Les dterminants contextuels de la sant et du recours aux soins
Transcription
Les dterminants contextuels de la sant et du recours aux soins
UNIVERSITÉ PARIS VI – PIERRE ET MARIE CURIE ECOLE DOCTORALE : SANTÉ PUBLIQUE ET SCIENCES DE L’INFORMATION BIOMÉDICALE THÈSE pour l’obtention du titre de DOCTEUR DE L’UNIVERSITÉ PARIS VI Présentée par : Basile CHAIX Modélisation des effets du contexte sur la santé et le recours aux soins Thèse soutenue le 01/12/2004 devant le jury composé de : Rapporteurs : M. Marcel GOLDBERG, Professeur M. Denis HEMON, Directeur de Recherche Examinateurs : M. Alain-Jacques VALLERON, Professeur M. Thierry LANG, Professeur Directeur de thèse : 1 M. Pierre CHAUVIN, Chargé de Recherche - HDR Remerciements En premier lieu, je remercie Alain-Jacques Valleron de m’avoir accueilli au sein de l’unité 444 de l’INSERM. Je remercie tout particulièrement Pierre Chauvin d’avoir dirigé mon travail de thèse au cours de ces trois années ; son encadrement scientifique, ses conseils éclairés, sa patience, et son soutien sans faille m’ont été chers au cours de la thèse, et constituent un appui irremplaçable pour l’avenir. Je remercie Juan Merlo de l’Hôpital Universitaire de Malmö en Suède de m’accorder une place dans son programme de recherche ambitieux. Son expertise dans le champ de l’analyse contextuelle m’a été précieuse, et la confiance mutuelle qui s’est forgée au cours d’une année et demi de travail en commun augure d’une collaboration placée sous le signe de la durée. Je remercie enfin vivement M. Goldberg, M. Hémon, et M. Lang d’avoir accepté de faire partie de mon jury de thèse. 2 Résumé de la thèse Depuis près de dix ans, l’épidémiologie sociale s’intéresse à l’impact que les caractéristiques du contexte de résidence peuvent avoir sur la santé des individus, au-delà des effets imputables à leurs caractéristiques socio-économiques personnelles. Dans le cadre de cette thèse, nous avons cherché à avancer dans la connaissance des déterminants contextuels de la santé et du recours aux soins, qui ont reçu nettement moins d’attention en France qu’en Europe du Nord, en Angleterre, ou aux Etats-Unis. Notre objectif principal était de réfléchir sur les outils à mettre en œuvre pour décrire et expliquer les variations spatiales des phénomènes de santé et de recours aux soins, et de développer de nouvelles approches d’analyse permettant de combler les lacunes des méthodes actuellement utilisées dans ce champ de l’épidémiologie sociale. Nous avons dans un premier temps cherché à montrer l’utilité que les modèles multiniveaux peuvent avoir en analyse contextuelle. Se démarquant des pratiques d’analyse suivies par beaucoup d’auteurs, nous avons souligné l’intérêt qu’il y a à quantifier et modéliser les variations inter-zones des phénomènes lorsque l’on cherche à évaluer l’importance du contexte pour la santé et le recours aux soins. L’objectif étant d’aboutir à des indicateurs qui expriment l’amplitude des variations inter-zones, nous nous sommes attachés à comparer les différents indicateurs disponibles dans le cadre du modèle logistique, qui est fréquemment utilisé en épidémiologie sociale. Nous en venons finalement à mettre en doute la pertinence de l’approche d’analyse multiniveau utilisée de façon quasi-hégémonique dans la littérature d’analyse contextuelle. En effet, fragmentant le territoire en une multitude de zones administratives et négligeant les connections spatiales qui existent entre ces zones, l’approche multiniveau ne fournit souvent que des informations incomplètes sur la distribution spatiale des phénomènes de santé. Audelà, mesurant les facteurs explicatifs du contexte de résidence au niveau de zones administratives arbitraires, elle s’avère souvent incapable de capter adéquatement les effets du contexte sur la santé. A partir d’études appliquées conduites à partir de données Françaises et Suédoises, nous avons montré qu’une approche d’analyse qui tient compte de l’espace dans sa continuité intrinsèque permettait mieux de décrire et d’expliquer les variations spatiales des phénomènes de santé et de recours aux soins. 3 Thesis summary Over the past decade, social epidemiologists have investigated the effects that the characteristics of the context of residence have on individual health, beyond the impact associated with the characteristics of the individuals. In our thesis, we aimed to investigate contextual determinants of health and healthcare utilisation, which have received far less attention in France than in Northern Europe, in the United Kingdom, or in the United States. Our main objective was to compare different analytical tools to be used to describe and explain spatial variations of health phenomena and healthcare utilisation, and to develop new approaches to overcome the limitations of the methods currently used in this specific social epidemiological field. We first highlighted the interest of using multilevel models in contextual analysis. Following a different perspective than many authors in the literature, we aimed to emphasize that quantifying and modelling variations of outcomes between areas is useful to assess the importance that the context has for health and healthcare utilisation. We particularly seek to compare the different indexes available in the multilevel logistic model to measure the magnitude of variations between areas. We finally aimed to show that the multilevel analytic approach, used in most of the analyses of contextual effects on health, has several important limitations. Indeed, fragmenting space into arbitrary administrative areas and neglecting spatial connections between areas, the multilevel analytic approach often only provides incomplete information on the spatial distribution of health outcomes. Moreover, measuring the characteristics of the context of residence in arbitrary administrative areas, this approach may often be unable to adequately describe contextual effects on health. Conducting applied investigations based on French and Swedish data, we showed that an analytic approach based on a continuous notion of space allowed us to better describe and explain spatial variations in health or healthcare utilisation. 4 Table des matières Introduction ............................................................................................................................... 6 1) Utilité de l’analyse contextuelle en santé publique ...................................................................... 6 A – La description des variations géographiques des phénomènes de santé ................................................. 7 B – La compréhension des mécanismes à l’origine des disparités géographiques de santé .......................... 7 2) Evaluer l’importance des effets du contexte sur la santé : l’importance de la question méthodologique ................................................................................................................................ 10 A – Les racines historiques de l’analyse multiniveau.................................................................................. 11 B – Différentes approches d’utilisation des modèles multiniveaux............................................................. 12 C – Comparaison de l’approche multiniveau et d’une perspective d’analyse spatiale dans l’étude des effets du contexte .................................................................................................................................................. 13 3) Plan du document ........................................................................................................................ 15 Chapitre I – Utilité de l’approche multiniveau en épidémiologie sociale ............................. 17 1) L’utilisation des modèles multiniveaux dans la littérature d’analyse contextuelle................... 17 2) L’intérêt des mesures de variation comme sources d’information indépendantes sur l’impact du contexte sur la santé.................................................................................................................... 18 Chapitre II – Exemples préliminaires d’analyse contextuelle............................................... 24 1) Analyse des effets du contexte de résidence sur différents comportements relatifs à la santé.. 24 2) Analyse des effets du ménage de résidence sur les modes de recours aux soins....................... 29 Chapitre III – Perspective multiniveau et perspective spatiale en analyse contextuelle ...... 31 1) Description de la distribution spatiale des phénomènes............................................................. 33 2) Mesure des facteurs du contexte dans un espace continu centré sur le lieu de résidence des individus ........................................................................................................................................... 36 Conclusion générale et perspectives ....................................................................................... 40 Perspectives de recherche ................................................................................................................ 41 Liste de publications................................................................................................................ 45 Bibiographie ............................................................................................................................ 49 5 Introduction 1) Utilité de l’analyse contextuelle en santé publique Ainsi que l’ont indiqué différents auteurs, le champ de l’épidémiologie s’est longtemps inscrit dans le paradigme de l’individualisme méthodologique, qui postule que les facteurs influant sur la santé des personnes appartiennent au registre des caractéristiques individuelles. 1, 2 En suivant cette orientation d’analyse, on serait capable d’appréhender l’ensemble des processus agissant sur la santé des individus en tenant compte de leurs caractéristiques démographiques, sociales, psychologiques, anatomiques, biologiques, etc. Dans cette optique, on n’est amené à tenir compte de facteurs collectifs (tels que ceux que l’on mesure au niveau de la zone de résidence des personnes) que lorsque l’information correspondante fait défaut au niveau individuel. On néglige alors complètement la dimension contextuelle des facteurs collectifs considérés, qui ne servent que de substituts à des informations que l’on est incapable d’obtenir au niveau individuel.3 Au contraire, de nombreux travaux issus des sciences sociales ont cherché à mettre en évidence l’influence que le contexte de vie des individus peut avoir sur la santé.2, 4 L’idée s’est ainsi progressivement formée dans le champ de l’épidémiologie sociale que les déterminants sociaux de la santé ont par nature une structure à niveaux (ou multiniveau), appartenant au niveau individuel, mais également au niveau du ménage, du lieu de résidence, ou du lieu de travail ou d’étude.5, 6, 7, 8, 9 En conséquence, il est aujourd’hui largement reconnu qu’une voie importante à suivre en épidémiologie sociale pour avancer dans la connaissance des mécanismes à l’origine des disparités sociales de santé est de s’intéresser aux effets du contexte, et notamment à ceux du contexte résidentiel.5, 10 Au-delà des objectifs de connaissance, il est important d’un point de vue de santé publique de tenir compte des relations qui existent entre le contexte de vie des individus et leur santé. En effet, les études d’analyse contextuelle offrent des perspectives nouvelles dans le champ de la santé publique, d’une part en décrivant les variations géographiques des phénomènes de santé, et d’autre part en affinant la compréhension que l’on a des mécanismes à l’origine des disparités de santé. 6 A – La description des variations géographiques des phénomènes de santé Prendre en compte la dimension contextuelle des phénomènes de santé consiste d’abord à examiner si ceux-ci présentent des variations sur le territoire d’étude. Etant incapable d’identifier des variations spatiales aux différentes échelles d’analyse considérées, on serait amené à conclure que le phénomène étudié ne présente pas de dimension contextuelle, et que sa variabilité est imputable à des facteurs mesurables au niveau individuel.11, 12 Au contraire, si les méthodes mises en œuvre indiquent une variabilité géographique importante, le phénomène devient un objet d’intérêt en analyse contextuelle, qui cherche alors à en décrire et expliquer la distribution spatiale.13 A des fins de recherche, la simple représentation cartographique des variations géographiques des phénomènes de santé et la description quantitative de ces variations à l’aide de modèles de régression fournissent des informations importantes qui permettent de générer des hypothèses sur les facteurs qui influent sur ces phénomènes.14 D’un point de vue de santé publique, la quantification des variations contextuelles des phénomènes indique si d’éventuels programmes d’information ou d’intervention doivent intégrer cette dimension contextuelle, ou si ces programmes peuvent être mis en œuvre de façon complètement invariante sur le territoire.13 La description cartographique des disparités de santé ou de comportements relatifs à la santé aide également à identifier les zones d’intervention prioritaires et à répartir les ressources sur le territoire en tenant compte des besoins différenciés d’un endroit à l’autre. B – La compréhension des mécanismes à l’origine des disparités géographiques de santé Au-delà de la simple description des disparités territoriales de santé, l’objectif est d’avancer dans la compréhension des mécanismes qui les produisent. L’orientation d’analyse contextuelle s’est construite en critiquant l’approche écologique qui consiste à mettre en relation des variables explicatives et des données de santé agrégées aux niveaux de zones administratives plus ou moins fines.15, 16, 17 Observant par exemple une association positive entre taux de chômage communal et taux de mortalité communal, il est difficile de tirer des enseignements précis qui puissent être utilisés en santé publique. En effet, transférer une telle association au niveau individuel afin de conclure que les individus au chômage ont un risque de mortalité supérieur revient à commettre l’erreur écologique largement décrite dans la littérature :11, 18, 19 l’association écologique ne permet pas d’affirmer que ce sont les chômeurs 7 plutôt que d’autres individus dans les communes où le pourcentage de chômeurs est élevé qui ont un risque de mortalité supérieur. Par ailleurs, et de façon cruciale en analyse contextuelle, cette association écologique ne permet pas non plus de conclure à l’existence d’un effet collectif ou contextuel du chômage sur l’ensemble des résidents des communes à fort taux de chômage, puisqu’elle ne distingue pas les éventuels effets du chômage aux niveaux individuel et collectif.20, 21 L’approche contextuelle s’est donc développée à partir du constat qu’il est nécessaire d’utiliser des données collectées au niveau individuel pour avancer dans la compréhension des déterminants sociaux de la santé.22 L’objectif de ce genre d’analyses est d’examiner si les variations géographiques identifiées sont intégralement liées à la composition variable des zones considérées en terme de caractéristiques individuelles, ou si elles résultent également d’effets proprement contextuels qui ne sauraient être captés au niveau individuel.3, 23 En mesurant un même facteur social aux niveaux des individus et du contexte de résidence, l’utilisation de techniques de régression multivariées permet de distinguer différents processus sociaux qui se trouvaient amalgamés au sein de l’association écologique.24, 25, 26, 27, 28 Puisque les caractéristiques démographiques, sociales, et économiques des individus sont souvent corrélées aux facteurs du contexte, il est absolument nécessaire de tenir compte des facteurs individuels lorsque l’on cherche à identifier des effets véritablement contextuels. Un débat important existe dans la littérature sur cette question du nécessaire ajustement des modèles, qu’il faudrait mettre en œuvre avec prudence et circonspection pour les plus optimistes,29 ou compromettrait définitivement toute possibilité d’identification d’effets véritablement contextuels pour les plus pessimistes.30 Pour ne citer que deux des difficultés relatives à cette question, il est d’une part toujours possible d’imaginer que les effets contextuels identifiés en analyse multivariée résultent en fait d’un défaut d’ajustement au niveau individuel, et soient ainsi liés à des effets de composition résiduels.31, 32, 33, 34 Mais d’autre part, à l’opposé de ce problème de sous-ajustement des modèles, on peut aussi craindre d’inclure trop de facteurs individuels dans les modèles, retirant ainsi au facteur contextuel la part de son effet qui se manifeste au travers des variables individuelles intermédiaires prises en compte comme facteurs d’ajustement.1, 15, 35, 36, 37 Ainsi, comme dans bien d’autres cas en épidémiologie, la sélection des variables d’ajustement ne peut être mécaniquement effectuée, et relève d’arbitrages extérieurs au champ de la statistique. Au-delà, c’est toute la distinction fondatrice en analyse contextuelle entre effets individuels et effets contextuels qui doit être envisagée avec circonspection. En effet, de façon 8 plus fondamentale, pour affecter la santé, les effets du contexte doivent « pénétrer à l’intérieur du corps », ce qui se produit nécessairement au travers de processus que l’on peut capter au niveau individuel.3 Ainsi, plutôt qu’une différence bien identifiée entre processus causaux opérant dans le réel, la distinction entre effets individuels et effets contextuels peut être conçue comme un outil conceptuel permettant d’organiser l’analyse et de générer des hypothèses de travail mais dont il faudrait également se méfier sous peine d’aboutir à des interprétations trop grossières. Ainsi que de nombreux auteurs l’ont indiqué, il est utile en santé publique d’examiner si les facteurs du contexte de résidence sont associés aux problèmes de santé après avoir tenu compte des facteurs démographiques et sociaux au niveau individuel.15 L’intérêt est de voir si l’on peut se contenter de cibler les programmes d’intervention sur la base des caractéristiques des individus, ou si l’on doit au-delà également tenir compte des caractéristiques des zones de résidence. L’idée avancée est qu’en cas d’effets directs des caractéristiques du contexte sur la santé des individus, la cible des programmes de santé publique manquerait d’inclure un nombre important d’individus à risque si elle n’était définie que sur la base des facteurs de risque individuels. Au-delà de la distinction entre effets de composition et effets contextuels, l’objectif est d’examiner quelles dimensions du contexte de résidence jouent sur la santé des individus.38, 39 Les auteurs ont proposé différentes catégorisations des facteurs contextuels, soit en fonction du type d’effets en jeu (environnement physique, infrastructures et services disponibles, fonctionnement social40), soit en fonction du mode de constitution des variables. Dans ce dernier cas, on distingue en général les variables contextuelles agrégées (qui résultent de l’agrégation des caractéristiques des individus dans chaque zone) des variables contextuelles intégrales qui sont directement mesurées au niveau des zones de résidence.35 Les variables contextuelles agrégées les plus communes cherchent à rendre compte du niveau socioéconomique du milieu de résidence à partir de moyennes des caractéristiques socioéconomiques des résidents.41, 42, 43, 44, 45 Au contraire, les variables qui renvoient aux infrastructures des zones appartiennent par exemple à la catégorie des variables intégrales. Agrégées ou intégrales, les variables contextuelles ne peuvent le plus souvent pas être mesurées au niveau individuel, et sont comme telles susceptibles de capter des effets clairement distincts de ceux que l’on appréhende au moyen de variables individuelles.1, 7 D’un point de vue de santé publique, l’objectif est d’identifier les facteurs du contexte qui sont réellement à l’origine des disparités de santé, afin d’adapter au mieux les programmes 9 d’intervention aux mécanismes causaux identifiés. Concernant par exemple la pratique d’activités sportives, que l’on sait être liée au niveau socio-économique des individus,46, 47 diverses études ont mis en évidence des variations significatives d’un quartier de résidence à l’autre.48 Les auteurs ont cherché à voir si ces variations spatiales étaient simplement dues à la composition variable des zones sur le plan des caractéristiques socio-économiques individuelles. Au-delà, ils ont trouvé que ces variations étaient en partie imputables au niveau socio-économique du quartier de résidence, mesuré en agrégeant les caractéristiques des individus.45, 48 Un tel effet pourrait être dû au fait que les valeurs et habitudes comportementales d’un groupe social donné tendent à prévaloir dans les endroits où il est majoritaire, affectant ainsi l’ensemble des résidants, même si ils n’appartiennent pas à ce groupe social. Enfin, les auteurs ont également tenu compte de variables contextuelles intégrales, et ont pu montrer que la présence d’installations sportives et d’endroits où la marche ou la course peuvent être pratiquées en toute sécurité avait une influence sur la pratique sportive.49 Quantifier les variations contextuelles des phénomènes, chercher à les expliquer en distinguant effets de composition et effets proprement contextuels, et avancer dans la connaissance des différents processus par lesquels le contexte influe sur la santé présentent donc un intérêt en santé publique. 2) Evaluer l’importance des effets du contexte sur la santé : l’importance de la question méthodologique Puisque les déterminants sociaux de la santé appartiennent à différents niveaux, la variabilité des phénomènes de santé présente une structure hiérarchique : au-delà de la variabilité qui existe entre individus d’un même groupe, une partie des variations survient d’une unité contextuelle à l’autre, l’individu et son contexte constituant des sources de variabilité distinctes et hiérarchiquement organisées.50 Concernant les méthodes d’analyses, les approches qui ne tiennent pas compte de cette structure complexe de la variabilité peuvent s’avérer en partie inefficientes. Afin de décrire et d’expliquer les variations de phénomènes qui opèrent à différents niveaux, la littérature d’épidémiologie sociale recourt aujourd’hui aux modèles multiniveaux (incluant des effets aléatoires au-delà des effets fixes50, 51, 52, 53) ou dans une moindre mesure à des modèles basés sur l’équation d’estimation généralisée.54, 55, 56, 57 10 A – Les racines historiques de l’analyse multiniveau Ainsi que le rapportent Searle et ses collègues,58 la première formulation d’un modèle à effets aléatoires dans la littérature date de 1861 (quoique ce modèle n’y soit alors pas ainsi dénommé). L’intérêt qu’il y a à distinguer les composants de la variance dans une situation où des unités se trouvent rassemblées au sein de groupes est explicitement formulé à partir des années 1930. C’est en 1947 qu’apparaissent pour la première fois la distinction entre « effet fixe » et « effet aléatoire » et la notion de « modèle mixte ». Les années 1950 et 1960 ont apporté des développements majeurs dans les méthodes utilisées pour estimer les composants de la variance. C’est autour des années 1970 que les faiblesses de la méthode d’estimation de l’Analyse de Variance (ANOVA) ont commencé à être largement reconnues, et que l’approche d’estimation basée sur le maximum de vraisemblance s’est développée.58 Quant à l’approche d’analyse multiniveau pratiquée aujourd’hui en épidémiologie sociale, Snijders et Bosker estiment qu’elle s’est formée au cours des années 1980 par la réunion du courant d’analyse contextuelle et de la tradition statistique d’utilisation des modèles mixtes.50 Dans la période antérieure, l’analyse contextuelle se contentait d’utiliser des modèles de régression classiques afin d’identifier des variables contextuelles potentiellement influentes sur les phénomènes. A partir de 1980, différentes équipes ont développé les algorithmes permettant d’estimer des modèles de régression avec des coefficients aléatoires emboîtés, ainsi que les logiciels pour le faire.59, 60 Dès 1986, les bases de l’analyse multiniveau, incluant les outils statistiques ainsi que la méthodologie pour les utiliser, étaient jetées. L’approche d’analyse multiniveau a d’abord été utilisée dans le champ des sciences de l’éducation, dans lesquelles les données concernent des élèves regroupés au sein de classes, elles-mêmes rassemblées au sein d’écoles, où la structure hiérarchique apparaît incontournable.60 Cette approche n’a été utilisée dans le champ de l’épidémiologie sociale dans l’étude des effets du contexte de résidence sur la santé qu’à partir des années 1990, commençant vraiment à s’y établir au milieu de la décennie.2, 61, 62, 63 Des articles méthodologiques ont été publiés à partir de 1998,1 alors que la première revue de la littérature date de 2001.4 Cependant, ainsi que nous le discutons maintenant, diverses tendances se font jour dans l’utilisation qui est faite des modèles multiniveaux. 11 B – Différentes approches d’utilisation des modèles multiniveaux En analyse contextuelle, l’objectif est donc de décrire les effets du contexte sur la santé des individus. Les modèles multiniveaux fournissent différents outils pour le faire, dont l’importance relative est diversement évaluée par les auteurs de la littérature. Une première approche, suivie par les pionniers de la littérature d’analyse contextuelle ainsi que dans de nombreuses études plus récentes, consiste à s’intéresser exclusivement aux mesures d’association entre facteurs contextuels et variables réponse individuelles.4, 64, 65 Dans ce cas, l’intérêt des modèles multiniveaux est de tenir compte de la structure hiérarchique des données (individus regroupés au sein de zones de résidence) lors de la procédure d’estimation des paramètres, et d’aboutir ainsi à des écart-types des forces d’association qui prennent en compte la corrélation intra-zone de la variable réponse. Une telle utilisation des modèles multiniveaux apparaît en fait restrictive. Au cours d’une revue de littérature publiée dans la Revue d’Epidémiologie et de Santé Publique,66 nous avons montré que la prise en compte des effets aléatoires des modèles fournit des informations utiles à l’interprétation des associations entre facteurs contextuels et phénomènes de santé.3, 6, 23, 34, 67 Toutefois, une telle utilisation des effets aléatoires comme simples appuis dans l’interprétation des associations entre facteurs explicatifs et phénomènes de santé peut encore apparaître limitée. Le but d’un projet éditorial dirigé par Juan Merlo de l’Hôpital Universitaire de Malmö en Suède est de souligner que de tels effets aléatoires fournissent en eux-mêmes des informations importantes en santé publique sur les variations géographiques des phénomènes, sous la forme d’indicateurs que l’on appelle « mesures de variation » par opposition aux « mesures d’association » classiques.13, 68, 69 Nous pensons que l’utilité de telles « mesures de variation » (telles que le coefficient de corrélation intraclasse ou coefficient de partition de la variance) a été sous-estimée dans la littérature. Une possible explication de cet état de fait est que les études contextuelles aboutissent souvent à des variances inter-zones des effets aléatoires extrêmement faibles et non significativement différentes de zéro, ce qui est signe d’une faible importance du contexte pour les phénomènes étudiés. Plutôt que d’accorder trop d’attention à l’information négative véhiculée par ce paramètre, beaucoup d’auteurs semblent s’évertuer à trouver des associations entre facteurs du contexte et phénomènes de santé (dont l’amplitude est également faible), afin de conclure que le contexte a un impact sur la santé. Il n’est donc pas sans importance d’un point de vue de santé publique de clarifier l’intérêt respectif des mesures d’association (issues des effets fixes du modèle multiniveau) et des 12 mesures de variation (issues des effets aléatoires), qui fournissent des informations complémentaires permettant de juger de l’importance réelle du contexte pour la santé.13, 68, 69 C – Comparaison de l’approche multiniveau et d’une perspective d’analyse spatiale dans l’étude des effets du contexte C’est toutefois dans la critique de l’approche multiniveau, au statut quasi-hégémonique dans la littérature d’analyse contextuelle en épidémiologie sociale,4 que notre travail de thèse trouve son axe essentiel. Notre objectif général est de montrer que l’approche d’analyse multiniveau, du fait de sa conception de l’espace, ne fournit pas des informations optimales sur la variabilité spatiale des phénomènes de santé. L’approche multiniveau conçoit en effet l’espace comme fragmenté en zones distinctes le plus souvent définies à partir des limites administratives. La littérature géographique sur le « modifiable areal unit problem » a depuis longtemps montré que les résultats des analyses qui s’appuient sur un zonage administratif du territoire sont largement dépendants du découpage utilisé.70, 71, 72, 73 L’effet d’agrégation qui intervient est d’une part dû à des phénomènes d’échelle, puisque les zones peuvent être définies à un niveau plus ou moins local (« scale effect »). D’autre part, à une échelle donnée, les frontières considérées peuvent grouper les individus d’une multitude de façons différentes. En conséquence, tant les indicateurs qui quantifient les variations d’une zone à l’autre que les mesures des effets du contexte sont dépendants du découpage en zones utilisé, et des différences importantes dans les résultats peuvent être observées si d’autres découpages du territoire sont utilisés.74 Au-delà de cette dépendance des indicateurs au découpage utilisé, une limite plus importante des modèles multiniveaux est de ne pas tenir compte des relations spatiales entre les zones, et de supposer que des individus provenant de zones différentes sont complètement indépendants même si ces zones sont adjacentes ou proches. En négligeant cette possible corrélation entre zones proches sur le territoire, les modèles multiniveaux ne permettent pas d’obtenir des informations optimales sur la distribution spatiale des phénomènes : ils ne renseignent que sur la force de la corrélation des phénomènes de santé à l’intérieur des zones, mais pas sur la portée de cette corrélation dans l’espace. Au-delà de l’insuffisance des indicateurs qui décrivent les variations spatiales des phénomènes, une autre limite de l’approche multiniveau est de systématiquement définir les facteurs du contexte au niveau des zones administratives de résidence des individus. Or, rien 13 n’assure a priori que les différents effets contextuels opèrent réellement au niveau des zones administratives considérées.38 Dans certains cas, les individus pourraient également être affectés par les caractéristiques du contexte au-delà des limites administratives de leur zone de résidence, puisque leurs activités quotidiennes les amènent probablement à se déplacer dans cet espace élargi. Au contraire, dans d’autres cas, les zones administratives considérées pourraient s’avérer bien trop larges pour capter une influence du contexte susceptible d’opérer à un niveau plus local. Ces différentes limites de l’approche d’analyse multiniveau sont liées à sa conception d’un espace fragmenté en zones administratives arbitraires déconnectées les unes des autres. Du fait de cette définition de l’espace, tant les mesures de variation dont il a été question cidessus que les mesures d’association entre facteurs contextuels et phénomènes de santé s’avèrent en partie inefficientes à rendre compte de la distribution spatiale des phénomènes de santé. Dans le cadre de collaborations internationales, nous avons conduit deux études, l’une à partir de données Françaises, l’autre à partir de données Suédoises, dans lesquelles nous avons eu recours à une approche d’analyse spatiale des effets du contexte, qui se distingue de l’approche d’analyse multiniveau couramment utilisée. Le fondement de cette perspective spatiale d’investigation est de s’appuyer sur une conception continue de l’espace lors de l’analyse des variations des phénomènes de santé. Un premier aspect de cette approche est de s’appuyer sur des modèles de régression spatiaux, qui quoique différents les uns des autres, ont pour point commun de ne pas fragmenter l’espace en zones déconnectées les unes des autres.75, 76, 77, 78, 79, 80, 81 En appliquant la notion de « mesure de variation » définie dans le cadre du modèle multiniveau, un de nos objectifs est de souligner que les modèles de régression spatiaux aboutissent à des indicateurs qui fournissent plus d’informations sur la distribution spatiale des phénomènes que ceux que l’on obtient à partir des modèles multiniveaux. Le second intérêt d’une approche spatiale en analyse contextuelle est de s’affranchir des limites administratives lors de la définition des facteurs contextuels explicatifs.82, 83, 84 Nous avons développé des méthodes de mesure de l’exposition aux caractéristiques du contexte qui tiennent compte de l’information contextuelle dans un espace continu centré sur le lieu de résidence des individus. Un avantage de ces approches est qu’elles parviennent certainement mieux à capter les effets du contexte environnant que les mesures réalisées au niveau des zones administratives pour les individus qui résident sur les marges de ces zones.14 Une de nos études sur ce thème a eu recours à des données Suédoises issues des Registres de 14 Population, dans lesquelles nous étions en mesure de localiser géographiquement les individus de façon très précise. Ces données nous ont permis d’avancer dans le développement des méthodes de mesure en continu des facteurs du contexte. L’objectif de nos deux études était de comparer l’approche multiniveau couramment utilisée dans la littérature à cette perspective d’analyse spatiale. Nous avons cherché à voir si le fait de tenir compte de l’espace dans sa continuité intrinsèque permettait d’obtenir des informations sur la distribution spatiale des phénomènes, tant à partir des mesures classiques d’association qu’à partir des mesures de variation, qui resteraient inaccessibles dans le cadre de l’approche multiniveau qui fragmente le territoire en zones administratives déconnectées les unes des autres. 3) Plan du document Dans la suite du présent document, le premier chapitre traite de l’utilité de l’approche multiniveau en analyse contextuelle. Nous détaillons progressivement les fonctions d’intérêt des modèles multiniveaux pour ce genre d’analyses. Dans cette partie, nous rapportons dans un premier temps l’article rédigé au début de la thèse et publié dans la Revue d’Epidémiologie et de Santé Publique,66 qui décrit l’utilisation qui est faite des modèles multiniveaux dans la littérature. Une critique que l’on peut adresser à un nombre important d’études est de ne pas assez tirer parti des informations fournies par les effets aléatoires des modèles. Dans la suite du premier chapitre, nous décrivons notre participation à un projet dirigé par Juan Merlo (Département de Médecine Communautaire, Hôpital Universitaire de Malmö, Suède), dont l’objet est de souligner l’intérêt des mesures de variation (basées sur les effets aléatoires des modèles) dans le champ de l’analyse contextuelle. Ce projet bénéficie du soutien du Journal of Epidemiology and Community Health, qui a passé commande d’une série d’articles didactiques à Juan Merlo. J’ai participé en tant que second ou troisième auteur aux trois premiers articles de la série, et j’interviens en tant que premier auteur pour le quatrième article. Les deux premiers articles ont d’ores et déjà été acceptés pour publication par le journal,13, 68 les deux suivants étant en cours de révision. Alors que les trois premiers articles de la série s’intéressent au modèle multiniveau linéaire simple (adapté aux variables dépendantes continues), le quatrième article de la série est consacré au modèle logistique. Dans la suite du premier chapitre, nous rapportons d’abord une lettre de recherche que nous avons publiée dans l’American Journal of Epidemiology, au sujet des mesures de variation 15 (ou de « clustering ») adaptées au modèle logistique.85 Nous rapportons ensuite le quatrième article de la série, après avoir résumé le contenu des articles précédents. Dans un second chapitre, nous résumons brièvement le contenu de quatre articles publiés ou acceptés dans des revues Européennes et Anglaises (European Journal of Epidemiology, European Journal of Public Health, Public Health).86, 87, 88, 89 Il s’agit de travaux préliminaires d’application des modèles multiniveaux à l’analyse contextuelle des comportements relatifs à la santé (consommation de tabac et d’alcool, sédentarité, modes de recours aux soins). Ces études ont été réalisées à partir des données du Baromètre Santé 2000 de l’INPES.90, 91 Elles présentent des limites importantes, notamment liées au fait que nous n’avions pas d’information de localisation géographique plus précise que le département de résidence des individus. Dans le troisième chapitre, nous présentons les principaux travaux de notre thèse, qui visent à comparer l’approche multiniveau classiquement utilisée dans la littérature à une perspective d’analyse spatiale qui consiste à étudier les variations des phénomènes de santé dans un espace continu. Nous rapportons d’abord un premier article qui applique des techniques d’analyse spatiale à l’étude des modes de recours aux soins en France. Cette étude a été réalisée à partir des données Françaises de l’enquête SPS de l’IRDES.92 Nous avons soumis une seconde version de l’article au Journal of Epidemiology and Community Health, qui examine actuellement les corrections que nous avons apportées à notre travail. Nous rapportons ensuite un second travail réalisé à partir des données Suédoises des Registres de Population, dans lequel nous appliquons les dernières avancées méthodologiques en analyse spatiale à l’étude des variations géographiques des troubles mentaux et comportementaux liés à la consommation de substances psycho-actives. Ce travail a été réalisé dans le cadre d'une collaboration étroite avec Juan Merlo du Département de Médecine Communautaire de l'Hôpital Universitaire de Malmö. 16 Chapitre I – Utilité de l’approche multiniveau en épidémiologie sociale 1) L’utilisation des modèles multiniveaux dans la littérature d’analyse contextuelle Au début de la thèse, nous avons d’abord cherché à déterminer l’état de l’art de l’analyse contextuelle sur le plan méthodologique.66 Le constat réalisé alors, qui vaut encore aujourd’hui, est celui d’une suprématie hégémonique de l’approche multiniveau. Toutefois, si la quasi-totalité des auteurs se réclament de cette approche, l’utilisation qu’ils en font est variable, et l’intérêt des modèles multiniveaux en analyse contextuelle est diversement apprécié. De la façon la plus restrictive qui soit, un grand nombre d’auteurs utilisent des modèles qui tiennent compte de la structure hiérarchique des données dans le seul but de tenir compte de la non-indépendance des individus à l’intérieur des zones lors de l’estimation des écarttypes des effets fixes.4, 20, 64, 65 En effet, les modèles de régression classiques (qui n’incluent pas d’effets aléatoires) surestiment souvent le degré de significativité statistique des effets du contexte (en sous-estimant les écart-types de ces paramètres). Tenant compte de la structure hiérarchique des données, les modèles multiniveaux aboutissent à une estimation moins biaisée des écart-types des forces d’association. Dans ce type d’utilisation des modèles multiniveaux, les auteurs ne prêtent donc attention qu’aux forces d’association (effets fixes du modèle) et ne rapportent le plus souvent pas les effets aléatoires des modèles, qu’ils se gardent de toute façon d’interpréter. Toutefois, un certain nombre d’auteurs dans la littérature ont indiqué que les effets aléatoires des modèles multiniveaux étaient également susceptibles d’apporter des informations utiles.3, 6, 23, 34, 67 En effet, les effets aléatoires fournissent un appui lorsque l’on cherche à interpréter les associations entre facteurs explicatifs et phénomènes étudiés. Permettant de distinguer la variance inter-zone de la variance au niveau individuel, ils renseignent sur l’amplitude des variations à expliquer à chacun des niveaux au moyen des facteurs pris en compte dans les analyses.93, 94 Les auteurs s’intéressent surtout à la manière dont évolue la variance inter-zone résiduelle du phénomène lorsque l’on introduit des facteurs individuels puis contextuels dans le modèle. Quantifier la réduction que connaît la variance entre zones lors de l’introduction successive des différents facteurs explicatifs permet 17 d’évaluer le poids de chacune de ces variables dans la constitution des disparités géographiques du phénomène. En introduisant les caractéristiques des individus, on est ainsi en mesure de quantifier le poids des effets de composition, soit la part de la variabilité interzone qui est due à la composition variable des zones sur le plan des caractéristiques individuelles.3, 23 Les auteurs examinent ensuite si des variations significatives persistent entre zones après ajustement sur les facteurs individuels, et émettent des hypothèses sur la possible existence d’effets proprement contextuels. Ils cherchent enfin à quantifier la contribution des différents effets contextuels à la variabilité inter-zone, et à voir si l’ensemble des facteurs contextuels pris en compte permet d’expliquer cette variabilité.3, 21 Un premier article publié dans la Revue d’Epidémiologie et de Santé Publique nous a permis de décrire ces différents modes d’utilisation des modèles multiniveaux dans la littérature d’analyse contextuelle.66 Un des constats réalisés à l’issue de ce travail est que l’étude des effets du contexte sur la santé a connu un développement important en Europe du Nord, en Angleterre, et aux Etats-Unis au cours de la dernière décennie, mais n’a pas connu d’essor similaire en France, et conserve une place marginale dans le champ de l’épidémiologie sociale. 