Kohn-Sham density functional theory for strong-interacting
Transcription
Kohn-Sham density functional theory for strong-interacting
Kohn-Sham density functional theory for strong-interacting systems Paola Gori-Giorgi Theoretical Chemistry, Vrije Universiteit Amsterdam (NL) Francesc Malet André Mirtschink Outline • The exact strong-interacting limit (SCE) of DFT as an approximation for the exchangecorrelation energy • Self-consistent KS SCE results for model quantum wires and quantum dots • Generalization to open systems with fluctuating particle number • • Chemistry Monge-Kantorovich formulation of the SCE functional Kohn-Sham DFT and strong correlation Example: two electrons (singlet) in 1D harmonic confinement L: effective length weak correlation (small L) .e .e Strong correlation (large L) .e - - - .e - Kohn-Sham DFT and strong correlation Kohn-Sham potential: “Bump” in the exact KS potential: localization - Buijse, Baerends & Snijders Phys. Rev. A 40, 4190 (1989) - Helbig, Tokatly & Rubio, J. Chem. Phys. 131, 224105 (2009) The “bump” is missing in the KS LDA potential: delocalized density Stretched bond, e.g. H2 molecule LDA exact - Buijse, Baerends & Snijders Phys. Rev. A 40, 4190 (1989) - Helbig, Tokatly & Rubio, J. Chem. Phys. 131, 224105 (2009) Stretched bond, e.g. H2 molecule LDA exact exact KS potential localizes more: “bump” in the midpoint - Buijse, Baerends & Snijders Phys. Rev. A 40, 4190 (1989) - Helbig, Tokatly & Rubio, J. Chem. Phys. 131, 224105 (2009) Unrestricted KS & strong correlation... • Like UHF, UKS can mimic strong correlation (not always!) • Often better energies, but wrong characterizations of several properties • • Formally not well founded • Crucial for: transition metals, Mott insulators, bond breaking, nanostructures,... Huge literature: controversial, wrong interpretation, etc... Exchange-correlation from the strong-interaction limit of DFT: The “bumps” in the KS potential from the right physics (no spin/spatial-symmetry breaking) Hohenberg-Kohn functional Kohn-Sham DFT: Hohenberg-Kohn functional Kohn-Sham DFT: Ts [ρ] (known) (known) (unknown) Hohenberg-Kohn functional Kohn-Sham DFT: Kohn-Sham equations: Hohenberg-Kohn functional Kohn-Sham DFT: Our approach: Hohenberg-Kohn functional Kohn-Sham DFT: Our approach: Ts [ρ] Strictly-correlated-electrons (SCE) DFT: - M. Seidl, PRA 60, 4387 (1999) - M. Seidl, P. Gori-Giorgi and A. Savin, PRA 75, 042511 (2007) - P.Gori-Giorgi, G.Vignale and M. Seidl, JCTC 5, 743 (2009) - P. Gori-Giorgi, M. Seidl, and G. Vignale, PRL 103, 166402 (2009). Vee [ρ] SCE e-e interaction energy of system with zero kinetic energy and density ρ (SCE reference system) Hohenberg-Kohn functional Kohn-Sham DFT: Our approach: Vee [ρ] SCE Strictly-interacting-electrons (SCE) DFT .r 'e≡ f (r) - 2 2 The SCE reference system: . er ! For a given smooth density ρ(r): - .re' ≡ f (r) .r 'e≡ f (r) .e (1) - 3 3 - - 5 r4' ≡ f4(r) KS-SCE approach: 5 ! A local one-body potential can be defined: (2) 1-Integrate (1) to obtain the co-motion functions fi (r) 2-Integrate (2) to obtain the potential