólicas • Knock-out de TNF-α (Tolerancia a Glucosa) • Knock-out de c/EBP (Diferenciación adipocitos) • Knock-out de adrenalin (Termoregulación) • Knock-out de LPL (Metabolismo de lípidos) • Knock-out de BAT (Termogénesis) Genotipo → Fenotipo (Obesidad) 30% Cultural Cultural Cultural transmisión transmission transmission Genética Genetic Genetic 25% Nontransmissible Nontransmissible No-transmisible 45% 9 DETERMINANTES DE OBESIDAD INFANTIL 5 4,18 4 3 OR 2,02 2 1 1,74 0,94 Actividad Fisica TV Azúcar y bebidas azucaradas Antecedentes fsmiliares Ochoa, et al. 2006 Trp64Arg MUTACION en ADRENOCEPTOR β3 0,92 C/C C.R. 0,91 0,91 0,90 Units 0,9 0,89 0,88 0,87 0,87 0,86 0,86 0,85 0,84 0,83 TT (-) TA+AA (+) CORBALAN, et al. 2000 10 PPARγ2 x ADRβ3:INTERACCIONES 6 5 OR 4 3 2 1 0 (-) PPARү (+) PPARү+ADRβ3 (+) Carriers Ochoa, et al. 2004 OBESIDAD Y GENES • ADIPOGENESIS: PPAR, C/EBP5, PKA, AP2,, RXR,... • TERMOGENESIS: β3AR, β2AR, UCPS,... • APETITO: NPY, LEP, CCK, MC4R, POMC, OREX,.. • OTROS. FTO, IL6 11 OBESIDAD HUMANA: MAPEO 1 2 ACP1 Do1 3 4 GCKR LEPR 5 6 ACH Nidd/gk1 Do2 ATP1A2 Obq2 LEP Mob-4 CHS1 255 Mb 214 Mb 14 15 203 Mb 194 Mb D11S419 UCP2/3 Nidd/gk5 bw/gk1 DRD2 171Mb 155 Mb 145 Mb 144 Mb UMS Weight 1 Mob-1 APOD 183 Mb 12 Niddm1 Do3 KEL D1S202 11 BBS1 ADRB3 Mob-2 GRL Nidd/gk6 10 SURTUB Mob-1 Obq1 PRKAR2 PC1 CPE Obq2 9 LPL Do6 Mob-4 UCP 1 Do6 PigQTL 8 GLO1 TNFir24 BBS3 HS 3B1 7 PPAR POMC APO B APOA4 144 Mb 143 Mb X 236 Mb 13 ESD 16 17 18 Mob-1 19 MC4/5R LIPC 114 Mb 109 Mb 106 Mb BBS4 98 Mb ADA 92 Mb Y 85Mb Bw2 Bw3 P1 Obq1 BBS4 Do2 22 Choroideremia WTS bw/gk1 ASIP Niddm3 Mob-3 21 Do6 LDLR PWS 20 67 Mb PPCD Mob-5 72 Mb 56 Mb 28 Mb Bw1 SGBS BFLS 50 Mb 164 Mb LATEST: UCP, POMC, LEP, βAR, PPAR, AP2, TNF,... GENES y NUTRICION:INTERACCIONES 12 GENOTIPO & NUTRICION INTERACCIONES Nutricion Expresion Génica Fenotipo MICROARRAY 13 Microchip scanning Building the Chip Sample collection RNA isolation MASSIVE PCR PCR PURIFICATION and PREPARATION ROBOTIC PRINTING lean obese ~~~ Reverse ~ ~ ~ ~ ~ transcription Label with ~~~~~~~~ fluor dyes ~~~~~~~ ~ Competitive ~~~~~~~~ Computer data analysis hybridization Detection with confocal laser microscope Moreno et al. 2001 + TOOLS: Microchip Scanning Macronutrient Metabolism Fold ~49.2 15.7✝ 7.3 ~6.7✝ ~4.9✝ ~4.6✝ 4.1 3.3 3.2 3 2.9 2.8 2.5 2.5 2.4 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.1 2 2 Code Name D45862 J02773 J00713 U64451 AF063302 AF034577 M95591 S69874 K03249 AB002558 AB005743 L07114 U20643 M26594 M60322 S56481 S81497 J02585 X15580 L12016 U32314 D10354 L25331 D43623 D10655 AF035943 Leptin, ob Low molecular weight FABP Carboxypeptidase-a- 5 Short-branched chain acyl-CoA DH precursor Carnitine palmitoyltransferase I beta Pyruvate dehydrogenase kinase isoenzyme 4 Squalene synthetase Fatty acid-binding protein (FABP) Enoyl-CoA-hydratase-3-hydroxyacyl-CoA DH Glycerol 3-phosphate dehydrogenase Fatty acid transporter Apolipoprotein B Aldolase A Malic enzyme Aldose reductase Beta 3-adrenergic receptor Lysosomal acid lipase Liver stearyl-CoA desaturase 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase Tricarboxylate transport protein Pyruvate carboxylase Alanine aminotransferase Lysyl hydroxylase Carnitine palmitoyltransferase I like protein Dihydrolipoamide acetyltransferase Uncoupling protein-3 AB015724 X12752 S77528 AB011365 AF022081 X13167 Nuclear receptor binding factor-1 DNA binding protein C/EBP C/EBP-related transcription factor PPAR-gamma protein Small nuclear RING finger protein NF-1 like DNA-binding protein Transcription factor 3.7✝ 2.8✝ 2.5 2.1 2 2 Hormone receptor and signal transduction ~10.7✝ 4 3.6✝ 3 2.9 2.9 2 2.8 2.7 2.6 2.6✝ 2.5 2.4 2.4 2.4✝ 2.3 2.3 2.2 2.2 2.2✝ 2 2 2 2 M96159 S79241 U93880 K03045 D38036 Z83757 X92069 E12286 X17053 S74351 X06107 M64300 D85183 L13619 L35767 S49003 D85435 D89655 U21101 J03819 AF022952 S50461 L25633 M12492 Adenylyl cyclase type V Oxytocin receptor Insulin receptor substrate-3 (IRS-3) Retinol-binding protein (RBP) Truncated TSH receptor Growth hormone receptor P2X5 receptor (ATP-gated ion channels) GM2 activator protein Immediate-early serum-responsive JE Protein tyrosine phosphatase Insulin-like growth factor I Signal-related kinase (ERK2) SHPS-1 (protein tyrosine phosphatase) Insulin-induced growth-respons protein Very low density lipoprotein receptor, Short isoform growth hormone receptor Protein kinase C delta-bindig protein Scavenger receptor class B Cyclic GMP stimulated phosphodiesterase Thyroid (T3) hormone receptor Vascular endothelial growth factor B Signal-transducing G protein alpha 12 subunit Neuroendocrine-specific protein Type II cAMP-dependent PK regulatory subunit K00512 AF004811 X60351 AF041373 U50717 M83196 Myelin basic protein Moesin Alpha B-crystallin Clathrin assembly protein short form Synaptic density protein PSD-93 Microtubule-associated protein 1A Cellular cytoskeleton ~4.9 ~4.0✝ 3.5 3.1 2.7 2.5 ✝ - Macronutrient Metabolism Fold -22.5 -22.1✝ ~-20.0✝ -19.0✝ -9.1 ~-6.4✝ -6.0 -3.8 -2.9 -2.8 -2.6 -2.4 -2.2 Code Name AF001898 AB009999 AB017260 D37920 L25387 AB010428 S68135 M18467 AF080468 S49760 X04979 M93297 L07736 Aldehyde dehydrogenase (ALDH) CDP-diacylglycerol synthase High-affinity carnitine transporter Squalene epoxidase Phosphofructokinase C Acyl-CoA hydrolase GLUT1 Aspartate aminotransferase Glycogen storage disease type 1b protein Diacylglycerol kinase Apolipoprotein E Ornithine aminotransferase Carnitine palmitoyl-transferase I Redox and stress proteins -7.8-34.1✝ -4.8-6.2 -4.2 -2.6-3.2 S82820 X62660 M11794 X02904 Glutathione S-transferase Yc2 subunit Glutathione S-transferase subunit 8 Metallothionein-2 and metallothionein-1 Glutathione S-transferase P subunit Transcription factor -25.2 -5.2 -2.7 U78102 X94246 M91802 Krox20 ó EGR-2(early growth response protein 2) Pax-8 protein Homeobox protein (Hox 1.11) Hormone and signal transduction -117.5 ~-92.3✝ ~-47.3 ~-8.6✝ -4.1 -2.8 -2.3 -2.3 -2.3 -2.2 -2.1 -2 S49491 J04488 D63772 M12450 U57715 U48596 L06096 U53184 X59132 D64045 AF014009 M91599 Proenkephalin Prostaglandin D synthetase Neuronal high affinity glutamate transporter Vitamin D binding protein FGF receptor activating protein FRAG1 MAP kinase kinase kinase 1 (MEKK1) Inositol trisphosphate receptor subtype 3 (IP3R-3) Estrogen-responsive uterine Secretin receptor Phosphatidylinositol 3-kinase p85 alpha subunit Acidic calcium-independent phospholipase A2 Fibroblast growth factor receptor subtype 4 Cellular cytoskeleton ~-21.4✝ ~-12.2✝ ~-6.6✝ ~-3.8✝ -3.2 -2.3 X81448 M93638 AF013247 M59936 X67788 X81449 Keratin 18 Keratin 5 Beta-A4 crystallin Connexin-31 Ezrin p81 Keratin 19 ✝ corresponds to a transcript absent in the obese group (basal line). ✝ corresponds to a transcript absent in the control group (basal line). 