2) L’intérêt des mesures de variation comme sources d’information indépendantes sur l’impact du contexte sur la santé La revue de littérature publiée dans la Revue d’Epidémiologie et de Santé Publique nous a donc permis de brosser un tableau des modes d’utilisation des modèles multiniveaux dans la littérature d’analyse contextuelle en épidémiologie sociale.66 Dans ce travail, nous avons montré un intérêt particulier pour les applications qui cherchaient à interpréter les effets aléatoires des modèles multiniveaux. La suite de notre réflexion méthodologique nous a conduit à nous intéresser plus avant encore à l’utilité qu’il peut y avoir à modéliser la variance des phénomènes de santé, au-delà du vecteur des espérances. Cette réflexion a en partie été conduite dans le cadre d’une collaboration avec un chercheur Suédois, Juan Merlo, dont un objectif est de populariser auprès du milieu des chercheurs en épidémiologie sociale l’intérêt qu’il y a à modéliser les variances inter-zones (ou corrélations intra-zones) afin d’évaluer l’importance du contexte sur la santé.12, 69, 95 Son orientation aboutit à distinguer des « mesures de variation » (obtenues notamment à partir des 18 effets aléatoires des modèles multiniveaux) des « mesures d’association » plus classiques entre facteurs explicatifs et variables de santé.69 La collaboration engagée avec Juan Merlo s’est notamment structurée autour de la rédaction d’une série d’articles didactiques sur les modèles multiniveaux, dont commande avait été passée à ce chercheur par un éditeur du Journal of Epidemiology and Community Health. Au moment où nous nous sommes engagés dans ce travail, plusieurs exposés ont déjà été publiés dans la littérature sur l’intérêt des modèles multiniveaux dans le champ de l’épidémiologie sociale.2, ce travail dirigé par 3 Toutefois, nous avons un angle d’attaque original. En effet, Juan Merlo cherche à fournir un support aux chercheurs en épidémiologie sociale peu versés en statistiques, en leur permettant de comprendre de façon intuitive l’intérêt que présentent les modèles multiniveaux en analyse contextuelle. Au-delà, et de façon plus originale, notre objectif est de souligner l’utilité qu’il y a sur un plan de santé publique à modéliser la variance géographique des phénomènes de santé au-delà des associations qui existent avec les facteurs contextuels. La série d’articles s’articule ainsi autour de la distinction entre « mesures d’association » et « mesures de variation ».13, 68 Tout en constatant que ces derniers indicateurs ont été sous-utilisés dans la littérature, les différents articles ont pour but de souligner de façon didactique l’intérêt que présentent ces « mesures de variation » lorsque l’on cherche à évaluer l’impact réel du contexte sur la santé des individus Les trois premiers articles de la série sont consacrés au modèle multiniveau linéaire simple, qui permet de modéliser les variations inter-zones de variables continues. Un premier objectif est de souligner l’intérêt du coefficient de corrélation intraclasse, qui exprime la part des variations totales du phénomène qui survient au niveau des zones de résidence.50, 85, 96 Une recommandation de l’article est que cette information ne devrait jamais être négligée dans les études d’analyse contextuelle. Trop d’études dans lesquelles le coefficient de corrélation intra-zone est proche de zéro aboutissent à la conclusion que le contexte de résidence exerce un impact sur la santé, en s’appuyant sur des forces d’association faibles entre facteurs contextuels et phénomènes de santé (odds ratio autour de 1.5). Avant toute introduction de caractéristiques individuelles et contextuelles dans les modèles, le coefficient de corrélation intraclasse indique si il est important de tenir compte du contexte pour expliquer les variations du phénomène, ou si le contexte peut être négligé et les analyses conduites en ne tenant compte que des facteurs individuels.13, 69 Naturellement, les valeurs de référence que l’on choisit pour juger de l’importance de la corrélation intra-zone sont plus faibles que celles que l’on retient si l’on s’intéresse à la 19 corrélation de comportements à l’intérieur du ménage, ou à la corrélation de mesures réalisées à l’intérieur de l’organisme humain. Une vision d’ensemble de la littérature permet d’estimer qu’une corrélation intra-zone inférieure à 1% exprime un niveau de similitude très faible entre individus appartenant à la même zone, et indique par conséquent que le contexte n’a pas d’impact sur le phénomène de santé étudié. Une corrélation intra-zone autour de 3% indique que le phénomène présente une certaine sensibilité au contexte de résidence, et une corrélation égale ou supérieure à 5% est le signe d’un rôle important du contexte sur le phénomène. Ces valeurs peuvent apparaître très faibles au regard des valeurs de référence habituellement retenues pour juger de l’importance d’une corrélation, et les 5% des variations qui surviennent au niveau des zones pourraient apparaître sans grande importance par rapport au 95% des variations restantes qui se manifestent au niveau individuel (variations individuelles intra-zones). Toutefois, l’expérience indique que l’on ne parvient en général qu’à expliquer une toute petite partie des variations qui surviennent au niveau individuel, alors qu’on est souvent en mesure d’expliquer une large part des variations inter-zones à l’aide d’un petit nombre de facteurs contextuels. De ce fait, même si les variations inter-zones ne constituent que 5% de la variance totale du phénomène, elles ont en général un poids nettement plus important si l’on ne considère que la part de la variance qui a pu être expliquée au moyen de facteurs individuels et contextuels. Les trois premiers articles de la série ont également présenté de façon aboutie l’utilisation qui peut être faite du coefficient de partition de la variance,96 en insistant sur l’intérêt des informations qu’il fournit dans le champ de la santé publique.5, 68 Cet indicateur, qui n’avait pas été présenté de façon aussi détaillée dans les précédents exposés méthodologiques de la littérature, constitue une généralisation du coefficient de corrélation intraclasse au cas où la corrélation intra-zone dépend de façon complexe des caractéristiques des individus prises en compte dans le modèle.95 En effet, il est d’une part possible de modéliser la variance interzone en fonction des caractéristiques individuelles. Cela conduit à montrer que la variance inter-zone (ou importance du contexte pour le phénomène) est variable d’un groupe d’individus à l’autre. Par ailleurs, la variance au niveau individuel (ou variance qui survient entre individus à l’intérieur de chaque zone) peut également être d’amplitude variable d’un type d’individus à l’autre.2 Ainsi, un groupe d’individus pour lequel la variable de santé mesurée prend en moyenne des valeurs élevées pourrait présenter une variabilité plus importante qu’un autre groupe ayant en moyenne des valeurs plus faibles pour la variable. Dans le cadre d’un travail récent publié par Juan Merlo dans l’American Journal of 20 Epidemiology,95 il a par exemple été montré à partir de données sur des individus issus de pays différents (étude MONICA) que le niveau de pression artérielle présentait des variations importantes d’un pays à l’autre. Toutefois, une analyse plus aboutie a indiqué que les variations de pression artérielle entre pays présentaient une amplitude nettement plus importante pour les individus qui étaient en surpoids. Au-delà, au niveau individuel (c’est-àdire entre individus d’un même pays), il est également apparu que la pression artérielle avait une variabilité plus importante pour les individus en surcharge pondérale. Dans un tel exemple, on voit que les variations inter-zones et les variations au niveau individuel dépendent toutes deux d’un facteur individuel, l’indice de masse corporelle. En conséquence, le coefficient de partition de la variance, que l’on calcule à partir de ces deux composantes de la variance, n’est pas constant, mais devient une fonction complexe de ce facteur individuel. En indiquant que la corrélation intra-pays a tendance à être plus élevée parmi les individus en surpoids que parmi les autres, le coefficient de partition de la variance apporte des informations pertinentes d’un point de vue de santé publique, en permettant d’identifier un sous-groupe de population pour lequel la sensibilité au contexte est plus importante. Le quatrième article de la série, sur lequel je me suis plus particulièrement focalisé, pose la problème de la mesure des variations inter-zones dans le cas où la variable réponse est de nature binaire.85, 96 Cette question prend une acuité particulière dans le contexte de l’épidémiologie, et de l’épidémiologie sociale, où les phénomènes étudiés (survenue ou non d’un trouble, pratique ou non d’un comportement, etc.) ne peuvent souvent être pris en compte dans les analyses qu’à l’aide de variables binaires. Tout en suivant l’approche didactique des articles précédents, un premier objectif de ce quatrième article est d’expliquer en quoi le coefficient de corrélation intraclasse utilisé dans le cadre du modèle linéaire simple n’est pas adapté au modèle logistique multiniveau. La distinction entre variance individuelle intra-zone et variance inter-zone qui existe dans le modèle linéaire est beaucoup moins claire dans le modèle logistique.50, 96 En effet, connaissant la valeur moyenne d’une variable continue dans chacune des zones d’un territoire, il serait impossible de prédire les valeurs de cette variable pour chacun des individus qui composent ces zones, la variance individuelle à l’intérieur des zones pouvant être faible ou d’amplitude importante. Dans un tel cas, le coefficient de corrélation intraclasse permet de quantifier le poids relatif de ces deux composantes de la variance. Au contraire, dans le cas d’une variable binaire, connaissant la proportion de cas positifs dans chaque zone ainsi que les effectifs d’individus par zones, on 21 pourrait immédiatement déterminer les valeurs (0 ou 1) de la variable pour chacun des individus ainsi que les variances à l’intérieure des zones. En effet, conformément à la loi binomiale, on dit que la variance de la variable au niveau individuel est liée à la moyenne. De ce fait, la signification du coefficient de corrélation intraclasse est floue dans le cadre du modèle logistique. Différentes définitions du coefficient de corrélation intraclasse ont malgré tout été proposées dans la littérature pour le modèle logistique.50, 96 Puisque le coefficient de corrélation intraclasse est calculé à partir de la variance au niveau individuel et de la variance inter-zone et que la variance individuelle est fonction de la prévalence du phénomène, le coefficient de corrélation intraclasse sera lui-même fonction de la prévalence. Considérant deux phénomènes de prévalence différente, le coefficient de corrélation intraclasse prendra donc des valeurs différentes même si les deux phénomènes ont des variations inter-zones d’amplitude identique. Ainsi, outre ses difficultés d’interprétation dans le cadre du modèle logistique, cet indicateur apparaît biaisé par la prévalence du phénomène, et semble donc peu adapté lorsque l’on cherche à évaluer l’importance du contexte pour un phénomène de nature binaire. En conséquence, d’autres options ont été proposées dans la littérature pour mesurer la tendance des phénomènes binaires à survenir en grappe. Dans le cadre du modèle logistique multiniveau, Klaus Larsen97 puis Klaus Larsen et Juan Merlo98 ont défini un odds ratio médian (median odds ratio, MOR). Dans le cadre de l’équation d’estimation généralisée, un indicateur appelé « odds ratio dans la paire » (ou pairwise odds ratio) a également été proposé.56, 57, 99, 100 Quoique différents l’un de l’autre, ces indicateurs apportent une solution aux difficultés que soulève le coefficient de corrélation intraclasse, et présentent l’avantage de quantifier la tendance des phénomènes à survenir en grappe sur l’échelle des odds ratio communément utilisée en épidémiologie. Dans une lettre publiée dans l’American Journal of Epidemiology, nous avons appelé à des réflexions sur le sens et la validité des différents indicateurs de mesure des variations inter-zones dans le cadre du modèle logistique, et avons engagé un travail de comparaison des avantages et inconvénients respectifs de ces différentes options. Nous rapportons cette lettre ainsi que la réponse des auteurs auxquels elle était adressée à la fin de ce chapitre.85 Le quatrième article de la série a donné l’occasion d’avancer dans cette réflexion. Nous avons d’abord exposé différentes définitions du coefficient de corrélation intraclasse appliqué au modèle logistique, et avons cherché à en dégager les principales faiblesses. Au-delà, à titre 22 de solution, nous avons présenté de façon didactique l’odds ratio médian récemment développé par Klaus Larsen, indicateur qui était resté complètement inaperçu dans la littérature d’épidémiologie sociale.97 Contrairement au coefficient de corrélation intraclasse du modèle logistique, cet indicateur est indépendant de la prévalence des phénomènes. Il permet ainsi de comparer l’amplitude des variations inter-zones de phénomènes qui ont une prévalence différente. De plus, cet indicateur quantifie les variations inter-zones sur l’échelle des odds ratios, et offre ainsi la possibilité de comparer l’importance de ces variations aux forces d’association entre facteurs individuels ou contextuels et variables de santé (qui sont elles-mêmes habituellement exprimées sous forme d’odds ratios). Dans cet article, nous avons également souligné l’importance qu’il y a à tenir compte des variations inter-zones résiduelles lorsque l’on cherche à interpréter les associations entre facteurs contextuels et variables binaires dépendantes. En effet, on suppose habituellement que l’utilité d’un facteur contextuel pour identifier les zones à risque est fonction de la force de son association avec la variable de santé étudiée. Toutefois, même en cas d’association, si les variations inter-zones résiduelles sont importantes, le facteur contextuel n’est pas d’une grande utilité pour repérer des zones à risque, puisque le niveau de risque d’une zone est alors au moins autant fonction de variations aléatoires liées à des facteurs non mesurés. Un indicateur appelé « interval odds ratio » a récemment été proposé dans le cadre du modèle logistique, qui permet de tenir compte des variations inter-zones résiduelles lorsque l’on cherche à quantifier l’importance d’un facteur contextuel sur la santé.97 En rapportant le poids d’un effet contextuel aux variations inter-zones résiduelles, cet indicateur fournit des informations complémentaires à celles fournies par l’odds ratio habituel. Au final, loin de considérer la corrélation des individus à l’intérieur des zones comme simple nuisance dont on ne tiendrait compte que par obligation, l’approche que nous suggérons en analyse contextuelle accorde une place centrale à l’analyse de la variance interzone et de sa structure. En effet, au-delà des mesures d’association classiques, les mesures de variation ou de corrélation sont susceptibles de fournir des informations sur l’impact du contexte sur la santé des individus, et méritent ainsi un intérêt particulier dans le champ de la recherche en santé publique. 23 A brief conceptual tutorial of multilevel analysis in social epidemiology – using measures of clustering in multilevel logistic regression to investigate contextual phenomena Basile Chaix1,2 Juan Merlo1 Henrik Ohlsson1,3 Anders Beckman1 Kristina Johnell1,4 Per Hjerpe1,5 1 Department of Community Medicine (Preventive Medicine), Malmö University Hospital, Lund University, Malmö, Sweden 2 Research Team on the Social Determinants of Health and Health Care, National Institute of Health and Medical Research, Paris, France 3 Skåne County Council. Regional Office for drug utilisation studies 4 Centre for Family Medicine, Karolinska Institutet, Huddinge, Sweden 5 Skaraborg Institute, Skovde, Sweden. Corresponding author: Juan Merlo, MD, PhD, Associate Professor Department of Community Medicine (Section of Preventive Medicine) Malmö University Hospital, Faculty of Medicine (Malmö campus), Lund University S-205 02 Malmö Sweden [email protected] Abstract Study objective Due to technical reasons it is easier to interpret measures of variation in linear than in multilevel logistic regression. Since those measures are relevant for understanding contextual phenomena and binary outcomes are frequent in social epidemiology, we aimed to present measures of variation appropriate for the logistic case in a didactic rather than a mathematical way. Design and participants We used data from the Health Survey conducted in 2000 in the county of Scania, Sweden, which comprised 10,723 individuals aged 18–80 years living in 60 areas. Conducting multilevel logistic regression we applied different techniques (intra-class correlation (ICC), median odds ratio (MOR)), and interval odds ratio (IOR)) to investigate whether the individual propensity to consult private physicians was dependent on the area of residence. Results Both the ICC and the MOR provided information on the magnitude of dependence of the individual propensity of consulting private physicians on the residential area. The MOR was more easily interpretable than the ICC and showed that the unexplained heterogeneity between areas was of greater relevance than the individual variables considered in the analysis (age, gender, and education) for understanding variations of the propensity of visiting private physicians. Residing in high-education areas increased the probability of visiting private physicians. However, the IOR indicated that the residual unexplained variability between areas was too important to allow a clear distinction between low- and high-propensity areas based on the area educational level. Conclusion Measures of variation in logistic regression are easy to compute and provide an efficient mean of quantifying the importance of the residential context for understanding disparities in health and health-related behaviour. 1 In the study of contextual determinants of health, considering the extent to which individual health phenomena cluster within areas is not only necessary for obtaining correct estimates in regression analysis. It also provides relevant information that allows assessment of the importance that the context has for different individual health outcomes.[1] [2] In multilevel linear regression analysis it is easy to partition the variance between different levels and compute measures of clustering that provide intuitive information for capturing contextual phenomena.[3] [4] [5] However, for binary outcomes, the partition of variance between different levels does not have the intuitive interpretation of the linear model. Despite these difficulties several methods have been developed in logistic regression to obtain suitable epidemiological information on area-level variance and clustering within areas.[6] [7] [8] [9] In the present study we investigated whether residing in a specific area determines individual health care-seeking behaviour over and above individual characteristics. The present paper represents the last of a series of four included in a project [10] aimed to explain in a conceptual rather than a mathematical way how to calculate and interpret multilevel measures of variance and clustering.[3] [4] [5] The present study is focused at measures of variation in logistic regression. We put a special emphasis on indicating the relevance of these measures in social epidemiology and community health.[1] The illustrative example BACKGROUND AND OBJECTIVES In Sweden individual economic resources are not a major determinant for choosing private v. public healthcare practitioners since the county council supports patient fees in both cases. The choice of a private rather than a public practitioner may express individual preferences, demands and expectations related to socioeconomic position. Moreover, place of residence may influence this individual decision over and above individual characteristics. In the present study, we used multilevel measures of variance and clustering to quantify the contextual dimension of this healthcare seeking behaviour. POPULATION AND METHODS Data sources and variables Our illustrative analysis was based on the Health Survey in Scania conducted in 2000, a postal self-administered questionnaire survey.[11] Each of the 33 municipalities of the county of Scania, Sweden, corresponded to a survey area, except the four largest municipalities Helsingborg, Kristianstad, Lund and Malmö, which were subdivided into six, five, ten and ten administrative areas respectively. In total there were 60 different survey areas. The initial survey sample consisted of 23,437 individuals born between 1919 and 1981, 13,715 (59%) of whom agreed to participate. After approval by the Ethical Committee at the Medical Faculty of Lund, survey data were linked to the 1999 patient administrative register, which contains individual-level information on utilisation of all publicly financed health care. The present study only considered individuals who had had at least one contact with a health care provider during 1999 (10,723 individuals aged 18–80 years). The binary outcome distinguished those individuals who had consulted a private physician at least once in 1999 from those who had not. Age was introduced as a continuous variable. The educational level was divided into two categories (9 years or less, more than 9 years). An area-level socioeconomic variable, defined as the percentage of highly educated inhabitants, was coded in two classes with the median value as the cut-off. This area variable was derived from data on the whole population of the county. Multilevel analysis We aimed to investigate whether the residential area determined the choice of a private as opposed to a public practitioner. We first estimated an “empty” model (Model i), which only includes a random intercept and allowed us to detect the existence of a possible contextual dimension for this phenomenon.[3] Thereafter, we included the individual characteristics in the model (Model ii) to investigate the extent to which area-level differences were explained by the individual composition of the areas.[4] Finally we added the area variable (Model iii) to investigate whether this contextual phenomenon was conditioned by specific area characteristics.[5] The multilevel logistic regression models were estimated with Markov Chain Monte Carlo (MCMC) method using MLwiN software (version 1.2., Institute of Education, London).[12] [13] The multilevel logistic regression In logistic regression the aim is to predict the probability pI that a phenomenon (e.g., visiting a private physician) occurs for the individual i in function of a certain number of variables. Since the natural values of pI extend from 0 to 1 and a regression analysis is better performed on values between -∞ and +∞ we transform pI in logit (pI), which is comprised of values between -∞ and +∞.[14] 2 More specifically, multilevel logistic regression considers that the individual probability is also dependent on the area of residence of the individuals. This dependence on the context needs to be accounted for to obtain correct regression estimates, but doing so also conveys substantive information in itself.[1] [15] [16] In Model i (i.e., the empty model) the probability of visiting a private physician is only function of the area in which the individuals live, which is accounted for with an area-level random intercept: ⎛ pI ⎝1− pI Logit (pI) = log odds = log ⎜⎜ ⎞ ⎟⎟ = MC + EC–A ⎠ Equation 1 MC = overall mean probability (prevalence) expressed on the logistic scale EC–A = area-level residual, defined as the shrunken1 difference between MC (which expresses the overall prevalence on the logistic scale) and MA (which expresses the prevalence in a given area on the logistic scale). The area-level residuals are therefore on the logistic scale and normally distributed with mean 0 and variance VA. VA = area residual variance expressed on the logistic scale (i.e. variance around MC) VI = pI (1 – pI) = individual variance expressed on the probability scale, and depending on the predicted probability pI of the outcome. In Model i the probability of visiting a private physician for an individual living in an area A depends on MC and EC–A. pI = exp(M C + E C−A ) 1 + exp(M C + E C−A ) Equation 2 In Model ii the probability of visiting a private physician is function of the area of residence of the individuals and of the individual variables (i.e. sex, age, and education). Logit (pI) = MC + β1 sexI + β2 ageI + β3 eduI + EC–A β1, β2, β3 = regression coefficients for the individual covariates Equation 3 In Model iii the probability of visiting a private physician depends on the residential area of the individuals, on the individual variables and on the area variable (percentage of individuals with a high educational level). Logit (pI) = MC + β1 sexI + β2 ageI + β3 eduI + β4 eduA + EC-A β4 = regression coefficient for the area-level educational variable Equation 4 Measures of area-level variance and clustering in multilevel logistic regression INTRACLASS CORRELATION AND THE RELATED VARIANCE PARTITION COEFFICIENT We have previously discussed the relevance of the intraclass correlation coefficient (ICC) (also termed variance partition coefficient (VPC) in its most general form) for understanding contextual phenomena expressed with continuous variables.[3] [4] [5] In the linear case, the VPC informs us on the proportion of total variance in the outcome that is attributable to the area level. VPC = VA / (VA + VI) Equation 5 where VA is the area-level variance and VI corresponds to individual-level variance. In the linear model, the VPC is based on the clear distinction that exists between the individual-level variance and the area-level variance. Indeed, knowing the mean value of a continuous outcome variable in each area, you would not be able to infer the values of the variable for each individual: the individual-level variance within areas could be small or very large. By contrast, with a binary variable the individual-level values (0 and 1) are immediately known from the prevalence existing in each area. This absence of a clear distinction between individual-level variance and area-level variance makes it trickier to compute and interpret the VPC in logistic models. 1 In multilevel regression analysis, the area-level residuals are “shrunken” towards their mean of 0, in an attempt to disentangle the part of the variations that may be due to true variations between areas from that part which might be better attributed to random variations. The fewer the number of individuals in an area, or the higher the variability within areas as compared to the variability between areas, the more the value of the area-level residual will be shrunken towards 0. More detailed explanations are provided in a previous paper.[3] 3 In multilevel linear regression both the individual-level and the area-level variances are expressed on the same scale (for example, mmHg for systolic blood pressure). Therefore, partition of variance between different levels is easy to perform for detecting contextual phenomena.[3] [4] [5] In multilevel logistic regression, however, the individual-level variance and the area-level variance are not directly comparable. Whereas the area-level residual variance VA is on the logistic scale, the individual-level residual variance VI is on the probability scale. Moreover, VI is equal to pI (1 – pI) and therefore depends on the prevalence of the outcome (i.e. the predicted probability). To solve these technical difficulties, Goldstein and others [6] [17] have described some alternative approaches for computing the VPC in the case of logistic regression. Two of these methods are (a) the simulation method [7]; and (b) the linear threshold model method, or latent variable method proposed by Snijders and Bosker.[17] Both methods convert the individual-level and area-level components of the variance to the same scale before computing the VPC. a) The principle of the simulation method is to translate the area-level variance from the logistic to the probability scale in order to have both components of variance on the probability scale. These two components of variance can then be used on the probability scale to compute the ICC with the usual formula (Equation 5). More details on this approach are provided in table 1 and elsewhere.[6] [7] Table 1. Hypothetical data showing that the size of the intra-class correlation (ICC) calculated by the simulation method [6] in a multilevel logistic model depends of the prevalence of the outcome (i.e. the predicted probability). We present eleven cases, all with the same area variance VA but with different outcome prevalence (pI). Prevalence pI of Prevalence of Area variance Area variance Individual Intra-class correlation the outcome converted to the the outcome on the VA on the variance** logistic scale (probability probability scale* logistic scale ICC = */(*+**) scale) (intercept MC) 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 -4.6 -2.2 -1.4 -0.8 -0.4 0.0 0.4 0.8 1.4 2.2 4.6 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.00003 0.00185 0.00519 0.00872 0.01063 0.01136 0.01062 0.00872 0.00518 0.00185 0.00003 0.0108 0.0936 0.1589 0.2079 0.2304 0.2386 0.2305 0.2080 0.1590 0.0936 0.0108 0.002 (i.e. 0.2%) 0.019 (i.e. 1.9%) 0.032 (i.e. 3.2%) 0.040 (i.e. 4.0%) 0.044 (i.e. 4.4%) 0.045 (i.e. 4.5%) 0.044 (i.e. 4.4%) 0.040 (i.e. 4.0%) 0.032 (i.e. 3.2%) 0.019 (i.e. 1.9%) 0.002 (i.e. 0.2%) *In order to convert the area-level variance to the probability scale, we simulated 100 000 area-level residuals EC–A based on the area-level variance VA, and calculated the predicted probability in each of these 100 000 simulated area as p = exp (MC + EC-A) / [1+exp (MC + EC-A)]. We computed the area-level variance on the probability scale as the variance of these predicted probabilities. **The overall individual-level variance is computed as the mean of the individual-level variances computed as p (1 – p) for each of the 100 000 simulated values. As noted previously, the individual-level variance depends on the expected prevalence. A first consequence is that different phenomena with a similar area-level variance but a different prevalence (MC) will have different VPCs. As illustrated in Table 1 using hypothetical data, for a given amount of area-level variation, the VPC will always be the highest for outcomes with a prevalence of 50%. This aspect needs to be considered when comparing the magnitude of clustering between phenomena with a different prevalence. A second consequence occurs in the model including covariates. Since the VPC depends on the prevalence, which in turn depends on the characteristics of the individuals, there will be one different VPC for each different type of individual. Note that this heterogeneity in the VPC is just a consequence of the dependence of this definition of the VPC on the prevalence of the outcome. b) The linear threshold model method or latent variable method converts the individual-level variance from the probability scale to the logistic scale, on which the area-level variance is expressed. In our case, the method assumes that the propensity for visiting a private physician is a continuous latent variable underlying our binary response (i.e. having visited a private physician or not). In other words, every individual has a certain propensity for visiting a private physician but only individuals whose propensity crosses a certain threshold 4 actually do it. The unobserved individual variable follows a logistic distribution with individual-level variance VI equal to π2/3 (i.e. 3.29).[6] [7] [17] On this basis, the VPC is calculated as: Equation 6 VPC = VA / (VA + 3.29) The VPC is only a function of the area-level variance and does not directly depend on the prevalence of the outcome as in the simulation method. These methods for computing the VPC in logistic models have their own statistical consistency. However, they consist in an attempt to apply to the logistic case notions that are based on the clear distinction between the individual-level variance and the area-level variance that exists in the linear case. Since this distinction is not so clear in the logistic case, the interpretation of the VPC for dichotomous outcomes is awkward to understand in epidemiological terms.[6] [8] [18] THE MEDIAN ODDS RATIO The aim of the median odds ratio (MOR) [8] [9] is to translate the area-level variance in the widely used odds ratio (OR) scale, which has a consistent and intuitive interpretation. In the present study, the MOR shows the extent to which the individual probability of visiting a private physician is determined by residential area and is therefore appropriate for quantifying contextual phenomena. The MOR is independent of the prevalence of the phenomenon, and can be easily computed in the empty model and in more elaborated models. To intuitively understand the rationale for the MOR, imagine that we consider all possible pairs of individuals with similar covariates but residing in different areas. In Figure 1 we consider two different fictive cases, one with weak variations between areas, the other with very important variations. Using the area-level residuals of the multilevel model we compute the OR for each pair of individuals with the subject with the higher odds always placed in the numerator (the OR is always larger than or equal to one). This procedure yields a distribution of the OR. Figure 2 gives the distribution of the OR that we obtained in considering the 56 million pairs of individuals from different areas that can be formed in our dataset. The MOR is the median of this distribution. Figure 1 Heterogeneity between areas in the utilisation of private health care providers as expressed using the median odds ratio (MOR) computed from the empty multilevel logistic model. Two fictive cases including four different areas are presented in the Figure. In the top part of the Figure we present a situation with very weak variations between areas. In the bottom part of the Figure, area-level variations were much more important, which will be reflected in a higher MOR. Considering the area-level residuals of the multilevel model, the odds ratio between the individual at lowest risk and the individual at highest risk is computed for each pair of individuals from different areas. The MOR is defined as the median value of the distribution of this odds ratio. A B 5 Figure 2 Considering the area-level residuals of the multilevel model, we computed the odds ratio between the individual at lowest risk and the individual at highest risk for each pair of individuals from different areas. We present the distribution of this odds ratio for the 56 million pairs of individuals from different areas that can be formed in our sample of 10,723 individuals. As indicated in the Figure, the MOR is defined as the median value of the distribution. In practice, it is not necessary to empirically consider all possible pairs of individuals from different areas. The MOR depends directly on the area-level variance and can be computed with the following formula: Equation 7 MOR = exp [√(2 × VA) × 0.6745] ≈ exp(0.95 √VA) where VA is the area-level variance. If the MOR was equal to one, there would be no differences between areas in the probability of seeking a private physician (as in the fictive case presented in Figure 1A). If there were important area-level differences (as in Figure 1B), the MOR would be large and the area of residence would be relevant for understanding variations of the individual probability of visiting a private physician. The standard error of the area-level variance indicates the precision of the estimate. Also, using the MCMC method available in MLwiN [12] and other software, we can directly compute a 95% credible interval (CI) for the MOR. The MCMC method consists in running a chain in which values of the different parameters are simulated until convergence. When the chain has converged, it just remains to consider subsequent simulated values of the area-level variance (which describe the posterior distribution of the area variance) and compute the MOR for each of these values. Considering the 2.5th and 97.5th percentiles of the resulting distribution of the MOR yields a 95% CI for the MOR. In our example the MOR was equal to 1.81 in the empty model, with a 95% CI (1.62 to 2.06) that clearly excluded the value 1 (Table 2). One feature of interest of the MOR is that it is directly comparable with the ORs of individual or area variables. In the model including individual-level variables (Table 2) the MOR was equal to 1.80, which indicates that in the median case the residual heterogeneity between areas increased by 1.8 times the individual odds of seeking a private physician when randomly picking out two individuals in different areas. The residual heterogeneity between areas (MOR = 1.80) was of greater relevance than was the impact of the individual’s level of education (OR = 1.25) for understanding variations in the odds of seeking a primary care physician. 6 Table 2. Measures of association between individual and area characteristics and the outcome and measures of variation and clustering in the utilisation of private providers in the county of Scania, Sweden, 2000, obtained from multilevel logistic models* Empty model Measures of association (OR, 95% CI) Individual-level variables Female (v. male) Age (in 10 years unit) High (v. low) educational achievement Area-level variable High (v. low) percentage of highly educated inhabitants Interval odds ratio (IOR) Measures of variation or clustering Area-level variance (SE) PCV† MOR (95% CI) ICC (latent variable method) ICC (simulation method) Model with individual-level variables Model with the area-level variable 1.57 (1.44 to 1.70) 1.13 (1.11 to 1.15) 1.25 (1.13 to 1.38) 1.56 (1.44 to 1.70) 1.13 (1.11 to 1.15) 1.24 (1.12 to 1.38) 1.95 (1.45 to 2.62) [0.75 to 5.05] 0.388 (0.080) 1.81 (1.62 to 2.06) 0.105 0.082 0.379 (0.078) -2.3% 1.80 (1.62 to 2.04) 0.103 0.070 – 0.080‡ 0.275 (0.059) -27.4% 1.65 (1.50 to 1.84) 0.077 0.044 – 0.061‡ CI = credible interval; ICC = intraclass correlation; IOR = interval odds ratio; MOR = median odds ratio; OR = odds ratio; PCV = proportional change in variance; SE = standard error. *Multilevel models were estimated with the Markov Chain Monte Carlo method implemented in MLwiN (version 1.2., Institute of Education, London). †The proportional change in variance expresses the change in the area-level variance between the empty model and the individual-level model, and between the individual-level model and the model further including the area-level covariate. ‡As discussed in the text, in a model including explanatory factors one different ICC is computed for each combination of the explanatory factors. Note that this heterogeneity in the ICC is merely a consequence of the dependence of the ICC on the prevalence. TAKING AREA-LEVEL VARIANCE INTO ACCOUNT WHEN INTERPRETING ASSOCIATIONS BETWEEN AREA VARIABLES AND HEALTH WITH THE INTERVAL ODDS RATIO In multilevel models regression coefficients are adjusted for the dependence of the outcome within areas by including the area-level residuals in the equation (Equations 1, 3 and 4). The regression coefficients for individual variables, in being adjusted for area-level residuals, reflect the association between the individual-level variables and the outcome within a specific area (and are termed “area-specific coefficients”, or “cluster-specific coefficients”). However, for area variables, regression coefficients cannot be interpreted as being area-specific in the same way as with individual variables: since area variables only take one value in each area it is necessary to compare individuals with different area-level residuals to quantify the area-level effect. In our data we found that living in areas with a high percentage of highly educated people increased the individual probability of visiting a private physician. However, if residual variability between areas remains important, the likelihood is high of finding an individual in a low-education area who presents higher odds of consulting private providers than an individual in a highly educated area. It is therefore particularly useful to consider the magnitude of area-level residual variations when interpreting effects of area-level variables. In order to integrate the area-level fixed effect and the random residual variations we suggest using the 80% Interval Odds Ratio (IOR-80), as described in detail elsewhere.[8] [9] As indicated in the two contrasted fictive cases in Figure 3, the usual OR consists in comparing the mean odds in low- and high-education areas. By contrast, when 7 comparing individuals in areas with low education with individuals in areas with high education, the IOR also takes into account the specific area-level residuals. Figure 3 Illustration of the rationale of the Interval Odds Ratio. Low-education areas are grouped on the left and high-education areas on the right. The thick grey lines represent the mean odds of consulting private providers in low-education and high-education areas. The log odds of consulting private providers in each of the 60 areas are function of the area educational level and of the area-level residual, and are represented as black segments over and above the thick grey lines. The common odds ratio consists in comparing the thick grey lines. By contrast, the interval odds ratio also takes into consideration the unexplained area-level variations, and therefore compares the black segments of one individual selected in a low-education area and one individual from a high-education area. We present two contrasted fictive cases. In the top part we present a situation in which area-level residual variations are weak compared with the effect of the area educational level. Conversely, in the bottom part, the area-level variations are much more important than the area educational effect. In that case, the likelihood is high of finding an individual in a low-education area who presents higher odds of consulting private providers than does an individual in a highly educated area. A B Imagine we consider all possible pairs of individuals with similar covariates, in which one individual resides in a low-education area and the other in a high-education area. For each pair, taking into account the educational level and the residual of these areas, we compute the OR between the individual in the low-education area and the individual in the high-education area (the latter individual is always taken into account in the numerator of the OR, which may therefore be inferior or superior to one). Considering all possible pairs, we then obtain the distribution of this OR. The IOR-80 is defined as the interval centred on the median of the distribution that comprises 80% of the values of the OR. In Figure 4 we present the distribution of the OR for the area educational level in our empirical example, and give the lower and upper bounds of the IOR. In practice, it is not necessary to calculate the OR for each possible pair. Rather, the lower and upper bounds of the IOR can be computed with the following equations: IORlower = exp[β + √(2 × VA) × (-1.2816)] ≈ exp(β – 1.81 √VA) IORupper = exp[β + √(2 × VA) × (1.2816)] ≈ exp(β + 1.81 √VA) 8 Equation 8 Equation 9 Figure 4 Computation of the interval odds ratio (IOR) for the impact of the area educational variable on the utilisation of private providers (continuation of figure 3). We consider all possible pairs of individuals with similar individual covariates, in which one individual resides in a low-education area and the other in a high-education area. For each pair, taking into account the educational level and the residual of these areas, we compute the odds ratio between the individual in the low-education area and the individual in the high-education area (the latter individual is always taken into account in the numerator of the odds ratio). Considering all possible pairs of individuals from a low- and a high-education areas in our sample, we obtain the distribution of the odds ratio shown in the Figure. The IOR is defined as the interval centred on the median of the distribution that comprises 80% of the values of the odds ratio. In the Figure we give the lower and upper bounds of the IOR. The IOR-80 is not a common confidence interval. The interval is narrow if the residual variation between areas is small (Figure 3, top), and wide if the variation between areas is large (Figure 3, bottom). If the interval contains the value one, this indicates that the effect of the area characteristic under scrutiny is not that important when compared with the remaining residual area-level heterogeneity. In our case, individuals residing in high- v. low-education areas had higher odds of visiting private physicians (OR = 1.99, 95% CI: 1.49 to 2.65). However, the IOR-80 was fairly wide (0.75 to 5.05) and comprised the value one (Figure 4). In other words, in comparison with residual area-level variations, the educational variable was not that important for understanding area-level variations in the individual propensity for seeking a private practitioner. The IOR therefore brings complementary information to the information provided by the usual OR. Discussion We followed a didactic example on health care utilisation in Sweden to indicate how to calculate and interpret several measures of variance which are appropriate for investigating contextual phenomena of a binary nature. Measuring clustering of binary phenomena within areas is certainly more problematic than measuring clustering in the linear case. Different methods have been developed to calculate the VPC in logistic models.[6] [7] However, the simulation method leads to VPCs that are dependent on the prevalence of the outcome, and can therefore not be used to compare the magnitude of clustering between phenomena with a different prevalence. On the other hand, the threshold method for computing the VPC necessitates conversion of binary outcomes into continuous linear latent variables, which may not be adequate for all phenomena. Furthermore, these methods for calculating the VPC in logistic regression have interpretative drawbacks when it comes to measuring clustering of phenomena, owing to the inherent difficulty of distinguishing the individual-level and the area-level variance in the logistic case.[6] [8] [18] Computing the MOR is an epidemiologically more suitable option for obtaining measures of variance in logistic regression. It is not dependent on the prevalence of the outcome and furthermore allows expression of the area-level variance on the well-known OR scale.[19] Therefore, it allows comparison of the magnitude of arealevel variations with the impact of specific factors.[8] [9] As previously discussed,[1] [5] it is useful to take into account the magnitude of residual random variations between areas when interpreting associations between contextual factors and the outcome. In multilevel logistic models this information is conveyed by the IOR, which indicates whether the contextual factor is useful to identify high-risk areas, or whether area-level variations are too important to use the contextual factor in distinguishing high-risk from low-risk areas. It is noteworthy that measures of variance in logistic regression can be extended to include more complex patterns of heterogeneity following analogous reasoning than presented with random slopes for linear regression analysis.[3] [4] [5] 9 CONCLUSION: As previously indicated by one of us [1] and explained in greater details elsewhere,[5] strategies of disease prevention need to combine a person-centred approach with approaches aimed at changing the residential environment.