slides
Transcription
slides
Holographic Entanglement Entropy For ๐๐ด๐๐3 Wei Song YMSC, Tsinghua University with Qiang Wen and Jianfei Xu Strings 2016, Tsinghua University 1 Bekenstein Bardeen-Carter-Hawking Strominger-Vafa Maldacena Introduction ๐๐ต๐ป ๐ด = 4๐บ AdS/CFT ๐๐๐ป Holographic Dualities Strings 2016, Tsinghua University 2 Guica-Hartman-WS-Strominger Bredberg-Hartman-WS-Strominger Castro-Maloney-Strominger Introduction ๐๐ต๐ป ๐ด = 4๐บ AdS/CFT ๐๐๐ป Holographic Dualities ASG Kerr/CFT Holography for astrophysical black holes, e.g., GRS 1905+105 Strings 2016, Tsinghua University 3 Introduction Anninos-Li-Padi-WS-Strominger Compere-Guica-Rodriguez ๐ด = 4๐บ AdS/CFT ๐๐ต๐ป ๐๐๐ป Holographic Dualities SL(2,R)xU(1) Kerr/CFT ASG WAdS/CFT Detournay-Compere Hofman-Strominger Deournay-Hartman-Hofman Compere-WS-Strominger WAdS/WCFT CFT: Virasoro-Virasoro WCFT: Virasoro-Kac-Moody Strings 2016, Tsinghua University 4 Ryu-Takayanagi Casini-Huerta-Myers Lewkowycz-Maldacena Motivation ๐๐ต๐ป ๐ด = 4๐บ AdS/CFT ๐๐๐ป Holographic Dualities ๐๐ ๐ ๐ด๐๐๐ = 4๐บ Kerr/CFT WAdS/CFT ๐๐ธ๐ธ WAdS/WCFT Strings 2016, Tsinghua University 5 Motivation ๐๐ต๐ป WS-Wen-Xu ๐ด = 4๐บ AdS/CFT ๐๐๐ป Holographic Dualities ? Kerr/CFT WAdS/CFT ๐๐ธ๐ธ WAdS/WCFT Strings 2016, Tsinghua University 6 Outline โข Review of WAdS3 โข EE in WAdS/CFT โข EE in WAdS/WCFT Strings 2016, Tsinghua University 7 WAdS3 holography 2 ๐๐ ๐๐ด๐๐ 3 = SL(2,R) ๐ฟ × U(1) ๐ 2 ๐๐ ฦธAdS 3 + SL(2,R) ๐ฟ x SL(2,R) ๐ ๐2 ๐ด2 ๐ด: ๐๐ฟ 2, ๐ ๐ฟ Invariant 1-form SL(2,R) ๐ โ ๐(1) ๐ WAdS3 /CFT: Vir ๐ฟ -Vir ๐ Evidence: ๐๐ต๐ป = ๐๐ถ๐๐๐๐ฆ EE: WSโWenโXu ? = 3๐ log(๐๐) Compere-Guica-Rodriguez AnninosโLiโPadiโWSโStrominger CalabriezeโCardy WAdS3 /WCFT: Vir ๐ฟ - Kac-Moody ๐ฟ Evidence: ๐๐ต๐ป = ๐๐ท๐ป๐ป EE: WSโWenโXu ? = ๐๐ถ๐ป๐ผ CastroโHofmanโIqbal AdS3 /WCFT Compere-WS-Strominger Detournay-Compere Deournay-Hartman-Hofman Strings 2016, Tsinghua University Entanglement entropy in WAdS/CFT โข Assumptions: WAdS/CFT โข Method: Lewkowycz-Maldacena adapted โข Results: The bulk calculation agrees with the CFT expectation Strings 2016, Tsinghua University 9 The generalized gravitational entropy Lewkowycz-Maldacena AdS/CFT, Einstein โข Replica trick extended to the bulk generalized gravitational entropy โข Selecting a special curve Extremal! โข Calculate the generalized gravitational entropy presymplectic structure = ๐๐ ๐ Strings 2016, Tsinghua University 10 Main assumption: holographic duality exist Role of consistent asymptotic boundary conditions โข set up a dictionary bulk metric AdS, Einstein boundary metric โข Replica trick extended to the bulk โข Selecting a special curve boundary terms only cancels out when the two metrics satisfy the same asymptotic b.c. At n=1, the near cone expansion has to be compatible with the asymptotic expansion โข Calculate the generalized gravitational entropy Ambiguity in the presymplectic structure Strings 2016, Tsinghua University 11 The generalized gravitational entropy in WAdS/CFT โข Consistent boundary conditions WS-Wen-Xu Compere-Guica-Rodriguiz boundary metric โข Selecting a special curve NOT geodesic in WAdS, But geodesic in AdS Compatibility ๐ฟเทจ = = ๐๐,๐ โ ๐๐ ๐ 4๐บ Strings 2016, Tsinghua University 12 Main Modifications to Lewkowycz-Maldacena for WAdS/CFT โข the expansion near the special surface has to be compatible with the asymptotic expansion; โข periodic conditions are imposed to coordinates in the phase space with diagonalized symplectic structure, not to all fields appearing in the action; โข evaluating the entanglement functional using the boundary term method amounts to evaluating the presymplectic structure at the special surface, where some additional exact form may contribute. Strings 2016, Tsinghua University 13 Entanglement entropy in WAdS/WCFT โข Assumptions: WAdS/WCFT, AdS/WCFT โข Method: Casini-Huerta-Myers approach adapted โข Results: The bulk calculation agrees with the WCFT calculation given by Castro-Hofman-Iqbal Strings 2016, Tsinghua University 14 CFT zโ ๐ ๐ง , ๐งาง โ ๐(๐ง)าง WCFT ๐ฅโ๐ ๐ฅ , ๐ก โ ๐ก + ๐(๐ฅ) Detournay-Compere Hofman-Strominger Deournay-Hartman-Hofman By carefully analyzing the moduli properties and keeping track of the anomalis, a Cardy-like formula was derived moduli transformation Strings 2016, Tsinghua University 15 EE on WCFT Casini-Huerta-Myers Castro-Hofman-Iqbal โข EE on an interval warped conformal mapping โข EE on = Thermal entropy on Strings 2016, Tsinghua University 16 WS-Wen-Xu A bulk calculation โข WAdS with coordinates (U,V, ฯ) โข Bulk coordinate transformation preserves two explicit U(1) isometries SL(2,R)x U(1) quotient โข Black string with coordinates (u,v, r) and thermal entopy: Strings 2016, Tsinghua University 17 Strings 2016, Aug.1-Aug.5, Tsinghua University 18 Summary of our results โข Assuming WAdS/CFT, we take the LM approach, and derive a holographic calculation for the entanglement entropy. The bulk result agrees with the CFT results. โข Assuming WAdS/WCFT, we take the CHM approach, and derive a holographic calculation for entanglement entropy. The bulk result agrees with the WCFT results. Strings 2016, Tsinghua University 19 Thank you! Strings 2016, Tsinghua University 20