14 EXPRESIÓN GÉNICA Y NUTRICIÓN 1,25 ** 0,75 Control (8 d) ** Cafetería (8 d) 0,5 0,25 0 UCP3 PPARγ2 aP2 Margareto, et al. 2001 EXPRESIÓN GÉNICA Y NUTRICIÓN 3 2 Control (30 d) ** 2,5 Relative Units relative units 1 Cafetería (30 d) ** 1,5 1 0,5 0 UCP3 PPARγ2 aP2 Margareto, et al. 2001 15 EXPRESIÓN GÉNICA Y NUTRICIÓN 40 30 20 10 % 0 -10 -20 -30 -40 Leptin HSL UCP2 PGC-1 PAARγ2 Viguerie, et al. 2005 EXPRESIÓN GÉNICA Y NUTRICIÓN 40 30 20 % 10 high-fat 0 low-fat -10 -20 -30 -40 Leptin HSL UCP2 PGC-1 PAARγ2 Viguerie, et al. 2005 16 17 18 GENOTIPO y NUTRICION: INTERACCIONES Genotipo r Nutricion Fenotipo Expresión génica Nutricion Status MICROARRAY 19 POLIMORFISMOS (SSCP) Marti, et al. 2003 IDENTIFICACION PORTAQMAN - PCR 20 NUTRIGENOMICA: Nutrición personalizada basada en genotipo. ? Nutrigenómica es el estudio de las relaciones moleculares entre la nutrición y la respuesta de los genes, con el objetivo de extrapolar cómo dichos cambios sutiles pueden afectar a la salud humana. CONSUMO DE GRASA y GENOTIPO INTERACCIONES 7,5 6,5 Cambios en IMC 5,5 4,5 3,5 2,5 1,5 0,5 -0,5 -1,5 -2,5 <2,1 2,3 2,6 2,9 3,1 3,3 3,6 3,9 4,2 >4,2 Ingesta de grasa (MJ) Ow/Op Ow=overweight at baseline Ow/Np Nw=normal weight at baseline Nw/Op Op=obese parents Nw/Np Np=normal weight parents SORENSEN, et al. 1997 21 TIPO DE GRASA y GENOTIPO: INTERACCIONES PPAR 6 No portadores 5 Portadores (Pro12Ala) Odds Ratio 4 3 2 1 0 1 2 3 4 5 Energía derivada de grasa (Quintiles) Memisoglu, et al. 2003 TIPO DE GRASA y GENOTIPO: INTERACCIONES PPAR IMC (Kg/m2) 27 26 Pro/Pro Ala 25 24 <0,39 <0,51 <0,66 >0,66 Cuartiles de P:S ratio Luan, et al. 2001 22 CONSUMO DE CHO y GENOTIPO: INTERACCIONES en ADRB3 35,82 36 IMC (Kg/m2) 35 31,97 34 33 33,65 32 32,35 31 Mutación 30 No mutación <49%E de CHO >49% E de CHO Martínez. et al. 2003 CONSUMO DE CHO y GENOTIPO: INTERACCIONES en PPAR 40 39 IMC 38 37 36 35 34 33 32 31 30 35,3 33,4 31,5 32,4 Mut (+) Mut (-) <49% E CHO >49% E CHO Corbalan, et al. 2002 23 TRATAMIENTOS DE LA OBESIDAD Dietoterapia y restricción E Fármacos Programas de actividad Física Cirugía Bariátrica Personalización de la ......... .............Nutrición por genotipo POLYMORFISMO EN GEN APOLIPOPROTEINA A5 TT C 30 29,1 29 BMI (Kg/m2) 28,1 28 27 27,8 27,9 26 26,5 25 25 24 23 0 6 12 semanas Aberle, et al. 2005 24 POLIMORFISMO EN GEN PERILIPINA y RESTRICCION E 10 8 Peso perdido (%) 7,7 6 4 2 0,97 AA GG Corella, et al. 2005 LIPC – 514>CT POLYMORFISMO Y FIBRA (TERCILES) 1 1 OR 0,5 0,5 Segundo Tercil Tercer Tercil 0.5 Primer Tercil Santos, et al. 2006 25 SNPS en ADIPOQ – 11377 C>G Y PERDIDA DE PESO 1,2 Peso Perdido (Kg) Alto en grasa Bajo en grasa 1 Heterocigotos Homocigotos Sorensen, et al. 2006 HAPLOTIPOS de UCP3 : IMPACTO EN PESO 8 5,6 6 Peso Perdido (Kg) 4 4,3 4,7 2 C/C C/R R/R Cha, et al. 2006 26 PPAR x ADRB2: interaccion 10 8,0 8 Perdida de peso (Kg) 6 5,6 4 2 Pro 12 Pro Glu 27 Glu Pro 12 Ala Gln 27 Glu E. L. Rosado, et al. 2006 CAMBIOS de PESO Y GENOTIPO 100 95 Trp64Arg β3AR And A->G UCP-1 90 85 Trp64Arg β3AR 80 No mutationes A->G UCP-1 75 70 0 1 2 3 4 5 6 7 8 9 10 11 12 FOGELHOLM, M. et al. 1998 27 28 ¿Conclusiones? 29 ¿EPIOBESOGENES? Revisión? voluntarios? Nutricion del presente y del futuro: personalizacion 30 Medicina personalizada Hipócrates (Cos, 460 a. C. -‐ Tesalia 370 a. C.) “…que tu alimento sea tu medicamento y la medicación tu alimentación” Galeno (Pérgamo, Grecia, 130 -‐ Roma, 200) “ninguna causa puede ser eficiente sin una apLtud del cuerpo”….los individuos heredan respuestas únicas a los alimentos ! suscepLbilidades únicas a enfermedades crónicas C.Bernard (S XIX.) “…no hay enfermedades , sino …….enfermos” Garrod (ppios. s XX) sugiere que dieta influye en enfermedad de manera diferente según el individuo. Williams (1956): Diversos estudios muestran amplias variaciones en los niveles de insulina, colesterol, iones…. Gené7ca estudia la herencia, los genes y su variación Secuenciación genoma humano muestra: • Humanos idén7cos 99,9 %! aprox. 3·∙106 SNPs responsables de todas las diferencias • ≈ 1000 mutaciones responsables de enfermedades y genes relacionados con enfermedades mulLfactoriales como DMT2, obesidad, ECV y cáncer. • Mutación cualquier cambio en la secuencia de nucleótidos del ADN . 31 GENOTIPO → FENOTIPO DNA RNA Transcription PROTEINS Translation Gene Expression= f(DNA × Environmental factors) • Genotipo: conjunto de genes (y alelos) de un organismo • Fenotipo: forma en la que se expresa un carácter observable Nutri7on And Gene7c Interac7ons Possible interac7ons of diet with gene7c variability to affect disease risk. Jenab MZ et al. Hum Genet (2009) 125: 507–525 32 • Mutación cualquier cambio en la secuencia de nucleótidos del ADN . • Polimorfismo mutación con alelo de frecuencia superior a 1% ENFERMEDADES MONOGÉNICAS Celiaquía Intolerancia a la lactosa Hipercolesterolemia familiar Fenilcetonuria Galactosemia • • ENFERMEDADES POLIGÉNICAS Obesidad Diabetes tipo 2 Hiperlipidemias Hipertensión Enfermedad cardiovascular Factores exógenos: exposición a toxinas o productos químicos, radiación, Osteoporosis alérgenos, contaminantes, virus y bacterias…. Enfermedades Factores endógenos y voli7vos: esLlo de vida, ejercicio ^sico, consumo de alcohol o tabaco, ingesLón calórica neurodegenerativas y componentes de la dieta, alteraciones del sueño…. Cáncer HAPLOTIPO + AMBIENTE " PREDISPOSICIÓN (% contribución) PERSONALIZED NUTRITION ? YES, PLEASE Genetic make-up can determine unique nutritional requirements and responses to different foods.and nutrients Based on: - The sequencing of the human genome, - subsequent analyses of human genetic variation, - studies that associate gene variants with disease markers - Impact of nutrition/nutrients on gene expression 33 GENOMA HUMANO DE LA OBESIDAD 1 2 ACP1 Do1 3 4 5 GCKR ACH Nidd/gk1 Do2 