[20] In order to gather information on cross-level causal pathways, which is useful in implementing these interventions, it is relevant to investigate traditional measures of association between area socioeconomic characteristics and individual health. However, for assessing the public health relevance of specific geographical units (e.g. neighbourhoods, municipalities, or districts),[2] multilevel measures of health variation present themselves as the appropriate epidemiological approach in social epidemiology. The aim of our paper was to explain why measures of variation available in logistic regression should be promoted in social epidemiological and public health research as efficient means of quantifying the importance of the context of residence for understanding disparities in health and health-related behaviour. References 1. Merlo J. Multilevel analytical approaches in social epidemiology: measures of health variation compared with traditional measures of association. J Epidemiol Community Health, 2003; 57:550-52. 2. Boyle MH, Willms JD. Place effects for areas defined by administrative boundaries. 1999; 149:577-85. 3. Merlo J, Chaix B, Yang M, et al. A brief conceptual tutorial of multilevel analysis in social epidemiology - linking the statistical concept of clustering to the idea of contextual phenomenon. J Epidemiol Community Health, 2004. 4. Merlo J, Yang M, Chaix B, et al. A brief conceptual tutorial of multilevel analysis in social epidemiology - investigating contextual phenomena in different groups of individuals. J Epidemiol Community Health, 2004. 5. Merlo J, Yang M, Chaix B, et al. A brief conceptual tutorial of multilevel analysis in social epidemiology - interpreting neighbourhood differences and the effect of neighbourhood characteristics on individual health. J Epidemiol Community Health, 2004. 6. Goldstein H, Browne W, Rasbash J. Partitioning variation in generalised linear multilevel models. Understanding Statistics, 2002; 1:223-32. 7. Rasbash J, Steele F, Browne W. Logistic models for binary and binomial responses, in A User's Guide to MLwiN Version 20 Documentation Version 21e. 2003, Centre for Multilevel Modelling Institute of Education University of London: London, UK. 8. Larsen K, Merlo J. Appropriate assessment of neighborhood effects on individual health - integrating random and fixed effects in multilevel logistic regression. Am J Epidemiol, 2004; In press. 9. Larsen K, Petersen JH, Budtz-Jorgensen E, et al. Interpreting parameters in the logistic regression model with random effects. Biometrics, 2000; 56:909-14. 10. Merlo J. FAS- Swedish Council for Working Life and Social Research: "Socioeconomic disparities in cardiovascular diseases-a longitudinal multilevel analysis" (# 2003-0580). http://wwwfasforskningse/projekt/, 2003. 11. Hanson BS, Ostergren PO, Merlo J, et al. Halsoforhallande i Skane. Folkhalsoenkat Skane 2000 [Health Conditions in Scania. Public Health Questionnaire, Scania, 2000]. 2001, Malmö, Sweden: Department of Community Medicine, Malmö University Hospital. 12. Browne WJ. MCMC estimation in MLwiN. Version 2.0. 2003, London: UK: Centre for Multilevel Modelling. Institute of Education. University of London. 297p. 13. Rasbash J, Steele F, Browne W. A User's Guide to MLwiN. Version 2.0. Documentation Version 2.1e. Centre for Multilevel Modelling Institute of Education University of London, 2003. 14. Hosmer DW, Lemeshow S. Applied logistic regression. 2nd ed. 2000, Chichester, England: Wiley & Sons Ltd. 392p. 15. Rodriguez G, Goldman N. An assessment of estimation procedures for multilevel models with binary responses. J R Statist Soc A, 1995; 158:73-78. 16. Snijders TAB, Bosker RJ. Statistical treatment of clustered data, in Multilevel analysis - an introduction to basic and advanced multilevel modeling. 1999, SAGE Publications: Thousand Oaks, CA. p. 13-37. 17. Snijders TAB, Bosker RJ. Multilevel analysis - an introduction to basic and advanced multilevel modeling. 1st ed. 1999, Thousand Oaks, CA: SAGE Publications. 18. Diez Roux AV. Estimating neighborhood health effects: the challenges of causal inference in a complex world. Soc Sci Med, 2004; 58:1953-60. 19. Chaix B, Merlo J, Bobashev G, et al. Re: "Detecting patterns of occupational illness clustering with alternating logistic regressions applied to longitudinal data". Am J Epidemiol, 2004; 160:505-06. 20. Macintyre S, Elleway A. Ecological approaches: rediscovering the role of the physical and social environment, in Social epidemiology, Berkman, LF, Kawachi, I, Editors. 2000, Oxford University Press: New York. p. 332-48. 10 Chapitre II – Exemples préliminaires d’analyse contextuelle 1) Analyse des effets du contexte de résidence sur différents comportements relatifs à la santé Parallèlement à la réflexion sur les méthodes à utiliser en analyse contextuelle, nous avons cherché à appliquer ces outils à l’étude de comportements relatifs à la santé en France. Dans une première série d’études, nous nous sommes intéressés aux déterminants contextuels de facteurs de risque de maladies cardiovasculaires tels que la consommation de tabac et d’alcool, la sédentarité, et la surcharge pondérale.86, 87 Dans une seconde série d’études, nous avons étudié l’impact du contexte de résidence sur les modes de recours aux soins ambulatoires.88, 89 Nous résumons ci-dessous le contenu des quatre articles tirés de ces études qui ont été publiés dans des revues Britannique et Européennes (Public Health, European Journal of Public Health, European Journal of Epidemiology). Avant de décrire les résultats d’intérêt obtenus au moyen de ces travaux, il convient d’en noter les limites, que nous avons cherché à surmonter dans une série d’études ultérieures. Les analyses des quatre articles évoqués ci-dessus ont eu recours aux données d’enquête du Baromètre Santé, produites par l’Institut National de Prévention et d’Education pour la Santé.90, 91 L’utilisation de ces données, comme de beaucoup d’autres sources d’information en France, impose des limites importantes à l’étude des effets du contexte sur la santé. En effet, sur le plan des données, l’analyse contextuelle en épidémiologie sociale requiert différents éléments : - Il est d’une part nécessaire de disposer de données de morbidité ou de recours aux soins, et de données démographiques et socio-économiques que l’on puisse mettre en rapport au niveau individuel. - D’autre part, de telles analyses requièrent des tailles d’échantillon importantes, qui puissent fournir une puissance suffisante pour détecter et étudier les variations géographiques des phénomènes de santé. - Enfin, il est d’importance décisive de pouvoir localiser géographiquement les individus de la façon la plus précise possible. Il n’est pas seulement utile de disposer d’informations sur 24 le contexte de résidence qui aient été couplées aux données individuelles utilisées; il est d’autre part nécessaire de disposer d’un identifiant du lieu de résidence des individus, qui seul permet de quantifier le degré de similitude existant entre individus résidant au même endroit ; il est enfin utile de pouvoir localiser cartographiquement les différents lieux de résidence, afin de représenter les résultats des analyses. Du point de vue de ces réquisits, les diverses études que nous avons entreprises à partir des données du Baromètre Santé présentent des limites notables. Nous disposions certes d’une quantité d’information importante au niveau individuel, tant au niveau des variables de santé que des caractéristiques socio-économiques des individus. Toutefois, s’agissant de données d’enquête représentatives de la population métropolitaine Française, la taille de l’échantillon (13 000) était peut-être insuffisante, ne permettant certainement pas de capter les variations géographiques de phénomènes de santé sur une telle étendue territoriale. Mais c’est des possibilités de localisation géographique des individus que vient la limite la plus importante. En effet, nous n’étions en mesure de localiser les individus enquêtés qu’au niveau de leur département de résidence. Un tel niveau d’analyse situe d’emblée nos études en-deça des standards de la littérature internationale, où le quartier de résidence (soit un niveau infracommunal) est souvent perçu comme le niveau approprié pour étudier l’impact du contexte de résidence sur la santé.5 Il est en effet difficile de croire que la plupart des processus contextuels opèrent au niveau géographique des départements français. En conséquence, dans ces études, nous nous sommes avant tout focalisés sur des processus susceptibles d’opérer à un niveau macroscopique. Nous décrivons maintenant brièvement les principaux résultats de ces quatre articles, que nous rapportons dans leur intégralité à la fin de ce chapitre. Le premier de ces articles a été publié dans le European Journal of Epidemiology en 2003, et s’intitule « Tobacco and alcohol consumption, sedentary lifestyle and overweightness in France: a multilevel analysis of individual and area-level determinants ».87 Dans cette étude, nous nous sommes intéressés à l’impact des caractéristiques de la zone élargie de résidence sur la consommation de tabac et d’alcool et sur les risques de sédentarité et de surcharge pondérale.46 Nous avons particulièrement cherché à voir si le poids des attitudes consuméristes dans la zone de résidence, que l’on supposait corrélé au niveau de développement économique, pouvait influer sur ces comportements individuels relatifs à la santé. Nos hypothèses partaient du constat qu’il y a plus de publicités dans les zones les plus riches (définies à partir du produit intérieur brut), et que les bars, restaurants, ou fast-foods y sont plus nombreux et y ouvrent 25 plus tard le soir. Cela pourrait contribuer à créer un contexte consumériste dans ces zones d’activité économique plus intense, susceptible de tirer à la hausse la consommation de nourriture, de tabac, et d’alcool. Les modes de consommation les plus excessifs pourraient s’y trouver particulièrement encouragés. Après ajustement sur une série de facteurs individuels, le risque de fumer de façon modérée ne semblait pas associé au niveau de richesse économique du département de résidence. Par contre, la prévalence de fumeurs fortement dépendants au tabac avait tendance à augmenter avec le produit intérieur brut par habitant. Des résultats identiques ont été trouvés pour la consommation d’alcool : la proportion de consommateurs modérés n’était pas liée au produit intérieur brut, mais la prévalence de consommateurs fortement dépendants à l’alcool avait tendance à augmenter avec le niveau de richesse économique de la zone de résidence, ce dernier effet n’étant toutefois identifié que parmi les femmes. Du fait de cette interaction entre effet de genre et effet contextuel, nous avons observé que l’écart entre hommes et femmes dans le risque de dépendance forte à l’alcool était plus faible dans les zones économiquement riches. Par ailleurs, après ajustement sur différents facteurs individuels, nous avons trouvé que le risque de surcharge pondérale augmentait avec le niveau économique de la zone de résidence, mais cet effet n’a été observé que chez les ouvriers. Dans une étude parallèle publiée dans le European Journal of Public Health et intitulée « A multilevel analysis of tobacco use and tobacco consumption levels in France: are there any combination risk groups? »,86 nous nous sommes particulièrement intéressés à la consommation de tabac, en cherchant à voir si certains des facteurs individuels et contextuels associés au risque de fumer étaient également associés à la quantité de tabac consommée parmi les fumeurs. Au niveau individuel, nous avons observé que les hommes, les individus faiblement instruits, et les personnes divorcées avaient un risque accru de consommer du tabac, et qu’ils consommaient des quantités de tabac plus importantes lorsqu’ils étaient fumeurs. Prolongeant l’étude précédente,87 au niveau du département de résidence, il est apparu après ajustement sur une série de facteurs individuels que les individus résidant dans des zones économiquement riches à la fois avaient des chances accrues de fumer et consommaient des quantités de tabac plus importantes lorsqu’ils étaient fumeurs. Les résultats de ces deux études sont en cohérence avec les hypothèses que nous avions émises. Il convient toutefois de noter que les forces d’association étaient faibles. L’intérêt de ces études sur un plan de santé publique doit donc être envisagé avec prudence. De plus, les données utilisées imposent des limites importantes aux analyses. Cherchant à identifier un 26 effet du contexte de résidence élargi lié au niveau de consumérisme ambiant, il serait nécessaire d’ajuster les modèles sur les caractéristiques des zones locales de résidence des individus, afin de distinguer les effets contextuels intervenant à différents niveaux. N’étant en mesure de localiser les individus qu’au niveau de leur département de résidence, nous n’avons pu avancer dans cette voie dans le cadre de ces études, qui n’ont de ce fait que le mérite d’indiquer des pistes à suivre pour des recherches futures. Les deux études suivantes réalisées à partir des donnés du Baromètre Santé se sont intéressées aux comportements de recours aux soins ambulatoires. La première de ces études sera prochainement publiée dans la revue Britannique Public Health sous le titre « Area-level determinants of specialty care utilisation in France: a multilevel analysis ».88 Partant du constat effectué dans la littérature d’un moindre recours aux spécialistes en milieu rural qu’en milieu urbain,101, 102, 103, 104 nous avons cherché à voir si ce contraste urbain – rural pouvait être lié aux variations de la densité de spécialistes et du niveau socio-économique du contexte de résidence sur le territoire. Un modèle multiniveau a permis de mettre en évidence des variations inter-départementales modestes mais néanmoins significatives dans la propension à consulter des médecins spécialistes. Une grande part du contraste observé entre zones urbaines et zones rurales dans la propension à recourir à des médecins spécialistes a pu être expliquée au moyen des variables départementales socio-économiques et de densité de médecins. Toutefois, nous avons observé que ces effets différaient en intensité et en nature chez les hommes et les femmes. Chez les hommes, la propension à recourir à des spécialistes augmentait fortement avec la densité départementale de spécialistes. Après ajustement des facteurs les uns sur les autres, cet effet n’était pas significatif chez les femmes. Leur comportement de recours semblait plutôt associé, quoique moins fortement, au niveau socioéconomique du département de résidence. Nous avons formulé des hypothèses afin d’expliquer cet effet apparemment différencié du contexte sur les modes de recours aux soins des hommes et des femmes, hypothèses qui constituent un point de départ pour d’éventuels travaux futurs sur la question. La dernière des quatre études entreprises à partir des données du Baromètre Santé sera prochainement publiée dans le European Journal of Public Health sous le titre « Acess to general practitioners: the disabled elderly lag behind in underserved areas ».89 Dans cette étude, nous sommes partis du constat de la littérature que les individus qui résident dans des zones à faible densité médicale ont des risques accrus de ne pas consulter de médecins sur une période donnée.102, 105 Nous intéressant à la médecine générale, nous avons cherché à voir si 27 derrière cet effet moyen pour l’ensemble de la population, des sous-groupes d’individus à mobilité réduite (tels que les personnes âgées ou les personnes présentant un handicap) n’avaient pas un recours au médecin particulièrement réduit quand ils résidaient dans des zones à faible densité médicale. Utilisant des modèles de Poisson multiniveaux pour étudier les variations du nombre de consultations de généraliste rapportées au cours des 12 derniers mois, nous avons trouvé après ajustement sur une série de caractéristiques individuelles et contextuelles que le fait de vivre dans une zone à faible plutôt que forte densité médicale était associé à une réduction plus importante du nombre de consultations de généraliste pour les individus âgés que pour les plus jeunes, et plus particulièrement encore pour les personnes âgées qui présentaient un handicap. Les personnes âgées ayant rapporté un handicap avaient 244% de consultations de généraliste en plus (intervalle de confiance à 95% : 79% – 562%) quand elles résidaient dans des zones à densité élevée plutôt que faible (ces zones ayant été définies à partir des 10ème et 90ème percentiles). Ces deux études des variations géographiques des modes de recours aux soins ambulatoires mettent en évidence des effets contextuels importants liés aux densités médicales ainsi qu’au niveau socio-économique du milieu de résidence, qui persistent après que l’on ait tenu compte des effets associés aux caractéristiques des individus. A partir de ces études préliminaires, il reste toutefois difficile de tirer des conclusions définitives utilisables en santé publique. Les disparités territoriales mises en évidence renvoient probablement d’une part à des difficultés réelles d’accès aux médecins spécialistes dans certaines zones, et d’autre part à des modes de recours aux soins centrés sur l’utilisation de spécialistes dans les zones les plus urbaines et favorisées. La confirmation de ces différentes hypothèses au travers d’études plus approfondies justifierait l’intervention des pouvoirs publics, tant pour œuvrer à combler les trous de couverture du territoire en médecins spécialistes, que pour informer les populations des zones les plus favorisées de l’utilité qu’il y a recourir à un médecin généraliste pour une bonne coordination des soins. Dans la suite de notre travail de thèse, nous avons cherché à avancer dans ces analyses des variations géographiques des modes de recours aux soins et des effets du contexte sur l’utilisation des soins. Cela a nécessité de travailler à un niveau de granularité spatiale plus local que le département de résidence. Au-delà des questionnements spécifiques à l’analyse de phénomènes particuliers, ces premières études ont donc soulevé la question du choix du niveau à utiliser pour capter les variations géographiques des phénomènes et définir les effets du contexte. De plus, à quelque échelle d’analyse que ce soit, on peut interroger la pertinence qu’il y a à s’appuyer sur des 28 zones définies à partir de limites administratives, qui peuvent s’avérer arbitraires au regard des différents phénomènes étudiés. 2) Analyse des effets du ménage de résidence sur les modes de recours aux soins Dans la plus grande partie de notre travail de thèse, nous nous sommes intéressés aux déterminants du contexte géographique de résidence. Toutefois, les facteurs du contexte peuvent être appréhendés à bien d’autres niveaux, puisque au-delà du milieu géographique de résidence, le contexte de vie des personnes comprend également l’environnement familial ou le milieu professionnel.23, 94, 106 Dans le cadre d’une étude entreprise à partir des données de l’Enquête Permanente sur les Conditions de Vie des Ménages de l’INSEE et réalisée en collaboration avec une chercheuse du Center for Home Care Policy and Research de New York, nous avons examiné différents processus opérant au sein du ménage et susceptibles d’influer sur les modes de recours aux soins des individus. Cette étude a été soumise au European Journal of Public Health, qui nous a demandé d’effectuer les quelques corrections suggérées par ses relecteurs. Elle est actuellement en cours de révision. Dans cette étude, les facteurs contextuels considérés n’ont pas été définis à l’échelle des ménages et attribués à l’ensemble des individus de ces ménages, comme on le fait habituellement lorsque l’on s’intéresse aux effets du contexte de résidence. Nous avons plutôt cherché à saisir l’impact que certaines dynamiques inter-individuelles pouvaient avoir sur les modes de recours aux soins des membres du ménage. Tout particulièrement, nous avons examiné si les individus qui résidaient avec des personnes en mauvaise santé n’avaient pas une moindre utilisation de soins que ceux qui résidaient avec des personnes en bonne santé. L’hypothèse sous-jacente était que les ressources financières et les ressources en temps disponible des différents membres du ménage sont en priorité dépensées pour les individus du ménage dont les besoins de santé sont les plus urgents.107, 108, 109, 110 De ce fait, nous nous attendions à observer un recours aux soins plus réduit pour les individus résidant avec des personnes en mauvaise santé. Conformément à nos hypothèses, nous avons observé que la probabilité qu’un individu recoure à des soins ambulatoires diminuait à mesure que l’état de santé des personnes avec qui il résidait était dégradé, et à mesure que le nombre de co-résidents en mauvaise santé dans son ménage augmentait. Ces deux associations ont été séparément observées pour trois types 29 de recours aux soins : pour l’utilisation de médecins généralistes, pour l’utilisation de spécialistes, et pour le recours à des examens et tests préventifs. Cette étude a été réalisée à partir de données issues d’une enquête en population générale de l’INSEE, qui n’avait pas été conçue pour répondre à de tels objectifs de recherche. En conséquence, malgré l’originalité de nos résultats sur des associations qui n’avaient pas été étudiées dans la littérature, nous n’étions pas en mesure d’avancer plus avant dans l’analyse des mécanismes à l’origine de ce phénomène. Si des études futures confirment les résultats obtenus, il pourrait s’avérer à la fois légitime et coût-efficace d’assurer un accès aux soins régulier aux individus qui résident avec des personnes en mauvaise santé, leur permettant à la fois de rester en bonne santé sur le long terme et de prodiguer d’éventuels soins ou du soutien à leur co-résidents malades. 30 ARTICLE IN PRESS Public Health (0000) xx, xxx–xxx 1 57 2 58 3 59 4 60 5 61 6 62 7 8 9 10 Area-level determinants of specialty care utilization in France: a multilevel analysis 11 12 13 17 18 69 70 71 72 a Research Unit in Epidemiology and Information Sciences, National Institute of Health and Medical Research (INSERM U444), Paris, France b National Institute for Prevention and Health Education, Vanves, France 73 74 75 F Received 4 August 2003; received in revised form 4 May 2004; accepted 4 May 2004 O 21 22 26 27 28 Health services research; Referral and consultation; Health services accessibility; Socio-economic factors 29 TE D 30 31 32 33 34 35 EC 36 37 38 R 39 40 41 R 42 43 O 44 45 51 52 53 54 55 56 U 50 N 47 48 *Corresponding author. Address: INSERM U444, Faculté de Médecine Saint-Antoine, 27 rue Chaligny, 75571 Paris cedex 12, France. Tel.: þ 33-1-4473-8443; fax: þ 33-1-4473-8663. E-mail address: [email protected] 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 C 46 49 Summary Objectives. We investigated the effects of the density of specialists and of the area-level percentage of highly educated individuals on the odds of consulting a specialist, and examined whether these variables could explain the observed urban/rural contrast in utilization of specialty care. Study design. The study sample, representative of the French population aged 18– 75 years in 1999, comprised 12,435 individuals. Methods. Multilevel logistic models allowed us to investigate predictors of the odds of consulting a specialist occasionally, regularly and frequently over the previous 12 months. Results. We observed a modest but significant clustering within areas of the utilization of specialty care, with higher levels of clustering for behaviours representing heavy consumption of care. After adjustment for individual factors, the odds of consulting a specialist were higher in larger cities compared with rural areas, but most of this effect was attributable to other area-level variables. These area-level effects were different in magnitude and nature among males and females. Among males, the odds of consulting a specialist increased with the area-level density of specialists. Among females, such an effect was not significant, but the odds of consulting a specialist increased with the area-level percentage of highly educated individuals. Conclusions. Further investigation is required to better understand the processes operating at the area level that were shown to affect healthcare utilization in a different way for males and females. Policies may be needed to address problems of geographical access to specialty care, as well as situations of overuse of specialty care without regular recourse to primary care. Q 2004 Published by Elsevier Ltd. on behalf of The Royal Institute of Public Health. O 25 KEYWORDS PR 23 24 66 68 B. Chaixa,*, P-Y. Boëllea, P. Guilbertb, P. Chauvina 19 20 65 67 14 15 16 63 64 103 104 105 Introduction 106 107 In most industrialized countries, significant territorial variations have been reported in the utilization of healthcare services. This may reflect an important public health problem since access to 0033-3506/$ - see front matter Q 2004 Published by Elsevier Ltd. on behalf of The Royal Institute of Public Health. doi:10.1016/j.puhe.2004.05.006 PUHE 206—1/7/2004—13:09—SHYLAJA—109721— MODEL 6 — pp. 1–8 108 109 110 111 112 ARTICLE IN PRESS 2 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 F 125 O 124 Methods O 123 PR 122 This French system leads to access to medical resources that is not entirely equitable, since poorer people have restricted access to specialty care.15 The present study had three main objectives. First, we used logistic multilevel models16 and the recently developed median odds ratio (MOR)17 to quantify the variations in specialty care utilization from one area to another. Since social segregation18 and an unequal distribution of specialist physicians19 have long been known to prevail in France, our second objective was to examine whether the odds of consulting a specialist were related to the density of specialists and to the area-level percentage of highly educated individuals. Thirdly, we sought to determine whether the contrast between rural and urban environments with respect to the odds of consulting a specialist could be attributed to these area-level factors, and whether these contextual factors were sufficient to account for the territorial variations in the utilization of specialty care. The analyses used a representative sample of the French population made up of individuals aged 18 – 75 years ðn ¼ 12; 435Þ enrolled in a 1999 telephone survey by the National Institute for Prevention and Health Education (INPES).20 In this survey, the response rate was 0.69. TE D 121 EC 119 120 R 118 R 117 O 116 C 115 medical resources should be made equal wherever individuals reside. A large number of studies depended on the contrast between urban and rural areas to describe these territorial variations in utilization of healthcare services.1 Many of these studies reported that utilization was particularly reduced in rural compared with urban settings with regard to specialty care services.2 – 5 The lower utilization of physician services in rural areas may be due to the shorter supply of physicians in these areas, and to attitudes and beliefs associated with the lower socio-economic status of rural settings. Several studies have investigated whether the area-level supply of physicians and socio-economic indicators were associated with utilization and related outcomes.6,7 Certain studies found some effects of the area-level density of physicians on the odds of consulting,8,9 whereas others found little or no such effects.10 – 13 Reduced utilization of specialty care has also been reported in socio-economically deprived areas (after adjustment for the individual-level socio-economic status).13 Of particular interest for the present analysis are the few studies that examined whether a significant proportion of the urban/rural contrast in the utilization of physician services was attributable to these arealevel factors of physician supply and socio-economic deprivation. For example, one US study of Medicaid beneficiaries reported that rural individuals had less access to specialty mental health care than urban dwellers, and found that this difference was largely explained by variations in the supply of specialty mental health providers.3 However, this study suffers from major methodological limitations as it did not use multivariate methods to control for the effects of other factors influencing utilization, nor did it use statistical methods (such as multilevel models) to take the hierarchical structure of the data into account. In our study, while addressing these shortcomings, we examined the impact of the number of specialists per 100,000 inhabitants as a proxy for accessibility to specialists,10,11 and looked into the effect of the area-level percentage of highly educated individuals on the odds of consulting a specialist. In France, patients may consult any physician of their choice (general practitioner (GP) or specialist) at any time and as frequently as they wish (although higher fees prevail for specialists). As a general rule, patients have to pay for outpatient care services at the point of delivery, and later obtain partial reimbursement from the social security system.14 User charges that are not reimbursed in this way may be refunded by supplementary elective health insurance. N 114 U 113 B. Chaix et al. Data Individuals were asked about the number of times over the previous 12 months they had consulted, for health concerns of their own, a psychiatrist, psychologist or psycho-analyst; a gynaecologist; an acupuncturist, mesotherapist or osteopath; or any other specialist (the following examples were given to the surveyed individuals: a dermatologist; a paediatrician; and an allergist). These consultations were totalled and three binary variables were defined to indicate whether the individual in question saw a specialist at least once (occasionally), at least four times (regularly) or at least six times (frequently) over the previous 12 months. People were also asked about the number of times they saw a GP over the same period. Regarding health status, we first considered whether the individual reported a chronic disease and whether he was disabled. Secondly, four of the scales of the Duke Health Profile (based on a 17-item generic questionnaire21) were used as continuous variables: physical health, mental PUHE 206—1/7/2004—13:09—SHYLAJA—109721— MODEL 6 — pp. 1–8 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 ARTICLE IN PRESS Area-level determinants of specialty care utilization in France 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 In order to confirm the previously reported socioeconomic differences in access to specialists and compare them with access to GPs in a country with universal health insurance, mean numbers of consultations with GPs and specialists were computed for ordered socio-economic classes (education, occupation, income). The variations were put through the non-parametric Jonckheere-Terpstra test. Multilevel logistic models16 (with individuals nested within areas) containing individual factors (whether these turned out to be significant or not) were fitted to the data for the odds of consulting a specialist occasionally, regularly and frequently (model 1). In order to quantify the heterogeneity between areas in utilization of specialty care on the OR scale, we used Larsen’s MOR.17 If we choose two individuals with similar covariates in two different areas at random and computed the OR between the individual at lowest risk and the individual at highest risk, the MOR is defined as the median value of the distribution of this OR. The MOR can be directly computed from the area-level variance of the multilevel models. In model 2, we introduced the size of the municipality of residence. In model 3, we also introduced the two area-level variables, but only retained them when they were significantly associated with the outcomes. At each step, arealevel residuals were estimated. The fully adjusted models were stratified by gender to determine whether area-level effects differed between males and females. For confirmation, the analyses were repeated for females without taking consultations with gynaecologists into account, allowing for a better comparison with the results for males. The parameters of the multilevel models were estimated using MLwiN 1.2 software (Institute of Education, London). The ORs and their 95% confidence intervals (CI) were computed. F 237 285 O 236 282 284 Data analysis O 235 281 283 PR 234 medium-high, high) with the 15th, 50th, and 85th percentiles as cut-off points. TE D 233 EC 231 232 R 230 R 229 O 228 C 227 health and perceived health (range: 0 – 100), with higher scores indicating better health; and disability (range: 0 – 100), with higher scores indicating more acute dysfunction. Finally, as an additional proxy for health status, we took the number of GP consultations over the previous 12 months into account. With regard to socio-economic status, we divided educational achievement into three categories, the intermediate category comprising individuals who only graduated from secondary school. Monthly household income was adjusted for household size, and then divided into four categories (e610 or less, e611 – 1100, e1101 – 1350 and above e1351/person). With regard to occupational status, we differentiated among farmers, craftsmen-shopkeepers, blue-collar workers, lower-level white-collar workers, intermediate professions and upper-level white-collar workers. We also took employment status (inactivity, unemployment, government-subsidized employment, full-time work or part-time work) and marital status (never married, married, divorced or widowed) into account. In order to distinguish rural from urban contexts, we classified the size of the municipality of residence into four categories: rural municipalities; small towns (population 2000 – 20,000); medium-sized towns (population 20,000 – 200,000); and larger cities. Regarding the area-level variables of interest, the level of accessibility to specialists was measured by the number of specialists per 100,000 people, as obtained from the French Ministry of Health. Using census data, we defined the socio-economic level of the context as the percentage of residents with some higher education (university degree or equivalent). These variables were defined at the level of French administrative ‘departments’. Mainland France (excluding overseas territories) is subdivided into 95 administrative ‘departments’, referred to below as areas of residence. In 1999, between 75,000 and 2,500,000 individuals resided in each of these areas. To verify that departments were homogeneous with respect to area-level variables, we considered the 329 subdepartmental administrative areas and computed intradepartmental correlation coefficients in order to measure the correlation of an area-level variable between subdepartmental areas belonging to the same department.22 These coefficients were very high (0.50 for specialist density and 0.67 for mean educational level) and highly significant ðP , 0:0001Þ; indicating that it is relevant to measure these area-level variables at the departmental level. Each area-level variable was divided into four categories (low, medium-low, N 226 U 225 3 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 Results 329 330 In our study sample, 53% of the individuals had consulted a specialist occasionally, 21% regularly and 9% frequently. The mean number of consultations with a GP decreased with increasing socioeconomic status of the individual (Fig. 1). Conversely, the mean number of consultations with PUHE 206—1/7/2004—13:09—SHYLAJA—109721— MODEL 6 — pp. 1–8 331 332 333 334 335 336 ARTICLE IN PRESS 4 B. Chaix et al. 337 393 338 394 339 395 340 396 341 397 342 398 343 344 399 400 345 401 346 402 347 403 348 404 349 405 350 406 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 381 386 387 388 389 390 391 392 C N 385 Model for consulting a specialist occasionallya Model for consulting a specialist regularlya Model for consulting a specialist frequentlya F 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 437 Table 1 Variations between areas in the utilization of specialist physicians, as estimated from multilevel logistic models with individual-level variables. U 383 384 407 408 436 O 380 382 O 358 O 357 compared with people living in rural municipalities (Table 2, model 2). When including area-level variables in this model taking males and females together, the percentage of highly educated individuals showed no association with consulting a specialist occasionally, and was therefore removed from the model (Table 2, model 3). A dose-response relationship indicated that the odds of occasional consultation increased with the area-level density of specialists (OR 1.25, 95% CI 1.04 – 1.52 for medium-high density, OR 1.36, 95% CI 1.10 –1.68 for high density, compared with areas with a low density). It is notable that when the area-level density of specialists was added to the model, the odds of consulting a specialist occasionally were no longer significantly higher for residents of large cities than for those of rural municipalities. When we shifted from model 1 to model 3, the area-level unexplained variations decreased by 39% (Table 2). The MOR decreased from 1.20 to 1.15, indicating that some part of the variability between areas had been explained. The area-level residuals from model 1 and model 3 were plotted on Fig. 2 in increasing values from left to right. This figure shows the decrease in the variance of the area-level PR 356 a specialist increased with increasing socio-economic status. Multilevel logistic models indicated that there were weak but significant variations between areas in the odds of consulting a specialist (Table 1). The magnitude of area-level variations was stronger for regular consultations than for occasional consultations, and was stronger still for frequent consultations. In the empty model for occasional consultations, the MOR was equal to 1.20 (Table 1). When selecting two individuals in two different areas at random, the OR between the individual at lowest risk and the individual at highest risk was above 1.20 in half of the cases, indicating a certain level of heterogeneity in consulting behaviour between areas. The MOR increased to 1.22 for regular consultations and 1.26 for frequent consultations, indicating a higher heterogeneity between areas for patterns of frequent utilization of specialty care. After adjustment for health needs and sociodemographic factors, the odds of consulting a specialist occasionally were higher for people living in medium-sized towns (OR 1.18, 95% CI 1.01 –1.38) or large cities (OR 1.20, 95% CI 1.04 – 1.38) TE D 355 EC 354 R 353 Figure 1 Number of consultations of general practitioners and specialists per capita over the prior 12 months, France, 1999. R 351 352 Area-level variance s2u0 (SE) Median odds ratio 0.036 (0.012)** 0.044 (0.016)** 0.057 (0.020)** 1.20 1.22 1.26 438 439 440 441 * P , 0:05; * * P , 0:01: SE, standard error. models were adjusted for age, sex, education, income, occupation, employment and marital status. a Consulting occasionally, regularly and frequently were defined as having consulted at least one, three and six times, respectively, over the prior 12 months. PUHE 206—1/7/2004—13:09—SHYLAJA—109721— MODEL 6 — pp. 1–8 442 443 444 445 446 447 448 ARTICLE IN PRESS Area-level determinants of specialty care utilization in France 449 450 Table 2 Impact of the rural/urban status of municipality of residence and area-level factorsa on the odds of consulting a specialist at least once over the prior 12 months. Fully adjusted odds ratios (and 95% confidence intervals), France, 1999. 451 452 5 Model 1b Variable name 453 Model 2b c OR (95% CI) (95% CI) (95% CI) 508 OR (95% CI) 454 459 460 461 462 463 464 465 466 467 468 469 470 Random components s2u0 (SE) 0.97 1.18 1.20 (0.83– 1.15) (1.01– 1.38) (1.04– 1.38) s2u0 (SE) MOR 0.036** (0.012) 1.20 s2u0 (SE) MOR 0.031** (0.010) 1.18 * P , 0:05; * * P , 0:01: OR, odds ratio; CI, confidence interval; SE, standard error; MOR, median odds ratio. a The area-level percentage of highly educated individuals was not significant in the model for both genders, so so it was removed from the model. b Models 1–3 were adjusted for age, sex, education, income, occupation, employment and marital status. c For 100,000 inhabitants: low, ,90.5; medium– low, 90.5 – , 132; medium–high, 132– , 201; high, $201. 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 PR Beyond the barriers associated with individual socio-economic status, we found that area-level variables are associated with the utilization of specialty care; specifically, the density of specialists among males, and the percentage of highly educated individuals among females. One strength of our analysis was that our models were adjusted for more individual health variables than in many previous studies.23,24 However, our study had a few limitations that should not be overlooked. First, we used self-reported data. These may be subject to memory bias since individuals had to remember the number of times they visited a specialist over a long period of time (12 months). Nevertheless, there is no evidence to TE D 482 EC 481 R 479 480 Discussion R 478 residuals from model 1 to model 3. The parameter of variance persisted in differing significantly from zero in the final model (Table 2, model 3). In estimating the models among males, we found that the percentage of highly educated individuals showed no correlation with the utilization of specialty care (Table 3), whereas the density of specialists did. The strength of association was stronger for regular consultations (OR 1.72, 95% CI 1.14 – 2.58 for a high compared with a low density of specialists) than for occasional consultations (OR 1.53, 95% CI 1.21 – 1.94), and was stronger still for frequent consultations (OR 2.84, 95% CI 1.62 – 4.99). Among females, area-level variables were not significantly associated with occasional consultations (Table 3). In the models for females for regular consultations and frequent consultations, the density of specialists was not significant as it was for males; however, the odds of consulting a specialist increased with the percentage of highly educated individuals. The strength of association was stronger for frequent consultations (OR 1.72, 95% CI 1.31 –2.26 for a high compared with a low percentage of highly educated individuals) than for regular consultations (OR 1.58, 95% CI 1.20 – 2.09). Strengths of association of a comparable magnitude were found among females when the analyses were repeated, without taking consultations with gynaecologists into account. Overall, therefore, arealevel variables had a weaker impact on consulting behaviour for females than for males. 514 515 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 O 477 s2u0 (SE) MOR 0.022* (0.008) 1.15 549 550 C 476 (0.88 –1.30) (1.04 –1.52) (1.10 –1.68) 551 552 N 475 513 517 1.07 1.25 1.36 553 554 U 474 (0.82 –1.14) (1.01 –1.37) (0.97 –1.30) 516 471 472 473 0.97 1.18 1.13 F 458 511 512 O 457 509 510 Municipality of residence (compared with rural municipality) Small town Medium-sized town Large city Number of specialistsc (compared with low) Medium–low Medium–high High O 455 456 506 507 Model 3b OR 505 555 556 557 Figure 2 Area-level residuals from the individual-level model (model 1) and the final model (model 3), France, 1999. PUHE 206—1/7/2004—13:09—SHYLAJA—109721— MODEL 6 — pp. 1–8 558 559 560 ARTICLE IN PRESS 6 561 562 563 B. Chaix et al. Table 3 Gender-specific impact of area-level density of specialists and percentage of highly educated individuals on the odds of consulting a specialist occasionally, regularly or frequently (at least one, three or six times, respectively, over the prior 12 months). Fully adjusted odds ratios (and 95% confidence intervals), France, 1999. 