vSCE(r) 3-Approximate the Hxc potential of KS DFT with vSCE(r) SCE Vee [ ]= ⇥ (r) dr N SCE Vee [⇢] = vSCE (r) ⇢(r) N N i=1 j=i+1 1 |fi (r) fj (r)| SCE Vee [ SCE Vee [⇢] ⇢(r) ]= ⇥ (r) dr N N N 1 i=1 j=i+1 |fi (r) fj (r)| N = vSCE (r) vSCE (r) = i=2 r |r fi (r) fi (r)|3 shortcut to the functional derivative F. Malet. et al., PRB 87 115146 (2013) The self-consistent KS SCE total energy is a rigorous lower bound to the exact energy The self-consistent KS SCE total energy is a rigorous lower bound to the exact energy The proof is trivial (minimum of a sum is always larger than the sum of the minima; self-consistency lowers the energy) First tests: quasi 1D systems ~ b = 2m !? 1 2 V? (y, z) = m !? (y 2 + z 2 ) 2 N H1D = wb (x) = N 2 N XX ~2 X @ 2 + wb (|xi 2 2m i=1 @xi i=1 j>i p e2⇤ x2 /4b2 ⇡ e 2 b erfc ⇣x⌘ 2b xj |) + N X vext (xi ) i=1 10 wb(x), b=0.1 wb(x), b=0.2 1/x 8 6 4 2 0 0 0.5 Bednarek et al. PRB 68, 045328 (2003) LDA: Casula, Sorella & Senatore PRB 74, 245427 (2006) 1 1.5 x 2 2.5 Electrons confined in (quasi)1D Co-motion functions: 0 vSCE [⇢](x) = N X wb0 (|x fi (x)|)sgn(x i=2 Seidl, Phys. Rev. A 60, 4387 (1999) Buttazzo, De Pascale, & Gori-Giorgi, Phys. Rev. A 85, 062502 (2012) Malet & Gori-Giorgi, Phys. Rev. Lett., 109, 246402 (2012) fi (x)) Applications to 1D systems 1D harmonic confinement: • L: effective length Qualitatively good resuls in both the weak and strong correlation regimes F. Malet and P. Gori-Giorgi, PRL 109 246402 (2012); F. Malet. et al., PRB 87 115146 (2013) Applications to 1D systems 1D harmonic confinement: • Qualitatively good resuls in both the weak and strong correlation regimes • Tends to the exact result in the very strongly-interacting limit L: effective length F. Malet and P. Gori-Giorgi, PRL 109 246402 (2012); F. Malet. et al., PRB 87 115146 (2013) Applications to 1D systems 1D harmonic confinement: L: effective length F. Malet and P. Gori-Giorgi, PRL 109 246402 (2012); F. Malet. et al., PRB 87 115146 (2013) Applications to 1D systems 1D harmonic confinement: L: effective length F. Malet and P. Gori-Giorgi, PRL 109 246402 (2012); F. Malet. et al., PRB 87 115146 (2013) KS SCE is the first KS DFT approach able to capture the density peak splitting in quasi 1D without introducing magnetic order Previous attempts include self-interaction corrections (SIC) and GGA: S. H. Abedinpour, M. Polini, G. Xianlong, and M. P. Tosi, Eur. Phys. J. B 56, 127 (2007) D. Vieira and K. Capelle, J. Chem. Theory Comput. 6, 3319 (2010) D. Vieira, Phys. Rev. B 86, 075132 (2012) Total Energies F. Malet and P. Gori-Giorgi, PRL 109 246402 (2012); F. Malet. et al., PRB 87 115146 (2013) Total Energies F. Malet and P. Gori-Giorgi, PRL 109 246402 (2012); F. Malet. et al., PRB 87 115146 (2013) Total Energies CI matrix 105 - 106 F. Malet and P. Gori-Giorgi, PRL 109 246402 (2012); F. Malet. et al., PRB 87 115146 (2013) Total Energies CI matrix 105 - 106 KS SCE is a rigorous lower bound to the exact ground-state energy F. Malet and P. Gori-Giorgi, PRL 109 246402 (2012); F. Malet. et al., PRB 87 115146 (2013) Ionization