PigQTL 10 Obq2 LEP Mob-2 GRL Mob-4 CHS1 145 Mb 255 Mb 214 Mb 14 15 203 Mb 194 Mb DRD2 144 Mb UMS Weight 1 Mob-1 171Mb 183 Mb D11S419 UCP2/3 Nidd/gk5 bw/gk1 APOD Nidd/gk6 12 Niddm1 Do3 KEL D1S202 11 BBS1 ADRB3 PC1 CPE Obq2 9 SURTUB Mob-1 Obq1 PRKAR2 UCP 1 Do6 ATP1A2 8 LPL Do6 Mob-4 BBS3 HS 3B1 7 GLO1 TNFir24 APO B LEPR 6 PPAR POMC APOA4 144 Mb 155 Mb 143 Mb X 236 Mb 13 16 ESD 17 18 Mob-1 19 20 PWS LIPC 114 Mb Bw2 Bw3 P1 Obq1 BBS4 ADA Do2 109 Mb 106 Mb Y 98 Mb 92 Mb Choroideremia WTS bw/gk1 ASIP Niddm3 Mob-3 22 Do6 LDLR BBS4 21 MC4/5R 85Mb 67 Mb PPCD Mob-5 72 Mb 56 Mb 28 Mb Bw1 SGBS BFLS 50 Mb 164 Mb ÚLTIMOS: UCP, POMC, LEP, βAR, PPAR, AP2, TNF,... WP 4: Recrui7ng centres for PoP Study 1. University College Dublin (Ireland) 2. Maastricht University (The Netherlands) 3. University of Navarra (Spain) 4. University of Reading (UK) 5. Na7onal Food and Nutri7on Ins7tute Warsaw N = 1280 (excluding 20 % dropout rate) 220 (Poland) 6. Harokopio University Athens (Athens) 7. Technische Universitaet Muenchen (Germany) 220 220 220 220 220 220 Courtesy John Mathers, UNew 34 Background Personalised nutrition: the concept? “Personalised nutriLon is the tailoring of dietary advice to suit an individual based on their geneLc make-‐up.” 2000 Objectives • To explore the scientific, business and consumer aspects of personalised nutrition • To determine whether dietary advice based on a person’s genes, could deliver consumer benefits 35 What worries the public about personalised nutrition? Data may be misused by authoriLes Data may be misused by insurers Data may be misused by adverLsers Data may be misused by Pers Nutr provider Data may not be stored securely Data may not be treated confidenLally Data may be accessed by hackers Personal diet may not be effecLve 0 Courtesy Barbara Stewart-Knox, UU 0,5 1 1,5 2 2,5 3 3,5 4 Indicate extent you agree or disagree 1-‐5 (mean score) (N=9381) 36 Who do the public trust to provide personalised nutrition? Social Media News media Friends/Family Personal Trainers DieLcians/NutriLonists Consumer Orgs UniversiLes On-‐Line Pers Nutr Comp's Food Manufacturers Food Retailers NHS Eu Commission Dept of Health Family doctor 0 Courtesy Barbara Stewart-Knox, UU 0,5 1 1,5 2 2,5 3 3,5 4 Indicate extent you trust or do not trust 1-5 (mean score) (N=9381) Phenotyping devices Abbot Continuous glucose monitoring system The Zeo sleep Manager (Oram) Direct Life Activity Monitor Sensor tail 5 mm 37 DBS: dry blood spot analysis 30 – 100 µl per spot Courtesy Prof Hannelore Daniel TUM ega 3 Om Di et s noid ote Ap oE Car ht Choleste rol O eig e FT ype not Gene W cos Glu Phe Fat e lat Fo Fruit & Veg en ts Phys i Ac7v cal ity Su pp lem s R HF T M Courtesy John Mathers, UNew 38 TOOLS: Microchip scanning Sample collection Building the Chip RNA isolation MASSIVE PCR PCR PURIFICATION and PREPARATION ROBOTIC PRINTING lean ~~~~~~~~ ~~~~~~~~ obese ~~~ Reverse ~ ~~~ ~ transcription Label with fluor dyes Competitive hybridization Computer data analysis ~~~~ ~~~~ Detection with confocal laser microscope Moreno et al. 2010 APPROACHES AGAINST OBESITY Nutritional and Diet Theraphy Drugs Treatments Physical Activity Programmes Bariatric Surgery Others: Personalized......... ....................................Nutrition 39 40 41 Dietary fatty acid distribution modifies obesity risk linked to the rs9939609 polymorphism of the fat mass and obesity-associated gene in a Spanish casecontrol study of children Fig. 2. BMI-‐standard deviaLon score (SDS) of children and adolescents according to SFA consumpLon (percentage of total energy, dichotomised by the median) and the presence of the fat mass and obesity associated (FTO) rs9939609 polymorphism in a dominant model. Values are means, with their standard errors represented by verLcal bars. Br J Nutr, 2012; 107 (4): 533-8 Obesity Suscep7bility Loci on Body Mass Index and Weight Loss in Spanish Adolescents ajer a Lifestyle Interven7on Supplementary Figure 2 (online): DistribuLon of the GeneLc PredisposiLon Score (GPS), trend and cumulaLve effects on BMI-‐SDS and fat mass percentage in the adolescent populaLon A.) At baseline and B.) Aner 10 weeks of mulLdisciplinary intervenLon. Len axis: Prevalence. Right axis: A) BMI-‐SDS or Fat mass percentage (baseline) and B) BMI-‐SDS or Fat mass percentage variaLon (aner the intervenLon). J Pediatr, 2012 Sept 161: 466-470.e2 42 SCORE -UNAV Gen OBESIDAD SNP Genotipo Score/SNP FTO rs9939609 rs17782313 MTHFR rs1801133 0,6 15 2,5 3 0 50 4,1 MC4R AA Prevalencia CC Prevalencia CC Prevalencia Score/patolog (mi nor-‐mi nor) (ma jor-‐mi nor) (ma jor-‐ma jor) Major allele (Minor 1) allele (2) AA Prevalencia CC Prevalencia CG Prevalencia CC Prevalencia TT Prevalencia 2 15 0 95 0,3 15 0 52 0,4 10 3,7 CC Prevalencia CT Prevalencia TT Prevalencia 0 50 0 34 0,4 10 1,4 -4 55 -‐5 0,6 15 2,5 3 0,2 10 0,3 60 2 47 0 40 0 25 0 50 0 50 T A T C C T 2 15 0,3 1 0,3 5 0,3 4 0,4 10 0,6 60 0,2 4 0,2 15 0,1 44 0,2 55 0 25 0 95 0 80 0 52 0 35 T A C G C G C G C T 0,2 10 0,2 7 0,4 10 0,1 40 0 34 0,1 55 0 50 0 59 0 35 C T C T C T 4 10 0 35 -‐4 55 T C DIABETES FTO rs9939609 PPARA rs1800206 PPARG rs1801282 MTNR1B rs10830963 GNB3 rs5443 HIPERTENSIÓN MTHFR rs1801133 NOS3 rs1799983 GNB3 rs5443 INTOLERANCIA A LA LACTOSA LCT rs4988235 TT Prevalencia (C;C) 4x lactose intolerant (T;T) -4x lactose tolerant (C;T) 0x lactose intolerant SCORE CINFA-UNAV INTERACCIONES GEN-DIETA Gen SNP Major allele (Minor 1) allele (INTERACCIONES 2) APOA1 rs670 G A Si GG (3) Si su dieta e s rica e n grasas o si su i ngesta de grasas monoinsaturadas, como e l aceite de oliva, e s muy APOA1 rs670 G A Si AA (1) Una dieta rica e n ácidos grasos de tipo poliinsaturado e s e specialmente beneficiosa e n su caso para i n LIPC rs1800588 C T Si TT (1) Una dieta rica e n grasas monoinsaturadas l e ayudará a reducir sus niveles de colesterol LDL y, por l o ta MTHFR rs1801133 C T Si TT (1) Si l a i ngesta de ácido fólico no e s e levada, usted tiene más riesgo que l a mayoría de l a población de pr NOS3 rs1799983 C T Si TT (1) Los ácidos grasos de tipo n-‐3 son particularmente beneficiosos e n su caso para mantener bajo control e PLIN rs894160 G A Si AA (1) Una dieta rica e n grasas saturadas (de origen animal, e n e special carnes grasas y l ácteos e nteros, y tam PPARA rs1800206 C G Si GG (1) Si su dieta e s rica e n grasas y e specialmente e n grasas saturadas (carnes grasas y l ácteos e nteros), su p PPARG rs1801282 C G Si GG (1) Si su dieta e s pobre e n ácidos grasos monoinsaturados (en e special aceite de oliva o girasol alto oléico Si su dieta es rica en grasas o si su ingesta de grasas monoinsaturadas, como el aceite de oliva, es muy elevada, usted tiene mayor predisposición que la mayoría de la población para desarrollar diabetes tipo 2, obesidad e hipertensión. Le recomendamos una dieta algo más baja en grasas para prevenir estas posibles consecuencias. 