564 565 For consulting a specialist occasionallya For consulting a specialist regularlya For consulting a specialist frequentlya OR OR OR 566 Among males Percentage of highly educated individuals Density of specialistsc Low Medium–low Medium–high High 574 575 576 577 578 579 580 581 582 583 584 585 586 587 Among females Percentage of highly educated individualsd Low Medium–low Medium–high High Density of specialists Non-significantb Non-significantb 1.00 1.13 1.36 1.53 1.00 1.31 1.56 1.72 1.00 1.49 2.53 2.84 (0.89– 1.43) (1.09– 1.71) (1.21– 1.94) – – – – Non– significantb 601 602 603 604 605 606 607 608 609 610 611 612 Principal findings 613 614 615 616 (0.91–1.38) (1.02–1.55) (1.20–2.09) 1.00 1.17 1.24 1.72 Non–significantb 629 630 631 632 634 (0.92–1.47) (0.98–1.57) (1.31–2.26) within some areas rather than others. The context dependence of this healthcare utilization behaviour was partly attributable to the difference between urban areas and settings that were more rural in nature. However, we did observe that the contrast in specialty care utilization between urban and rural areas could be explained by other area-level variables, namely the density of specialists and the socio-economic level of the area. Specialty care utilization appeared to be associated with different area-level variables among males and females. Among males, the odds of consulting a specialist increased with the area-level density of specialists. Among females, such odds increased with the area-level percentage of highly educated individuals. In comparison with the standards of contextual analysis for such large areas, associations were strong and outstandingly linear. The two area-level variables investigated here may be related to different processes operating at the area level. The independent effect of the density of specialists may stem from several mechanisms. First, the distance to the nearest specialist is likely to be greater in areas with a low density of specialists, thereby impeding access to them.9 Secondly, it may also be more difficult to get TE D EC 599 600 R 598 R 597 suggest that the accuracy of recollection might be lower in low-density areas or in low-educated areas, after adjustment for individual factors and type of municipality of residence. Secondly, due to the original INPES questionnaire, consultations with psychologists or psycho-analysts (who are not considered to be physicians), and of acupuncturists (who are registered as GPs in France) had to be taken into account in the outcome variable. Thirdly, we defined areas of residence in terms of French ‘departments’, which are quite large areas. Thus, the area-level indicators (density of specialists and percentage of highly educated individuals) were rather crude. However, considering the administrative subdivisions of these departments, we observed that the subdepartmental areas belonging to the same department were similar to a significant degree with respect to the area-level variables investigated. Such intradepartmental homogeneity indicates that it is meaningful to conduct the analysis at the departmental level. O 596 628 (0.90–2.47) (1.51–4.26) (1.62–4.99) OR, odds ratio; CI, confidence interval. a Models were adjusted for age, sex, education, income, occupation, employment, marital status, and type of municipality of residence. b Area –level variables that were not significant were removed from the models. c Density of specialists per 100,000 inhabitants: low: ,90.5; medium–low: 90.5– , 132; medium–high: 132– , 201; high: $201. d Percentage of highly educated individuals: low, ,5.1%; medium–low, 5.1%– , 7.4%; medium– high, 7.4– , 12.0%; high, $12.0%. C 595 (0.94–1.82) (1.09–2.23) (1.14–2.58) 1.00 1.12 1.25 1.58 Non–significantb N 594 623 624 633 U 593 621 626 Non-significantb 589 591 592 620 627 588 590 619 625 O 573 (95% CI) Non-significantb PR 572 (95% CI) F 569 (95% CI) O Variable name 571 618 622 567 568 570 617 After adjustment for several individual-level variables, we observed that specialty care utilization, especially at high levels of consumption, clustered PUHE 206—1/7/2004—13:09—SHYLAJA—109721— MODEL 6 — pp. 1–8 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 ARTICLE IN PRESS Area-level determinants of specialty care utilization in France 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 F 685 Acknowledgements O 684 730 Utilization of specialty care appears to be related to the density of specialists among males, and to the area-level educational level among females. These geographic variations in the utilization of specialty care suggest potential risks of underuse and inappropriate use of specialty care. On one hand, underuse of specialty care in certain areas may result in suboptimal diagnosis and treatment options.26,27 Conversely, in other areas, individuals may frequently self-refer to specialists without regular recourse to GPs, which may lead to a lack of co-ordination in health care.28,29 Policies may need to be developed to address potential problems of access to specialty care,30,31 and educational programmes instituted to clarify the respective roles of GPs and specialists. O 683 729 We gratefully thank the National Institute for Prevention and Health Education for providing the data for the present study. The first author carried out this work with a doctoral grant, and a grant from the French Ministry of Research (TTT027). The project was supported by the Avenir 2002 programme of INSERM (the French National Institute of Health and Medical Research). PR 682 Conclusion TE D 681 EC 679 680 R 678 R 677 O 676 C 675 an appointment with a specialist in these areas because of their heavier workload.8 Thirdly, there may be a higher physician-induced demand in high medical density areas.25 The independent effect of the percentage of highly educated individuals is likely to stem from different mechanisms. Since we adjusted for several socio-economic indicators at the individual level, this effect may result from the fact that individuals residing in more socially advantaged areas have different beliefs, expectations and attitudes regarding the healthcare system, especially regarding the differences between GPs and specialists. One hypothesis to account for differences in area-level predictors of specialty care utilization for males and females is related to the fact that they have very different attitudes regarding specialty care utilization. In the model for occasional consultations that includes individual and contextual factors, the OR for being a female compared with a male was equal to 6.44 ðP , 0:0001Þ; and was still significant when consultations with gynaecologists were excluded. Males may feel the need to consult with a specialist much less frequently than females. Therefore, difficulties of access to specialists, as expressed by a low density of specialists in the area of residence, may discourage males from consulting a specialist. Females, on the other hand, whether because of their regular need to visit gynaecologists or because they may be more exposed to health information through the media (e.g. the women’s press), may be much more accustomed to consulting a specialist. They may be particularly sensitive to the common values, beliefs and expectations shared in the context of their place of residence, which may have been captured in our study in the area-level percentage of highly educated individuals. The data available did not allow us to confirm this hypothesis, although further investigation is clearly warranted. We did observe that the area-level effects on consulting patterns were stronger for regular consultations than for occasional consultations, and were stronger still for frequent consultations for both genders. This validates our findings regarding area-level effects. On the other hand, area-level effects were found to be weaker among females. There is no reason to expect that, for example, males and females differed in their ability to recall whether they had consulted at least once over the previous 12 months. Rather than attribute it to a measurement error, this difference in the magnitude of the area-level effects could be due to the fact that different area-level processes are involved among males and females. N 674 U 673 7 References 1. Blazer DG, Landerman LR, Fillenbaum G, Horner R. Health services access and use among older adults in North Carolina: urban vs rural residents. Am J Public Health 1995;85: 1384—90. 2. Rosenthal TC, Fox C. Access to health care for the rural elderly. JAMA 2000;284:2034—6. 3. Lambert D, Agger MS. Access of rural AFDC Medicaid beneficiaries to mental health services. Health Care Financ Rev 1995;17:133—45. 4. Halldorsson M, Kunst AE, Kohler L, Mackenbach JP. Socioeconomic differences in children’s use of physician services in the Nordic countries. J Epidemiol Commun Health 2002; 56:200—4. 5. Casey MM, Thiede Call K, Klingner JM. Are rural residents less likely to obtain recommended preventive healthcare services? Am J Prev Med 2001;21:182—8. 6. Parchman ML, Culler SD. Preventable hospitalizations in primary care shortage areas. An analysis of vulnerable Medicare beneficiaries. Arch Fam Med 1999;8:487—91. 7. Saag KG, Doebbeling BN, Rohrer JE, Kolluri S, Mitchell TA, Wallace RB. Arthritis health service utilization among the elderly: the role of urban-rural residence and other utilization factors. Arthritis Care Res 1998;11:177—85. PUHE 206—1/7/2004—13:09—SHYLAJA—109721— MODEL 6 — pp. 1–8 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 ARTICLE IN PRESS 8 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 TE D 814 815 816 817 818 819 EC 820 821 822 R 823 824 825 R 826 827 O 828 829 C 830 835 836 U 834 N 831 832 833 F 788 19. Lucas-Gabrielli V, Tonnellier F. Déserts médicaux ou zones défavorisées? Démographie médicale et indicateurs de besoins. Technologie et Santé 2001;45:32—8. 20. Guilbert P, Baudier F, Gautier A, Arwidson A, Janvrin P, Baromètre M. Baromètre Santé 2000. Méthodes. Vanves; 2001. Editions CFES. 21. Guillemin F, Paul-Dauphin A, Virion JM, Bouchet C, Briancon S. The DUKE health profile: a generic instrument to measure the quality of life tied to health. Sante Publique 1997;9: 35—44. 22. Leyland AH, Goldstein H. Multilevel modelling of health statistics. Chichester: Wiley; 2001. 23. Birch S, Eyles J, Newbold KB. Equitable access to health care: methodological extensions to the analysis of physician utilization in Canada. Health Econ 1993;2:87—101. 24. Kephart G, Thomas VS, MacLean DR. Socio-economic differences in the use of physician services in Nova Scotia. Am J Public Health 1998;88:800—3. 25. Tussing AD, Wojtowycz MA. Physician-induced demand by Irish GPs. Soc Sci Med 1986;23:851—60. 26. Soloway B. Primary care and specialty care in the age of HAART. AIDS Clin Care 1997;9:37—9. 27. Baker DW, Hayes RP, Massie BM, Craig CA. Variations in family physicians’ and cardiologists’ care for patients with heart failure. Am Heart J 1999;138:826—34. 28. Grumbach K, Selby JV, Damberg C, et al. Resolving the gatekeeper conundrum: what patients value in primary care and referrals to specialists. JAMA 1999;282:261—6. 29. Bodenheimer T, Lo B, Casalino L. Primary care physicians should be coordinators, not gatekeepers. JAMA 1999;281: 2045—9. 30. Bensadon A-C. Perspectives de la Démographie Médicale. Paris: DGS; 2001. 31. Nicolas G, Duret M. Propositions sur les Options à Prendre en Matière de Démographie Médicale. Paris: DGS; 2001. O 787 8. Ettner SL, Hermann RC. Provider specialty choice among Medicare beneficiaries treated for psychiatric disorders. Health Care Financ Rev 1997;18:43—59. 9. Carr-Hill RA, Rice N, Roland M. Socio-economic determinants of rates of consultation in general practice based on the Fourth National Morbidity Survey of General Practices. BMJ 1996;312:1008—12. 10. Earle CC, Neumann PJ, Gelber RD, Weinstein MC, Weeks JC. Impact of referral patterns on the use of chemotherapy for lung cancer. J Clin Oncol 2002;20:1786—92. 11. Hendryx MS, Ahern MM, Lovrich NP, McCurdy AH. Access to health care and community social capital. Health Serv Res 2002;37:87—103. 12. Briggs LW, Rohrer JE, Ludke RL, Hilsenrath PE, Phillips KT. Geographic variation in primary care visits in Iowa. Health Serv Res 1995;30:657—71. 13. Gresenz CR, Stockdale SE, Wells KB. Community effects on access to behavioral health care. Health Serv Res 2000;35: 293—306. 14. Busse R, Dixon A, Healy J. Health care systems in eight countries: trends and challenges. London: London School of Economics and Political Science; 2002. 15. Auvray L, Dumesnil S, Le Fur P. Santé, Soins et Protection Sociale en 2000 [Health, Healthcare and Insurance in 2000] (in French). Paris: CREDES; 2000. 16. Snijders T, Bosker R. Multilevel analysis. An introduction to basic and advanced multilevel modelling. London: Sage; 1999. 17. Larsen K, Petersen JH, Budtz-Jorgensen E, Endahl L. Interpreting parameters in the logistic regression model with random effects. Biometrics 2000;56:909—14. 18. Tabard N. Représentation Socio-économique du Territoire. Typologie des Quartiers et Communes Selon la Profession et l’Activité Économique de Leurs Habitants. Paris: INSEE; 1993. O 786 PR 785 B. Chaix et al. 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 837 893 838 894 839 840 895 896 PUHE 206—1/7/2004—13:09—SHYLAJA—109721— MODEL 6 — pp. 1–8 Access to general practitioner services: the disabled elderly lag behind in underserved areas BASILE CHAIX, PAUL J. VEUGELERS, PIERRE-YVES BOELLE, PIERRE CHAUVIN * * B. Chaix (PhD)1, P. J. Veugelers (PhD)2, P.-Y. Boëlle (PhD)1, P. Chauvin (MD, DSc)1 1 Research Unit in Epidemiology and Information Sciences, National Institute of Health and Medical Research (INSERM U444), France. 2 Department of Community Health and Epidemiology, Dalhousie University, Halifax, Canada. Correspondence: Basile Chaix, INSERM U444, Faculté de Médecine Saint-Antoine, 27 rue Chaligny, 75571 Paris Cedex 12, France, tel. +33 (0)1 44 73 84 43, fax +33 (0)1 44 73 84 62, e-mail : [email protected] Background: Several studies have shown that people living in areas underserved in physicians have reduced odds of consulting. However, beyond the magnitude of this effect averaged for the whole population, policymakers need to know whether specific subgroups faced with transportation difficulties, such as the elderly and especially the disabled elderly, have a particularly restricted access to physicians when residing in underserved areas. Methods: The study sample, representative of the French population aged 18−75 in 1999, comprised 12 405 individuals. Multilevel Poisson models were used to investigate the impact of the area-level density of general practitioners (GPs) on the number of GP consultations reported over the previous 12 months. Results: The mean number of GP consultations over the previous 12 months was 3.8 (standard deviation = 4.9). Multivariate analyses indicated that living in areas underserved in GPs lead to a greater reduction in primary care utilisation for the elderly, and especially for the disabled elderly, than for younger age groups. The disabled elderly had 244% more GP consultations (95% CI: +79%, + 562%) when they lived in areas with high vs. low GP density (defined with the 10th and the 90th percentiles as cut-offs). Conclusion: If further research confirms our findings, this increasingly disturbing public health issue in industrialised countries where populations are ageing will require priority policy measures. Ensuring that elderly people living in underserved areas have adequate access to primary care may prevent future hospitalisations, use of home care services, and institutionalisation. Keywords: Access to care, frail elderly, geography of health, primary health care. In France and in other Western industrialised countries, several studies have shown that the uneven distribution of physicians throughout the country leads to variations in the rate of consultations.1,2 Since the elderly have special transport problems because of their impaired level of mobility,3,4 their access to physician services may be more sharply reduced than average in areas where physician availability is low.5 The validation of this hypothesis would highlight an increasingly disturbing public health issue in industrialised countries where populations are ageing. Implementing policies to address this public health issue would not only be requisite for attaining greater equity in access to healthcare; it may also be cost-efficient since ensuring that the elderly have regular access to physicians may prevent future hospitalisations, use of home care services and institutionalisations.4,6-8 Very few studies have adequately addressed this public health issue despite its importance. Several studies have examined whether the access of the rural elderly to physician services is more restricted than their urban counterparts’.9,10 However, since low physician availability is also often reported in deprived urban areas,11 the rural − urban difference cannot be thought of as an adequate proxy of physician availability. Closer to our topic, one US study has reported that Medicare beneficiaries (aged 65 or over) had a higher probability of using mental health specialty care when they lived in counties with a higher density of psychiatrists.5 However, as the magnitude of this effect was not estimated for the non-elderly, it was not possible to conclude whether the density effect only affected the elderly or the entire population in the same way. This information, which when lacking makes it hard to tailor an adequate public health response, was provided in a German study: the rate of outpatient utilisation of psychiatric facilities was found to be significantly higher when the distance from patients’ place of residence to the facility was short, and this association was about three times stronger among patients over age 75.12 However, this finding was based on univariate analyses, and potential confounders of the distance effect such as the individual socioeconomic status or the rural / urban environment of residence were not considered. 1 While addressing these shortcomings, we chose to focus on access to primary care. Because the regular access to primary care services allows for a continuity of care and a global management of patient health, it is crucial to maintain health of the elderly over the long term, and thus may contribute to reducing the odds of future hospitalisation, use of home care services or institutionalisation.6,7,13 As in most European countries,14,15 the elderly French are unlikely to face major income related barriers in the access to primary care. Indeed, every legal resident in France is entitled to basic health coverage. User charges that are not reimbursed by the national Social Security (6 euros for a GP consultation) are refunded by supplementary elective insurance schemes (in 2000,16 93% of the population carried this extra insurance). However, geographical variations in the density of GPs may lead to inequity of access to primary care. It would be warranted to implement policies to address the issue of the disparities in the availability of primary care services if the whole population were found to be affected to a certain extent, or alternatively if certain subgroups had dramatically reduced odds of using primary care in underserved areas. Accordingly, to identify the top priority subgroups that should be targeted by a policy addressing this public health issue, we investigated the two following questions. Our first objective was to examine whether living in an area underserved in GPs leads to a greater restriction in the access to primary care for the elderly than for younger age groups. Secondly, we tested whether living in an area underserved in GPs affects the whole population of the elderly, or only the mobility impaired, who may suffer specifically from this residential disadvantage. Beyond the size of the medical density effect averaged for the whole population, it is particularly important to quantify the magnitude of this effect for the subgroups that are expected to be particularly at risk, to identify major situations of underutilisation that would require priority interventions. METHODS Data sources We used data collected in 1999 by the French National Institute for Prevention and Health Education (INPES) through the Baromètre Santé survey, a two level (households, individuals) random sample telephone survey (in each selected household, one individual was randomly picked for an interview).17 The response rate was 0.69. The study sample included 12 405 individuals aged 18-75. Each individual reported the number of consultations with GPs he or she had had over the previous 12 months (office visits or house calls) as well as sociodemographic characteristics. Weighting coefficients were computed a posteriori by the INPES to ensure that the sample was representative of the French population. The National Sickness Insurance Fund provided us with the number of GPs per 100 000 inhabitants (range: 69-135) in each of the 95 administrative French departments (henceforth designated as areas of residence). To verify that the departments were homogeneous with respect to the medical density, we considered the 324 subdepartmental administrative areas and computed the intra-department correlation coefficient, which measures the correlation of GP density between sub-departmental areas belonging to the same department.18 This coefficient was very high (equal to 0.50) and highly significant (p < 0.0001). Statistical analysis We first used the nonparametric Jonckheere-Terpstra test19 (implemented with SAS, version 8.02, SAS Institute, Cary, USA) to examine whether there was a monotonic relationship between the mean number of GP consultations reported over the previous 12 months and the area-level number of GPs per 100 000 inhabitants (first divided into quartiles). Multilevel Poisson models18 with individuals nested within areas were then used to investigate the impact of the area-level density of GPs on the number of GP consultations reported over the previous 12 months, while appropriately taking into account the hierarchical structure of the data. Our models were adjusted for several sociodemographic and health characteristics of the individuals (full details about the variables and the way they were coded are given in table 1): age, gender, chronic disease status, disability, Duke health profile scores20 (physical, mental and perceived health, and incapacity), education, occupation, income, employment status, marital status, type of municipality of residence (rural or urban) and gross domestic product per capita in the area of residence (provided by INSEE, the French National Institute of Statistics and Economic Studies). To identify areas where it may be particularly urgent to adopt measures, we defined contrasted classes of areas with respect to the density of GPs: the sample was divided into three categories, with the 10th and the 90th percentiles as cutoffs. Using a fully adjusted model fitted to the whole study sample, we first tested interaction effects between age groups (60−69, 70−75) and area-level density of GPs. Secondly, in each age group taken separately (18−59, 60−69, 70−75), interaction effects were used to estimate whether the density effect was stronger for disabled individuals (defined as those who reported a handicap leading to functional limitations) than for those who were not disabled. Finally, the model was estimated in all age × disability status groups separately. To verify that underconsultation of GPs in areas with a low density of GPs could not be attributed to a higher consultation of specialist physicians in these areas (substitution), we estimated a fully adjusted model in 2 all age × disability status groups with the number of consultations of specialists over the previous 12 months as the outcome variable. Table 1 List of the variables used as adjustment factors in the models Type of variable Categories of the qualitative variablea / unit of the quantitative variable Age Qualitative Less than 30; 30–44; 45–59; 60–69; 70–75 Gender Qualitative Male; female Physical health (Duke scale) Quantitative A score from 0 to 100 (a high score indicates better health) Mental health (Duke scale) Quantitative A score from 0 to 100 (a high score indicates better health) Perceived health (Duke scale) Quantitative A score from 0 to 100 (a high score indicates better health) Disability (Duke scale) Quantitative A score from 0 to 100 (a high score indicates greater dysfunction) Chronic disease status Qualitative Reporting no chronic disease; reporting a chronic disease Disability Qualitative Reporting no handicap; reporting a handicap leading to functional limitations Marital status Qualitative Married; never married; divorced; widowed Educational achievement Qualitative University; secondary school; primary school or less; still at school Employment status Qualitative Full-time employment; part-time employment; subsidised employment; unemployment; other Occupation Qualitative Upper white-collar worker; intermediate; low white-collar worker; blue-collar worker; farmer; craftsman-shopkeeper b Household income per capita Qualitative Over €1351 per person; €1101–€1350; €611–€1100; €610 or less Type of municipality of residence Qualitative Large city (population over 200 000); medium sized town (>20 000–200 000); small town (>2 000–20 000); rural municipality Area-level gross domestic product Qualitative First quartile; second quartile; third quartile; fourth quartile per capita Variable a: The category of reference is in bold. b: Monthly household income was divided by the number of units in the household (estimated with the method of the Organisation for Economic Cooperation and Development). Since some of the subgroups were small, the multilevel models parameters were estimated with the Markov chain Monte Carlo estimation method implemented on MLwiN software (version 1.2, Institute of Education, London), to obtain accurate interval estimates.21 Associations were expressed as percentage differences in the number of consultations (95% confidence intervals were computed). RESULTS In the sample (12 405 individuals aged 18−75), the weighted proportion of individuals aged 60 or over was 0.20. There were 12% of disabled individuals in the under 60 age group, 20% in the 60−69 age group, and 25% in the 70−75 age group. The mean number of consultations with a GP over the previous 12 months was 3.5 (standard deviation (SD) = 4.9) in the under 60 age group, 5.0 (SD = 4.7) in the 60–69 age group, and 5.8 (SD = 4.9) in the 70–75 age group. Figure 1 indicates that a statistically significant, and positive dose-response relationship between the mean number of GP consultations and the area-level density of GPs was only found for the disabled in the 70–75 age group (p = 0.005, bilateral Jonckheere-Terpstra test). A fully adjusted model fitted to the whole sample indicated that women, individuals with poor health status, the unemployed, people with low levels of educational attainment or low income reported a higher number of GP consultations. In this model fitted to the whole sample, interaction effects indicated that the impact of the area-level density of GPs was significantly stronger for individuals in the 60–69 age group than for those in the under 60 age group, and still stronger for those in the 70–75 age group (results not shown). When the model was fitted for each age group separately, the interaction term disability × density of GPs was only found to be strongly significant for individuals in the 70–75 age group, indicating a stronger effect of the density of GPs for the disabled vs. the non disabled in this age group (results not shown). Analyses stratified by disability × age groups (see table 2) confirmed that the disabled elderly (age 70–75) had a markedly higher number of GP consultations when they lived in areas with medium GP density (+115%, 95% CI: +21%, +282%) or high GP density (+244%, 95% CI: +79%, + 562%) vs. low GP density. Such a strong 3 effect was not found in any other group. As indicated in the model for the disabled elderly (table 3), the arealevel unexplained variations diminished by 27% when the contextual variables (type of municipality of residence, gross domestic product per capita, and density of GPs) were added to the model containing individuallevel variables. At each step, the area-level residuals were estimated. These residuals were plotted on figure 2 (where they are represented in an ascending order from left to right). This graph shows that the variance of the area-level residuals decreased when the contextual variables were introduced into the model. The disabled elderly did not have a higher number of consultations of specialists when they lived in areas with a high GP density vs. low GP density (results not shown). Figure 1 Mean number of consultations with general practitioners (GPs) over the previous 12 months according to the area-level density of GPs, France, 1999. Table 2 Effect of the area-level density of general practitioners (GPs) on the number of GP consultations reported over the previous 12 months in all age × disability status groups separately, France, 1999 Both Percent differencesa (95% CI) Disabled Percent differencesa (95% CI) Non disabled Percent differencesa (95% CI) In the under 60 age group Low density areasb Medium density areasb High density areasb (n=9978) 0% (baseline) +2% (-11%, +16%) +14% (-3%, +34%) (n=1172) 0% (baseline) -5% (-32%, +31%) +6% (-30%, +59%) (n=8806) 0% (baseline) +5% (-9%, +21%) +22% (+3%, +44%) In the 60-69 age group Low density areasb Medium density areasb High density areasb (n=1681) 0% (baseline) +15% (-8%, +45%) +26% (-5%, +66%) (n=361) 0% (baseline) +22% (-23%, +93%) +37% (-23%, +141%) (n=1320) 0% (baseline) +17% (-9%, +50%) +28% (-6%, +73%) In the 70-75 age group Low density areasb Medium density areasb High density areasb (n=746) 0% (baseline) +36% (+1%, +83%) +67% (+17%,+139%) (n=182) 0% (baseline) +115% (+21%, +282%) +244% (+79%, +562%) (n=564) 0% (baseline) +22% (-12%, +69%) +40% (-6%, +109%) a: Adjusted for age, gender, Duke Health Profile scores, chronic disease status, disability, marital status, education, employment status, occupation, income, type of municipality of residence and area-level gross domestic product per capita. b: Low density areas contain 10%, medium density areas contain 80% and high density areas contain 10% of the population, with cut-offs equal to 73 and 115 GPs per 100 000 inhabitants. 4 Table 3 Random effects of the multilevel models estimated in all age × disability status groups separately before and after including contextual variables Individual-level modela Model including contextual variablesb In the under 60 age group Disabled Non disabled 0.110 (0.021)*** 0.019 (0.004)*** 0.114 (0.023)*** 0.018 (0.004)*** In the 60-69 age group Disabled Non disabled 0.161 (0.037)*** 0.057 (0.013)*** 0.177 (0.042)*** 0.053 (0.013)*** In the 70-75 age group Disabled Non disabled 0.188 (0.052)** 0.096 (0.022)*** 0.138 (0.044)* 0.093 (0.023)*** * p < 0.01; ** p < 0.001; *** p < 0.0001 a: The individual-level model included age, gender, Duke Health Profile scores, chronic disease status, disability, marital status, education, employment status, occupation and income. b: The contextual model further included type of municipality of residence, area-level gross domestic product per capita and area-level density of general practitioners. Figure 2 Area-level residuals from the individual-level model and from the contextual model for the disabled elderly aged 70–75, France, 1999 DISCUSSION To our knowledge, our study is the first to examine whether living in an area underserved in GPs leads to a greater restriction in the access to primary care for the elderly and especially for the disabled elderly than for younger age groups. Behind a moderate effect of the GP density for the whole population, we found that the disabled elderly were dramatically affected in underserved areas. If our findings can be replicated in other industrialised countries, addressing this public health issue through specific policies will have to be given priority. 5 Limitations of the study and potential biases As the study sample consisted of individuals aged 18–75, we were unable to assess the impact of living in an area with low GP density for individuals over 75. Additional investigation is therefore required to examine whether the magnitude of the medical density effect on access to primary care further increases with age over age 75 for individuals not living in institutions. We must consider whether potential biases may account for the strong effect of the area-level GP density, which was found among the oldest (70–75) disabled in our sample. First, it may be argued that this effect stemmed partly or entirely from a selective migration bias which would occur if individuals with significant health concerns and a resulting high consumption of GP consultations moved from low to high medical density areas.22 However, this bias is unlikely here since we adjusted for a wide set of health indicators. Secondly, GP consultations were self-reported rather than drawn from medical records. However, since there is no reason to suspect that consultations were particularly underreported in low medical density areas, the effect of the GP density is unlikely to result from a measurement error. Main findings The extent to which living in an area with low GP density leads to a reduction in the number of GP consultations reported over the previous 12 months increased with age. Moreover, for the oldest (70–75) individuals in the study sample, we found that the medical density effect was mainly attributable to the disabled in this particular group. Therefore, and after adjustment for a wide set of sociodemographic and health variables, our main finding is that the disabled elderly reported a markedly lower number of GP consultations when they lived in an area with low GP density. This finding raises the following question: can we interpret the lower reported number of GP consultations for the disabled elderly living in underserved areas in terms of underconsultation (underconsultation being defined as a lower use of primary care services than would be recommended based on healthcare needs)? Even if the kind of study undertaken here is not appropriate to decide whether a difference of use between two groups is attributable to underconsultation in one of them or overconsultation in the other, some arguments can be put forward in support of the hypothesis of underconsultation in low density areas. In areas with a medium level of medical density (80% of the sample), the disabled elderly should not be suspected of overconsulting, since they had slightly fewer GP consultations than individuals under 30 after adjustment for sociodemographic and health variables (–10%, 95% CI: –3%, –16%, results not shown in tables). Therefore, in underserved areas where the disabled elderly consulted significantly fewer times than in areas with medium GP density, the disabled elderly may be expected to underconsult to a certain extent: in these underserved areas, they had 48% fewer consultations over the previous 12 months (95% CI: 24%, 66%) than individuals under 30, after adjustment for health needs and sociodemographic factors (results not shown in tables). It is important to notice that the medical density effect among the disabled elderly is not confounded either by the type of municipality of residence (rural or urban) or by the global wealth in the area of residence since our models were adjusted for such potential confounders. Whereas living in a rural municipality vs. a large city had no impact on access to primary care, living in an area underserved in GPs was a barrier to the access to primary care for the disabled elderly. Implications for policy, practice and research It is important to verify whether our findings can be replicated in other industrialised countries. In countries where GP density is lower than in France23 or where a markedly smaller percent of patient-physician contacts takes place at patients’ homes,24-27 living in an area underserved in GPs may affect the access of the elderly to primary care to a greater extent than in France. On the other hand, additional studies comparing the access to care of the elderly and the non elderly would be required for a more comprehensive insight into the interrelated impact of the personal ability to move, the availability of transport means (car, public transport) and the availability of healthcare services. Several policies may be suggested for implementation. A first option would be a policy aimed at reducing geographic disparities in GP density, which have long prevailed in France.28 For instance, financial incentives for physicians to set up their practice in low medical density areas may be suggested, but some analysts have warned that this may not be sufficient.29 It has therefore recently been suggested that a regulation of the place where physicians set up their practice may be required.30 Another different type of policy among other possibilities would be a programme specifically targeted at the disabled elderly living in underserved areas. House calls for health checks may be offered to the disabled elderly living in underserved areas, who would have been identified as underconsulting by the local social services, and approaches used in the British annual health checks of the over 75s to ensure that a high proportion of the elderly had a check should be considered (invitation letter to undergo a check, follow-up of non responders by a telephone call or a visit31,32). 6 Our finding that living in an underserved area affected to a significant extent only the disabled elderly aged 70 or over – namely a small proportion of the population – should not be regarded as a sufficient evidence that a global policy aimed at reducing geographic disparities in the availability of primary care services is unwarranted. Indeed, our analysis stratified by age and disability status may have been unable to identify some other subgroups that may benefit from this policy, such as subgroups with other mobility problems (with no car for example) or with specific needs for regular follow-ups. More broadly, choosing the requisite intervention should be based on a comparative analysis of the cost-effectiveness of each option. Therefore, recommending a definite policy is beyond the scope of the present study. CONCLUSION Our study suggests that the elderly combining a personal disadvantage (impaired mobility) with a residential disadvantage (living in an underserved area) have a dramatically reduced access to primary care. Therefore, if further research confirms our findings, policymakers will be faced with a disturbing public health issue in Europe and North America, even more so as the elderly are a growing fraction of the population. This would justify the high priority rollout of policy measures to ensure that the elderly have an adequate access to primary care, which may prevent future hospitalisations, use of home care services, and institutionalisation. REFERENCES 1 Shannon GW, Bashshur RL, Lovett JE. Distance and the use of mental health services. Milbank Q 1986;64:302-330. 2 Lambert D, Agger MS. Access of rural AFDC Medicaid beneficiaries to mental health services. Health Care Financ Rev 1995;17:133-145. 3 Saag KG, Doebbeling BN, Rohrer JE, Kolluri S, Mitchell TA, Wallace RB. Arthritis health service utilization among the elderly: the role of urban-rural residence and other utilization factors. Arthritis Care Res 1998;11:177-185. 4 Vetter N, George M, Lewis P. A district-wide examination of 75-year olds suggests discrimination in the provision of services. Aging (Milano) 1996;8:205-210. 5 Ettner SL, Hermann RC. Provider specialty choice among Medicare beneficiaries treated for psychiatric disorders. Health Care Financ Rev 1997;18:43-59. 6 Hendriksen C, Lund E, Stromgard E. Consequences of assessment and intervention among elderly people: a three year randomised controlled trial. BMJ (Clin Res Ed) 1984;289:1522-1524. 7 Parchman ML, Culler SD. Preventable hospitalizations in primary care shortage areas. An analysis of vulnerable Medicare beneficiaries. Arch Fam Med 1999;8:487-491. 8 Niefeld MR, Braunstein JB, Wu AW, Saudek CD, Weller WE, Anderson GF. Preventable Hospitalization Among Elderly Medicare Beneficiaries With Type 2 Diabetes. Diabetes Care 2003;26:1344-1349. 9 Blazer DG, Landerman LR, Fillenbaum G, Horner R. Health services access and use among older adults in North Carolina: urban vs rural residents. Am J Public Health 1995;85:1384-1390. 10 Casey MM, Thiede Call K, Klingner JM. Are rural residents less likely to obtain recommended preventive healthcare services? Am J Prev Med 2001;21:182-188. 11 Lucas-Gabrielli V, Tonnellier F. Déserts médicaux ou zones défavorisées? Démographie médicale et indicateurs de besoins. Technologie et Santé 2001;45:32-38. 12 Dilling H, Weyerer S. Incidence and prevalence of treated mental disorders. Health care planning in a small-town-rural region of Upper Bavaria. Acta Psychiatr Scand 1980;61:209-222. 13 Gulliford MC. Availability of primary care doctors and population health in England: is there an association? J Publ Hlth Med 2002;24:292-298. 14 Halldorsson M, Kunst AE, Kohler L, Mackenbach JP. Socioeconomic differences in children's use of physician services in the Nordic countries. J Epidemiol Community Health 2002;56:200-204. 15 McNiece R, Majeed A. Socioeconomic differences in general practice consultation rates in patients aged 65 and over: prospective cohort study. BMJ 1999;319:26-28. 16 Busse R, Dixon A, Healy J, Krasnik A, Leon S, Paris V, et al. Health care systems in eight countries: trends and challenges. London: London School of Economics & Political Science, 2002. 17 Guilbert P, Baudier F, Gautier A, Goubert A, Arwidson P, Janvrin M. Baromètre Santé 2000. Méthodes. Vanves: Editions CFES, 2001. 18 Leyland AH, Goldstein H. Multilevel modelling of health statistics. Chichester: Wiley, 2001. 19 Weller EA, Ryan LM. Testing for trend with count data. Biometrics 1998;54:762-773. 20 Guillemin F, Paul-Dauphin A, Virion JM, Bouchet C, Briancon S. [The DUKE health profile: a generic instrument to measure the quality of life tied to health]. Sante Publique 1997;9:35-44. 21 Browne W. MCMC estimation in MLwiN. London: Center for Multilevel Modelling, Institute of Education, University of London, 2002. 7 22 Gillanders WR, Buss TF. Access to medical care among the elderly in rural northeastern Ohio. J Fam Pract 1993;37:349-355. 23 OECD Health Data 2002. Paris: Organization for Economic Cooperation and Development, 2002. 24 Auvray L, Dumesnil S, Le Fur P. Santé, soins et protection sociale en 2000. Paris: CREDES, 2001. 25 Unwin BK, Jerant AF. The home visit. Am Fam Physician 1999;60:1481-1488. 26 Aylin P, Majeed FA, Cook DG. Home visiting by general practitioners in England and Wales. BMJ 1996;313:207-210. 27 Boerma WGW, Groenewegen PP. GP home visiting in the 18 European countries: adding the role of health system features. Eur J Gen Pract 2001;7:132-7. 28 Tonnellier F. Les inégalités géographiques de densités médicales sont stables depuis plus d'un siècle: l'encombrement médical était déjà dénoncé en 1900. Solidarité Santé: Etudes Statistiques 1991;3:45. 29 Bensadon A-C. Perspectives de la démographie médicale. Paris: DGS, 2001. 30 Nicolas G, Duret M. Propositions sur les options à prendre en matière de démographie médicale. Paris: DGS, 2001. 31 Chew CA, Wilkin D, Glendenning C. Annual assessment of patients aged 75 years and over: general practitioners' and practice nurses' views and experiences. Br J Gen Pract 1994;44:263-267. 32 Brown K, Williams EI, Groom L. Health checks on patients 75 years and over in Nottinghamshire after the new GP contract. BMJ 1992;305:619-621. 8 Reduced use of primary, specialty and preventive care services by individuals residing with persons in poor health BASILE CHAIX, MARYAM NAVAIE-WALISER, CECILE VIBOUD, ISABELLE PARIZOT, PIERRE CHAUVIN * * B. Chaix (PhD)1, M. Navaie-Waliser (DrPH)2, C. Viboud (PhD)3, I. Parizot (PhD)1, P. Chauvin (MD, DSc)1 1 Research Unit in Epidemiology and Information Sciences, National Institute of Health and Medical Research (INSERM U444), France. 