potentials from minus HOMO F. Malet and P. Gori-Giorgi, PRL 109 246402 (2012); F. Malet. et al., PRB 87 115146 (2013) Generalization to open systems: The Derivative Discontinuity at integer particle numbers What exact spin-restricted KS should do N+electron& open&shell& N& N+η& exact&EN+1& &EN&& Δxc=I& &A&& exact&EN& &EN+1&& N+electron& closed&shell& N& N+η& exact&EN+1& &EN&& Δxc& exact&EN& &EN+1&& What exact spin-restricted KS should do N+electron& open&shell& N& N+η& What approximate functionlals do (UKS) exact&EN+1& &EN&& Δxc=I& &A&& exact&EN& &EN+1&& N+electron& closed&shell& N& N+η& exact&EN+1& &EN&& Δxc& exact&EN& &EN+1&& Vydrov, Scuseria & Perdew, JCP 126, 154109 (2007) SCE for fractional particle numbers total%%M=5%electrons% Q=2.5% Q=2.5% Z fi+1 (x) ⇢(y)dy = 1 fi (x) example: N=2.5 Z fi+1 (x) ⇢(y)dy = 1 fi (x) co-motion functions for N + ⌘ electrons get the SCE potential by integrating 0 vSCE [⇢](x) = N X wb0 (|x fi (x)|)sgn(x i=2 with boundary condition vSCE [⇢](x ! 1) = 0 fi (x)) Self-consistent KS HOMO eigenvalue quasi 1D N A. Mirtschink, M. Seidl, and P. Gori-Giorgi, arXiv:1305.3982, accepted in PRL Self-consistent KS HOMO eigenvalue quasi 1D 3D (Hooke’s atom) 0.0007 exact" 0.0006 0.0005 ω=10*5" 0.0004 KS"SCE" 0.0003 0.0002 0.0001 0.0000 N 0.5 0.5" 1.0 1.0" Q" N 1.5 1.5" 2.0 2.0" A. Mirtschink, M. Seidl, and P. Gori-Giorgi, arXiv:1305.3982, accepted in PRL Applications to 1D systems 1D harmonic confinement: L: effective length • KS-SCE allows to treat large strongly-correlated quasi 1D systems (vs CI, limited to 6-8 particles, QMC and DMRG ~ 100 electrons). • Computational time similar to KS LDA calculations • Applications in Physics (model semiconductor quantum wires); nanotransport, quantum computation, ... F. Malet and P. Gori-Giorgi, PRL 109 246402 (2012); F. Malet. et al., PRB 87 115146 (2013) Electrons confined in two dimensions N Ĥ = i=1 N N 2 ⇤2i 1 + + 2 |r rj | 2 i=1 j=i+1 i N ri2 i=1 Self-consistent KS SCE density N = 6 ! = 0.005 C. B. Mendl (Munich Technical University) F. Malet What about Chemistry? 1D as a test lab for 3D chemistry 1 ws (x) = p x2 + a2 Applications to 1D systems 1D model for H2 : RH-H Total energies HF) KS)LDA) CI) 0th$order)KS$SCE)+)ZPE) 0th$order)KS$SCE) Negative ions (3D) N =2 vext (r) = Z r r2 Z ! Zcrit ⇡ 0.9110289 Monotonicity of density vs. Z from John Morgan’s program 0.14 Z=.9110289 Z=.92 0.12 Z=.93 Z=.94 0.1 Z=.95 Z=1 0.08 Z=2 0.06 0.04 0.02 0 0 2 4 6 r (a0) 8 10 the system looses 1 electron accurate results (C. Umrigar & J. Morgan) Negative ions (3D) N =2 vext (r) = Z r Z ! Zcrit ⇡ 0.9110289 KS SCE self-consistent: the system looses 1 electron Zcrit ⇡ 0.73 A. Mirtschink Negative ions (3D) N =2 vext (r) = Z r Z ! Zcrit ⇡ 0.9110289 KS SCE +local correction (self-consistent): the system looses 1 electron Zcrit ⇡ 0.94 A. Mirtschink How to treat general 3D systems? Monge-Kantorovich formulation Buttazzo, De Pascale, and Gori-Giorgi, Phys. Rev. A. 85, 062502 (2012) Cotar, Friesecke, and Kluppelberg, Comm. Pure Appl. Math. 66, 548 (2013) see also talk by Gero Friesecke! Optimal