43 SCORE CINFA-UNAV SNP polimorfismo 01 APOA5 (rs662799) g.4430 T>C 02 APOB (rs5742904) c.10580 G>A 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 APOA1 (rs670) g.4926 G>A ESR1 (rs2234693) c.453-387 T>C FTO (rs9939609) c.46-23525 T>A GC (rs2282679) c.*26-796 A>C GCKR (rs1260326) c.1337 C>T GNB3 (rs5443) c. 825 C>T MTNR1B (rs10830963) c.223+5596 C>G MC4R (rs17782313) g.5785109 T>C LPL (rs328) c.1421 C>G LIPG (rs4939883) g.47167214 C>T CETP (rs1800777) c.1403 G>A LIPC (rs1800588) g.4501 C>T NOS3 (rs1799983) c.894 G>T PLIN4 (rs894160) c.772-799 G>A PPARA (rs1800206) c.484 C>G PPARG (rs1801282) c.34 C>G CELSR2 (rs12740374) c.*919 G>T MTHFR (rs1801133) c.665 C>T LCT/MCM6 (rs4988235) c.1917+326 T>C APOE (rs429358) c.388 T>C APOE (rs7412) c.526 C>T 21* 23 24 Gen SNP SNP (nomenclatura alternativa) GPS basado en suma de alelos de riesgo 30 20 25 P= 0.0020 15 Percentage of body fat 35 Interacción GPS * Ingesta energética 1000 2000 3000 4000 TOTAL ENERGY INTAKE low GPS (<=7 risk alleles) high GPS (>7 risk alleles) Ajustado por sexo, edad y factor de actividad física 44 28 22 24 26 P= 0.0316 20 20 25 Percentage of body fat P= 0.0027 15 Percentage of body fat 30 30 Interacción GPS * Ingesta proteica 0 50 100 150 200 0 50 100 200 high GPS (>7 risk alleles) low GPS (<=7 risk alleles) high GPS (>7 risk alleles) 23 21 22 P= 0.0034 20 Percentage of body fat 24 25 low GPS (<=7 risk alleles) 150 ANIMAL PROTEIN intake PROTEIN intake 10 20 30 40 50 60 VEGETABLE PROTEIN intake low GPS (<=7 risk alleles) high GPS (>7 risk alleles) Ajustado por sexo, edad, factor de actividad física e ingesta energética 25 23 24 Percentage of body fat 24 P= 0.0151 22 22 P= 0.0292 20 50 100 150 200 10 20 30 FAT intake 40 50 AGS intake high GPS (>7 risk alleles) low GPS (<=7 risk alleles) high GPS (>7 risk alleles) 24 26 low GPS (<=7 risk alleles) 20 22 P= 0.0024 18 0 Percentage of body fat Percentage of body fat 26 26 Interacción GPS * Ingesta de grasa 0 10 20 30 40 AGP intake low GPS (<=7 risk alleles) high GPS (>7 risk alleles) Ajustado por sexo, edad, factor de actividad física e ingesta energética 45 25 23 24 P= 0.0304 21 22 Percentage of body fat 24 23 22 P= 0.0078 21 0 100 200 300 400 500 0 100 CARBOHYDRATES intake 200 300 COMPLEX CARBOHYDRATES intake high GPS (>7 risk alleles) low GPS (<=7 risk alleles) high GPS (>7 risk alleles) 22 24 26 low GPS (<=7 risk alleles) 20 P= 0.0394 18 Percentage of body fat Percentage of body fat 25 26 26 Interacción GPS * ingesta CHO-Fibra 10 20 30 40 50 60 FIBER intake low GPS (<=7 risk alleles) high GPS (>7 risk alleles) Ajustado por sexo, edad, factor de actividad física e ingesta energética OBESIDAD: AGENTES ETIOLÓGICOS GENÉTICA Nutrición F. Endocrinos OBESIDAD S. Nervioso Act. Física AMBIENTE 46 FARMACOGENÉTICA Y NUTRIGENÉTICA Genética del metabolismo + Genética del receptor del fármaco del fármaco = Heterogeneidad de la respuesta al fármaco Eficacia Pacientes y Enfermedades Farmacogenética Toxicidad Absorción Distribución Metabolismo Excreción Patogénesis Susceptibilidad Microchip Prevención Nutrigenética Consumidores y Salud Tratamiento Genética del metabolismo + Genética del receptor del nutriente del nutriente = Heterogeneidad de la respuesta al nutriente NUTRICIÓN MOLECULAR Nutrigenética Polimorfismos Genes Nutrientes Nutrigenómica Expresión de genes NUTRICION PERSONALIZADA 47 Personalized Nutrition Rather than there being an ‘op7mal’ human diet, there are a range of adequate diets which depend upon individual biological and cultural varia7on. EPIGENETIC MARKS PHYSICAL ACTIVITY GENETIC BACKGROUND Personalized diet ALLERGIES AND INTOLERANCES FAMILY HISTORY LIKES AND DISLIKES PREVIOUS DISEASES CULTURE Conclusiones GENOMA Genoma: 30.000 genes (30% presentan polimorfismos) Expresión génica = f (DNA ! Factores ambientales ) Diagnostico: -Requerimientos de nutrientes -Predisposición para trastornos asociados a la nutrición -Prescripción de dietas (Profilaxis/terapia) 48 ¿Conclusiones? ¿EPIOBESOGENES? Revisión? voluntarios? 49 Nutriepigenética Los procesos epigenéticos modulan la actividad y expresión génica sin cambios en secuencia de nucleótidos. Modificaciones Epigeneticas DNA Methylation and Histone modification. (From Molecular Development - Epigenetics by Dr Mark Hill.) http://www.youtube.com/watch?v=eYrQ0EhVCYA&NR=1 50 Modificaciones Epigenéticas Me Me Metilacion en DNA Empaquetado de cromatina Me Modificaciones en Histonas DNA Packaging en Nucleosomas Ac Me Me Me Me Me Me Me Me Ac Ac Ac Me Me Me Me Relaciones ente metilación de DNA y estructura de la cromatina Lodygin D et al. Cell Research (2005) 15, 237–246. 51 Periodos vitales susceptibles de existir metilacion en DNA Supresión de la impronta de metilación ocurre casi exclusivamente de dos etapas: · células germinales primordiales · desarrollo de blastocisto Los cuidados maternos, el envejecimiento, la dieta, las toxinas y la inflamación, regulan la metilación del ADN. Transmisión transgeneracional Nutrientes y enfermedades influyen en enzimas modificadores de histonas implicados en transcripcion génica Metabolic Status Diet and nutrients Diseases Metabolic Compounds mRNA levels Protein levels Activity as enzymatic substrate Histone-modifying enzymes Repressed genes OCCH 3 OCCH 3 Ub OCCH 3 Activated genes Transcription Sum OCCH 3 Ac OCCH 3 Ub Ac P Ub Me-‐C OCCH 3 Sum Ub “Histone-Code” OCCH 3 Ac P OCCH 3 Biotin 52 Metilacion y modificaciones en histonas implicados represion (izda) o activation (dcha) de transcripcion genica The Histone Code Activated genes Repressed genes OCCH3 OCCH3 Sum OCCH3 Ub Transcription OCCH3 Ac OCCH3 Ub Ac Ub P Me-‐C Sum OCCH3 OCCH3 Ub Ac Bio7n Ub OCCH3 Methylatedresidues