2 Center for Home Care Policy and Research, Visiting Nurse Service of New York, New York, U.S.A. 3 Fogarty International Center, National Institutes of Health, Bethesda, Maryland, U.S.A. Correspondence: Basile Chaix, INSERM U444, Faculté de Médecine Saint-Antoine, 27 rue Chaligny, 75571 Paris Cedex 12, France, tel. +33 (0)1 44 73 84 43, fax +33 (0)1 44 73 84 62, e-mail : [email protected] Background: Since household time resources and financial resources for healthcare are primarily spent for the household members with the most urgent health needs, individuals residing with persons in poor health may be at risk of underusing healthcare services. We examined whether they had increased risks of underusing primary, specialty and preventive care. Methods: Data collected in 2000 from a representative sample of 8,210 French individuals aged 18 years or older from 3,810 households were analysed with logistic regression models adjusted for health, demographic and socioeconomic variables. Results: We found that individuals residing with 1 other survey respondent had a higher risk of not using primary care, specialty care and preventive care in the 12 months preceding the study when the health status of the other survey respondent was poorer (fair or alternatively poor vs. good). Furthermore, individuals residing with 2 other survey respondents had a higher risk of not using primary care, specialty care and preventive care in the 12 months preceding the study when they resided with a higher number of respondents in fair or poor health (1 or alternatively 2 vs. 0). Conclusion: Underuse of health services by individuals residing with persons in poor health signals a need for health practitioners to broaden the scope of care beyond their patients, and for policymakers to consider the long term impact of this situation on the healthcare system. Keywords: Family caregivers, family health, health service use. Today it is much more common to find individuals residing with persons in poor health. This is due to medical advances which enable people with serious and chronic illness to survive longer despite their health problems1-3 and to the current trends of healthcare systems to shorten hospital stays and expand outpatient care services4-7 Many individuals residing with persons in poor health play an important part as family caregivers for health care delivery. Because of the hardship of their task, these family caregivers have increased risks of stress,1-3,8-14 distress,4,5 depressive symptoms,3,4,12,14-19 and poor physical health.4,6,12,17,19,20 Public health researchers have extensively investigated the utilisation patterns of the services providing support to family caregivers.7,21,22 However, few studies have examined whether individuals residing with persons in poor health do receive adequate health care for their own health concerns. Since household time resources1,3,4,8,23 and financial resources3,11,24 for healthcare are primarily spent for the members with the most urgent health needs, we expected that individuals residing with persons in poor health were at risk of underusing healthcare services. The literature on this question is very scarce. A North American study has ascertained that caregivers of senile dementia patients had a greater number of recent physician visits and a greater number of prescription medication (for their own health concerns) than their matched non caregiver controls.12 On the other hand, a Californian study of elderly members of a large health maintenance organisation reported no significant difference in routine physical examinations between caregivers and noncaregivers.25 However in both studies, measures of association were not adjusted for the individuals’ health status. Therefore, caregivers’ and noncaregivers’ use of healthcare services cannot be appropriately compared since the two groups are not comparable in terms of their health status and their resulting healthcare needs (see references above). Considering the shortcomings in the literature, (a) we took into account the potential confounding effects of the health status and sociodemographic characteristics; (b) we considered all the adults residing with persons in poor health rather than just the effective family caregivers, so that our findings would have a widespread generalizability; (c) we investigated utilisation patterns of several types of healthcare services. Our study expands past research by examining whether individuals residing with persons in poor health have increased risks of underusing primary, specialty and preventive care. METHODS Source of Data Cross sectional data were collected in 2000 by the French National Institute of Statistics and Economic Studies (INSEE) through a face to face interview survey. Households were randomly drawn from the INSEE census based master sample. Survey questionnaires were completed by 5,413 (79%) out of the 6,824 selected households. Up to 3 persons aged 15 years or older were surveyed in each household. When there were more than 3 persons aged 15 years or older in the household, 3 of them were randomly selected for an interview. During scheduled interview times, 28% of the preselected individuals were absent. Their questionnaires were completed by another household member. Data were collected by trained interviewers using structured survey questionnaires, which captured demographic characteristics, health characteristics, socioeconomic variables including precise financial indicators, and information on healthcare utilisation. For the purposes of this study, surveyed individuals aged under 18 years (n = 464) were excluded from the study sample, so that individuals who may have little decision making power for healthcare utilisation were not included. Individuals who had no other surveyed household member (n = 1,599) were also excluded from the analyses. Twenty-one individuals were further excluded because of incomplete information on healthcare utilisation. In the end, the study sample consisted of 8,210 individuals aged 18 years or older from 3,810 households with 2 or 3 survey respondents. Weighting coefficients were computed by INSEE to ensure that the sample was representative of the French population in terms of age, gender, and employment status. Statistical Analysis Three binary outcome variables based on survey responses were defined. We considered whether each individual had or had not used (a) primary care physician consultations, (b) specialist physician consultations, and (c) preventive care (including preventive medical tests and preventive clinical examinations) in the 12 months preceding the study (1 = no use; 0 = at least one utilisation). Weighted multilevel logistic models26,27 with individuals nested within households were fitted for each outcome variable. Health, demographic and socioeconomic adjustment factors were introduced in the models, including many factors that have been shown repeatedly to be associated with healthcare utilisation. These variables are listed and extensively detailed in table 1. Our purpose was to disentangle the effect of residing with persons in poor health from other interactions between household members, such as mimicry of healthcare utilisation behaviour between household members. Accordingly, for improved model adjustment, we considered whether individuals residing with persons who did not use a given service in the 12 months preceding the study had increased risks of not using that service (see bottom of table 1). Furthermore, we took into account the potential confounding effect of other-reported rather than self-reported health service utilisation for the individuals who were absent at the time of the interview: the models were adjusted for the presence/absence of the individuals. For every individual aged 18 years or older, we considered the other persons aged 15 years or older surveyed in their household, to define the explanatory variable of interest (health status of the other persons surveyed in the household). Therefore, a given individual was taken into account both as an individual from the study sample and as a household member for 1 or 2 other individuals in the sample. Separate regression models were fitted for individuals residing with 1 other survey respondent and for those residing with 2 other survey respondents. The models were used to test the following hypotheses: (a) Individuals residing with 1 other survey respondent had a higher risk of not using healthcare services in the 12 months preceding the study when the health status of the other respondent was poorer (fair or alternatively poor vs. good). (b) Individuals residing with 2 other survey respondents had a higher risk of not using healthcare services in the 12 months preceding the study when they resided with a higher number of respondents in fair or poor health (1 or alternatively 2 vs. 0). All multilevel model parameters were estimated with MLwiN 1.2 software (Institute of Education, London, UK). Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were computed. Table 1 Variables used as adjustment factors in regression models Variables Age Gender Marital status Health status Chronic disease Sick leave in the previous 12 months Received home assistance in the previous 12 months Educational achievement Employment status Health insurance status Number of other respondents with only basic insurance Unemployment allowance recipient Allowance recipient Unearned income recipient Household income per capitab Housing tenure Score for ownership of several goodsc Categories of the variable Under 30 ; 30-44; 45-59; 60 or over Malea; female Marrieda; never married; divorced; widowed Gooda; fair; poor Noa; yes Nonea; one week or less; one week to 1 month; more than 1 month Noa; yes a Primary school or lessa; secondary school; university; still a student Workinga; unemployed; student; retired; housewife; other Supplementary insurancea; only basic insurance; fully insured for medical reasons For individuals residing with 1 other respondent: 0a; 1. For individuals residing with 2 other respondents: 0a; 1; 2 Noa; yes Noa; yes Noa; yes First quartilea; second quartile; third quartile; fourth quartile Owner occupiera; tenant; non-rent paying occupant Low score (4 goods or less out of 12)a; mid-low score (5 or 6 goods); midhigh score (7 or 8 goods); high score (9 goods or more) Noa; yes Financial problems for heating the home Family status Couple with childrena; couple without children; single parent family More than 3 persons aged 15 years or Noa; yes older in the householdd Absence of the individual at the time Noa; yes of the interview Number of other respondents who did For individuals residing with 1 other respondent: 0a; 1. For individuals residing with 2 other respondents: 0a; 1; 2 not use the service a: This category is the reference category. b: Household income was adjusted for household size. c: Twelve goods were considered: refrigerator, freezer, refrigerator-freezer, washing machine, microwave oven, television set, hi-fi system, Minitel (electronic directory), cell phone, car, laptop, desktop computer. d: The variable was only introduced in the model for individuals residing with 2 other respondents. RESULTS In the sample, the weighted proportion of women was 0.50. The mean age was 45 (standard deviation = 17). Twenty-seven percent of the individuals were in poor health and 45% in fair health. Eighteen percent of the individuals did not use primary care services and 45% did not use specialty care services in the 12 months preceding the study. Fifty-eight percent of the individuals did not use preventive care in the 12 months preceding the study. In all our models, individuals residing with survey respondents who did not use a given healthcare service had increased risks of not using that service in the 12 months preceding the study (table 2). Individuals residing with 1 other survey respondent had a higher risk of not using healthcare services in the 12 months preceding the study when the health status of the other survey respondent was poorer (fair or alternatively poor vs. good) (table 2 and figure 1). The association was linear and significant for each of the 3 types of healthcare services (i.e., primary, specialty and preventive care). Moreover, individuals residing with 2 other survey respondents had a higher risk of not using healthcare services in the 12 months preceding the study when they resided with a higher number of respondents in fair or poor health (1 or alternatively 2 vs. 0) (table 2 and figure 1). The association was linear and significant for each of the 3 types of healthcare services. Table 2 Adjusted effect of (a) residing with persons in poor health and (b) residing with non users of healthcare services, on the risk of not using primary, specialty and preventive care in the 12 months preceding the study. Fully adjusted odds ratio (OR) and 95% confidence interval (CI) For individuals residing with 1 other respondent (n = 5423) Health status of the other respondent Good Fair Poor Number of other respondents who did not use the service Zero One For individuals residing with 2 other respondents (n = 2787) Number of other respondents in poor or fair health Zero One Two Number of other respondents who did not use the service Zero One Two a: Adjusted for all the factors listed in table 1. *p < 0.01; **p < 0.001 No primary care in the previous 12 months a OR 95% CI No specialty care in the previous 12 months a OR 95% CI No preventive care in the previous 12 months a OR 95% CI 1.00 1.56** (1.21, 2.01) 1.89** (1.39, 2.56) 1.00 1.39** (1.16, 1.67) 1.69** (1.36, 2.10) 1.00 1.34* (1.11, 1.61) 1.67** (1.34, 2.07) 1.00 3.88** (2.92, 5.17) 1.00 1.38* (1.13, 1.67) 1.00 2.92** (2.45, 3.50) 1.00 1.24 1.69* (0.83, 1.86) (1.15, 2.48) 1.00 1.65* (1.13, 2.41) 1.77* (1.21, 2.58) 1.00 1.28 (0.97, 1.68) 1.70** (1.27, 2.26) 1.00 3.35** (2.34, 4.79) 5.52** (3.27, 9.34) 1.00 1.72* (1.22, 2.41) 2.60** (1.86, 3.63) 1.00 2.20** (1.47, 3.29) 5.33** (3.73, 7.61) DISCUSSION Our study addresses an important topic that has received minimal attention in the scientific literature, namely the utilisation of healthcare services by individuals residing with persons in poor health. Building on earlier literature, the study provides a broader outlook by showing that residing with persons in poorer health or with a higher number of persons in fair or poor health has adverse and dose-response effects on the likelihood of using 3 different types of healthcare services (primary, specialty and preventive care). Limitations of the study There are several limitations to our study. First, for certain individuals in the study sample, we did not have information for all the household members (household residents aged under 15 years and certain individuals in households where there were more than 3 persons aged 15 years or older were not surveyed). Survey data with information on all the household members would be useful to obtain more accurate estimates of the risks incurred by individuals residing with persons in poor health. Figure 1 Adjusted effecta of residing with persons in poor health on the risk of not using primary, specialty and preventive care in the 12 months preceding the study. a: Odds ratios are adjusted for all the factors listed in table 1. Secondly, utilisation of healthcare services was other-reported rather than self-reported for the preselected individuals absent at the time of the interview. The inclusion in models of a dummy variable for the presence/absence of the individuals indicated that the individuals who did not personally complete the survey questionnaire had a higher risk of being classified as non users of specialty care (the effect was not significant for primary care and preventive care). Therefore, our estimates of the percentage of individuals who did not use specialty care in the 12 months preceding the study may be biased towards overestimation. However, the impact of residing with persons in poor health on specialty care utilisation remained unchanged after adjusting the model for the presence/absence of the individuals. Interpretation of the findings Several causal pathways may be suggested for the associations between residing with persons in poor health and the utilisation of healthcare services. One, individuals residing with persons in poor health may have to spend less money for their own health to allow for the increased health expenses of their ill household members. The financial barrier may be reinforced because individuals residing with persons in poor health may consider spending money for their healthcare unwarranted in view of the more serious and urgent healthcare needs of their ill household members. Two, other mechanisms that are not directly related to financial resources may also play a part, i.e., residing with ill persons may be time consuming and draining on affective resources. The caregiving literature reports that family caregivers experience subjective and objective burdens13,18,21,22,28-32 leading to the disruption of daily life and the restriction of activity.3-5,12,16,33-35 Therefore, certain individuals residing with persons in poor health may be objectively and subjectively too overburdened by their caregiving activity to mind their own health.23,36 Finally, individuals residing with persons in poor health may downplay the importance of their own health problems in view of the problems of their ill household members. Therefore, they may have a lower than expected utilisation of healthcare services. Our findings may be generalized to the entire population of adults residing with persons in poor health, and not only to the effective family caregivers. At least 2 of the 3 aforementioned causal pathways may affect individuals residing with persons in poor health, whether they provide effective care or not. Future research should compare the utilisation of healthcare for caregivers and non caregivers residing with ill persons. Implications for policy and practice We identified a risk factor for underuse of several types of healthcare services, which has almost never been investigated in Europe or in North America. Findings similar to the ones reported here may be expected in other industrialised countries, albeit with minor changes due to differences in the healthcare systems. In a public health perspective, underuse of healthcare services by individuals residing with persons in poor health signals a need for health practitioners to broaden the scope of care beyond the patients themselves and to move toward a household centred model of care. For example, in accordance with a study that has underscored that primary care physicians are in a good position to identify caregivers at risk,20 physicians may be reminded to turn their attention to the individuals residing with their very ill patients. In addition, policymakers should consider the long term impacts of the situation described in the present study on the healthcare system. First, healthcare costs may be higher in an intervention driven model of care than in a prevention driven model of care where individuals residing with persons in poor health could benefit from the regular use of ambulatory care. Secondly, many individuals residing with persons in poor health play an important role as family caregivers. Their underuse of healthcare may not allow them to stay healthy in the long run and may lead to the increased use of the formal care system by the carereceiving household members or to the institutionalisation of these carerecipients. Therefore, tailoring policies to ensure that individuals residing with persons in poor health could benefit from the regular use of ambulatory care including preventive care may be a cost saving strategy. REFERENCES 1 Tak YR, McCubbin M. Family stress, perceived social support and coping following the diagnosis of a child's congenital heart disease. J Adv Nurs 2002;39:190-8. 2 Hamlett KW, Pellegrini DS, Katz KS. Childhood chronic illness as a family stressor. J Pediatr Psychol 1992;17:33-47. 3 Pearlin LI, Mullan JT, Semple SJ, Skaff MM. Caregiving and the stress process: an overview of concepts and their measures. Gerontologist 1990;30:583-94. 4 Weitzner MA, Haley WE, Chen H. The family caregiver of the older cancer patient. Hematol Oncol Clin North Am 2000;14:269-81. 5 Schumacher KL, Dodd MJ, Paul SM. The stress process in family caregivers of persons receiving chemotherapy. Res Nurs Health 1993;16:395-404. 6 Navaie-Waliser M, Feldman PH, Gould DA, Levine C, Kuerbis AN, Donelan K. When the caregiver needs care: the plight of vulnerable caregivers. Am J Public Health 2002;92:409-13. 7 Emanuel EJ, Fairclough DL, Slutsman J, Alpert H, Baldwin D, Emanuel LL. Assistance from family members, friends, paid care givers, and volunteers in the care of terminally ill patients. N Engl J Med 1999;341:956-63. 8 Hodapp RM, Fidler DJ, Smith AC. Stress and coping in families of children with Smith-Magenis syndrome. J Intellect Disabil Res 1998;42 ( Pt 5):331-40. 9 Dyson LL. Response to the presence of a child with disabilities: parental stress and family functioning over time. Am J Ment Retard 1993;98:207-18. 10 Beckman PJ. Influence of selected child characteristics on stress in families of handicapped infants. Am J Ment Defic 1983;88:150-6. 11 Stewart MJ, Hart G, Mann K, Jackson S, Langille L, Reidy M. Telephone support group intervention for persons with hemophilia and HIV/AIDS and family caregivers. Int J Nurs Stud 2001;38:209-25. 12 Haley WE, Levine EG, Brown SL, Berry JW, Hughes GH. Psychological, social, and health consequences of caring for a relative with senile dementia. J Am Geriatr Soc 1987;35:405-11. 13 Poulshock SW, Deimling GT. Families caring for elders in residence: issues in the measurement of burden. J Gerontol 1984;39:230-9. 14 Pinelli J. Effects of family coping and resources on family adjustment and parental stress in the acute phase of the NICU experience. Neonatal Netw 2000;19:27-37. 15 Dura JR, Haywood-Niler E, Kiecolt-Glaser JK. Spousal caregivers of persons with Alzheimer's and Parkinson's disease dementia: a preliminary comparison. Gerontologist 1990;30:332-6. 16 Weitzner MA, McMillan SC, Jacobsen PB. Family caregiver quality of life: differences between curative and palliative cancer treatment settings. J Pain Symptom Manage 1999;17:418-28. 17 Baumgarten M, Hanley JA, Infante-Rivard C, Battista RN, Becker R, Gauthier S. Health of family members caring for elderly persons with dementia. A longitudinal study. Ann Intern Med 1994;120:126-32. 18 Pruchno RA, Resch NL. Husbands and wives as caregivers: antecedents of depression and burden. Gerontologist 1989;29:159-65. 19 Schulz R, Newsom J, Mittelmark M, Burton L, Hirsch C, Jackson S. Health effects of caregiving: the caregiver health effects study: an ancillary study of the Cardiovascular Health Study. Ann Behav Med 1997;19:110-6. 20 Schulz R, Beach SR. Caregiving as a risk factor for mortality: the Caregiver Health Effects Study. JAMA 1999;282:2215-9. 21 Caserta MS, Lund DA, Wright SD, Redburn DE. Caregivers to dementia patients: the utilization of community services. Gerontologist 1987;27:209-14. 22 Angold A, Messer SC, Stangl D, Farmer EM, Costello EJ, Burns BJ. Perceived parental burden and service use for child and adolescent psychiatric disorders. Am J Public Health 1998;88:75-80. 23 Burton LC, Newsom JT, Schulz R, Hirsch CH, German PS. Preventive health behaviors among spousal caregivers. Prev Med 1997;26:162-9. 24 Covinsky KE, Goldman L, Cook EF, Oye R, Desbiens N, Reding D, et al. The impact of serious illness on patients' families. SUPPORT Investigators. Study to Understand Prognoses and Preferences for Outcomes and Risks of Treatment. JAMA 1994;272:1839-44. 25 Scharlach AE, Midanik LT, Runkle MC, Soghikian K. Health practices of adults with elder care responsibilities. Prev Med 1997;26:155-61. 26 Diez-Roux AV. Bringing context back into epidemiology: variables and fallacies in multilevel analysis. Am J Public Health 1998;88:216-22. 27 Diez-Roux AV. Multilevel analysis in public health research. Annu Rev Public Health 2000;21:171-92. 28 Zarit SH, Todd PA, Zarit JM. Subjective burden of husbands and wives as caregivers: a longitudinal study. Gerontologist 1986;26:260-6. 29 Hinrichsen GA, Ramirez M. Black and white dementia caregivers: a comparison of their adaptation, adjustment, and service utilization. Gerontologist 1992;32:375-81. 30 Wackerbarth SB, Johnson MM. Essential information and support needs of family caregivers. Patient Educ Couns 2002;47:95-100. 31 Cousineau N, McDowell I, Hotz S, Hebert P. Measuring chronic patients' feelings of being a burden to their caregivers: development and preliminary validation of a scale. Med Care 2003;41:110-8. 32 Yaffe K, Fox P, Newcomer R, Sands L, Lindquist K, Dane K, et al. Patient and caregiver characteristics and nursing home placement in patients with dementia. JAMA 2002;287:2090-7. 33 Navaie-Waliser M, Spriggs A, Feldman PH. Informal caregiving: differential experiences by gender. Med Care 2002;40:1249-59. 34 Boaz RF. Full-time employment and informal caregiving in the 1980s. Med Care 1996;34:524-36. 35 Mant J, Carter J, Wade DT, Winner S. Family support for stroke: a randomised controlled trial. Lancet 2000;356:808-13. 36 O'Brien MT. Multiple sclerosis: health-promoting behaviors of spousal caregivers. J Neurosci Nurs 1993;25:105-12. Chapitre III – Perspective multiniveau et perspective spatiale en analyse contextuelle La grande majorité des études d’analyse contextuelle en épidémiologie sociale se réfèrent donc au paradigme de l’analyse multiniveau.4 Ce parti pris apparaît justifié pour autant qu’il témoigne d’une opposition à l’approche d’analyse écologique qui travaille à partir de données agrégées.16 Toutefois, au-delà des progrès qu’elle a permis dans la compréhension des effets du contexte, l’approche d’analyse multiniveau présente d’importantes limites. Ainsi, par exemple, différents auteurs ont émis des doutes sur la possibilité de distinguer les effets individuels d’effets proprement contextuels, tant les uns et les autres sont en fait enchevêtrés.30 Ce n’est toutefois pas à ce débat que nous souhaitons dans un premier temps participer, nous intéressant plus particulièrement à une question qui a été nettement moins discutée dans la littérature. En effet, nous partons de l’hypothèse que l’approche multiniveau s’appuie sur une conception de l’espace qui limite sa compréhension, posant des œillères sur le regard qu’elle porte aux variations géographiques des phénomènes de santé. La notion de l’espace que se donne l’approche multiniveau est comme une négation de l’espace lui-même. La plupart des études qui suivent cette approche ne prennent pas la peine de représenter les variations spatiales du phénomène étudié.44, 48, 64 En général, les chercheurs disposent d’un identifiant de la zone de résidence des différents individus considérés. D’autre part, dans des bases de données séparées, provenant par exemple des recensements de population, ils ont accès à des caractéristiques qui décrivent les différentes zones. En se servant de l’identifiant présent dans les deux bases, les données contextuelles sont appariées aux données individuelles. On utilise alors la base résultante pour conduire des analyses multivariées au moyen desquelles on cherche à identifier des effets du contexte. Les analyses sont ainsi conduites sans que les chercheurs n’aient à tenir compte de la façon dont s’organisent les différentes zones dans l’espace, et l’espace reste ainsi une abstraction. L’hypothèse principale de notre travail est que cette conception de l’espace impose des limites à la connaissance à laquelle on peut parvenir sur la distribution spatiale des phénomènes de santé. En effet, dans la plupart des cas, les phénomènes présentent une certaine continuité sur le territoire, dont les modèles multiniveaux sont incapables de tenir compte. Nous proposons donc d’utiliser des méthodes qui tiennent mieux compte de la 31 continuité de l’espace, et cherchons à montrer qu’on aboutit ainsi à des informations qui ont une certaine utilité en santé publique, auxquelles on ne pourrait parvenir avec l’approche multiniveau. Notre travail a d’une part consisté en une réflexion épistémologique comparative sur l’analyse multiniveau et différentes approches d’analyse spatiale.111, 112, 113, 114 L’objectif était alors de comparer les présupposés et conceptions de l’espace qui sous-tendent ces méthodes, et d’évaluer en quoi certaines conceptions handicapent la connaissance. D’autre part, à partir de différentes bases de données, nous avons cherché à appliquer les différentes approches, afin de voir à partir de cas concrets si des méthodes qui tiennent compte de l’espace dans sa continuité aboutissent à des informations utiles en santé publique auxquelles on ne saurait parvenir en s’appuyant sur un territoire fragmenté en zones aux limites arbitraires. Nous avons réalisé une première étude à partir des données de l’Enquête sur la Santé et la Protection Sociale (SPS) de l’IRDES.92 Nous étions en mesure de localiser les individus au niveau de leur commune de résidence, soit de façon bien plus précise que lors de nos analyses conduites à partir du Baromètre Santé. Nous avons cherché à décrire et expliquer les variations spatiales des modes de recours aux soins sur le territoire métropolitain Français. Une limite de ces analyses est liée à la taille de l’échantillon : entre 5000 et 8000 individus selon les analyses fournissent en fait une information insuffisante lorsque l’on cherche à étudier les variations d’un phénomène sur un territoire aussi étendu. Une seconde limite est liée à l’impossibilité de localiser les individus plus précisément qu’au niveau de leur commune de résidence, ce qui peut empêcher de capter certains processus opérant à un niveau très local. Cette première étude a été soumise au Journal of Epidemiology and Community Health. Les relecteurs du Journal ont souligné l’aspect innovant de notre travail, et ont suggéré un certain nombre de corrections afin d’en améliorer la qualité et la lisibilité. Une version corrigée est en cours d’examen par le Journal. Une seconde étude a été réalisée à partir de données Suédoises issues du Registre de Population. Sur le plan du matériel d’étude utilisé depuis le début de la thèse, nous nous sommes efforcés de recourir à des données de plus en plus adaptées au travail d’analyse contextuelle, la première étape étant liée à l’emploi des données d’individus au sein de départements du Baromètre Santé,90, 91 la seconde étape étant franchie avec l’utilisation des données d’individus au sein de communes de l’enquête SPS,92 et la dernière étape consistant dans l’utilisation de ces données Suédoises. La base de données utilisée contient en effet des informations sur l’ensemble des 270 000 habitants de la ville de Malmö. De plus, nous étions 32 en mesure de localiser l’ensemble de ces individus de façon très précise, au mètre près au niveau de leur domicile de résidence. Nous intéressant aux troubles mentaux et comportementaux liés à la consommation de substances psycho-actives, ces données quasiuniques au monde fournissent une puissance et une précision considérables permettant d’identifier de façon fine les variations de prévalence dans l’espace de la ville. Nous venons juste d’achever cette étude, en collaboration avec Juan Merlo de l’Hôpital Universitaire de Malmö en Suède, SV Subramanian de l’Ecole de Santé Publique Harvard de Boston, et John Lynch de l’Université du Michigan. Cette étude sera très prochainement soumise à un journal d’épidémiologie. Ces deux travaux ont pour point de départ nos réflexions épistémologiques sur l’utilité des modèles multiniveaux en épidémiologie sociale, présentées dans le premier chapitre de ce document. En effet, le fil conducteur de notre comparaison des approches d’analyse multiniveau et spatiale a été trouvé dans la distinction entre mesures d’association et mesures de variation ou de corrélation exposée ci-dessus.13, 68, 69 Par rapport aux mesures de variation, nous avons pu montrer que la modélisation de la variance des phénomènes de santé fournit des informations plus abouties sur la distribution spatiale des phénomènes lorsqu’on tient compte de l’espace dans sa continuité plutôt que lorsqu’on le fragmente en une multitude de zones aux limites arbitraires disjointes les unes des autres. Eu égard aux mesures d’association, la prise en compte des facteurs du contexte au niveau des zones administratives constitue également une limite importante, puisque ces zones administratives pourraient être trop étroites ou au contraire trop larges pour capter certains effets du contexte sur la santé.38 Nous rapportons maintenant les principaux apports à ce sujet de nos deux études. 1) Description de la distribution spatiale des phénomènes La planification des programmes de santé publique requiert une connaissance précise de la distribution spatiale des phénomènes. Dans notre première étude, nous nous sommes intéressés à la distribution spatiale des modes de recours aux soins sur l’ensemble du territoire métropolitain Français. Nos analyses montrent que les modes de recours aux soins varient à une échelle assez large sur le territoire métropolitain Français. En conséquence, des analyses qui s’appuient sur un territoire fragmenté en zones de tailles modestes apparaissent incapables de rendre compte de la cohérence géographique des modes de recours aux soins sur le territoire. Dans notre seconde étude, nous nous sommes intéressés à la distribution spatiale 33 des troubles mentaux et comportementaux liés à la consommation de substances psychoactives dans la ville Suédoise de Malmö. Dans ce cas, les quartiers où le risque est élevé ont tendance à se regrouper au nord et au centre de la ville. Utiliser des méthodes qui font abstraction de cette cohérence spatiale aboutit à une perte d’informations importantes en santé publique. Beaucoup d’études qui s’inscrivent dans le cadre de l’approche multiniveau s’intéressent à la distribution spatiale des phénomènes.43, 57 Toutefois, dans cette optique, la plupart de ces études se bornent à fournir des informations sur l’amplitude des variations spatiales. Elles demeurent par contre muettes sur la forme des variations spatiales, sur la manière dont se configure cette variabilité dans l’espace. Il nous semble utile d’insister sur le fait que la simple quantification de l’amplitude des variations géographiques d’un phénomène ne suffit pas à rendre compte de sa distribution spatiale. D’un point de vue de santé publique, il est également utile de savoir si les variations du phénomène dans l’espace sont aléatoires, ou si le phénomène présente une cohérence géographique importante, de telle sorte que les zones à risque soient regroupées en un ou plusieurs endroits, formant ainsi des espaces à risque qui transcendent les limites des zones administratives considérées. Une telle information permet d’évaluer si des interventions de santé publique gagnent à être coordonnées à une échelle supérieure à celle des zones prises en compte. La simple élaboration de cartes des variations spatiales des phénomènes fournit des informations visuelles utiles à ce sujet.115, 116 Plutôt que de représenter directement des moyennes ou des taux bruts, il est préférable de représenter les résidus de niveau zone des modèles multiniveaux. Cette approche permet en effet de tenir compte de l’incertitude des estimations réalisées dans les zones où les effectifs sont faibles117 et de produire des cartes qui soient ajustées sur différents facteurs tels que le sexe ou l’âge. Par ailleurs, dans la seconde des études entreprises, disposant d’informations sur le lieu de résidence exact des individus, nous montrons que l’utilisation de modèles géoadditifs (qui tiennent compte des variations spatiales à l’aide d’une fonction de lissage) permet d’aboutir à des cartes précises des variations du phénomène indépendantes des frontières administratives.118, 119, 120 Toutefois, quels que soient la précision et l’intérêt des différentes cartes, il n’est évidemment pas possible de réaliser des inférences, tant sur l’amplitude des variations du phénomène que sur la forme que prennent ces variations dans l’espace, à partir d’un jugement approximatif basé sur des informations visuelles. 34 Au-delà de ces informations cartographiques, il est donc utile d’estimer des paramètres qui renseignent sur la distribution spatiale des phénomènes. Dans cette optique, l’approche multiniveau3, 50 présente certaines limites, que nous avons d’abord cherché à caractériser. Les modèles multiniveaux fournissent un paramètre qui renseigne sur l’importance des variations survenant d’une zone à l’autre.13 D’une part, ainsi que cela a été établi dans la littérature sur le « modifiable areal unit problem » en géographie,70, 71, 72, 73 cette information dépend de la taille et de la forme particulière des zones utilisées : en utilisant un zonage à une échelle plus fine ou plus macro et en configurant les zones de façons différentes, on obtiendrait certainement des informations différentes sur l’amplitude des variations inter-zones.121 Toutefois, au-delà de cet aspect, nous avons diagnostiqué une limite nettement plus importante des modèles multiniveaux : ceux-ci tiennent compte de la similitude des individus qui résident dans la même zone, mais ignorent complètement les relations spatiales entre les zones, et s’avèrent donc complètement incapables d’examiner si des individus issus de zones proches sur le territoire ont un niveau de risque plus similaire que des individus provenant de zones plus éloignées. Les modèles multiniveaux permettent donc de réaliser des inférences sur l’amplitude des variations inter-zones, mais ne permettent pas de tester l’hypothèse d’une similitude de risque pour des zones proches sur le territoire, ni d’examiner à quelle échelle existe une corrélation entre zones. Dans nos deux travaux, nous avons exploré diverses options d’analyse spatiale afin d’obtenir des informations moins partielles sur la distribution des phénomènes dans l’espace. Dans l’étude des variations des modes de recours aux soins sur le territoire Français, nous avons utilisé des modèles spatiaux mixtes, qui spécifient une structure de corrélation spatiale au niveau individuel.79, 122 Ceux-ci ont permis de confirmer que les modes de recours aux soins étaient corrélés sur le territoire à une échelle qui dépasse largement l’échelle des communes de résidence. Toutefois, estimer une structure de corrélation spatiale au niveau individuel est extrêmement lourd sur le plan calculatoire, et devient même rapidement impossible dès que la taille de l’échantillon s’accroît. Cela nous a conduit à explorer d’autres options de modélisation dans le second travail. Nous avons eu recours à un modèle hiérarchique géostatistique très récemment développé,111, 112, 113, 114, 123 qui fournit différents paramètres permettant d’évaluer si les variations spatiales du phénomène étudié sont spatialement structurées ou au contraire complètement aléatoires. Ce modèle a permis de confirmer que les quartiers à prévalence élevée de troubles liés à la consommation de substances psycho-actives se trouvaient massés au centre et au nord de la ville, formant une 35 grappe de quartiers très statistiquement significative entre lesquels une collaboration pourrait être utile si un programme d’intervention devait être mis en place. 2) Mesure des facteurs du contexte dans un espace continu centré sur le lieu de résidence des individus Au-delà de cette description de la distribution spatiale des phénomènes, l’objectif est de comprendre l’origine de ces variations en cherchant des facteurs associés. Les facteurs individuels démographiques et socio-économiques sont rarement répartis de façon homogène dans l’espace, entraînant ainsi des effets de composition. Toutefois, de tels effets ne permettent pas toujours d’expliquer l’ensemble des variations spatiales, et l’on cherche à voir si les caractéristiques du contexte sont associées de façon indépendante aux phénomènes.3 L’approche dominante dans la littérature est de mesurer les facteurs du contexte au niveau des zones administratives, pour lesquelles des données sont en général directement disponibles. Une limite de cette approche est que les effets du contexte n’opèrent pas nécessairement à l’échelle géographique qui est retenue pour les analyses.38 Dans bien des cas, les facteurs du contexte sont susceptibles d’exercer leurs effets à un niveau bien plus local qu’à celui des zones administratives utilisées pour les analyses. Au contraire, il est également possible que les zones de tailles modestes habituellement retenues en analyse contextuelle s’avèrent trop fines pour capter certains effets du contexte. Dans nos deux études d’analyse spatiale, il semble que nous ayons été confrontés à ces deux cas de figure, ce qui nous a conduit à proposer des approches de mesure des facteurs du contexte entièrement innovantes. Dans notre étude des variations spatiales des modes de recours aux soins sur le territoire métropolitain Français, nous avons trouvé que les densités de médecins généralistes et de spécialistes, ainsi que le niveau socio-économique du contexte de résidence étaient associés à la propension des individus à compter en priorité sur leur médecin généraliste ou à consulter au contraire divers spécialistes. Nous avons d’abord cherché à mesurer ces facteurs au niveau de la commune de résidence des individus, puis au niveau de leur « zone d’emploi » de résidence (l’INSEE ayant divisé le territoire en 348 zones d’emploi,124 qui sont donc beaucoup plus vastes que les communes). Mesurer les densités de médecins au niveau communal est certainement inadéquat, car les individus traversent fréquemment les frontières de leur commune pour consulter un spécialiste.125 Ce raisonnement vaut en fait également 36 pour l’effet du niveau socio-économique du milieu de résidence.38 Puisque nous avons ajusté sur divers facteurs socio-économiques individuels, notre hypothèse est que l’effet du niveau socio-économique du contexte est lié aux valeurs, attitudes, et attentes à l’égard du système de soins qui prévalent dans l’environnement de résidence. Or, les valeurs qui prévalent dans une ville de 20 000 habitants ne sont certainement pas les mêmes si cette ville s’insère dans un tissu urbain de communes de tailles plus importantes que si cette ville constitue l’unique pôle urbain d’un espace à dominante rurale. Suivant cette hypothèse, on capte peut-être mieux les effets du niveau socio-économique du contexte de résidence à un niveau plus large qu’à celui de la commune de résidence. Toutefois, des mesures réalisées au niveau des zones d’emploi n’offrent peut-être pas une solution satisfaisante. En effet, de telles mesures sont certainement particulièrement inadéquates pour les individus qui résident sur les marges de ces zones, ne permettant pas véritablement de capturer l’influence du contexte dans l’espace qui s’étend autour de leur lieu de résidence. Nous avons donc proposé une approche de mesure innovante du niveau socio-économique du contexte de résidence : nous avons positionné des points tous les kilomètres sur l’ensemble du territoire métropolitain, et avons attribué à chacun de ces points les caractéristiques de la commune dans laquelle il était situé ; pour chaque individu localisé au centroïde de sa commune, nous avons calculé le facteur contextuel en faisant la moyenne des valeurs contextuelles aux points situés dans un espace circulaire centré sur l’individu dont la taille excédait largement la surface de la commune de résidence. Lors du calcul de cette moyenne, nous avons utilisé des pondérations afin de tenir compte du fait que des points situés à proximité des individus avaient probablement un impact plus important sur leurs modes de recours aux soins que des points situés à plus grande distance.14 L’article issu de ce travail, que nous rapportons à la fin de ce chapitre, inclut une figure didactique qui permet de visualiser les différences qui existent entre les différentes approches de mesure des facteurs du contexte (figure 2). Les résultats de ce travail indiquent que nous sommes mieux parvenus à expliquer les variations spatiales des modes de recours aux soins en mesurant les facteurs du contexte dans un espace continu autour du lieu de résidence des individus plutôt qu’au niveau des zones administratives. Dans notre seconde étude, nous avons trouvé que la prévalence de troubles liés à la consommation de substances psycho-actives augmentait avec le revenu moyen du quartier administratif de résidence, après que l’on ait ajusté sur différents facteurs socio-économiques. Contrairement à la précédente étude, il est apparu que l’on ne parvenait pas mieux à rendre 37 compte des variations de prévalence dans la ville de Malmö quand on tenait compte du niveau socio-économique du contexte dans un espace allant au-delà des frontières administratives du quartier de résidence. Disposant dans cette étude d’information sur le lieu de résidence exact des individus, nous avons également cherché à voir si l’on parvenait mieux à rendre compte des variations spatiales de prévalence en mesurant le revenu moyen dans le contexte de résidence à un niveau plus local qu’à celui des quartiers administratifs. Les tests préliminaires que nous avons réalisés semblaient confirmer cette hypothèse. Toutefois, mesurer le niveau socio-économique au niveau de zones circulaires de faible dimension centrées sur le lieu de résidence des individus pose un problème majeur : la répartition des habitants dans la ville de Malmö étant très inégale, une telle approche aboutit à des valeurs manquantes ou à des mesures basées sur une quantité d’information très faible pour les individus qui résident dans les zones à faible densité de population. Nous avons finalement mis au point une procédure innovante, qui résulte de l’adaptation à notre contexte des « spatially adaptive filters » utilisés comme technique de lissage en géographie de la santé afin d’obtenir des cartes continues des variations d’incidence de maladies.115, 126 Cette approche, qui tient compte de la population environnante plutôt que de l’espace environnant, consiste à calculer le revenu moyen dans une zone circulaire centrée sur chaque individu qui comporte le même nombre d’habitants. Ainsi, la taille de la zone s’adapte à la densité de population, étant plus large dans les zones les moins peuplées de la ville. Cette approche de mesure aboutit à des forces d’association nettement plus importantes que lorsque le facteur du contexte est mesuré au niveau des quartiers administratifs, et permet donc mieux d’identifier les lieux où la prévalence est la plus élevée. Il apparaît ainsi que la prévalence de troubles mentaux et comportementaux liés à la consommation de substances psycho-actives augmente très fortement dans les localisations les plus défavorisées de la ville, que l’on peut repérer cartographiquement de façon très précise. Parce qu’elle s’appuie sur des données concernant l’ensemble des individus de la ville géocodés à leur lieu exact de résidence, cette dernière étude nous a permis d’avancer de façon significative dans la mise au point des approches à utiliser pour décrire et rendre compte de la distribution spatiale des phénomènes de santé. Toutefois, une des limites importantes de l’étude vient du caractère transversal des données utilisées. Nous étions en mesure d’identifier des facteurs associés aux troubles considérés, ce qui est déjà utile d’un point de vue de santé publique, mais ne pouvions pas tester l’hypothèse de relations causales entre les facteurs socio-économiques du contexte de résidence et la survenue de troubles. Dans les prochains 38 mois, la base de données Suédoise que nous analysons dans le cadre de notre collaboration avec l’Hôpital Universitaire de Malmö prendra en plus une dimension longitudinale, qui nous permettra de prolonger ces premières analyses. 