transport formulation (Monge-Kantorovich) 1 (r)dr 1 (r) = 2 (r)dr 2 (r) cost function (work necessary to move a unit mass) c(r1 , r2 ) = |r2 r1 | Optimal transport formulation (Monge-Kantorovich) 1 (r)dr 1 (r) = 2 (r)dr 2 (r) cost function (work necessary to move a unit mass) c(r1 , r2 ) = |r2 r1 | minimize total cost ) min f Z optimal map c(r, f (r))⇢1 (r)dr min P (Z c(x1 , ..., xN )P (dx1 , ...dxN ) : c(x1 , ..., xN ) = N X1 N X i=1 j=i+1 ⇡j# P 1 |xi xj | ⇢ for j = 1, ..., N = N ) min P (Z c(x1 , ..., xN )P (dx1 , ...dxN ) : c(x1 , ..., xN ) = N X1 N X i=1 j=i+1 1 x ⇡j# P ⇢ for j = 1, ..., N = N 1 |xi xj | x2 x here: the further, the better! ) Things you can prove from Optimal Transport Existence of P (r1 , r2 , . . . , rN ) (= | SCE (r1 , r2 , . . . rN )| 2 ) vSCE (r) exists and it is bounded (Kantorovich potential) Not possible (so far) to prove general existence of f i (r) Dual Kantorovich problem Buttazzo, De Pascale, and Gori-Giorgi, Phys. Rev. A. 85, 062502 (2012) Dual Kantorovich problem VSCE [⇢] = min h |V̂ee | i !⇢ VSCE [⇢] = max u 8 <Z : ⇢(r)u(r)dr : N X i=1 u(ri ) N X N X i=1 j=i+1 vSCE (r) = u(r) + C Kantorovich potential Buttazzo, De Pascale, and Gori-Giorgi, Phys. Rev. A. 85, 062502 (2012) 1 |ri 9 = rj | ; Kantorovich formulation: key to treat the 3D case? Conclusions and outlook ! Strongly-interacting limit of DFT: approximations for the xc functional able to describe strong correlation within the restricted KS scheme (no artificial symmetry breaking) ! One can treat strongly-correlated quasi 1D systems with large electron numbers Perspectives: " Improve the algorithms for 2D and 3D systems " Corrections to the KS SCE functional: " Inclusion of spin states " Approximate SCE forms for new non-local functionals " Nanotransport Acknowledgments Francesc Malet (VU Amsterdam) André Mirtschink (VU Amsterdam Klaas Giesbertz (VU Amsterdam) Michael Seidl (University of Regensburg) Giovanni Vignale (University of Missouri) Andreas Savin (CNRS, University Paris VI) Giuseppe Buttazzo (University of Pisa) Luigi de Pascale (University of Pisa) Stephanie Reimann (Lund University) Jonas Cremon (Lund University) Christian Mendl (Technical University Munich) Acknowledgments Francesc Malet (VU Amsterdam) André Mirtschink (VU Amsterdam Klaas Giesbertz (VU Amsterdam) Michael Seidl (University of Regensburg) Giovanni Vignale (University of Missouri) Andreas Savin (CNRS, University Paris VI) Giuseppe Buttazzo (University of Pisa) Luigi de Pascale (University of Pisa) Stephanie Reimann (Lund University) Jonas Cremon (Lund University) Christian Mendl (Technical University Munich) $$$ Acknowledgments Francesc Malet (VU Amsterdam) André Mirtschink (VU Amsterdam Klaas Giesbertz (VU Amsterdam) Michael Seidl (University of Regensburg) Giovanni Vignale (University of Missouri) Andreas Savin (CNRS, University Paris VI) Giuseppe Buttazzo (University of Pisa) Luigi de Pascale (University of Pisa) Stephanie Reimann (Lund University) Jonas Cremon (Lund University) Christian Mendl (Technical University Munich) $$$ Thank you for your attention!