Ubiquitylated residues Acetylatedresidues biotinylated residues P Ac P OCCH3 Bio7n Phosphorylatedresidues Sum Sumoylated residues Me-‐C Methylatedcytosine Methods in DNA methylation Bisulfito + Secuenciacion PCR (BSP) MSP / MethyLight Pirosecuenciacion Sodium Bisulfite treatment (converts cytosine into uracyl) U PCR with specific BSP primers Methylation Specific PCR (MSP) is a bisulfite conversion-based PCR technique. PCR products are cloned and transformed in bacteria Sequencing with accurate primers Electroforesis capilar MethyLight method is based on MSP, but using quantitative real-time PCR 53 Biomarcadores epigene7cos y pérdida de peso Antes 8 semanas de restricción energética Después Illumina Microarray Milagro FI et al. FASEB J (2011) Cambios en metilacion asociados a dieta hipocalorica Microarray Changes by the diet 625 CpG hipermetilacion Antes vs. Tras restricción (20 % variacion p < 0.05) 945 CpG hipometilacion 0,9 Inicial 0,8 (% metilación) 0,7 *** *** Final *** *** 0,6 0,5 0,4 0,3 *** 0,2 0,1 0 APOA5 APOA5 PTEN PTEN GNAS GNAS H19 H19 IL26 IL26 Milagro FI et al. FASEB J (2011). 54 • B iomarcadore epigeneticos Biomarcadores epigeneticosy yperdida perdidade depeso peso (n=27) Subcutaneous Adipose Tissue (SAT) Blood 8 weeks of Low Calorie Diet No vs. respondedores SAT Blood (n=6) (n=21) Cordero P et al. J Physiol Biochem 2011 Cambios en metilación asociados a dieta hipocalórica LEPTINA TNFα BASELINE methylation % Ladder 70 T 60 50 unmet unmet met sample 1 40 met sample 2 * Respuesta 30 Responders No r espuesta 20 No Responders 10 MSP 0 LEPTIN Leptina TNFa TNF-‐alfa Cordero P et al. J Physiol Biochem 2011 55 Nutrientes Energia DNA Regulación mRNA Funciones estructurales Proteinas PROGRAMACIÓN PERINATAL Y ENF. CRÓNICAS Genetics Genomics Epigenetics 56 NUTRITION PERSONALIZADA Rather than there being an ‘optimal’ human diet, there are a range of adequate diets which depend upon individual biological and cultural variation. MARCAS EPIGENETICAS ACTIVIDAD FISICA HERENCIA Personalized diet ALERGIAS E INTOLERANCIAS HISTORIA FAMILIAR GUSTOS/AVERSIONES ANTECEDENTES DE ENFERMEDAD CULTURA HOMEOSTASIS: INTERACCIONES GENETICA Nutrición Hormonas Homeostasis Act. Fisica Sistema Nervioso F. Ambientales 57 Conclusiones GENOMA Genoma: 30.000 genes (30% presentan polimorfismos) Expresión génica = f (DNA ! Factores ambientales ) Diagnostico: -Requerimientos de nutrientes -Predisposición para trastornos asociados a la nutrición -Prescripción de dietas (Profilaxis/terapia) 58 BASES GENÉTICAS Y EPIGENÉTICAS DE LA OBESIDAD J Alfredo Martinez • University of Navarra. Pamplona 59 Methods in Protein-DNA Interactions Methyl Chip-on-Chip for Methyl-CpGs Binding Proteins (MBDs) ChIP-on-chip is used to investigate interactions between proteins and DNA in vivo. It combines chromatin immunoprecipitation (ChIP) with microarray technology (chip). it allows the identification of binding sites of DNA-binding proteins on a genome-wide basis. CpG Island Analysis in the promoters of different genes Role in obesity Gene symbol adipogenesis PPARGC1A adipogenesis NR0B2 adipogenesis FGF2 adipogenesis PPARG adipogenesis PTEN adipogenesis and cell cycle CDKN1A adipogenesis and inflammation LEP adipogenesis ESR1 adipogenesis NR3C1 inflammation TNF inflammation PLA2G4A inflammation SOD3 inflammation SOCS1/3 inflammation and apoptosis CASP8 energy metabolism COX7A1 fat metabolism LPL fat metabolism FABP4 insulin signalling CAV1 insulin signalling PIK3CG insulin resistance and adiposity HSD11B2 insulin resistance IGFBP3 60 Some promoter methylable regions on putative obesogenes Table 1. Differentially methylated regions in several obesogenic genes by Illumina microarray and their corespondent analysis by Sequenom Epityper approach. MICROARRAY Symbol Chrom. AQP9 15 ATP10A 15 CD44 11 SEQUENOM Chromosomic CpG position 56217683 Illumina ID PRIMERS cg11098259 56217974 cg11577097 23577342 cg11015241 23577440 cg17260954 35117468 cg18652941 35117805 cg04125208 LEFT aggaagagagTGAAAATTTTTT TTGGATTAGGGTT RIGHT TCCTCACTTTCACAACCAAATA cagtaatacgactcactatagggagaaggctAA LEFT aggaagagagAGGTTGGTTTTT TTATTTAGGTTGG RIGHT CCCAAATTCAAATAATTCTCCT LEFT aggaagagagGGATATTATGGA TAAGTTTTGGTGG RIGHT TTTCTAAAAAACCCATTACCAA CpGs present in the region 7 CpG dinucleotide equivalent to CpG 1 22 CpG 3 and CpG4 A CpG 7 cagtaatacgactcactatagggagaaggctCT A CpG 5, CpG10, CpG16 cagtaatacgactcactatagggagaaggctCC 31 C IFNG 12 66839844 cg26227465 LEFT MEG3 14 100362433 cg05711886 LEFT aggaagagagTGTGTTGTATTT TTTTTGGTTGTTG aggaagagagATGGGTTTTGTT TTTTTGGATATGT CpG 2 and CpG3 CpG 26 cagtaatacgactcactatagggagaaggctAA RIGHT AAAACTTCCTCACCAAATTATT C cagtaatacgactcactatagggagaaggctTA RIGHT AACTAAAATCCCTACCACCCA 5 CpG 1 6 CpG 2 6 CpG 6 11 CpG 8 AC NTF3 12 5473803 cg04740359 LEFT POR 7 75421357 cg20748065 LEFT aggaagagagTTTTTTTAGAAT GTTTAGAGGGGAG aggaagagagGGGGTAAGGTTT AGTATTTAGGTGG cagtaatacgactcactatagggagaaggctAA RIGHT AAACCTCAACTTTAAACAAAA TACTCT cagtaatacgactcactatagggagaaggctTC RIGHT TAACAAAAAAACAAAACCCAA AA TNFRS9 1 7922901 cg08840010 LEFT WT1 11 32406026 cg04096767 LEFT 32406214 cg12006284 aggaagagagTATAAGAGGTTG AATGATTTTGTTGTG aggaagagagGGGAGATTAGTT TTAATTTTTTTTAAG cagtaatacgactcactatagggagaaggctAA RIGHT AAAATACACCCTCAAACTTTA ACAA cagtaatacgactcactatagggagaaggctCT RIGHT AAATCTCCCTCCATCCCAAATA 4 CpG 3 34 CpG 9 and CpG10 C CpG 21 Main histone modifications, enzymes involved and donors H2B H3 KMTs SAM KDMs aK H2A aK meK meK meR AR uK aK bK H2A meK Acetyl CoA aK meK uK aK ATP Serine phosphatase H4 HDACs aK meK Serine kinase HATs pS uK pS aK AR H4 aK aK meR H2B aK biotinidase holocarboxylase synthetase Biotine bK biotinidase H3 NAD+ aK, acetyl lysine; meR, methyl arginine; meK, methyl lysine ; uK-ubiquinated lysine; pS, phosphorylated serine; bK, biotinylated lysine; AR, ADP-ribosylation 61 Examples of experimental changes in the level of histone methylations (lysines, K and arginines, R) by different metabolic conditions. effect increase residue and methylation affected H3K4me1 experimental model insulin via ROS, and high glucose, choline defficiency cite Kabra09 Brassachio Davison 09 H3K4me2 Methyl defficency in mice, Hypoxia, Hexavalent Chromium, aging, and glucose Dobosy 08 Miao 07 Jonhson 08 burke 2009 Xia 2009 Sun 2009 H3K4me3 Hexavalent Chromium, Arsenite