39 Comparison of a spatial approach with the multilevel approach for investigating place effects on health: the example of healthcare utilisation in France Basile Chaix, Juan Merlo, Pierre Chauvin B Chaix, P Chauvin, Research Team on the Social Determinants of Health and Healthcare (INSERM U444), National Institute of Health and Medical Research, Paris, France J Merlo, Department of Community Medicine (Preventive Medicine), Malmö University Hospital, Lund University, Malmö, Sweden Correspondence to: Basile Chaix INSERM U444, Faculté de Médecine Saint-Antoine, 27 rue Chaligny, 75571 Paris Cedex 12, France Tel: +33 (0)1 44 73 84 43; Fax: +33 (0)1 44 73 86 63; Email: [email protected] Abstract: Study objective: Most studies of place effects on health have followed the multilevel analytic approach, which investigates geographic variations of health phenomena by fragmenting space into disconnected areas. We examined whether analysing geographic variations across continuous space with spatial modelling techniques and place indicators that capture space as a continuous dimension surrounding individual residences provided more relevant information on the spatial distribution of outcomes. Healthcare utilisation in France was taken as an illustrative example in comparing the spatial approach to the multilevel approach. Design: Multilevel and spatial analyses of cross-sectional data. Participants: 10 955 beneficiaries of the three main national health insurance funds, surveyed in 1998 and 2000 in mainland France. Main results: Multilevel models showed significant geographic variations in healthcare utilisation. However, the Moran’s I statistic indicated spatial autocorrelation unaccounted for by multilevel models. Modelling the correlation between individuals as a decreasing function of the spatial distance between them, spatial mixed models informed us not only on the magnitude, but also on the shape of spatial variations, and provided more accurate standard errors for risk factors effects. The socioeconomic level of the residential context and the supply of physicians were independently associated with healthcare utilisation. Place indicators measured across continuous space, rather than within administrative areas, better explained spatial variations in healthcare utilisation. Conclusions: The conceptualization of space used during analysis influences our understanding of place effects on health. Viewing space as a continuum may yield more relevant information on the spatial distribution of outcomes in many contextual studies. Key words: epidemiologic methods; logistic models; multilevel analysis; social environment; spatial analysis The past decade has seen a growing interest in the effects that places of residence have on health.[1, 2, 3, 4] Most contextual studies conducted with individual-level data have followed the multilevel analytic approach (based on usual random-coefficient multilevel models[5, 6] or alternating logistic regression[7, 8]). In this approach, measures of association between contextual factors and health have their standard errors corrected for the nonindependence of individuals within areas.[9] Furthermore, as Merlo has emphasized for some years,[10] multilevel models provide measures of variation based on random effects (such as the area-level variance or the variance partition coefficient) that inform us on the distribution of health outcomes across areas.[11, 12] In the present study, as part of this project, we aim to show that the multilevel analytic approach fails to provide optimal epidemiological information for both measures of association and measures of variation in many analytic cases, due to dependence on a space fragmented into disconnected administrative areas. Rewording the modifiable areal unit problem considered in geography,[13, 14, 15, 16] measures of variation in multilevel models are dependent on the arbitrary size and shape of the areas.[17] More importantly for social epidemiologists, even if appropriate size and shape are considered, the usual multilevel models neglect spatial connections between areas, and assume independence for individuals from different areas, even if the areas are close or adjacent.[9] Accordingly, the multilevel analytic approach fundamentally assumes that all spatial correlation can be reduced to within-area correlation, and measures of variation only provide partial information 1 on the spatial distribution of health outcomes in quantifying the magnitude of correlation within areas but not the range of correlation in space. In order to obtain this epidemiologically relevant information, we suggest building continuous notions of space into statistical models. This has been advocated in ecological studies for disease mapping,[18, 19, 20] identification of clusters of disease,[19, 21] or implementation of spatial regression.[22, 23, 24, 25, 26, 27, 28] However, there has been much less effort to do so in studies based on individual data.[29, 30, 31] Some authors have modelled spatial variations of individual outcomes with nonparametric functions of the spatial location.[32, 33] However, this approach and others such as geographically weighted regression[34] do not provide the parametric information of interest on the spatial distribution of outcomes. In any case, there has been almost no attempt to examine whether investigating variations across continuous space provides more relevant information than the multilevel approach in the social epidemiological field of contextual analysis. Beyond individual factors, one generally uses contextual factors measured within administrative areas to explain spatial variations of outcomes.[1] However, individuals may be affected not only by the characteristics of their local administrative area of residence, but also by the context beyond these administrative boundaries, since their social activities encompass a broader space.[35] Therefore, we propose a new approach for defining the social factors of the context, an approach that considers spatial neighbourhoods, defined as continuous spaces around individuals’ places of residence, rather than territorial neighbourhoods arbitrarily defined by administrative boundaries.[36, 37, 38, 39] In France, geographic variations in healthcare utilisation operate on a larger scale than the usual administrative areas considered in multilevel analysis,[40] and therefore constitute an appropriate illustration of the interest of considering space as a continuum, rather than as fragmented into disconnected areas. Individuals in France can access specialist physicians directly, i.e., without any referral, as frequently as they wish, and obtain partial or total reimbursement depending on their insurance status. Regarding utilisation behaviour, although underuse of specialty care may result in suboptimal diagnosis and treatment options,[41, 42] frequent self-referral to specialists without regular recourse to a primary care physician (PCP) leads to a lack of coordination of care.[43, 44] We investigated whether the relative utilisation of PCPs or specialists was related to the availability of physicians (a determinant in convenience of geographical access) and to the socioeconomic level of the context (and related beliefs and expectations about the healthcare system). Using a nationwide French survey sample, (a) we undertook a multilevel analysis of healthcare utilisation and examined whether there was spatial autocorrelation unaccounted for by multilevel models; (b) we examined whether spatial models (such as spatial mixed models[45]) better accounted for geographic variability and provided more accurate information on spatial distributions than multilevel models; and (c) we investigated whether measuring specific place characteristics across continuous space, rather than within administrative areas, better explained the spatial variability of behaviour. Methods Datasets and outcomes Our data came from the Survey on Health and Health Insurance conducted by the French Research and Information Institute for Health Economics (IRDES).[46] Half of the sample was surveyed in 1998, the other half in 2000. The nationwide population sample is representative of the persons insured through the three main national health insurance funds (for salaried employees, farmers, self-employed people, and retirees in each category, i.e., 96% of the population). After approval by the French National Commission for Data Protection, survey data were merged with administrative files containing information on physician consultations for each individual over a one-year period. Two complementary binary outcomes were examined. The first indicated whether or not each individual had a regular PCP. This outcome was derived from a question in the survey. Analysis of this outcome was restricted to the individuals surveyed in 2000 (n = 5 227), the only year in which this question was asked. The second binary outcome indicated whether more than 50% of an individual’s consultations over the course of the year had been with specialists, rather than PCPs. This outcome was computed from the administrative data on healthcare consumption. These data were successfully merged with survey data for 9 309 out of 10 955 individuals. Analysis of this outcome was undertaken among individuals who had had at least one consultation over the one-year period (n = 8 102). We used a binary outcome because of the non-normality of the residuals in a multilevel linear model for the proportion of specialist consultations expressed in its continuous form, which also facilitated comparison with the model for the first binary outcome. Very similar results were obtained when cut-offs other than 50% of specialist consultations were used to define this binary outcome. After excluding individuals under 18 years of age, the final sample sizes were 5 217 for the PCP analyses, and 8 093 for the analyses of the percentage of specialist consultations. Municipality-level data, including socioeconomic data (from the 1999 census) and information on the number of places where physicians could be consulted (from the ADELI database of the French Ministry of Health), were linked to the samples described above. 2 Explanatory variables Definition of contextual indicators in administrative areas: Mainland France is divided into 36 500 municipalities, as well as into 348 broad areas defined by aggregating adjacent municipalities between which significant commuting occurrs.[47] In the dataset for the PCP outcome, 3 233 municipalities and 338 broad areas were represented. In the dataset for the percentage of specialist consultations, 4 421 municipalities and 340 broad areas were represented. Considering areas in the latter dataset, the median population size was 2 185 (interquartile range: 794–6 533) for municipalities, and 98 495 (61 818–178 720) for the broad areas. Municipalities in which individuals had been surveyed were distributed across the entire territory of France (figure 1). Figure 1 Distribution of municipalities in which individuals were surveyed. Individual information on healthcare utilisation was plotted over all of mainland France, providing a large quantity of information for spatial regression analysis. We did not have more precise locational information other than municipality affiliation (see the discussion on this aspect). Individuals were located at the centroid of their municipality when computing contextual factors across continuous space, but were randomly located within municipalities during spatial regression analysis (see appendices 1 and 2 for rationale). At the level of administrative areas, place indicators investigated were the percentage of inhabitants with minimal education (incomplete low secondary schooling or less) and the densities of PCPs and specialists (number of places of consultation per square kilometre). All these variables were computed at the municipality level and at the broad area level. Place indicators measured across continuous space: The three contextual factors were also measured across continuous space surrounding each individual’s place of residence.[34, 39] This procedure is described in detail in appendix 1. As illustrated on the bottom of figure 2, it consists in positioning points on every kilometre of French territory, attributing to these points the socioeconomic characteristic of the municipality in which the points are located, and computing the socioeconomic contextual factor for each individual as a weighted average of the contextual values for the points located around that person. We used weights when computing this average to indicate that points at a greater distance from an individual may impact that person less than points that are closer.[34] Due to the weighting function used, our approach for computing contextual factors considers contextual information in a radius of approximately 35 kilometres around individuals, a space far exceeding the size of municipalities of residence. Therefore, as illustrated in figure 2, measures across continuous space clearly differ from measures at either the municipality level or the broad area level. As described in appendix 1, we also measured the supply of PCPs and supply of specialists across continuous space by computing the weighted number of places of consultation within a radius of 50 kilometres around an individual’s residence (we used weights to account for the fact that physicians at a great distance were less accessible than closer ones). Individual-level adjustment factors: The regression models were adjusted for health, demographic, and socioeconomic variables that have repeatedly been shown to be associated with healthcare utilisation. Full details on these individual variables are given in table 1.[48] 3 Figure 2 Measurement of the socioeconomic status of the context at the municipality level (above), at the broad area level (middle), and across continuous space (bottom). Measures across continuous space, computed as a weighted average of contextual information at surrounding points, take into account information in a much larger space than the municipality of residence. For ease of illustration, only one point every 10 kilometres (rather than every kilometre) is represented. The point size is a function of the weight value. At the level of municipalities At the level of broad areas Measure across continuous space Table 1 Individual-level variables used as adjustment factors in regression models for healthcare utilisation, France, 1998 and 2000 Variables Categories Age Less than 30*; 30–44; 45–59; 60–74; 75 and older Sex Male*; female Marital status Married or living with partner*; single; divorced; widowed Self-rated health (on a scale Low score (from 0 to 6)*; medium-low score (equal to 7); medium-high score (equal to 8); high score (equal to 9 or 10) from 0 to 10) Number of diseases† Educational achievement level Occupational status‡ 0*; 1 or 2; 3 or 4; more than 4 Primary school or less*; secondary school; university; student Unskilled blue-collar worker*; skilled blue-collar worker; lower-level white-collar worker; mid-level position; upper-level white-collar worker Employment status Working*; unemployed; other Household income per capita§ First quartile*; second quartile; third quartile; fourth quartile Health insurance status Basic insurance only*; supplementary insurance; payments waived for medical reasons or due to poverty *This is the reference category in the models. †A list of diseases was provided to individuals to assist in their reporting. Physicians from the CREDES completed the list for each individual on the basis of their prescription drug usage and consultation with health professionals. Dental diseases were excluded. ‡Occupational status was defined according to the French List of Occupations and Social Categories published by the French National Institute of Statistics and Economic Studies.[48] §Household income was adjusted for household size. 4 Statistical analysis In order to rigorously compare the multilevel and spatial modelling approaches, the two-level multilevel model (described in appendix 2) was fitted separately in two different ways: first with municipalities as the second-level units, then with much larger areas, i.e., the broad areas mentioned above, as the second-level units. In order to accurately estimate random variations between areas, the multilevel models were first estimated with a Markov Chain Monte Carlo method (MLwiN 1.2, Institute of Education, London). To examine whether there was spatial autocorrelation unaccounted for by multilevel models, we used Bivand’s R software package[49] to compute Moran’s I statistics for the area-level residuals.[32, 50] In our case, the Moran’s I indicated whether adjacent areas (i.e., areas sharing a common boundary) had more similar area-level residuals than would be expected under spatial randomness. Moran’s I is approximately equal to 0 when there is no spatial autocorrelation and positive when there is clustering. In order to model geographic variations across continuous space, we used geostatistical spatial mixed models that measure the correlation in healthcare utilisation between individuals as a decreasing function of the spatial distance between them (see appendix 2 for details). Such models were fitted with the SAS macro GLIMMIX (version 8.02, SAS Institute, Cary, NC, USA). In order to compare the fit of the empty multilevel and spatial models, we refitted the multilevel models with GLIMMIX. We used the scaled deviance to compare the different models. After including all individual-level variables, contextual variables were added to the models, but were only retained if they were significantly associated with the outcomes in spatial mixed or multilevel models. We successively estimated place effects as measured at the municipality level, at the broad area level, and across continuous space. To compare the different measures, each indicator was divided into quartiles. Table 2 Summary of the different regression models fitted to the data in comparing an investigation from a spatial perspective to the usual multilevel approach. Each cell of the table corresponds to a different model, and contains references to locations where results of the model are displayed. MunicipalityBroad area-level Spatial mixed level multilevel multilevel model model model Empty model Table 3 Table 3 Table 3 Figure 5 Figures 3 and 5 Model with individual variables Figure 5 Figure 5 Model with individual and municipality-level contextual factors Figure 5 Table 4 Figure 5 Model with individual and broad arealevel contextual factors Figure 5 Table 4 Figure 5 Table 5 Figure 5 Tables 4 and 5 Figure 5 Model with individual and contextual factors across continuous space Table 5 Our spatial perspective comprises two different aspects: i) utilisation of spatial models, and ii) measurement of contextual factors across continuous space. Obviously, it is necessary to test these two methods separately to assess their own interest in contextual analysis. We therefore estimated multilevel models with contextual variables measured within administrative areas, multilevel models with variables measured across continuous space, and spatial mixed models with these two types of contextual measures. Table 2 provides summary information on the different models fitted to the data. Results Twelve percent of the individuals reported they had no regular PCP, and 23% had had more than 50% of their one-year consultations with specialists. 5 Table 3 2000 Results of the empty multilevel and spatial logistic models for healthcare utilisation, France, 1998 and No regular primary care physician High percentage of specialist consultations 0.382 (0.133)** 0.175 (0.059)** 0.33 (0.02)*** 4738.9 0.20 (0.02)*** 8841.2 0.249 (0.068)*** 0.140 (0.030)*** 0.24 (0.03)*** 4056.3 0.32 (0.03)*** 8625.6 σ² (SE) 0.032 (0.008)*** 0.033 (0.010)*** σ1² (SE) 1.084 (0.023)*** 1.116 (0.018)*** Municipality-level multilevel model† Area-level variance σu² (SE) Moran’s I for area residuals (SE) Scaled deviance Broad area-level multilevel model† Area-level variance σu² (SE) Moran’s I for area residuals (SE) Scaled deviance Spatial model‡ 115.5 (64.7)* ρ (SE) Scaled deviance 3603.2 7840.6 *p < 0.05; **p < 0.01; ***p < 0.001 (p-values are two-sided). †The multilevel models parameter were estimated by the Markov Chain Monte Carlo method (MLwiN). The Wald test was used for the area-level variance. To compute the Moran’s I, we used the area-level residuals of 67% of the municipalities (n = 2 167) for the variable regarding regular primary care physicians, and the residuals of 73% of the municipalities (n = 3 227) for the variable regarding specialty care use (the other municipalities had no adjacent municipality in the sample). All broad area residuals were used to compute the Moran’s I. Based on the assumption of normality for the arealevel residuals, the Moran’s I is normal under the null hypothesis, with a mean equal to 0 and a known variance. We computed a two-tailed p-value for the Moran’s I. Scaled deviances come from multilevel models estimated using the GLIMMIX macro. ‡Spatial model parameters were estimated with GLIMMIX. The Wald Z-test was used for the covariance parameters. The parameter σ² is the partial sill, σ1² is the nugget effect, and three times the parameter ρ is the range of the model (the distance beyond which the correlation is less than 5% of the correlation at distance 0). 16.40 (9.64)* Multilevel models indicated significant variations for both outcomes at the municipality level or at the broad area level (two-sided p-value < 0.001; table 3). The Moran’s I for area-level residuals was significantly positive in all multilevel models (two-sided p-value < 0.001), indicating unaccounted spatial autocorrelation between adjacent areas (table 3). From the empty spatial models (table 3), two individuals located in the same place had a correlation equal to 0.028 for not having a regular PCP (figure 3). Such a correlation was 46% lower for individuals 10 kilometres apart, and 95% lower for individuals 50 kilometres apart. The correlation in having a high percentage of specialist consultations was of similar magnitude for individuals in the same place, but decreased more gradually with increasing distance between individuals (correlation was 5% and 23% lower, respectively, for individuals 10 and 50 kilometres apart). For both outcomes, the scaled deviance was markedly lower in the empty spatial models than in the empty multilevel models, indicating a better fit for the spatial correlation structure to the data (table 3). A spatial mixed model adjusted for individual factors indicated that a lower percentage of minimally educated inhabitants (i.e., a higher socioeoconomic status of the context) predicted higher odds of not having a regular PCP (table 4). However, the supply of physicians was not associated with this outcome. A higher socioeconomic status of the context and a greater supply of specialists independently predicted higher odds of having a high percentage of specialist consultations. Although confidence intervals were wide, there was an indication of consistently stronger associations between contextual variables and the outcomes when the variables were measured across continuous space, rather than within administrative areas (table 4). 6 Figure 3 Correlation between individuals in healthcare utilisation behaviour as a function of the spatial distance between them, as estimated by empty spatial mixed models, France, 1998 and 2000. Outcome: No regular primary care physician Outcome: High percentage of specialist consultations The different approaches to measuring contextual variables illustrated in figure 2 lead to different geographic representations when identifying places that do not share the same levels of exposure to these characteristics. We illustrate this aspect in figure 4, where the socioeconomic level of the context, as defined by the three different approaches, is mapped for a rectangular zone around the city of Paris. We estimated the area-level variance and the Moran’s I in the consecutive multilevel models (including no covariates, individual covariates, and finally contextual factors). We represented these indicators at the top of figure 5 for the model for specialty care use with individuals nested within broad areas. The unexplained heterogeneity between broad areas (expressed as the area-level variance) decreased when individual and contextual variables were introduced into the model. Area-level variance was lowest when place indicators were measured across continuous space. The Moran’s I similarly decreased with the increasing complexity of the model, and again was lowest when place characteristics were measured across continuous space. The same pattern was true for not having a regular PCP, and for the multilevel models with municipalities as the second level (results not shown). In all multilevel models, the Moran’s I remained significant (two-sided p-value < 0.05; results not shown) after the contextual variables were included, indicating unaccounted residual spatial autocorrelation. In the different consecutive spatial mixed models, we examined the correlation between the residuals, which correlation is modelled as a decreasing function of the spatial distance between individuals. The case of the models for the percentage of specialist consultations is shown at the bottom of figure 5. The residual spatial autocorrelation was lowest when place indicators were measured across continuous space. The same pattern was true for not having a regular PCP (results not shown). 7 Table 4 Place effects on healthcare utilisation from spatial models adjusted for individual-level characteristics (place indicators were successively measured at the municipality level, at the level of broad areas, and across continuous space), France, 1998 and 2000 Municipality-level Broad area-level Effects measured effects* effects* across continuous space* OR Outcome: No regular primary care physician† Percentage of minimally educated inhabitants (vs. “high”, fourth quartile) Medium-high (third quartile) Medium-low (second quartile) Low (first quartile) 95% CI 1.03 (0.80, 1.33) 1.27 (0.99, 1.63) 1.79 (1.38, 2.31) OR 95% CI 0.97 (0.75, 1.27) 1.22 (0.93, 1.59) 1.86 (1.40, 2.46) OR 95% CI 1.02 (0.75, 1.37) 1.49 (1.10, 2.00) 2.24 (1.61, 3.13) Outcome: High percentage of specialist consultations† Percentage of minimally educated inhabitants (vs. “high”, fourth quartile) Medium-high (third quartile) 1.09 (0.92, 1.30) 1.10 (0.91, 1.34) 1.18 (0.97, 1.45) Medium-low (second quartile) 1.30 (1.08, 1.57) 1.20 (0.97, 1.49) 1.38 (1.09, 1.74) Low (first quartile) 1.50 (1.23, 1.84) 1.17 (0.90, 1.53) 1.62 (1.15, 2.28) Supply of specialists (vs. “low”, first quartile) Medium-low (second quartile) 1.02 (0.86, 1.21) 1.20 (0.96, 1.50) 1.40 (1.05, 1.88) Medium-high (third quartile) 1.19 (0.93, 1.53) 0.97 (0.71, 1.33) 1.70 (1.08, 2.67) High (fourth quartile) 1.48 (1.05, 2.09) 1.95 (1.14, 3.33) 2.03 (1.13, 3.67) Supply of primary care physicians (vs. “low”, first quartile) Medium-low (second quartile) 0.92 (0.77, 1.09) 0.89 (0.72, 1.11) 0.88 (0.66, 1.18) Medium-high (third quartile) 0.87 (0.67, 1.12) 1.05 (0.78, 1.42) 0.69 (0.44, 1.09) High (fourth quartile) 0.82 (0.57, 1.17) 0.66 (0.39, 1.10) 0.59 (0.33, 1.07) *The odds ratios reported here were adjusted for all individual-level factors listed in table 1. †In the model for not having a regular primary care physician, the only contextual variable retained was the percentage of minimally educated inhabitants. In the model regarding the percentage of specialist consultations, we retained the three contextual factors (each effect above has been adjusted for the others). Finally, we examined whether multilevel models overestimated the significance level of contextual effects due to ignored spatial autocorrelation. We considered models including place characteristics measured across continuous space and divided the place effect parameters by their standard errors. The multilevel models systematically overestimated the level of significance of place effects, as compared to the spatial models (table 5). As an example, the supply of PCPs was significantly associated with specialty care use in the multilevel models, whereas this was not the case in the spatial model. 8 Figure 4 Variations of socioeconomic level in place of residence as measured at the municipality level, at the level of broad areas, and across continuous space in a rectangular zone around the city of Paris (the boundaries of Paris appear in bold at the centre of the maps). On the lower map (showing measures across continuous space), the value plotted in each municipality was obtained by considering contextual information in a circular space that far exceeds the area of the municipality. Therefore, the smoothed pattern that appears on the map simply indicates that individuals residing in neighbouring municipalities share common contextual influences. †Each indicator was divided into quartiles, with cut-offs from the study sample of 5 217 individuals for the outcome variable regarding regular primary care physicians. At the level of municipalities At the level of broad areas of residence Measure across continuous space 9 Figure 5 Explanation of geographic variations in the odds of having a high percentage of specialist consultations with individual and contextual variables, France, 1998 and 2000. Top: area-level variance estimated from multilevel models with individuals nested within broad areas, and Moran’s I statistic computed from broad area-level residuals (bars: 95% confidence interval). Bottom: residual correlation between individuals by spatial distance between them from spatial mixed models. Multilevel model with individuals nested within broad areas From the spatial mixed model Table 5 Significance level (defined by dividing the parameters by their standard errors) of place effects measured across continuous space on healthcare utilisation, estimated from multilevel models with individuals nested within municipalities or broad areas, and spatial mixed models, France, 1998 and 2000 MunicipalityBroad area-level Spatial mixed level multilevel multilevel model model model Outcome: No regular primary care physician Percentage of minimally educated inhabitants, lowest quartile 7.1 6.0 4.8 Outcome: High percentage of specialist consultations Percentage of minimally educated inhabitants, lowest quartile Supply of specialists, highest quartile Supply of primary care physicians, highest quartile 5.7 3.4 4.7 3.3 2.8 2.4 3.3 3.0 1.7 10 Discussion We proposed a spatial perspective of investigation based on a continuous notion of space. Following the seminal distinction of Merlo between measures of variation and measures of association with contextual factors,[11, 12] we found in our case that both types of measures provided more relevant epidemiological information when embedded in the spatial perspective than in the multilevel framework. Limitations of the illustrative example First, we did not have more precise locational information other than municipality affiliation. However, this lack of precision may not be of critical importance in our study. Indeed, the 36 500 French municipalities constitute more local areas than the municipalities in many other countries. Moreover, the interest of the spatial approach over the multilevel approach was to better describe geographic variations in healthcare utilisation, which operate at a much broader scale than the municipality level.[40] Therefore, in our case, it would certainly be more undesirable to neglect geographic correlation between neighbouring municipalities than to ignore geographic variations within municipalities. Second, sample sizes could have been more important, especially when conducting municipality-level multilevel analyses. However, our samples were sufficient to quantify geographic variations between municipalities which, as expected, were of greater magnitude than broad area-level variations. Investigating the magnitude and shape of spatial variations The spatial correlation of outcomes, rather than a nuisance, is of direct interest, and needs to be modelled properly to obtain relevant information. In neglecting spatial relationships between areas and only considering the correlation of outcomes within areas, multilevel models were unable to provide complete information on the spatial distribution of healthcare utilisation. Contrary to the assumption that areas of high risk and areas of low risk were randomly distributed in space, the Moran’s I indicated that individuals residing in adjacent areas exhibited more similarity of behaviour than would be expected under spatial randomness. Due to unaccounted spatial autocorrelation, multilevel models overestimated the significance level of contextual variables and resulted in incorrect inferences. Viewing space as a continuum, spatial mixed models captured the spatial autocorrelation unaccounted for by multilevel models. Modelling the correlation between individuals as a decreasing function of the spatial distance between them, spatial models not only captured the magnitude of spatial variations but also the shape of spatial variations (with information on the range of correlation in space), thus indicating geographic coherence in healthcare utilisation at a much larger scale than the municipality level. Measuring contextual factors across continuous space Measures across continuous space allowed us to better explain spatial variations in healthcare utilisation than municipality-level or broad area-level factors. Regarding municipality-level measures, individuals may be affected not only by the characteristics of their municipality, but also by surrounding municipalities. Indeed, residing in a deprived municipality may have a different impact on healthcare utilisation if the municipality belongs to a globally affluent area than to a socially disadvantaged area. Obviously, such effects may be more efficiently captured by measures that consider contextual influences in a space that exceeds municipality boundaries than by municipality-level factors. On the other hand, the broad administrative areas considered in our study are not centred on the individual residence, and may therefore not have allowed us to adequately capture contextual effects. Measures across continuous space surrounding individuals were more appropriate in reflecting contextual influences on healthcare utilisation that operate on a larger scale than the municipality level. Conclusions Our study shows that the conceptualization of space used during analysis influences the understanding of place effects on health. In our investigation of healthcare utilisation, both measures of variation and measures of association between contextual factors and health were found to provide more relevant information when viewing space as a continuum rather than as fragmented into disconnected areas. We are aware that the multilevel approach may be appropriate when the context is defined in a way that is not strictly geographic way (e.g., workplaces or schools);[17] when investigating processes operating at the scale of administrative areas (e.g., related to public policies); or when spatial correlation can be reduced to the correlation within areas. However, in many social epidemiological studies, investigating geographic variations across continuous space using spatial modelling techniques and place indicators that capture space as a continuous dimension may be more appropriate in describing and explaining spatial variability of health outcomes. 11 Appendix 1: Contextual measures across continuous space We used a geographical information system (GIS) with municipalities georeferenced as polygons. Individuals were positioned at the centroid of their municipality when computing contextual factors. Indeed, there is no reason to attribute a different location, and accordingly a different contextual value, to individuals from the same municipality, since we have no other locational information than municipality affiliation. As figure 2 indicates, our approach for the socioeconomic contextual factor takes into account contextual information at geographical points located in a circular space around individuals, which space far exceeds the boundaries of the municipality of residence. The percentage of minimally educated inhabitants was available at the municipality level and needs to be attributed to the geographical points. However, municipalities differ in size, and only considering one point per municipality located around an individual’s residence would result in overestimating the impact of smaller vs. larger municipalities on that individual. We, therefore, regularly positioned points on every kilometre of French territory (resulting in a regular grid of 540 000 points), and attributed to each point the socioeconomic characteristic of the municipality in which it was located, thereby ensuring that all neighbouring locations were equally represented when computing the contextual factor. Weights were needed to indicate the extent to which points that were situated further from individuals had less of an impact on them than points that were closer.[34] We defined such weights by assuming that the extent to which individuals at a given location were affected by surrounding locations was a function of the overall movement of individuals regularly travelling between locations. Thus, we aimed to approximate the global movement between locations as a function of the distance between locations in the territory. For the sake of simplicity, we estimated a mean function for the whole of France, rather than employing a place-specific weighting function. We approximately quantified the regular movement between locations by considering distances covered by individuals in going to work. We used the 1999 French census that provided municipality of residence and workplace municipality for the 22 million individuals employed in mainland France. The straight-line distance between the centroids of the municipalities of residence and work (set to 0 for individuals working in their residential municipality) followed an exponential distribution, with a density of probability approximately equal to w(d) = 0.0799 × exp(–0.0799 × d), where d is the distance in kilometres. We used values of this decreasing function of the distance as weights in the computation of contextual factors. The socioeconomic contextual factor Si for individuals located at the centroid of a municipality i was computed as a weighted average of the socioeconomic values at surrounding points j: S i = ∑ wij s j j ∑w ij with wij = w(d), and wij = 0 for w(d) < 0.05 × w(0) Equation 1 j where sj is the socioeconomic value attributed to point j of the one-kilometer grid, and wij is the weight of point j on individuals from municipality i. Weights were defined with the decreasing function of the distance described above, but were set to 0 when less than 5% of the weight for a point at distance 0. As indicated in figure 2, practically this means that our approach considers contextual information in a circular space of 37.5 kilometres of radius around individuals, a space markedly larger than any municipality. Our approach is an adaptation of the spatial filters used in disease mapping to obtain smoothed maps of disease incidence.[20, 31] For measuring the supply of physicians across continuous space, each place of consultation was randomly located within its municipality (exact locations were not available). For individuals in municipality i, we determined the weighted number of places of consultation j within a radius of 50 kilometres as: Pi = ∑ wij with wij = w(d) for d < 50 kilometres; otherwise wij = 0 Equation 2 j For example, for an individual having two physicians within 50 kilometres, at distances 10 and 30 kilometres, Pi would be equal to w(10) + w(30). Pi would be greater if more physicians were present, and if they were closer to the individual’s residence. Such indicator was computed separately for PCPs and specialists. Our approach consists in measuring contextual factors across continuous space, while allowing for the more significant impact of nearer locations.[34] Slightly different approaches and refinements of the method may be suggested to implement this general idea. For example, rather than directly attributing municipality characteristics to the one kilometre grid points, a smoothed surface of the socioeconomic characteristic obtained through the kriging approach might be considered. Similarly, other options exist to define the weighting function, and different functions may be needed in different parts of the territory or for the different contextual factors, but investigating these aspects will require sensitivity analyses. Appendix 2: The multilevel and the spatial mixed models Let yij be the value of the binary outcomes for individual i in area j. We first fitted empty multilevel logistic models for these outcomes:[6] yij = πj + eij Equation 3 logit (πj) = β0 + uj uj ~ N(0, σu²) 12 where uj is the random deviation of intercept β0 for area j. To account for the hierarchical structure of the data, the multilevel model includes area-level residuals uj of variance σu². We also modelled geographic variations across continuous space. As figure 1 shows, we did not have individual information for all French municipalities. Accordingly, spatial lattice models,[24, 51] which usually consider correlation between adjacent areas on the territory, were not adapted to our case. The use of a geostatistical model considering locations on the territory proved more appropriate. The spatial mixed models considered are not dependent on a space fragmented into areas.[45] Individuals were randomly located in their municipality so that, in estimating the spatial correlation function, the distance between individuals from the same municipality would not be set to 0. Results remained unchanged when randomly relocating individuals within municipalities. Let us consider a logistic model: yi = πi + ei Equation 4 logit (πi) = β0 Let dij be the spatial distance between places of residence for individual i and individual j. Spatial mixed models do not take into account geographic correlation with area-level random effects, but specify a spatial correlation structure for the individual residuals, assuming that the correlation between residuals ei and ej for individuals i and j is a decreasing function of the distance dij: Corr (ei, ej) = σ² [exp(-dij/ρ)] / (σ² + σ1²) Equation 5 Exp(-dij/ρ) indicates that the correlation is proportional to the exponentiated distance between individuals. In this model, two individuals located at the same place may have an estimated correlation below 1, since they do not necessarily have identical healthcare utilisation behaviour. REFERENCES 1 Diez-Roux AV. Multilevel analysis in public health research. Annu Rev Public Health 2000;21:171-92. 2 Diez-Roux AV. Bringing context back into epidemiology: variables and fallacies in multilevel analysis. Am J Public Health 1998;88:216-22. 3 Pickett KE, Pearl M. Multilevel analyses of neighbourhood socioeconomic context and health outcomes: a critical review. J Epidemiol Community Health 2001;55:111-22. 4 Merlo J, Asplund K, Lynch JW, et al. Population effects on individual systolic blood pressure - a multilevel analysis of WHO MONICA project. Am J Epidemiol 2004;159:1168-79. 5 Goldstein H, Browne W, Rasbash J. Multilevel modelling of medical data. Stat Med 2002;21:3291-315. 6 Leyland AH, Goldstein H. Multilevel modelling of health statistics. Chichester, England: Wiley, 2001. 7 Bobashev GV, Anthony JC. Clusters of marijuana use in the United States. Am J Epidemiol 1998;148:1168-74. 8 Preisser JS, Arcury TA, Quandt SA. Detecting patterns of occupational illness clustering with alternating logistic regressions applied to longitudinal data. Am J Epidemiol 2003;158:495-501. 9 Snijders T, Bosker R. Multilevel Analysis. An introduction to basic and advanced multilevel modelling. London, England: Sage Publications, 1999. 10 Merlo J, Östergren PO, Hagberg O, et al. Diastolic blood pressure and area of residence: multilevel versus ecological analysis of social inequity. J Epidemiol Community Health 2001;55:791-8. 