nickel, LPS, aging, hypoxia, glucose, ischemia, benzoapirene Sun 2009 Zhou 2009 Ara 08 El-meyayen 2009 Xia 2009 Johnson 08 burke 2009 Zager 2009 Lyllicrop Kabra09 Murayama 2008 Xia 2009 Davison 09 Chen 2006 Miao 07 Pogribny 06 Pogribny 09 Protein restriction, nickel ion exposure, insulin via ROS with hyperglycemia, deprivation of glucose, gestational choline supply, hypoxia, chromium, high glucose H3K9me1 reduction H3K9me3 food restriction, methyl deficient model, hexavalent chromium H3K27me3 food restriction, hypoxia, gestational choline supply Chen 2006 Sharif 07 Sun 2009 Sharif 07 H3K36me3 H3K79me2 H4R3me2 H3K4me1 H3K4me2 hypoxia hypoxia hypoxia insulin via ROS with hyperglycemia High glucose, cAMP glucose induced, diabetic state Xia 2009 Johnson 08 Johnson 08 Kabra09 Miao 07 H3K4me3 food restriction, chromium, benzoapirene, methyl donors, LPS Sharif 07 Ara 08 H3K9me1 H3K9me2 insulin via ROS Protein restriction, choline/methionine restriction, BIX-01294, high glucose Kabra09 Lyllicrop Dobosy 08 H3K9me3 db/db mice, adenosinealdehide Villeneuve 08 Heit 2009 H3K27me3 DZNEP, adenosinealdehide, sinefungin, hypoxia, hexavalent chromium, methyl defficient diet H3R17 H3R2me2 H4K20me3 Insulin Hexavalent Chromium food restriction, adenosinealdehide, methyl deficient diet, cAMP glucose induced H3K20me3 DZNEP miranda 09 Johnson 08 Hall 07 Sun 2009 Sharif 07 Pogribny 06 miranda 09 Johnson 08 Davison 09 burke 2009 Miao 07 Schnekenburger El-meyayen 2007 2009 Schnekenburger 2007 Sun 2009 Schnekenburger 2007 Dobogy 08 Miao 07 Kubicek 2007 Sun 2009 Pogribny 09 Heit 2009 burke 2009 Pogribny 09 Dietary and metabolic factors involved in histone acetylation and deacetylation DIETARY FACTORS HDACs and SIRT Inhibitors METABOLISM Inflammation Infections (virus…) Hypoxia Oxidative Stress Smoking Physical activity HISTONE ACETYLATION aK ACTIVATION DRUGS DIETARY FACTORS aK aK aK INHIBITION Isothiocianates Alcohol Butyrate NAD Caffeinae Resveratrol Calóric Restriction High-salt diets Lipoic acid, vit. E Biotin Nicotinamide (niacin) Anacárdic Acid Garcinol Curcumin Teofilin Cupper Chromium Nickel DRUGS HAT inhibitots Acetyl CoA inhibitors METABOLISM Estrógens Hyperglycemia 62 Inductors of the different histone modifications, enzymes implicated and amino acidic residues affected Phosphorylation ADPRibosylation Sumoylation Ubiquitination Deimination Biotinylation Proline isomerization Sumo-protein ligases Ubiquitin ligase Peptidylargini ne deiminases (PAD 1-6) Biotinidase Holocarboxylas e synthetase Cyclophilins FK506-binding proteins Pin1 Lysine Arginine Lysine Proline PYR-41 Inflammation Oxidative stress Biotin C e l l proliferation Oxidative stress Juglone Enzymes Serine kinases Serine phosphatases polyADPribose polymerase mono-ADPribosyltransfer ase ADP-ribosyl cyclases Sirtuin SirT4 Amino acids Serine, threonine, tyrosine Arginine, glutamic acid, phosphoserine Inducers DNA breaks Benzene Bisphenol A UVA Oxidative stress Hypoxia Butyrate (inhibitor) Oxidative stress Genotoxics DNA breaks Tryptophan NAD+ Nicotinamide (niacin) 1 Ginkgolic acid Anacardic acid Kerriamycin B Epigenetic modifications due to different nutritional conditions Maternal alterations Caloric restriction Increase of genomic methylation of ras DNA Reduction of rat uterine blood flow Alteration of the methylation status of p53 in the kidney of the offspring Dietary protein restriction of pregnant rats Hypomethylation of hepatic gene expression (glucocorticoid receptor and PPARalpha) in the offspring Restriction of cobalamine, folate, methionine Folate deficiency DNA methylation in the preovulatory oocyte and the preimplantation embryo Impact on DNA methylation (i.e.in rat liver) and colon cancer susceptibility Folic acid, vitamin B12, choline, and betaine Prevention of transgenerational amplification of body weight in A(vy) mice Differerent micronutrient intake Epidemiologic data relating methylation in p16(INK4a) with low consume of folate, vitamin A, vitamin B1, potassium and iron. Selenium defficiency Modification of methyl metabolism in different tissues Arsenite defficiency Hypomethylation of Caco-2 cells not treated with arsenite Vegetarian diet Vegetarian vs omnivore diet Fatty acids Butyrate supplementation 3-fold increase in the expression of the MnSOD gene and decreased CpG methylation in its promoter region Demethylation of RARbeta2 in cancer cells Other compounds Soy genistein Reversal of hypermethylation of several genes and Tea polyphenols supplementation Inhibition of DNA methyltransferase in cancer cells Diallyl disulfide Increase of histone acetylation in human colon tumor cell lines Sulforaphane Inhibition of histone deacetylases Royal jelly intake Modifications in reproductive and behavioural status of honeybees Bisphenol A DNA hypomethylation and body weight gain in rats Methyl donors Microminerals Toxins/Drugs . Campion J, Milagro FI and Martinez JA (2010) 63 Many genes related to obesity are regulated by DNA methylation Individuality and epigenetics in obesity. Campion J, Milagro FI and Martinez JA. Obesity Rev 2009; 10:383-92 Epigenetic modifications DNA Methylation and Histone modification. (From Molecular Development - Epigenetics by Dr Mark Hill.) http://www.youtube.com/watch?v=eYrQ0EhVCYA&NR=1 64 Epigenetic Phenomena - DNA methylation Addition or removal of a methyl group (CH3), predominantly where cytosine is followed by a guanine (CpGs). - Post-translational modifications on N-terminal tails of histones, phosphorylation, sumoylation, ubiquitination, acetylation, and methylation These modifications alter chromatin structure to influence gene expression. In general, tightly folded chromatin (heterochromatin) tends to be shut down, or not expressed, while more open Chromatin (euchromatin) is functional, or expressed. - Other mechanims Gene expression maybe modified by miRNA, transposons, etc Epigenetic modifications Me Me Chromatin Packaging Alterations DNA Methylation Me Histone Modifications DNA Packaging around Nucleosomes Ac Me Me Me Me Me Me Me Me Ac Ac Ac Me Me Me Me 65 Relationship between DNA methylation and chromatin structure The carbon atom at the 5' position of cytosines within a CpG site can be methylated by DNA methyltransferases (DNMTs). Methylated CpGs are recognized