11 Merlo J, Chaix B, Yang M, et al. A brief conceptual tutorial on multilevel analysis in social epidemiology - linking the statistical concept of clustering to the idea of contextual phenomenon. J Epidemiol Community Health 2004; in press. 12 Merlo J, Yang M, Chaix B, et al. A brief conceptual tutorial on multilevel analysis in social epidemiology - investigating contextual phenomena in different groups of individuals. J Epidemiol Community Health 2004; in press. 13 Fotheringham AS, Wong DWS. The modifiable areal unit problem in multivariate statistical analysis. Environ Plan A 1991;23:1025-44. 14 Amrhein CG. Searching for the elusive aggregation effect: evidence from statistical simulations. Environ Plan A 1995;27:105-19. 15 Martin D. An assessment of surface and zonal models of population. Int J Geographical Information Systems 1996;10:973-89. 16 Holt D, Steel DG, Tranmer M. Area homogeneity and the modifiable areal unit problem. Geographical Systems 1996;3:181-200. 17 Mitchell R. Multilevel modeling might not be the answer. Environ Plan A 2001;33:1357-60. 18 Carrat F, Valleron AJ. Epidemiologic mapping using the "kriging" method: application to an influenzalike illness epidemic in France. Am J Epidemiol 1992;135:1293-300. 13 19 Green C, Hoppa RD, Young TK, et al. Geographic analysis of diabetes prevalence in an urban area. Soc Sci Med 2003;57:551-60. 20 Rushton G. Public health, GIS, and spatial analytic tools. Annu Rev Public Health 2003;24:43-56. 21 Sabel CE, Boyle PJ, Loytonen M, et al. Spatial clustering of amyotrophic lateral sclerosis in Finland at place of birth and place of death. Am J Epidemiol 2003;157:898-905. 22 Kleinschmidt I, Sharp BL, Clarke GP, et al. Use of generalized linear mixed models in the spatial analysis of small-area malaria incidence rates in Kwazulu Natal, South Africa. Am J Epidemiol 2001;153:1213-21. 23 English PB, Kharrazi M, Davies S, et al. Changes in the spatial pattern of low birth weight in a southern California county: the role of individual and neighborhood level factors. Soc Sci Med 2003;56:2073-88. 24 Kleinschmidt I, Sharp B, Mueller I, et al. Rise in malaria incidence rates in South Africa: a small-area spatial analysis of variation in time trends. Am J Epidemiol 2002;155:257-64. 25 Joines JD, Hertz-Picciotto I, Carey TS, et al. A spatial analysis of county-level variation in hospitalization rates for low back problems in North Carolina. Soc Sci Med 2003;56:2541-53. 26 Werneck GL, Maguire JH. Spatial modeling using mixed models: an ecologic study of visceral leishmaniasis in Teresina, Piaui State, Brazil. Cad Saude Publica 2002;18:633-7. 27 Leyland AH, Langford IH, Rasbash J, et al. Multivariate spatial models for event data. Stat Med 2000;19:2469-78. 28 Langford IH, Bentham G, McDonald AL. Multilevel modelling of geographically aggregated health data: a case study on malignant melanoma mortality and UV exposure in the European Community. Stat Med 1998;17:41-57. 29 Gemperli A, Vounatsou P, Kleinschmidt I, et al. Spatial patterns of infant mortality in Mali: the effect of malaria endemicity. Am J Epidemiol 2004;159:64-72. 30 Banerjee S, Wall MM, Carlin BP. Frailty modeling for spatially correlated survival data, with application to infant mortality in Minnesota. Biostatistics 2003;4:123-42. 31 Rushton G, Peleg I, Banerjee A, et al. Analyzing geographic patterns of disease incidence: rates of latestage colorectal cancer in Iowa. J Med Syst 2004;28:223-36. 32 Burnett R, Ma R, Jerrett M, et al. The spatial association between community air pollution and mortality: a new method of analyzing correlated geographic cohort data. Environ Health Perspect 2001;109 Suppl 3:37580. 33 Cakmak S, Burnett RT, Jerrett M, et al. Spatial regression models for large-cohort studies linking community air pollution and health. J Toxicol Environ Health A 2003;66:1811-23. 34 Fotheringham AS, Charlton ME, Brunsdon C. Spatial variations in school performance: a local analysis using geographically weighted regression. Geographical & Environmental Modelling 2001;5:43-66. 35 Morenoff JD. Neighborhood mechanisms and the spatial dynamics of birth weight. AJS 2003;108:9761017. 36 Treno AJ, Gruenewald PJ, Johnson FW. Alcohol availability and injury: the role of local outlet densities. Alcohol Clin Exp Res 2001;25:1467-71. 37 Liu GC, Cunningham C, Downs SM, et al. A spatial analysis of obesogenic environments for children. Proc AMIA Symp 2002:459-63. 38 Ali M, Emch M, Tofail F, et al. Implications of health care provision on acute lower respiratory infection mortality in Bangladeshi children. Soc Sci Med 2001;52:267-77. 39 Grasland C, Mathian H, Vincent JM. Multiscalar analysis and map generalisation of discrete social phenomena: Statistical problems and political consequences. Stat J UN Econ Comm Eur 2000;17:1-32. 40 Chaix B, Boëlle PY, Guilbert P, et al. Area level determinants of specialty care utilisation in France: a multilevel analysis. Public Health 2004; in press. 41 Soloway B. Primary care and specialty care in the age of HAART. AIDS Clin Care 1997;9:37-9. 42 Baker DW, Hayes RP, Massie BM, et al. Variations in family physicians' and cardiologists' care for patients with heart failure. Am Heart J 1999;138:826-34. 43 Grumbach K, Selby JV, Damberg C, et al. Resolving the gatekeeper conundrum: what patients value in primary care and referrals to specialists. JAMA 1999;282:261-6. 44 Bodenheimer T, Lo B, Casalino L. Primary care physicians should be coordinators, not gatekeepers. JAMA 1999;281:2045-9. 45 Littel RC, Milliken GA, Stroup WW, et al. SAS System for Mixed Models. Cary, North Carolina, USA: SAS Institute, 1996. 46 Auvray L, Dumesnil S, Le Fur P. Santé, soins et protection sociale en 2000 [Health, healthcare and insurance in 2000] (in French). Paris, France: CREDES, 2001. 47 Zonage d'Etudes [Geographic subdivisions of the territory] (in French). Paris, France: Institut National de la Statistique et des Etudes Economiques (http://www.insee.fr/fr/nom_def_met/nomenclatures/zonages_etudes/index.htm). 14 48 Nomenclature des professions et catégories socioprofessionnelles [List of professions and social categories] (in French). Paris, France: Institut National de la Statistique et des Etudes Economiques, 1994. 49 Bivand R. Spatial dependence: weighting schemes, statistics and models. (http://cran.rproject.org/src/contrib/PACKAGES.html#spdep). 50 Walter SD. The analysis of regional patterns in health data. II. The power to detect environmental effects. Am J Epidemiol 1992;136:742-59. 51 Richardson S, Thomson A, Best N, et al. Interpreting posterior relative risk estimates in disease-mapping studies. Environ Health Perspect 2004;112:1016-25. 15 Comparison between a spatial perspective and the multilevel analytic approach in neighborhood studies: the example of mental and behavioral disorders due to psycho-active substance use in Malmö, Sweden, 2001 B. Chaix, J. Merlo, S.V. Subramanian, J. Lynch, P. Chauvin B. Chaix, P. Chauvin, Research Team on the Social Determinants of Health and Healthcare (INSERM U444), National Institute of Health and Medical Research, Paris, France J. Merlo, Department of Community Medicine (Preventive Medicine), Malmö University Hospital, Lund University, Malmö, Sweden S.V. Subramanian, Harvard School of Public Health, Boston MA, USA J. Lynch, Department of Epidemiology, University of Michigan, Ann Arbor MI, USA Abstract Almost all studies of neighborhood effects on health have followed the multilevel analytic approach. However, in such an approach, measures of variation and measures of association between contextual factors and health may not provide optimal epidemiological information, due to the dependence on a space fragmented into neighborhoods. Using data on all individuals aged 40-59 in the city of Malmö, Sweden, geolocated at their exact residence to investigate the spatial distribution of mental and behavioral disorders due to psychoactive substances, the authors compare a spatial perspective of investigation, which builds on a continuous conception of space, to the multilevel analytic approach. A geoadditive model based on individual-level locational information was used to obtain visual information on spatial risk variations independent of administrative neighborhood boundaries. The multilevel model showed significant neighborhood-level variations in the risk of substance-related disorders. The hierarchical geostatistical model provided information not only on the magnitude but also on the shape of neighborhood variations, indicating significant correlation between neighborhoods close to each other. After individual-level adjustment, the prevalence of substance-related disorders increased with contextual deprivation, with much stronger associations when measuring contextual deprivation in spatially adaptive areas of smaller size than the administrative neighborhoods centered on the exact place of residence. In many neighborhood studies, viewing space in a continuous way may yield more complete information on the spatial distribution of health outcomes. During the past decade, there has been growing research interest in the impact of the neighborhood of residence on health (1, 2). Most of the studies have followed the multilevel analytic approach (3, 4). Indeed, in multilevel models, measures of associations between neighborhood factors and health have their standard errors corrected for the nonindependence of individuals within neighborhoods (5, 6). Futhermore, as emphasized by Merlo, multilevel models provide measures of variation based on random effects (such as the area-level variance or variance partition coefficient) that provide information on the distribution of health phenomena across neighborhoods (7, 8). However, as part of this project, we aim to show that in many neighborhood studies the multilevel analytic approach may fail to provide optimal epidemiological information for both measures of association and measures of variation, due to the notion of space on which it is grounded. Indeed, measures of variation in the multilevel approach are affected by the so-called modifiable areal unit problem (9-11): they are dependent on the particular size and shape of the administrative areas (12-15). More importantly, even if appropriate scale and zoning are used, multilevel models neglect spatial connections between neighborhoods and assume that all spatial correlation can be reduced to within-neighborhood correlation. Accordingly, they only provide partial parametric information on the spatial distribution of outcomes. They quantify the magnitude of neighborhood variations but do not provide indication on their shape, i.e., on the extent to which the neighborhood variability follows spatially structured trends or alternatively consists of unstructured random variations (16). Such descriptive information is interesting in an epidemiological perspective, since the existence of spatial clusters of elevated risk exceeding administrative neighborhood boundaries indicates that public health intervention efforts should be coordinated on a larger scale than the neighborhood scale. Mapping the neighborhood-level residuals of the multilevel model provides indication on the shape of neighborhood variations (16), but the existence of statistically significant clusters of neighborhoods at risk cannot be assessed with an approximate judgment based on visual information. The spatial scan statistic approach has been proposed to identify clusters of areas with a higher risk of disease (17, 18). However, this ecologic approach based on aggregated rates does not allow one to simultaneously investigate individual and contextual effects on the outcome. Beyond multilevel models, geographic variations of health at the individual level have recently been investigated with geoadditive models that capture spatial variations with a two-dimensional (longitude / latitude) smooth term (19). Whereas parametric approaches are often computationally unable to deal with information on the exact spatial coordinates of the individuals, we illustrate in the example below that geoadditive models 1 allows using this precise locational information to produce smoothed maps of risk independent of neighborhood boundaries (20-22). However, this approach only provides visual information, but no parametric information on the magnitude and shape of spatial variations. Furthermore, it is never entirely clear whether the similar risk level observed for surrounding neighborhoods in the estimated spatial surface of risk corresponds to the real pattern of variations or simply results from the (over-) smoothing of data. Many regression analyses based on aggregated data have emphasized the interest of modeling the spatial autocorrelation of outcomes with parametric approaches (23-28). However, there has been much less effort to do so with individual-level data (16, 29-31). In order to obtain epidemiologically relevant information on the shape of spatial variations, we used a hierarchical geostatistical model (29), which allows splitting the neighborhood variability in a spatially structured component and an unstructured component (16). This model includes parameters that allow one to make statistical inferences not only on the magnitude of correlation within neighborhoods, but also on the range of correlation in space (30, 31). Quantifying the extent to which the spatial range of correlation of outcomes exceeds neighborhood boundaries provides parametric support to interpret visual evidence of spatial clustering in the neighborhood risk level. Regarding measures of association between contextual factors and health, measuring contextual variables within administrative neighborhoods may be restrictive when individual-level locational information is available. Indeed, the administrative scale of the neighborhoods may be too broad to capture the contextual effects at play (32). Moreover, regardless of the scale, such measures made in fixed boundary areas may not really capture contextual information in surrounding space for individuals residing on the margins of the administrative neighborhoods. Therefore, we propose to measure contextual factors within small-size areas centered on the exact place of residence of the individuals (i.e., within moving-window areas). In the present study, we used data on all individuals aged 40-59 in the Swedish city of Malmö geocoded at their exact place of residence to investigate the spatial distribution of mental or behavioral disorders due to psychoactive substance. Using these data, 1) we examined whether multilevel models properly took into account the spatial correlation in the risk of substance-related disorders; 2) we compared geoadditive models, multilevel models, and hierarchical geostatistical models for gaining information on the spatial distribution of substancerelated disorders; and 3) we examined whether contextual factors measured within small-size moving-window areas centered on the exact place of residence of the individuals allowed us to distinguish low-risk and high-risk places better than contextual factors measured within administrative neighborhoods. Methods Data and measures We used data from the Swedish database ‘Resource Allocation 2001’. It was formed by Statistics Sweden after approval of the Data Safety Committee, by merging the Population Register and the Patient Administrative Register with the unique individual identification number attributed to every Swedish resident. We considered information on all 65830 individuals aged 40-59 in 2001 residing in the city of Malmö. The original database comprises information on all inpatient or outpatient contacts with public or private healthcare providers in 2001 including diagnoses made during these contacts. Based on the first three diagnoses made at each contact, the Statistics Office at the County of Scania predefined variables indicating whether individuals had had a diagnosis within different groups of diagnoses. In the present study, the binary outcome investigated indicates whether a mental or behavioral disorder due to psychoactive substances (ICD-10 code: F10-F19) had been diagnosed in 2001. We had more detailed information on the diagnoses in a separate database, which could not be linked to the main database for reasons of confidentiality. Regarding individual-level variables, we took into account the age, gender, marital status, educational level, and individual income of the individuals. Age was divided in two categories (40-49, 50-59). Marital status was coded as married or cohabiting individuals and others (single, divorced, widowed individuals). The educational level was dichotomized (9 years of education or less, more than 9 years). The household income was not available in the data; instead, we used the individual income, as a proxy for the socioeconomic position of the individuals. The individual income was dichotomized, with the median value as a cut-off. The city of Malmö is divided into 100 administrative neighborhoods. We were able to locate every individual at her/his place of residence with the exact coordinates of the street adress in meters. Figure 1 indicates the spatial distribution of the 65830 individuals aged 40-59 years across 13730 different locations in the city of Malmö (which locations may correspond to houses, buildings, or groups of buildings with a similar street address). Figure 1 also provides basic information on the neighborhood structure. As a contextual factor, we considered the mean income of individuals aged 25 years or over (as a proxy for the mean socioeconomic position of the economically independent population). We first defined this variable at the scale of the administrative neighborhoods. Second, in order to define it at a more local scale and avoid the problem of individuals residing on the margins of the areas, we computed the mean income within areas of smaller size than the neighborhoods centered on the exact place of residence of the individuals. We could have defined these areas as a circular space of small radius centered on the individuals’ places of residence. However, due to the uneven distribution of individuals in the city (figure 1), such an approach results in measurements based on little information for individuals residing in sparsely populated areas. Therefore, we defined indicators based on surrounding population rather than surrounding space: we computed the mean income in circular areas centered on each individual, which areas comprised a fixed number of inhabitants aged 25 years or over. This approach results in spatially adaptive areas, i.e., areas of greater size for individuals residing in sparsely 2 populated areas. This is an adaptation to our context of the spatially adaptive filters used in health geography to obtain smoothed maps of disease incidence (33-35), which consist in computing local incidence rates in different-sized areas of constant population size. We successively computed the mean income for the 100, 200, 500, 1000, and 1500 closest inhabitants aged 25 years or over, obtaining different contextual measures for each of the 13730 locations in the city. The different contextual variables were divided into quartiles, to allow for the comparison of the different measurement strategies. FIGURE 1. Spatial distribution of the 65,830 individuals aged 40-59 years residing at 13,730 different locations in the city of Malmö, as divided in 100 administrative neighborhoods, and neighborhood income. Each point indicates the exact place of residence of individuals aged 40-59 years. Median area of the neighborhoods: 0.5 km² Median distance between neighborhoods’ centroids: -between first-order neighbors: 913 m -between second-order neighbors: 1759 m -between third-order neighbors: 2703 m Median number of inhabitants (all ages) in a neighborhood: 2046 Median number of individuals aged 40-59 in a neighborhood: 510 Statistical analyses In order to produce precise smoothed map of risk based on individual-level locational information rather than on neighborhood locations, we first estimated a semiparametric geoaditive model (19-22), with a nonparametric two-dimensional (latitude/longitude) smooth term for the spatial effect, and parametric effects for individual-level and contextual factors (see the appendix for details). To obtain easily interpretable information on the magnitude of spatial variations, we propose an indicator on the odds ratio scale, the interquartile odds ratio, which approximately quantifies the odds ratio between an individual in the first quartile and an individual in the fourth quartile of spatial risk. The median odds for individuals in the first and individuals in the last quartiles of spatial risk are equal to exp(Σβ + t12.5) and exp(Σβ + t87.5) where t12.5 and t87.5 are the 12.5th and 87.5th quantiles in the distribution of the spatial smooth term for the 65830 individuals of the sample. Therefore, the interquartile odds ratio was computed as exp(t87.5 – t12.5). In order to make statistical inferences on the magnitude of spatial variations, we then estimated a multilevel logistic model (5, 6), with individuals nested within the 100 administrative neighborhoods (see the appendix for details on the model). The neighbourhood-level variance σu² was used to assess the amount of variability between neighborhoods in substance-related disorders (8). Two neighborhoods are first-order, second-order, or n-order neighbors if at least one, two, or n boundaries need to be crossed to go from one neighborhood to the other. We used the Moran’s I statistic (described in the appendix) to assess whether there was spatial autocorrelation in the neighborhood residuals of the multilevel model (36, 37). To assess whether spatial correlation decreased with increasing distance, we computed the Moran’s I separately for first-order neighbors, for second-order neighbors, etc. To gain further insight on the spatial distribution of the outcome, we estimated a hierarchical geostatistical model (30, 31) with two sets of neighborhood-level random effects, including the usual set of unstructured effects of variance σu², and an additional set of spatially correlated random effects of variance σs² (see the appendix for details) (16, 29, 38). To assess the extent to which neighborhood variability was spatially structured, we computed the proportion of total neighborhood-level variance attributable to the spatially structured component of variability as σs² / (σu² + σs²) (38). To describe the spatial structure, we were interested in the parameter φ, which quantifies the rate of correlation decay with increasing distance between neighborhoods (with distance measured between the centroids of the neighborhoods). We computed the range of spatial correlation (3/φ), defined as the distance beyond which the correlation is below 5 percent (see the appendix for details) (30, 31). As detailed in the appendix, we performed a simulation to investigate whether the hierarchical geostatistical model was really able to disentangle spatially structured from unstructured neighborhood variations. We disorganized the spatial structure of the data without modifying the multilevel structure of the database (i.e., spatial connections between neighborhoods were experimentally modified, but the same individuals were still grouped together within neighborhoods), and examined the resulting changes in the neighborhood variance 3 parameters. The simulation indicated that the hierarchical geostatistical model was able to distinguish between spatially structured and unstructured neighborhood variations, but showed that the percentage of spatially structured variations [σs² / (σu² + σs²)] needs to be interpreted jointly with the spatial range of correlation (3/φ) (see the appendix). Multilevel models and hierarchical geostatistical models were estimated with Markov chain Monte Carlo simulation (see the appendix for details) (39). We used the deviance information criterion (DIC) to compare the different models (the smaller the DIC, the better the fit of the model) (40). For each of the three modeling options (multilevel model, hierarchical geostatistical model, geoadditive model), we first estimated an empty model (with no explanatory variables). We then introduced the individuallevel covariates, and the contextual variable in a third step. Results In our sample, 1.45 percent of the individuals sought care in 2001 for mental or behavioral disorders due to psychoactive substance use. Alcohol was involved in the diagnoses for 80 percent of the individuals, opioids for 12 percent, and sedatives or hypnotics for 10 percent (multiple substances were implicated for 14 percent of the individuals). Clinical conditions comprised a dependence syndrome for 89 percent of the individuals, a harmful use for 13 percent, and a psychotic disorder for 3 percent of them. FIGURE 2. Smoothed map of risk of having a psychoactive substance-related disorder (top part) and associated standard errors (bottom part), estimated from the empty geoadditive model. The quantiles used to draw the maps are derived from the distributions of the spatial smooth term and standard error for the 65,830 individuals of the dataset Spatial smooth term in the empty model Standard error of the spatial smooth term An empty geoadditive model based on individual-level locational information provided a precise smoothed map of risk of substance-related disorders, represented in figure 2 with associated standard errors. The map showed an increased prevalence in a large area in the center and north of the city, and allowed us to identify two 4 local sub-areas with a particularly higher risk. Considering the spatial smooth term estimated in the empty model for the 65830 individuals, the interquartile odds ratio was equal to 3.96, which approximately quantifies the odds ratio between an individual in the lowest quartile and an individual in the highest quartile of spatial risk. The empty multilevel model showed important variations between neighborhoods in the risk of substancerelated disorders (table 1). The Moran’s I computed from the neighborhood-level residuals was significantly positive for first-order neighbors, and to a lesser extent for second-order neighbors (figure 3), indicating spatial correlation between neighborhoods unaccounted for by the multilevel model, which correlation decreased with increasing distance between the neighborhoods. TABLE 1. Results of the multilevel models for mental and behavioral disorders related to psychoactive substance use, Malmö, Sweden, 2001 Empty model Model with individual Model with factors neighborhood income Index 95% CI Index 95% CI Index 95% CI Age: 50-59 vs. 40-49 1.10 0.96, 1.25 1.10 0.97, 1.25 Gender: male vs. female 2.31 2.01, 2.67 2.29 1.99, 2.64 Marital status: alone vs. other 4.27 3.61, 5.08 4.15 3.51, 4.93 Education: low vs. high 1.40 1.22, 1.61 1.38 1.20, 1.58 Individual income: low vs. high 3.60 3.06, 4.25 3.42 2.91, 4.05 Neighborhood mean income Third quartile 1.40 1.00, 1.99 Second quartile 2.07 1.51, 2.86 First quartile 2.11 1.54, 2.93 Area-level variance σu² Deviance Information Criterion 95% CI: 95% credible interval 0.646 0.433, 0.976 3894 0.173 3138 0.095, 0.298 0.111 0.052, 0.208 3125 FIGURE 3. Moran’s I statistic for the neighborhood-level residuals of the multilevel models, computed separately for first-order neighbors, second-order neighbors, and third-order neighbors The empty hierarchical geostatistical model fitted to the data indicated that 89 percent of the neighborhood variability was spatially structured [(σs² / (σu² + σs²)] (table 2). Figure 4 displays the estimated neighborhood variations, as split into the spatially structured and unstructured components of variability. Regarding the spatially structured component, figure 5A indicates how the correlation in the neighborhood risk level decreases with increasing distance between neighborhoods (solid line). As plotted on figure 5A, the range of spatial correlation (3/φ) estimated from the empty model was equal to 3471 meters (a quarter of the maximum northsouth distance in Malmö), a distance that far exceeds the median distance between third-order neighbor neighborhoods. The DIC was 10 points lower in the empty hierarchical geostatistical model than in the multilevel model (tables 1 and 2), indicating a better fit to the data of the model that split neighborhood variability into a spatially structured and unstructured components of variability. 5 TABLE 2. Results of the hierarchical geostatistical models for mental and behavioral disorders related to psychoactive substance use, Malmö, Sweden, 2001 Empty model Model with individual Model with neighborhood factors income Index 95% CI Index 95% CI Index 95% CI Neighborhood mean income Third quartile (OR) 1.38 0.97, 1.97 Second quartile (OR) 2.10 1.52, 2.93 First quartile (OR) 2.14 1.53, 3.04 σu² (unstructured component) 0.075 <0.001,0.346 0.045 <0.001, 0.176 0.030 <0.001, 0.125 σs² (structured component) 0.565 0.257, 1.142 0.127 0.036, 0.272 0.081 0.021, 0.194 φ (rate of correlation decay) 0.0009 0.0003, 0.0026 0.0032 0.0008, 0.0086 0.0037 0.0009, 0.0087 σs² / (σu² + σs²) 0.89 0.47, 0.99 0.75 0.23, 0.99 0.74 0.22, 0.99 3/φ (range of correlation in meters) Deviance Information Criterion 3471 1157, 10 973 946 349, 3763 817 347 ,3349 3884 3131 3119 FIGURE 4. Neighborhood-level variations in the risk of having a psychoactove substance-related disorder, split into a spatially structured component (top part) and an unstructured component (bottom part), as estimated from the empty hierarchical geostatistical model. The quartiles used to draw the maps are derived from the distribution of the random effects for the 65,830 individuals of the dataset. Spatially structured component of neighborhood variability Unstructured component of neighborhood variability 6 FIGURE 5. Spatially structured neighborhood variations in substance-related disorders estimated in the empty hierarchical geostatistical model: correlation (figure 4A) and covariance (figure 4B) in the neighborhood risk level. The stars on figure 4A indicate the spatial range of correlation (3/φ). Correlation in the neighborhood level of risk Covariance in the neighborhood level of risk Both the individual variables and the neighborhood socioeconomic level allowed us to explain some part of the spatially structured neighborhood variations in substance-related disorders, as indicated by a decrease of the area-level variance and Moran’s I statistics in the multilevel model (table 1 and figure 3) and a decrease of the spatially structured variance and spatial range of correlation in the hierarchical geostatistical model (table 2, figure 5A). We clearly illustrate this aspect in figure 5B, which reports the covariance function of the spatially structured component of variance of the hierarchical geostatistical model. In the geoadditive model, the interquartile odds ratio dropped from 3.96 to 1.92 when including the individual variables, and to 1.67 after inclusion of the neighborhood socioeconomic level. Regarding the impact of the neighborhood mean income, we found that individuals residing in deprived administrative neighborhoods had higher risks of substance-related disorders, beyond the impact associated with individual-level effects (tables 1, 2 and 3). Measuring the mean income in spatially adaptive areas of smaller size than the administrative neighborhoods indicated that the strength of association between contextual deprivation and substance-related disorders markedly increased with decreasing size of the areas taken into account (table 3). Geoadditive models indicated that the risk of substance-related disorders was 1.97 times higher (95% confidence interval: 1.39, 2.79) in the highest vs. lowest quartiles of contextual deprivation when measuring the contextual factor at the neighborhood level, but 4.12 times higher (95% confidence interval: 3.01, 5.64) when measuring it on the 100 closest inhabitants aged 25 years or over. Considering an area in the center of Malmö, figure 6 indicates whether each individual-level location belonged or not to the lowest income quartile, as measured with the different approaches. It shows that measuring contextual income within spatially adaptive areas allowed us to identify highly deprived places located in non deprived neighborhoods, which places exhibited a particularly increased prevalence of disorders. Discussion In the present study, we investigated mental or behavioral substance-related disorders in the Swedish city of Malmö to compare a spatial perspective to the usual multilevel analytic approach. When viewing space as a continuum rather than as fragmented into areas disconnected from each other, measures of variation or correlation provided a more accurate description of the spatial distribution, and measures of association better identified areas with a high prevalence of disorders. Such a spatial perspective may be more appropriate than the multilevel analytic approach in many neighborhood studies. 7 TABLE 3. Contextual effect of the mean income successively measured within neighborhoods and small-size areas, estimated in geoadditive models adjusted for the individual-level covariates, Malmö, Sweden, 2001 OR 95% CI Neighborhood income* Third quartile 1.08 0.78, 1.51 Second quartile 1.92 1.40, 2.63 First quartile 1.97 1.39, 2.79 Income of the 1500 closest individuals Third quartile 1.12 0.85, 1.46 Second quartile 1.69 1.26, 2.26 First quartile 2.02 1.47, 2.77 Income of the 1000 closest individuals Third quartile 1.06 0.80, 1.0 Second quartile 2.04 1.53, 2.72 First quartile 2.19 1.60, 2.98 Income of the 500 closest individuals Third quartile 1.00 0.75, 1.33 Second quartile 1.84 1.39, 2.43 First quartile 2.29 1.70, 3.08 Income of the 200 closest individuals Third quartile 0.97 0.72, 1.31 Second quartile 2.16 1.63, 2.85 First quartile 2.83 2.12, 3.80 Income of the 100 closest individuals Third quartile 1.45 1.06, 2.00 Second quartile 2.73 2.02, 3.70 First quartile 4.12 3.01, 5.64 * The median number of inhabitants aged 25 years or over in a neighborhood was equal to 1484 Investigating the magnitude and shape of spatial variations of health outcomes Regarding the spatial distribution of outcomes, it is epidemiologically relevant to obtain information on the magnitude of neighborhood variations, which informs one on the need to include a contextual dimension in public health programs. Moreover, we emphasized the interest of assessing whether neighborhoods close to each other share a similar level of risk, which indicates whether public health efforts should be coordinated at a larger scale than the one of the administrative neighborhoods. A convenient way to use data on the exact residential locations of the individuals to gain information on the spatial distribution of outcome was to fit a geoadditive model, with a nonparametric smooth term for the spatial effect (19, 22). This approach allowed us to produce a smoothed map of risk independent of neighborhood boundaries (20, 21), which was much more precise than the maps obtained using poor locational information at the neighborhood level. This method can also be used to derive smoothed maps of risk adjusted for a given set of factors. However, a drawback of this approach for epidemiologists is that it only provides visual information, but no parametric effect that would allow one to make statistical inferences on the spatial distribution of the outcome. We only obtained quantitative information on the magnitude of spatial variations, expressed on the odds ratio scale with an interquartile odds ratio based on risk estimates at the 13730 individual locations. Therefore, we considered parametric options such as the multilevel model (5) or the hierarchical geostatistical model (29) to make inferences on the spatial distribution of the outcome. Since computational resources make it intractable to estimate a parametric spatial correlation structure for an important number of locations, these analyses were based on the 100 neighborhood locations rather than on the 13730 individual-level locations, which constitutes a dramatic waste of information. Using multilevel models (5, 6) in neighborhood studies is based on the assumption that all spatial correlation can be reduced to within-neighborhood correlation. The multilevel analytic approach considers individuals’ neighborhood affiliation but neglects spatial relationships between neighborhoods, and implicitly assumes that neighborhood variations are spatially unstructured, with neighborhoods of high risk and neighborhoods of low risk completely distributed at random in space (16). Therefore, beside dependence on the scale and zoning used, measures of variation in multilevel models (such as the area-level variance) only provide partial insight on the spatial distribution of health outcomes, in allowing one to make statistical inferences on the magnitude of variations but not on the shape of neighborhood variations. 8 FIGURE 6. Contextual income at each individuals’ place of residence in an area in the center of Malmö, as measured at the neighborhood level (top part) and in spatially adaptive areas including the 100 closest inhabitants aged 25 years or over (bottom part). Measurements made in spatially adaptive areas allowed us to identify particularly deprived locations located in non-deprived neighborhoods. Contextual income measured within administrative neighborhoods Contextual income measured within spatially adaptive areas In order to obtain more complete parametric information on the spatial distribution of the outcome, we used the hierarchical geostatistical model (30, 31). Using two sets of random effects, our specific model splits the neighborhood variability into a spatially structured component and an unstructured component, and provides information on the spatially structured pattern of variability (16, 29, 38). We found it more informative to use a geostatistical formulation rather than a lattice formulation of the spatial correlation structure: rather than only estimating a parameter for the correlation between neighborhoods with a common boundary, we expressed the correlation between neighborhoods as a decreasing function of the spatial distance between them, which allows one to estimate the spatial range of correlation (31). First, the hierarchical geostatistical model has a heuristic interest. Disentangling the spatially structured variability from other more chaotic sources of neighborhood variations, it may allow researchers to generate hypotheses on causal mechanisms, since many contextual factors follow a strong spatial structure (16). We used this approach when comparing the spatially structured variations of substance-related disorders plotted in figure 4 to the geographic distribution of contextual income reported in figure 1. More importantly, the hierarchical geostatistical model allowed us to make inferences not only on the magnitude of spatial variations but also on the shape of spatial variations, which provides useful indications for public health planning. Information on the spatial range of correlation allowed us to confirm hypotheses based on visual information that spatial variations in the prevalence of substance-related disorders occurred at a quite large scale. Therefore, coordinating public health interventions between administrative neighborhoods close to each other may be an efficient strategy. 9 Measuring contextual factors across continuous space around the individual place of residence It may be a limitation to rely on administrative boundaries to define contextual factors. In our study, we found much stronger associations between contextual deprivation and substance-related disorders when measuring the contextual factor in local areas of much smaller size than the administrative neighborhoods. We measured the contextual income within spatially adaptive areas (i.e., overlapping circles of variable width, containing a fixed number of inhabitants, and centered on the exact place of residence of the individuals), which consist of an importation in our context of the spatially adaptive filters used in disease mapping (33-35). This approach seems theoretically appropriate, since we consider a populational factor related to the characteristics of the inhabitants rather than to the features of the physical environment. Moreover, due to the uneven distribution of individuals through the city, spatially adaptive areas have a technical advantage over fixed-width areas: computing the contextual income within fixed-size circular areas of small radius would result in missing values or unreliable measurements for individuals residing in sparsely populated areas; on the other hand, considering fixed-width areas wide enough to avoid this problem of unreliable measures would prevent from investigating effects of the contextual income at a very local scale (35). In our cross-sectional study, the causal relationships for the association between contextual deprivation and substance-related disorders are likely to play in both directions. On one hand, deprivation may have a negative impact on mental well-being and, on the other hand, selective migration processes may contribute to the clustering of individuals with substance-related disorders in the most deprived places of the city. Despite this uncertainty, our finding indicates that the hypothesis of a causal contextual effect of deprivation on the incidence of substance-related disorders deserves to be investigated in a longitudinal design study; furthermore, it shows that interventions focused at individuals with substance-related disorders may be particularly useful in the hot spot of contextual deprivation identified at a finer scale than the one of the administrative neighborhoods. Conclusion On one hand, our spatial perspective indicated that spatial autocorrelation in the risk of substance-related disorders operated at a larger scale than the administrative neighborhood scale. However, despite these large scale variations due to the spatial clustering of low socioeconomic status individuals in the center and north of the city, we also found more local variations in the prevalence level that were attributable to differences in the intensity of deprivation. We are aware that multilevel models may be appropriate when the context is defined in a way that is not strictly geographical (e.g., as workplaces or schools) (15) or when spatial correlation can be reduced to withinarea correlation. Similarly, it is certainly adequate to measure contextual factors within administrative boundaries when investigating effects operating at these scales (e.g., related to public policies). However, in many neighborhood studies, both measures of variation and measures of association may yield more complete information on the spatial distribution of health outcomes when viewing space in a more continuous way. Appendix Geoadditive logistic model. Based on the work of Simon Wood (19, 22), our geoadditive logistic model can be defined as logit(pi) = β0 + Xiβ + t(xi, yi) where pi is the probability of having a substance-related disorder for individual i, Xiβ refers to the strictly parametric part of the linear predictor, and t(xi, yi) is a two-dimensional smooth function of the exact latitude and longitude (xi, yi) of the individuals. The two-dimensional smooth term was defined using a thin plate regression spline. Because of the radially symmetric nature of the basis function used, the thin plate regression spline is an isotropic smoother. One of its key advantages is to avoid the problem of knot placement that arises with conventional regression spline. To avoid over fitting of the spatial term, the model was estimated by a penalized maximum likelihood approach (41), with a smoothing parameter controlling the tradeoff between the goodness of fit and the smothness of the final surface of risk. Rather than arbitrarily choosing the number of degrees of freedom of the smooth term, it was selected by the minimisation of an Unbiased Risk Estimator (UBRE minimization method). All geoadditive models were fitted to the data with the “mgcv” R package (42). Multilevel logistic model. In order to model variations in the probability pij of having substance-related disorders for individual i in neighborhood j, we fitted a multilevel logistic model to the data as logit(pij) = β0 + Xijβ + uj, where Xij is the vector of explanatory variables, and uj is a normally distributed random intercept of variance σu² (5, 6). In order to assess spatial autocorrelation in the neighborhood residuals, we computed the Moran’s I statistic (36, 37): ⎞ ⎛ N ⎛ N N , j ≠1 ⎞ I = ⎜⎜ N ∑ ∑ wij ui u j ⎟⎟ / ⎜ S 0 ∑ ui2 ⎟ ⎠ ⎝ i =1 ⎠ ⎝ i =1 j =1 where N equals the number of neighborhoods (100), wij is a weight related to the spatial relation between neighborhoods i and j (see below), ui and uj are the residuals for neighborhoods i and j, and S0 is the sum of the weights wij: N N S 0 = ∑∑ wij , i ≠ j i =1 j =1 10 We computed the Moran’s I separately for first-order neighbors (with wij equal to 1 for pairs of adjacent neighborhoods, to 0 otherwise), second-order neighbors (with wij only equal to 1 for second-order neighbours), and third-order neighbors. Multilevel models were estimated with a Markov chain Monte Carlo simulation (see below) (39). In this Bayesian setting, we computed the Moran’s I for each set of sampled values of the neighborhood-level residuals retained for final analysis. We report the median of the posterior distribution of the Moran’s I, and use the 2.5th and 97.5th quantiles of the distribution to define a 95% Bayesian credible interval. The Moran’s I has a small negative expectation when applied to regression residuals (37), and is significantly positive in case of spatial autocorrelation. Hierarchical geostatistical logistic model. We used a logistic model including independent neighborhoodlevel random effects uj, and neighborhood-level spatially correlated random effects sj (16, 29, 38). For an individual i in the neighborhood j, the model was defined as logit(pij) = β0 + Xijβ + uj + sj. Random effect uj are mutually independent and Gaussian, with mean zero and variance σu². Let S = (s1, s2, ..., s100) be the vector of spatial effects for the 100 neighborhoods. The distribution of S may be expressed as: S ~ N(0, V), with Vkl defined as a parametric function of distance dkl in meters between the centroids of neighbourhoods k and l. In our case, assuming an isotropic spatial process (in which the strength of spatial correlation do not depend on the direction), Vkl was defined as Vkl = σs²ρkl with an exponential correlation function ρkl = exp(-φdkl) (30). The range of correlation (beyond which correlation is below 5 percent) can be defined as 3/φ. The proportion of neighborhood variance that is spatially structured is computed as σs² / (σu² + σs²). We examined whether the hierarchical geostatistical model was really able to disentangle spatially structured variations from the neighborhood unstructured variability. In five successive experiments, we randomly selected 10, 25, 50, 75, and 90 neighborhoods out of 100, and randomly assigned all individuals together from each of these neighborhoods to one other selected neighborhood, while no changes were made for the other non-selected neighborhoods. We therefore did not modify the multilevel structure of the data since the same individuals were still grouped together within neighborhoods, but progressively disorganized the spatial structure of the neighborhoods. Fitting a hierarchical geostatistical model to each of these datasets, we observed that the proportion of neighborhood variations attributable to the spatially structured component [(σs² / (σu² + σs²)] decreased with increasing number of neighborhoods selected for random reassignment of inhabitants (table 4). However, spatially structured variations still constituted an important part of neighborhood variability when completely disorganizing the spatial structure of the data (i.e., 59 percent when random reassignment of inhabitants was performed between 90 neighborhoods). However, it is worth noting that the spatial range (3/φ) also considerably and regularly decreased with increasing disorganization of the neighborhood spatial structure (table 4). In the model in which random reassignment of inhabitants was performed between 90 neighborhoods, the spatial range of correlation was equal to 528 meters (vs. 3471 in the real data), indicating that the spatially structured and unstructured components of variability were no longer intrinsically different. This experiment therefore confirms a certain ability of the hierarchical geostatistical model to disentangle spatially structured variations from unstructured neighborhood variations, and indicates that the proportion of spatially structured variations σs² / (σu² + σs²) and the spatial range of correlation 3/φ need to be interpreted jointly. TABLE 4. Results of the hierarchical geostatistical models when randomly reassigning all individuals together from one neighborhood to another for 10, 25, 50, 75, and 90 neighborhoods out of 100. Percentage of spatially Range of correlation (3/φ) structured variations σs² / (σu² + σs²) Reassignment was made for: - 0 neighborhood (real data) - 10 neighborhoods - 25 neighborhoods - 50 neighborhoods - 75 neighborhoods - 90 neighborhoods 0.89 0.88 0.74 0.64 0.64 0.59 0.47, 0.99 0.39, 0.99 0.23, 0.99 0.21, 0.99 0.21, 0.99 0.21, 0.99 3471 2488 927 564 544 528 1157, 10 973 732, 7721 351, 3037 341, 1751 341, 1459 340, 1525 Multilevel models and hierarchical geostatistical models were estimated in a Bayesian setting using Winbugs 1.4 (39). For all parameters including variance parameters, we used noninformative uniform priors. Using WinBUGS’s adaptive rejection sampler, we ran a single chain, with a burn-in period of 100,000 iterations. After ensuring that the chain has converged, we retained every 10th iteration until a sample size of 10,000 had been attained. For each parameter, we report the median of the distribution and provide a 95% credible interval. 