and bound by specific proteins including histone deacetylases (HDACs). Histone deacetylation alters the nucleosomal structure and decreases the chromatin transcriptional activity. Subsequent methylation of histone tails by histone methyltransferases (HMTs) enhance the formation of transcriptionally incompetent heterochromatin. Lodygin D et al. Cell Research (2005) 15, 237–246. Periods of life in which DNA methylation processes take place - Erasure of methylation imprints is almost exclusively of two stages: • primordial germ cells • blastocyst development - Maternal care, ageing, dietary compounds, toxins, inflammation, regulate DNA methylation. - Transgenerational Transmission 66 Many genes related to Nutrition are regulated by DNA methylation Individuality and epigenetics in obesity. Campion J, Milagro FI and Martinez JA. Obesity Rev 2009; 10:383-92 TNF-a promoter methylation is tissue specific Sullivan KE et al. Epigenetic regulation of tumor necrosis factor alpha. Mol Cell Biol 2007, 27: 5147-5160. 67 HYPOTHESIS May high energy or high-fat diets affect gene promoter methylation, affecting thus obese “phenotype”? The methylation pattern of leptin promoter is modified by high fat dietinduced obesity in rats. Milagro FI, Campión J, García-Díaz DF, Goyenechea E, Paternain L, Martínez JA. J Physiol Biochem 2009; 65: 1-8. BACKGROUND In Vivo Methylation Patterns of the Leptin Promoter in Human and Mouse Stöger R. Epigenetics 1:4, 155-162, 2006 68 MATERIAL AND METHODS 77 days Control n=5 Cafetería x2 n=6 Proporcion en nutrientes de las dietas oooo 80 70 Proporcion (%) 60 50 Control 40 Cafeteria 30 20 10 0 Proteínas Proteins Lípidos (%) Lipids Hidratos de carbono (%) Carbohydrates J Physiol Biochem 2009; 65: 1-8 EXPERIMENTAL DESIGN Retroperitoneal adipose tissue Caf C Adipocyte Isolation (colagenase digestion) gDNA Extraction Sodium Bisulfite treatment (converts cytosine to uracyl) U Methylation-amplification PCR Sequencing 69 RESULTS B 250 200 150 100 50 0 Control Diet 400 300 200 100 0 High fat Diet D Leptin (ng/ml) HOMA 4 2 Control Diet High fat Diet G 20 15 10 5 ** 2.5 5.0 2.5 High fat Diet Control Diet High fat Diet High fat Diet * 2.0 1.5 1.0 0.5 0.0 Control Diet Control Diet F 7.5 0.0 ** 25 0 High fat Diet 10.0 6 0 Control Diet E ** C ** 500 Retroperitoneal White adipose tissue (g) ** 300 Leptin mRNA expression (Retroperitoneal WAT) Food Intake (Kcal/day) 350 Final Body Weight (g) A Control Diet High fat Diet Total Methylation (%) 60 50 40 30 20 10 0 RESULTS Transcription 0 Leptin gene CpGs 0 +2000 +8000 -536 -664 -613 -597 -549 -529 -498 -477 +10000 -443 -447 -419 -398 -395 % -443 CpG Methylation -‐2000 0.50 0.25 0.00 CpGs -‐700 -‐600 -‐500 * 0.75 Control Diet High fat Diet -‐400 Methylated Unmethylated % Methylation 70 DIET MODIFIES DNA METHYLATION A HighFat Diet Control Diet r=-0.899 p=0.015 10.0 7.5 5.0 r=-0.400 p=0.505 2.5 0.0 0 25 50 75 B Final Body Weight (g) Leptin (ng/ml) 12.5 100 600 HighFat Diet Control Diet r=-0.841 p=0.036 500 400 300 r=-0.400 p=0.505 0 25 50 75 100 Total Methylation (%) -443 CpG Methylation (%) Association between circulating leptin and methylation of the -443 CpG (A), and between the total methylation of the distal island and rat final body weights (B). High-fat diet-induced obesity in rodents is able to enhance the methylation pattern of the leptin promoter in adipocytes. Those subjects more methylated in the HF diet, showed lower leptin levels and lower body weight. J Physiol Biochem 2009; 65: 1-8 Nutriepigenomics Wonders: 1- How the dietary-induced epigenetic marks could be inherited and influence the obesity susceptibility and metabolic alterations of the offspring ?. 2- How the diet could influence the epigenetic pattern (DNA methylation) of gene promoters and epigenetics could be concerned with obesity ?. 3- How the epigenetic marks related with inflammation could be used as biomarkers of disease risk or weight loss/weight gain susceptibility ?. 71 Is inflammation-related epigenetic status a good marker of weight loss? Does epigenetically-mediated inflammatory regulation participate in body weight control? Could the epigenetic control of inflammation-related gene promoters be implicated in the susceptibility to lose body weight by a hypocaloric diet? Campión J, Milagro FI and Martinez JA. TNF-alpha promoter methylation as a predictive biomarker for weight-loss response. Obesity 2009; 17: 1293-7. Epigenetic biomarkers in weight loss hypocaloric diet/exercise Microarray and validation PBMCs White cells 72 Epigenetic biomarkers in weight loss Epigenetic biomarkers and weight loss Epigenomic and transcriptomic responses of 14 overweight and obese postmenopausal women to a caloric restriction intervention. Bouchard L et al. Am J Clin Nutr. 2010; 91: 309-20 Epigenetic biomarkers and weight loss Bouchard L et al. Am J Clin Nutr. 2010; 91: 309-20 Epigenetic biomarkers in weight loss ( Bouchard et al.) Subcutaneous adipose tissue 73 TNF-a promoter methylation is tissue specific Sullivan KE et al. Epigenetic regulation of tumor necrosis factor alpha. Mol Cell Biol 2007, 27: 5147-5160. EXPERIMENTAL DESIGN 24 obese subjects (BMI: 30.5 ± 1.5 kg/m2) 12 men 12 female Serum: TNF-a Blood, PBMC: DNA 8-week hypocaloric diet Weigh loss ≥ 5% of initial body Responders Non-responders Serum: TNF-a 74 TNF-α gene % Methylation Campion et al Obesity 2009 RESULTS Weight Loss Baseline TNF-α Final TNF-α Subjects less methylated lose more weight Subjects with more baseline TNF have the promoter more methylated Subjects with the promoter more methylated decrease less the TNF levels Campion et al Obesity 2009 75 Epigene7c biomarkers in weight loss Before 8 weeks of hypocaloric diet Aner Illumina Microarray Milagro FI et al. FASEB J (2011) Methylation changes induced by an energy restricted diet Microarray Changes by the diet 625 CpG hypermrth Before vs. After diet (20 % variation p < 0.05) 945 CpG hypometh (% metilación) 0,9 *** *** 0,8 *** *** 0,7 Inicial Final 0,6 0,5 *** 0,4 0,3 0,2 0,1 0 APOA5 APOA5 PTEN PTEN GNAS GNAS H19 H19 IL26 IL26 Milagro FI et al. FASEB J (2011). 76 Methylation patterns after an energy-restriction intervention A B * C * D * * Epigene7c biomarkers in weight loss Body Weight Body Mass Index (BMI) Fat Mass Waist Girth Systolic Blood Pressure Diastolic Blood Pressure Total Cholesterol HDL-Cholesterol LDL-Cholesterol Triglycerides Glucose Insulin HOMA Leptin Adiponectin Ghrelin PAI-1 IL-6 TNFPlasma Malondialdehyde Units Kg Kg/m2 kg cm mm Hg mm Hg mg/dL mg/dL mg/dL mg/dL mg/dL µU/mL ng/mL µg/mL pg/mL ng/mL pg/mL pg/mL µM High responders (n=6) Mean SEM 96.7 ± 2.7 31.0 ± 0.7 26.7 ± 1.3 102 ± 3 127 ± 5 67 ± 3 196 ± 21 47 ± 3 127 ± 19 108 ± 17 92 ± 5 17.9 ± 5.6 4.1 ± 1.4 13.2 ± 2.9 8.6 ± 1.6 982 ± 120 172 ± 16 1.3 ± 0.1 0.9 ± 0.2 2.1 ± 0.4 Baseline Low responders (n=6) Mean SEM 93.8 ± 4.2 30.2 ± 0.6 26.6 ± 2.0 100 ± 2 131 ± 2 77 ± 6 237 ± 22 46 ± 2 168 ± 17 117 ± 20 95 ± 3 11.2 ± 1.8 2.6 ± 0.4 13.8 ± 2.1 7.5 ± 0.7 941 ± 55 139 ± 19 3.1 ± 1.0 1.5 ± 0.3 2.1 ± 0.3 p n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. Milagro FI et al. FASEB J (2011). 77 Epigene7c biomarkers in weight loss Milagro FI et al. ( FASEB J , 2011) 602 CpG hypermethylation Low vs. High responders before diet (>20 % variation, p < 0.05) 432 CpG hypomethylation (% methylation) 1 *** *** 0,9 0,8 Respuesta *** 0,7 No r espuesta *** 0,6 *** 0,5 0,4 0,3 0,2 0,1 0 IL10 IL10 AR AR GNAS GNAS SIRT1 CASP8 SIRT1 CASP8 Milagro FI et al. FASEB J (2011). Methylation levels of CpG sites by two different approaches Table 3. DNA methylation levels of different CpG sites from several obesogenic genes by Illumina microarray and Sequenom Epityper analysis. Results are compared upon the effects of the diet (before vs. after) and upon the techniques (microarray vs. epityper). Symbol AQP9 AQP9 ATP10A ATP10A CD44 CD44 IFNG MEG3 NTF3 POR TNFRSF9 WT1 WT1 ID site cg11098259 CpG 1 cg11577097 CpG 7 cg11015241 CpG 3-4 cg17260954 CpG 10 cg18652941 CpG 2-3 cg04125208 CpG 26 cg26227465 CpG 1 cg05711886 CpG 2 cg04740359 CpG 6 cg20748065 CpG 8 cg08840010 CpG 3 cg04096767 CpG 9-10 cg12006284 CpG 21 Microarray Mean ± SEM 45.4% 28.9% 78.1% 73.5% 8.5% 11.3% 69.0% 47.0% 53.4% 51.4% 53.8% 32.0% 23.4% ± ± ± ± ± ± ± ± ± ± ± ± ± 6.3% 3.0% 8.1% 6.0% 4.4% 6.2% 2.6% 6.6% 8.2% 6.3% 5.3% 6.6% 4.1% Epityper Mean ± SEM 48.4% 59.5% 73.6% 27.2% 0.7% 8.1% 0.8% 47.0% 62.6% 55.2% 4.5% 38.0% 21.7% ± ± ± ± ± ± ± ± ± ± ± ± ± 2.9% 6.1% 4.6% 0.6% 0.2% 2.3% 0.2% 0.3% 6.6% 2.2% 0.7% 1.9% 1.8% Microarray Epityper Mean ± SEM 26.1% 37.6% 89.9% 76.2% 5.6% 6.2% 73.6% 46.7% 72.1% 33.5% 36.1% 30.6% 24.2% ± ± ± ± ± ± ± ± ± ± ± ± ± 3.1% 2.3% 1.6% 3.2% 0.9% 0.6% 2.7% 5.2% 1.8% 2.7% 2.2% 2.4% 2.4% Spearman Mean ± SEM $ $ $ $ $ 32.7% 60.1% 80.3% 26.7% 0.4% 9.1% 1.0% 45.2% 73.6% 51.4% 8.0% 38.7% 27.1% ± ± ± ± ± ± ± ± ± ± ± ± ± 4.3% 6.0% 4.4% 0.7% 0.2% 2.3% 0.4% 1.0% 6.7% 3.3% 2.3% 2.6% 2.3% 2-After Epityper Microarray vs Epityper 3-before +after Illumina After intervention (n=10) 1-before Basal (n=12) * * # * * * * * # * * * * $ p<0.05 for comparisons between dietary groups (before vs. after) by paired t-test, results from microarray # p<0.05 for comparisons between dietary groups (before vs. after) by paired t-test, results from epityper * p<0.05 for comparisons between techniques (Microarray vs. Epityper) by Spearman correlation test (1) before intervention, (2) after intervention, or (3) both before and after internvention together. Milagro FI et al. FASEB J (2011). 78 2-3 4-28 5 6-7 8 9-10 11-12 13 14 15 16 17 18 19-20-21 22 23 24-25 26 27 4-28 29 30 31 CD44 High Responders 3 2 0 10 0 43 2 19 14 3 23 32 3 8 0 2 0 8 15 18 3 Low Responders 1 2 0 9 0 14 2 16 6 0 16 24 2 7 0 2 0 11 7 10 6 * * Before diet (% methylation) CpG 9-10 r2(p) CpG 14 r2(p) CpG 30 r2(p) Fat mass change (%) 0.255 (p=0.001) 0.297 (p=0.006) 0.194 (p=0.027) BMI change 0.364 (p=0.001) 0.304 (p=0.005) 0.299 (p=0.005) Final leptin (ng/ml) 0.142 (p=0.069) 0.179 (p=0.044) 0.050 (p=0.107) Waist girth change (cm) 0.246 (p=0.01) 0.181 (p=0.038) 0.120 (p=0.090) p = 0.001 1-2 3-4 5-10-16 6 p = 0.003 p = 0.005 9-19 5-10-16 14 15 5-10-16 18 19 ATP10A High Responders 100 66 25 16 32 19 90 15 Low Responders 100 72 28 15 31 22 94 24 Before diet (% methylation) * * CpG 5-10-16 r2(p) CpG 18 r2(p) Fat mass change (%) 0.040 (p=0.353) 0.078 (p=0.147) 0.375 (p=0.001) BMI change 0.016 (p=0.540) 0.172 (p=0.038) 0.434 (p<0.001) Final leptin (ng/ml) 0.336 (p=0.003) 0.010 (p=0.635) 0.377 (p=0.001) Waist girth change (cm) 0.119 (p=0.087) 0.036 (p=0.363) 0.382 (p=0.001) CpG 3-4 r2(p) p < 0.001 p = 0.001 79 Epigene7c biomarkers in weight loss (n=27) Subcutaneous Adipose Tissue (SAT) Low vs. High responders before diet Blood 8 weeks of Low Calorie Diet SAT Blood (n=6) (n=21) Cordero P et al. J Physiol Biochem 2011 Epigene7c biomarkers in weight loss LEPTIN TNFα BASELINE methylation % Ladder 70 T 60 50 unmet unmet met sample 1 MSP 40 met sample 2 * Respuesta 30 Responders No r espuesta 20 No Responders 10 0 LEPTIN Leptina TNFa TNF-‐alfa Cordero P et al. J Physiol Biochem 2011 80 PROGRAMACIÓN PERINATAL Y ENF. CRÓNICAS NUTRITION, PERINATAL PROGRAMING AND DISEASE Genetics Genomics Epigenetics PERSONALIZED NUTRITION Rather than there being an ‘optimal’ human diet, there are a range of adequate diets which depend upon individual biological and cultural variation. EPIGENETIC MARKS PHYSICAL ACTIVITY ALLERGIES AND INTOLERANCES GENETIC BACKGROUND Personalized diet FAMILY HISTORY LIKES AND DISLIKES CULTURE PREVIOUS DISEASES 81 San Sebastián/Donostia 2009 Nutrition and Health But genetics/epigenetcs is only the tip of the iceberg 82 Personalized Medicine and Nutrition Based on: - The sequencing of the human genome, - subsequent analyses of human genetic variation, - studies that associate gene variants with disease markers - Impact of nutrition/nutrients on gene expression Genetic make up can determine unique nutritional requirements and responses to different foods. Relationship between DNA methylation and chromatin structure The carbon atom at the 5' position of cytosines within a CpG site can be methylated by DNA methyltransferases (DNMTs). Methylated CpGs are recognized and bound by specific proteins including histone deacetylases (HDACs). Histone deacetylation alters the nucleosomal structure and decreases the chromatin transcriptional activity. Subsequent methylation of histone tails by histone methyltransferases (HMTs) enhance the formation of transcriptionally incompetent heterochromatin. Lodygin D et al. Cell Research (2005) 15, 237–246. 83 84