11 References 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. Kawachi I, Berkman LF. Neighborhoods and Health. New York: Oxford University Press, 2003. Pickett KE, Pearl M. Multilevel analyses of neighbourhood socioeconomic context and health outcomes: a critical review. J Epidemiol Community Health 2001;55:111-22. Diez-Roux AV. Multilevel analysis in public health research. Annu Rev Public Health 2000;21:171-92. Bingenheimer JB, Raudenbush SW. Statistical and substantive inferences in public health: issues in the application of multilevel models. Annu Rev Public Health 2004;25:53-77. Leyland AH, Goldstein H. Multilevel modelling of health statistics. Chichester, England: Wiley, 2001. Snijders T, Bosker R. Multilevel Analysis. An introduction to basic and advanced multilevel modelling. London, England: Sage Publications, 1999. Merlo J. Multilevel analytical approaches in social epidemiology: measures of health variation compared with traditional measures of association. J Epidemiol Community Health 2003;57:550-2. Merlo J, Chaix B, Yang M, Lynch JW, Rastam L. A brief conceptual tutorial on multilevel analysis in social epidemiology - linking the statistical concept of clustering to the idea of contextual phenomenon. J Epidemiol Community Health 2004; in press. Fotheringham AS, Wong DWS. The modifiable areal unit problem in multivariate statistical analysis. Environ Plan A 1991;23:1025-1044. Amrhein CG. Searching for the elusive aggregation effect: evidence from statistical simulations. Environ Plan A 1995;27:105-119. Holt D, Steel DG, Tranmer M. Area homogeneity and the modifiable areal unit problem. Geographical Systems 1996;3:181-200. Reijneveld SA, Verheij RA, de Bakker DH. The impact of area deprivation on differences in health: does the choice of the geographical classification matter? J Epidemiol Community Health 2000;54:306313. O'Campo P. Invited commentary: Advancing theory and methods for multilevel models of residential neighborhoods and health. Am J Epidemiol 2003;157:9-13. Boyle MH, Willms JD. Place effects for areas defined by administrative boundaries. Am J Epidemiol 1999;149:577-85. Mitchell R. Multilevel modeling might not be the answer. Environ Plan A 2001;33:1357-1360. Borgoni R, Billari FC. Bayesian spatial analysis of demographic survey data: An application to contraceptive use at first sexual intercourse. Demogr Res 2003;8:online journal. Sabel CE, Boyle PJ, Loytonen M, et al. Spatial clustering of amyotrophic lateral sclerosis in Finland at place of birth and place of death. Am J Epidemiol 2003;157:898-905. Green C, Hoppa RD, Young TK, Blanchard JF. Geographic analysis of diabetes prevalence in an urban area. Soc Sci Med 2003;57:551-60. Wood SN. Thin plate regression splines. J. R. Stat. Soc. Ser. B Stat. Methodol. 2003;65:95--114. Cakmak S, Burnett RT, Jerrett M, et al. Spatial regression models for large-cohort studies linking community air pollution and health. J Toxicol Environ Health A 2003;66:1811-23. Burnett R, Ma R, Jerrett M, et al. The spatial association between community air pollution and mortality: a new method of analyzing correlated geographic cohort data. Environ Health Perspect 2001;109 Suppl 3:375-80. Wood SN. Stable and efficient multiple smoothing parameter estimation for generalized additive model. J Am Stat Assoc 2004; in press. Joines JD, Hertz-Picciotto I, Carey TS, Gesler W, Suchindran C. A spatial analysis of county-level variation in hospitalization rates for low back problems in North Carolina. Soc Sci Med 2003;56:254153. Leyland AH, Langford IH, Rasbash J, Goldstein H. Multivariate spatial models for event data. Stat Med 2000;19:2469-78. Langford IH, Leyland AH, Rasbash J, Goldstein H. Multilevel modelling of the geographical distributions of diseases. J R Stat Soc Ser C Appl Stat 1999;48:253-68. Kleinschmidt I, Sharp BL, Clarke GP, Curtis B, Fraser C. Use of generalized linear mixed models in the spatial analysis of small-area malaria incidence rates in Kwazulu Natal, South Africa. Am J Epidemiol 2001;153:1213-21. Kleinschmidt I, Sharp B, Mueller I, Vounatsou P. Rise in malaria incidence rates in South Africa: a small-area spatial analysis of variation in time trends. Am J Epidemiol 2002;155:257-64. English PB, Kharrazi M, Davies S, Scalf R, Waller L, Neutra R. Changes in the spatial pattern of low birth weight in a southern California county: the role of individual and neighborhood level factors. Soc Sci Med 2003;56:2073-88. Diggle P, Moyeed R, Rowlingson B, Thomson M. Childhood Malaria in the Gambia: A Case–Study in Model–Based Geostatistics. J R Stat Soc Ser C Appl Stat 2002;51:493-506. Gemperli A, Vounatsou P, Kleinschmidt I, Bagayoko M, Lengeler C, Smith T. Spatial patterns of infant mortality in Mali: the effect of malaria endemicity. Am J Epidemiol 2004;159:64-72. Banerjee S, Wall MM, Carlin BP. Frailty modeling for spatially correlated survival data, with application to infant mortality in Minnesota. Biostatistics 2003;4:123-42. 12 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. Diez Roux AV, Merkin SS, Hannan P, Jacobs DR, Kiefe CI. Area characteristics, individual-level socioeconomic indicators, and smoking in young adults: the coronary artery disease risk development in young adults study. Am J Epidemiol 2003;157:315-26. Bithell JF. An application of density estimation to geographical epidemiology. Stat Med 1990;9:691701. Talbot TO, Kulldorff M, Forand SP, Haley VB. Evaluation of spatial filters to create smoothed maps of health data. Stat Med 2000;19:2399-408. Tiwari C, Rushton G. Using spatially adaptive filters to map late stage colorectal cancer incidence in Iowa. In: Fisher P, ed. Developments in spatial data handling. Germany: Springer-Verlag, 2005:665676. Walter SD. The analysis of regional patterns in health data. II. The power to detect environmental effects. Am J Epidemiol 1992;136:742-59. Congdon P. Applied Bayesian Modelling. Chichester, England: Wiley & Sons Ltd, 2003. Banerjee S, Gelfrand AE, Carlin BP. Hierarchical Modeling and Analysis for Spatial Data. Boca Raton, FL, USA, 2003. Smith AFM, Roberts GO. Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. J R Stat Soc Ser (B) 1993;55:3-23. Spiegelhalter DJ, Best N, Carlin BP, Linde AVD. Bayesian measures of model complexity and fit. J R Stat Soc Ser (C) 2002;64:583-639. Wood SN. Modelling and smoothing parameter estimation with multiple quadratic penalties. J. R. Stat. Soc. Ser. B Stat. Methodol. 2000;62:413--428. Spatial dependence: weighting schemes, statistics and models: (http://cran.rproject.org/src/contrib/PACKAGES.html#spdep). 13 Conclusion générale et perspectives L’analyse des effets du contexte sur la santé a connu un développement considérable au cours des dix dernières années,4, 127 et est aujourd’hui considérée comme l’une des principales voies à suivre pour avancer dans la compréhension des disparités sociales de santé.5 Les premières générations d’analyses contextuelles ont confirmé qu’il y a un réel intérêt à tenir compte des effets du contexte de résidence lors de l’étude d’un certain nombre de phénomènes de santé. Toutefois, l’analyse contextuelle telle qu’elle est pratiquée aujourd’hui a certainement atteint ses limites, et est ainsi mise en demeure de réviser ses schémas d’analyse pour permettre de nouvelles avancées dans la compréhension des effets du contexte sur la santé.10 Les limites de la méthodologie utilisée renvoient : 1) à l’utilisation d’une distinction trop rigide entre effets individuels et effets contextuels,30 2) à un intérêt peut-être trop exclusif pour un petit nombre de facteurs contextuels (souvent de type socioéconomique), sans que des efforts suffisants n’aient encore été mis en œuvre pour identifier de façon plus précise les mécanismes d’influence du contexte sur la santé,38 3) à l’utilisation de données transversales, qui s’ajoute au problème des biais de confusion pour compromettre définitivement l’identification d’effets causaux du contexte,128 et enfin 4) à l’utilisation de l’approche d’analyse multiniveau, qui ne permet peut-être pas de décrire et de rendre compte efficacement des variations inter-zones des phénomènes de santé. La période d’engouement pour cette thématique des effets du contexte sur la santé, qui correspond peut-être à l’enfance de ce champ d’analyse, doit maintenant faire place à une période à la fois critique et constructive, au cours de laquelle les différentes limites évoquées ci-dessus devront être discutées et résolues. Ce n’est qu’en s’attachant véritablement à surmonter ces difficultés qu’il sera possible d’accroître l’intérêt de ces analyses contextuelles pour le champ de la santé publique. Au cours de notre travail de thèse, nous avons pris conscience de la nécessité d’avancer dans cette voie, et avons commencé à proposer certaines solutions. Nous nous sommes tout particulièrement intéressés à la question des méthodes d’analyse des variations spatiales et des méthodes de mesure des facteurs du contexte. L’objectif de la série d’articles réalisés à la demande du Journal of Epidemiology and Community Health sous la direction de Juan Merlo13, 68 est de souligner que la modélisation de la variance inter-zone fournit elle-même des informations d’intérêt en santé publique, audelà de la modélisation des associations entre facteurs contextuels et phénomènes de santé.69, 40 85 Un tel message n’avait probablement pas été délivré de façon aussi claire ni aussi complète dans la littérature d’épidémiologie sociale qu’au travers de la série d’articles que nous avons écrite de façon collaborative. Cette distinction entre modélisation des associations et modélisation de la variance a servi de point de départ pour la suite de notre travail, puisque nous nous efforçons de montrer que dans beaucoup de cas d’analyses, à la fois les mesures d’association et les mesures de variation ne fournissent pas le maximum d’informations utiles en santé publique lorsqu’elles sont mises en œuvre au travers de l’approche d’analyse multiniveau. Dans beaucoup de cas, ces deux types d’indicateurs permettent d’aller plus avant dans la description et la compréhension de la distribution spatiale des phénomènes de santé lorsque l’on s’appuie sur une vision plus continue de l’espace. Au travers de deux études, nous avons donc cherché à proposer une perspective d’analyse spatiale des variations géographiques des phénomènes de santé. Toutefois, plutôt que d’apporter des réponses définitives, de tels travaux laissent simplement entrevoir que les processus contextuels qui influent sur la santé des individus se distribuent de façon complexe dans l’espace. Dans le cadre d’un post-doctorat en Suède au Département de Médecine Communautaire de l’Hôpital Universitaire de Malmö, puis à notre retour en France dans l’Equipe Avenir « Déterminants Sociaux de la Santé et du Recours aux Soins » de l’unité 444 de l’INSERM, nous chercherons à aller plus avant dans l’étude des distributions spatiales des phénomènes de santé et des mécanismes contextuels qui en sont à l’origine. Perspectives de recherche Notre projet de recherche futur nous conduira tout particulièrement à nous interroger sur les méthodes d’analyse à mettre en œuvre et les données à utiliser pour avancer dans la compréhension des effets du contexte sur la santé. L’objectif de ces progrès méthodologiques est de fertiliser de nouvelles approches d’intervention dans le champ de la santé publique. Notre projet de recherche s’articulera autour des interrogations suivantes : 1) Quelles approches faut-il mettre en œuvre pour décrire la distribution spatiale des phénomènes de santé ? Au cours de nos premiers travaux, nous avons utilisé différentes méthodes de régression spatiale afin d’obtenir des informations sur la distribution spatiale des phénomènes.79, 111, 112, 41 114, 122 D’autres approches statistiques existent que nous n’avons pas encore testées, et certaines méthodes d’analyse sont en cours de constitution. Nous projetons d’engager une comparaison générale des différentes approches d’analyse. L’objectif essentiel sera alors d’évaluer l’intérêt relatif des résultats qu’elles fournissent sur un plan de santé publique. Cherchant à voir si les différentes méthodes permettent de capter la spécificité des distributions spatiales des phénomènes, il sera intéressant de comparer différents phénomènes de santé dont les distributions spatiales seraient largement différentes. La question sera alors de voir si les approches d’analyse envisagées parviennent à fournir des informations assez spécifiques sur chacune des distributions spatiales, qui puissent s’avérer utiles lors de la mise en place de programmes de santé publique adaptés à chaque problème de santé. 2) Quelles approches faut-il mettre en œuvre pour mesurer les facteurs du contexte qui influent sur la santé ? Dans notre recherche future, nous nous efforcerons de travailler à une meilleure identification des processus par lesquels le contexte est susceptible d’influer sur la santé. Nous chercherons à voir si l’on parvient à clarifier le mode opératoire des effets contextuels en distinguant différents types de facteurs, et notamment différentes dimensions économiques et sociales du contexte de résidence. Toutefois, une condition primordiale pour avancer dans cette voie est de raffiner les méthodes de mesure des facteurs du contexte, à la fois dans l’espace et dans le temps : 2A – Mesure dans l’espace : Un second volet de notre travail a consisté à proposer différentes méthodes de mesure des facteurs du contexte dans un espace continu autour du lieu de résidence des individus. Une telle approche est complètement nouvelle et devra être perfectionnée. Des analyses de sensibilité devront être conduites à chaque fois, afin d’examiner si le surcroît de complexité dans les approches de mesure apparaît justifié au regard des résultats obtenus. Par exemple, est-il justifié d’introduire des pondérations dans le calcul des indicateurs contextuels, pondérations qui permettent de tenir compte du fait que les individus sont avant tout affectés par les localisations les plus proches et dans une moindre mesure par les localisations plus éloignées ? Dans cette voie, on peut même imaginer de mettre au point des procédures d’estimation qui permettent de sélectionner la pondération la plus appropriée, ce qui permettrait de savoir dans quelle mesure une localisation située à proximité a un impact plus important sur les individus qu’une localisation située deux fois plus loin. 42 Nos approches de mesure des facteurs du contexte tiennent compte d’un espace continu autour du lieu de résidence des individus. Cela constitue un progrès par rapport aux mesures classiques qui négligent l’espace au-delà des limites administratives de la zone de résidence des individus. Toutefois, des limites physiques et sociales existent dans l’espace, et l’hypothèse d’une parfaite continuité spatiale n’est certainement pas adéquate. Dans nos études à venir des variations des phénomènes de santé dans la ville de Malmö en Suède, nous proposons de considérer l’intégralité du réseau routier de la ville, qui nous permettra de découper l’espace en pâtés de maison au sein desquels nous calculerons les indicateurs contextuels. Nous chercherons à voir si ces mesures contextuelles qui réintroduisent des discontinuités dans un espace continu permettent encore mieux de rendre compte des variations spatiales des phénomènes de santé. 2B – Mesure dans le temps : Une limite importante de la littérature est que les associations entre facteurs contextuels et variables de santé ont souvent été mises en évidence à partir de données transversales.128 Dans la suite de nos travaux, ayant accès à des données longitudinales tant Françaises que Suédoises, nous chercherons à étudier l’impact que les facteurs du contexte peuvent avoir sur l’incidence ultérieure de problèmes de santé. Dans cette perspective, nous chercherons à voir si les effets du milieu de résidence jouent de façon cumulative dans le temps : une exposition prolongée à un facteur contextuel donné est-elle à l’origine d’un effet plus important sur les individus qu’une exposition moins durable ? Dans cette optique, connaissant l’histoire résidentielle des individus, il sera d’une part nécessaire de tenir compte des caractéristiques des lieux de résidence successifs des individus, mais également des changements de caractéristiques des différents lieux de résidence au cours du temps. L’objectif sera de voir si cette mesure cumulative de l’exposition au contexte permet mieux de rendre compte des variations des phénomènes de santé que l’approche classique qui la capture à un moment donné. 3) Dans quelle mesure la moindre exhaustivité et la moindre précision spatiale de certaines sources de données utilisées conduisent-elles à une perte d’informations pertinentes en santé publique ? Dans les prochaines années, l’Equipe Avenir sur les « Déterminants Sociaux de la Santé et du Recours aux Soins » sera amenée à renforcer sa coopération avec le Département de Médecine Communautaire de l’Hôpital Universitaire de Malmö, au travers de ma collaboration avec Juan Merlo. Pour nos travaux futurs, nous aurons donc accès à des données Suédoises, caractérisées par l’exhaustivité quant à la population couverte, par une très grande 43 précision spatiale, et par une dimension longitudinale. Concernant la situation Française, nous comptons notamment travailler à partir des données de l’Echantillon Démographique Permanent de l’INSEE, qui pour riches qu’elles soient, n’atteignent pas des degrés d’exhaustivité et de précision spatiale comparables. Cherchant à comparer diverses méthodes d’analyse des variations spatiales et de mesure des facteurs du contexte, nous examinerons à chaque fois si la moindre précision des données Françaises aboutit à une perte d’informations qui seraient utiles d’un point de vue de santé publique. S’attachant à remplir ces objectifs de recherche, nos travaux futurs devraient contribuer à lever des limites inhérentes à l’analyse contextuelle telle qu’elle est pratiquée aujourd’hui en épidémiologie sociale, et permettre ainsi d’affirmer l’importance de son rôle en santé publique. 44 Liste de publications PUBLICATIONS DANS DES JOURNAUX A COMITES DE LECTURE Chaix B, Bobashev G, Merlo J, Chauvin P. Re: “Detecting patterns of occupational illness clustering with alternating logistic regressions applied to longitudinal data”. Am J Epidemiol 2004;160(5):505-506 (letter). Merlo J, Chaix B, Yang M, Lynch J, Råstam L. A brief conceptual tutorial on multilevel analysis in social epidemiology: linking the statistical concept of clustering to the idea of contextual phenomenon. J Epidemiol Community Health 2004, sous presse. Merlo J, Yang M, Chaix B, Lynch J, Råstam L. A brief conceptual tutorial on multilevel analysis in social epidemiology: investigating contextual phenomena in different groups of individuals. J Epidemiol Community Health 2004, sous presse. Chaix B, Boëlle PY, Guilbert P, Chauvin P. Area level determinants of specialty care utilisation in France: a multilevel analysis. Public Health 2004, sous presse. Chaix B, Veugelers PJ, Boëlle P-Y, Chauvin P. Access to general practitioner services: the disabled elderly lag behind in underserved areas. Eur J Public Health 2004, sous presse. Chaix B, Guilbert P, Chauvin P. A multilevel analysis of tobacco use and tobacco consumption levels in France: are there any combination risk groups? Eur J Public Health 2004; 14: 186-190. Chaix B, Chauvin P. Tobacco and alcohol consumption, sedentary lifestyle and overweightness in France: a multilevel analysis of individual and area-level determinants. Eur J Epidemiol 2003;18(6):531-8. Chaix B, Chauvin P. L’apport des modèles multiniveau dans l’analyse contextuelle en épidémiologie sociale : une revue de littérature. Rev Epidemiol Santé Publ 2002; 50: 489499. CHAPITRES DE LIVRE Chaix B. L’apport des modèles multiniveaux en analyse contextuelle : intérêt et limites. In : La mesure des évolutions dans les enquêtes de santé. Paris : Editions INPES, 2004 : 243p. 45 Chaix B, Merlo J, Gaignard J, Lithman T, Boalt A, Chauvin P. The social and spatial distribution of mental and behavioral disorders related to psychoactive substance use in the city of Malmö, Sweden, 2001. In: Colombus F, ed. Focus on Lifestyle and Health Research. New York, USA: Nova Science Publishers, in press. COMMUNICATIONS Chaix B, Merlo J, Chauvin P. Investigating place effects on health: a spatial approach vs. a conventional contextual approach. 132nd Annual Meeting of the American Public Health Association (APHA), Washington, 6-10 novembre 2004, livre d’abstracts: n° 78941. Chaix B, Merlo J. Using measures of clustering in logistic regression to investigate contextual effects. 132nd Annual Meeting of the American Public Health Association (APHA), Washington, 6-10 novembre 2004, livre d’abstracts: n° 78944. Chaix B, Chauvin P, Merlo J. Using measures of clustering in logistic regression to investigate contextual effects – an example on healthcare utilisation in Sweden. 12th European Public Health Conference, Oslo, 7-9 octobre 2004, Eur J Public Health, 2004;14(Suppl):p29. Chaix B, Chauvin P, Merlo J. Using measures of clustering in logistic regression to investigate contextual effects – an example on healthcare utilisation in Sweden. Congress of the European Epidemiology Federation (IEA), Porto, 8-11 septembre 2004, J Epidemiol Community Health, 2004;58(Suppl 1):A14. Chaix B, Merlo J, Chauvin P. Investigating place effects on health: a spatial approach vs. the multilevel approach. Congress of the European Epidemiology Federation (IEA), Porto, 811 septembre 2004, J Epidemiol Community Health, 2004;58(Suppl 1):A14. Chaix B, Merlo J, Diez-Roux AV, Chauvin P. Comparaison d’une approche spatiale à l’approche multiniveau dans l’analyse des effets du contexte sur la santé : un exemple sur les modes d’utilisation des soins en France. Congrès de l’Association Des Epidémiologistes de Langue Française, Bordeaux, 15-17 septembre 2004, Rev Epidemiol Santé Publ 2004; 52:1S124 (poster). Chaix B, Merlo J, Chauvin P. Investigating place effects on health: a spatial approach vs. the multilevel approach. International Conference on Statistics in Health Sciences, Nantes, France, 23-25 juin 2004, livre d’abstract p.279. Chaix B, Merlo J, Diez-Roux AV, Chauvin P. Mesure et explication des variations géographiques des modes de recours aux soins : comparaison de l’approche multiniveau 46 et de l’approche spatiale. XXVIIème Journées des économistes français de la santé, Paris, 17-18 juin 2004. Chaix B, Chauvin P. People living with sick co-residents are at increased risks of underconsultation. Congress of the European Epidemiology Federation (IEA), Tolède, Espagne, 1–4 octobre 2003, Gaceta Sanitaria 2003;17(Supl. 2): abstract no. 483. Chaix B, Veugelers P, Boëlle PY, Chauvin P. Access to general practitioner services: disabled elderly individuals lag behind in underserved areas. Congress of the European Epidemiology Federation (IEA), Tolède, Espagne, 1-4 octobre 2003, Gaceta Sanitaria 2003;17(Supl. 2): abstract no. 204. Chaix B, Chauvin P. Tobacco and alcohol consumption, and overweightness in France: a multilevel analysis of individual and area-level determinants. Congress of the European Epidemiology Federation (IEA), Tolède, Espagne, 1-4 octobre 2003, Gaceta Sanitaria 2003;17(Supl. 2): abstract no. 484. Chaix B, Chauvin P. Mesure du degré de similitude des comportements de recours aux médecins spécialistes au sein du ménage : une utilisation des modèles multiniveau et ALR. Congrès Biométrie et Epidémiologie, Lille, 15–16 septembre 2003, actes p.70. Chaix B, Chauvin P. Tobacco and alcohol consumption in France: a comparative analysis of risk of consumption and level of consumption. 16th World Congress of Epidemiology, Montreal, Canada, 18–22 août 2002, livre d’abstracts: MP152 (poster). COMMUNICATIONS INVITEES Chaix B, Merlo J, Chauvin P. Mesure de la tendance des phénomènes à survenir en grappe à partir de la régression logistique en épidémiologie sociale : un exemple sur l’utilisation des soins en Suède. Cours doctoral « Modélisation des observations corrélées », Ecole doctorale « Epidémiologie, Sciences Sociales, et Santé Publique », Villejuif, 17-18 mai 2004. Chaix B, Merlo J, Diez-Roux AV, Chauvin P. Comparison of a spatial approach with the multilevel approach for investigating place effects on health: the example of healthcare utilization in France. International workshop on multilevel models in public health research, Paris, Credes, 1er mai 2004. Chaix B. Comparison of a spatial approach with the multilevel approach for investigating place effects on health: an example on healthcare utilization in France. Séminaire au 47 Department of Community Medicine, Malmö University Hospital, Malmö, Suède, 17 février 2004. Chaix B. L’analyse des variations géographiques des modes de recours aux soins : comparaison de l’approche contextuelle et de l’approche spatiale. Ateliers de l’INED, Paris, 16 décembre 2003. Chaix B. Stratégie d’utilisation des modèles multiniveaux en épidémiologie sociale. Séminaire de l’IFR 69 (INSERM) « Interface Biostatistique / Epidémiologie », Villejuif, 26 novembre 2002. Chaix B. L’apport des modèles multiniveaux dans l’analyse contextuelle en épidémiologie sociale. Séminaire de la Société Française de Statistiques, Paris, 24 octobre 2002. 48 Bibiographie 1 Diez-Roux AV. Bringing context back into epidemiology: variables and fallacies in multilevel analysis. Am J Public Health 1998;88:216-22. 2 Duncan C, Jones K, Moon G. Health-related behaviour in context: a multilevel modelling approach. Soc Sci Med 1996;42:817-30. 3 Diez-Roux AV. Multilevel analysis in public health research. Annu Rev Public Health 2000;21:171-92. 4 Pickett KE, Pearl M. Multilevel analyses of neighbourhood socioeconomic context and health outcomes: a critical review. J Epidemiol Community Health 2001;55:111-22. 5 Kawachi I, Berkman LF. Neighborhoods and Health. New York: Oxford University Press, 2003. 6 Mooij T. Pupil-class determinants of aggressive and victim behaviour in pupils. Br J Educ Psychol 1998;68:373-85. 7 Palmer RF, Graham JW, White EL, et al. Applying multilevel analytic strategies in adolescent substance use prevention research. Prev Med 1998;27:328-36. 8 Johnson RA, Hoffmann JP. Adolescent cigarette smoking in U.S. racial/ethnic subgroups: findings from the National Education Longitudinal Study. J Health Soc Behav 2000;41:392407. 9 Kivimaki M, Vahtera J, Pentti J, et al. Factors underlying the effect of organisational downsizing on health of employees: longitudinal cohort study. BMJ 2000;320:971-5. 10 O'Campo P. Invited commentary: Advancing theory and methods for multilevel models of residential neighborhoods and health. Am J Epidemiol 2003;157:9-13. 11 Merlo J, Östergren PO, Hagberg O, et al. Diastolic blood pressure and area of residence: multilevel versus ecological analysis of social inequity. J Epidemiol Community Health 2001;55:791-8. 12 Merlo J, Lynch JW, Yang M, et al. Effect of neighborhood social participation on individual use of hormone replacement therapy and antihypertensive medication: a multilevel analysis. Am J Epidemiol 2003;157:774-83. 13 Merlo J, Chaix B, Yang M, et al. A brief conceptual tutorial on multilevel analysis in social epidemiology - linking the statistical concept of clustering to the idea of contextual phenomenon. J Epidemiol Community Health 2004; in press. 49 14 Fotheringham AS, Charlton ME, Brunsdon C. Spatial variations in school performance: a local analysis using geographically weighted regression. Geographical & Environmental Modelling 2001;5:43-66. 15 Diez-Roux AV. Investigating neighborhood and area effects on health. Am J Public Health 2001;91:1783-9. 16 Green C, Hoppa RD, Young TK, et al. Geographic analysis of diabetes prevalence in an urban area. Soc Sci Med 2003;57:551-60. 17 Pikhart H, Prikazsky V, Bobak M, et al. Association between ambient air concentrations of nitrogen dioxide and respiratory symptoms in children in Prague, Czech Republic. Preliminary results from the Czech part of the SAVIAH Study. Small Area Variation in Air Pollution and Health. Cent Eur J Public Health 1997;5:82-5. 18 Mohr CD, Armeli S, Tennen H, et al. Daily interpersonal experiences, context, and alcohol consumption: crying in your beer and toasting good times. J Pers Soc Psychol 2001;80:489-500. 19 Von Korff M, Koepsell T, Curry S, et al. Multi-level analysis in epidemiologic research on health behaviors and outcomes. Am J Epidemiol 1992;135:1077-82. 20 Fiscella K, Franks P. Poverty or income inequality as predictor of mortality: longitudinal cohort study. BMJ 1997;314:1724-7. 21 Scribner RA, Cohen DA, Fisher W. Evidence of a structural effect for alcohol outlet density: a multilevel analysis. Alcohol Clin Exp Res 2000;24:188-95. 22 O'Campo P, Rao RP, Gielen AC, et al. Injury-producing events among children in low- income communities: the role of community characteristics. J Urban Health 2000;77:34-49. 23 Pampalon R, Duncan C, Subramanian SV, et al. Geographies of health perception in Quebec: a multilevel perspective. Soc Sci Med 1999;48:1483-90. 24 Reijneveld SA. The impact of individual and area characteristics on urban socioeconomic differences in health and smoking. Int J Epidemiol 1998;27:33-40. 25 Reijneveld SA, Schene AH. Higher prevalence of mental disorders in socioeconomically deprived urban areas in The Netherlands: community or personal disadvantage? J Epidemiol Community Health 1998;52:2-7. 26 Finch BK, Vega WA, Kolody B. Substance use during pregnancy in the state of California, USA. Soc Sci Med 2001;52:571-83. 27 Diez-Roux AV, Nieto FJ, Muntaner C, et al. Neighborhood environments and coronary heart disease: a multilevel analysis. Am J Epidemiol 1997;146:48-63. 50 28 Driessen G, Gunther N, Van Os J. Shared social environment and psychiatric disorder: a multilevel analysis of individual and ecological effects. Soc Psychiatry Psychiatr Epidemiol 1998;33:606-12. 29 Diez Roux AV. Estimating neighborhood health effects: the challenges of causal inference in a complex world. Soc Sci Med 2004;58:1953-60. 30 Oakes JM. The (mis)estimation of neighborhood effects: causal inference for a practicable social epidemiology. Soc Sci Med 2004;58:1929-52. 31 Shouls S, Congdon P, Curtis S. Modelling inequality in reported long term illness in the UK: combining individual and area characteristics. J Epidemiol Community Health 1996;50:366-76. 32 Humphreys K, Carr-Hill R. Area variations in health outcomes: artefact or ecology. Int J Epidemiol 1991;20:251-8. 33 Haynes R, Bentham G, Lovett A, et al. Effect of labour market conditions on reporting of limiting long-term illness and permanent sickness in England and Wales. J Epidemiol Community Health 1997;51:283-8. 34 Merlo J, Ostergren PO, Broms K, et al. Survival after initial hospitalisation for heart failure: a multilevel analysis of patients in Swedish acute care hospitals. J Epidemiol Community Health 2001;55:323-9. 35 Yen IH, Kaplan GA. Neighborhood social environment and risk of death: multilevel evidence from the Alameda County Study. Am J Epidemiol 1999;149:898-907. 36 Blakely TA, Lochner K, Kawachi I. Metropolitan area income inequality and self-rated health - a multi-level study. Soc Sci Med 2002;54:65-77. 37 Diez-Roux AV, Link BG, Northridge ME. A multilevel analysis of income inequality and cardiovascular disease risk factors. Soc Sci Med 2000;50:673-87. 38 Morenoff JD. Neighborhood mechanisms and the spatial dynamics of birth weight. AJS 2003;108:976-1017. 39 O'Campo P, Xue X, Wang MC, et al. Neighborhood risk factors for low birthweight in Baltimore: a multilevel analysis. Am J Public Health 1997;87:1113-8. 40 Macintyre S, Ellaway A, Cummins S. Place effects on health: how can we conceptualise, operationalise and measure them? Soc Sci Med 2002;55:125-39. 41 Kalff AC, Kroes M, Vles JS, et al. Neighbourhood level and individual level SES effects on child problem behaviour: a multilevel analysis. J Epidemiol Community Health 2001;55:246-50. 51 42 Reading R, Langford IH, Haynes R, et al. Accidents to preschool children: comparing family and neighbourhood risk factors. Soc Sci Med 1999;48:321-30. 43 Duncan C, Jones K, Moon G. Smoking and deprivation: are there neighbourhood effects? Soc Sci Med 1999;48:497-505. 44 Kleinschmidt I, Hills M, Elliott P. Smoking behaviour can be predicted by neighbourhood deprivation measures. J Epidemiol Community Health 1995;49 Suppl 2:S72S7. 45 Sundquist J, Malmstrom M, Johansson SE. Cardiovascular risk factors and the neighbourhood environment: a multilevel analysis. Int J Epidemiol 1999;28:841-5. 46 Karvonen S, Rimpela A. Socio-regional context as a determinant of adolescents' health behaviour in Finland. Soc Sci Med 1996;43:1467-74. 47 Tuinstra J, Groothoff JW, van den Heuvel WJ, et al. Socio-economic differences in health risk behavior in adolescence: do they exist? Soc Sci Med 1998;47:67-74. 48 Karvonen S, Rimpela AH. Urban small area variation in adolescents' health behaviour. Soc Sci Med 1997;45:1089-98. 49 Huston SL, Evenson KR, Bors P, et al. Neighborhood environment, access to places for activity, and leisure-time physical activity in a diverse North Carolina population. Am J Health Promot 2003;18:58-69. 50 Snijders T, Bosker R. Multilevel Analysis. An introduction to basic and advanced multilevel modelling. London, England: Sage Publications, 1999. 51 Goldstein H, Browne W, Rasbash J. Multilevel modelling of medical data. Stat Med 2002;21:3291-315. 52 Goldstein H. Multilevel Statistical Models. 2nd ed. London: Edward Arnold, 1995. 53 Leyland AH, Goldstein H. Multilevel modelling of health statistics. Chichester, England: Wiley, 2001. 54 Bobashev GV, Anthony JC. Clusters of marijuana use in the United States. Am J Epidemiol 1998;148:1168-74. 55 Bobashev GV, Anthony JC. Use of alternating logistic regression in studies of drug-use clustering. Subst Use Misuse 2000;35:1051-73. 56 Preisser JS, Arcury TA, Quandt SA. Detecting patterns of occupational illness clustering with alternating logistic regressions applied to longitudinal data. Am J Epidemiol 2003;158:495-501. 57 Petronis KR, Anthony JC. A different kind of contextual effect: geographical clustering of cocaine incidence in the USA. J Epidemiol Community Health 2003;57:893-900. 52 58 Searle SR, Casella G, McCulloch CE. Variance components. New York: Wiley, 1992. 59 Goldstein H. Multilevel mixed linear model analysis using iterative generalized least squares. Biometrika 1986;73:43-56. 60 Raudenbush SW, Bryk AS. A hierarchical model for studying school effects. Sociology of Education 1986;59:1-17. 61 Duncan C, Jones K, Moon G. Psychiatric morbidity: a multilevel approach to regional variations in the UK. J Epidemiol Community Health 1995;49:290-5. 62 O'Campo P, Gielen AC, Faden RR, et al. Violence by male partners against women during the childbearing year: a contextual analysis. Am J Public Health 1995;85:1092-7. 63 Carr-Hill RA, Rice N, Roland M. Socioeconomic determinants of rates of consultation in general practice based on fourth national morbidity survey of general practices. BMJ 1996;312:1008-12. 64 Diez Roux AV, Merkin SS, Hannan P, et al. Area characteristics, individual-level socioeconomic indicators, and smoking in young adults: the coronary artery disease risk development in young adults study. Am J Epidemiol 2003;157:315-26. 65 Kennedy BP, Kawachi I, Glass R, et al. Income distribution, socioeconomic status, and self rated health in the United States: multilevel analysis. BMJ 1998;317:917-21. 66 Chaix B, Chauvin P. L'apport des modèles multiniveau dans l'analyse contextuelle en épidémiologie sociale : une revue de la littérature. Rev Epidemiol Sante Publique 2002;50:489-99. 67 Wang J, Siegal HA, Falck RS, et al. Needle transfer among injection drug users: a multilevel analysis. Am J Drug Alcohol Abuse 1998;24:225-37. 68 Merlo J, Yang M, Chaix B, et al. A brief conceptual tutorial on multilevel analysis in social epidemiology - investigating contextual phenomena in different groups of individuals. J Epidemiol Community Health 2004; in press. 69 Merlo J. Multilevel analytical approaches in social epidemiology: measures of health variation compared with traditional measures of association. J Epidemiol Community Health 2003;57:550-2. 70 Fotheringham AS, Wong DWS. The modifiable areal unit problem in multivariate statistical analysis. Environ Plan A 1991;23:1025-44. 71 Amrhein CG. Searching for the elusive aggregation effect: evidence from statistical simulations. Environ Plan A 1995;27:105-19. 72 Martin D. An assessment of surface and zonal models of population. Int J Geographical Information Systems 1996;10:973-89. 53 73 Holt D, Steel DG, Tranmer M. Area homogeneity and the modifiable areal unit problem. Geographical Systems 1996;3:181-200. 74 Mitchell R. Multilevel modeling might not be the answer. Environ Plan A 2001;33:1357- 60. 75 Kleinschmidt I, Sharp BL, Clarke GP, et al. Use of generalized linear mixed models in the spatial analysis of small-area malaria incidence rates in Kwazulu Natal, South Africa. Am J Epidemiol 2001;153:1213-21. 76 English PB, Kharrazi M, Davies S, et al. Changes in the spatial pattern of low birth weight in a southern California county: the role of individual and neighborhood level factors. Soc Sci Med 2003;56:2073-88. 77 Kleinschmidt I, Sharp B, Mueller I, et al. Rise in malaria incidence rates in South Africa: a small-area spatial analysis of variation in time trends. Am J Epidemiol 2002;155:257-64. 78 Joines JD, Hertz-Picciotto I, Carey TS, et al. A spatial analysis of county-level variation in hospitalization rates for low back problems in North Carolina. Soc Sci Med 2003;56:254153. 79 Werneck GL, Maguire JH. Spatial modeling using mixed models: an ecologic study of visceral leishmaniasis in Teresina, Piaui State, Brazil. Cad Saude Publica 2002;18:633-7. 80 Leyland AH, Langford IH, Rasbash J, et al. Multivariate spatial models for event data. Stat Med 2000;19:2469-78. 81 Langford IH, Leyland AH, Rasbash J, et al. Multilevel modelling of the geographical distributions of diseases. J R Stat Soc Ser C Appl Stat 1999;48:253-68. 82 Treno AJ, Gruenewald PJ, Johnson FW. Alcohol availability and injury: the role of local outlet densities. Alcohol Clin Exp Res 2001;25:1467-71. 83 Liu GC, Cunningham C, Downs SM, et al. A spatial analysis of obesogenic environments for children. Proc AMIA Symp 2002:459-63. 84 Ali M, Emch M, Tofail F, et al. Implications of health care provision on acute lower respiratory infection mortality in Bangladeshi children. Soc Sci Med 2001;52:267-77. 85 Chaix B, Bobashev GV, Merlo J, et al. Re: "Detecting patterns of occupational illness clustering with alternating logistic regressions applied to longitudinal data". Am J Epidemiol (in press). 86 Chaix B, Guilbert P, Chauvin P. A multilevel analysis of tobacco use and tobacco consumption levels in France: are there any combination risk groups? Eur J Public Health 2003;in press. 54 87 Chaix B, Chauvin P. Tobacco and alcohol consumption, sedentary lifestyle and overweightness in France: a multilevel analysis of individual and area-level determinants. Eur J Epidemiol 2003;18:531-8. 88 Chaix B, Boëlle PY, Guilbert P, et al. Area level determinants of specialty care utilisation in France: a multilevel analysis. Public Health 2004; in press. 89 Chaix B, Veugelers PJ, Boëlle PY, et al. Access to general practitioner services: the disabled elderly lag behind in underserved areas. Eur J Public Health in press. 90 Guilbert P, Baudier F, Gautier A. Baromètre Santé 2000. Résultats. Vanves: Edition CFES, 2001. 91 Guilbert P, Baudier F, Gautier A, et al. Baromètre Santé 2000. Méthodes. Vanves: Editions CFES, 2001. 92 Auvray L, Dumesnil S, Le Fur P. Santé, soins et protection sociale en 2000 [Health, healthcare and insurance in 2000] (in French). Paris, France: CREDES, 2001. 93 Hosseini M, Carpenter RG, Mohammad K. Growth of children in Iran. Ann Hum Biol 1998;25:249-61. 94 Rice N, Carr-Hill R, Dixon P, et al. The influence of households on drinking behaviour: a multilevel analysis. Soc Sci Med 1998;46:971-9. 95 Merlo J, Asplund K, Lynch JW, et al. Population effects on individual systolic blood pressure - a multilevel analysis of WHO MONICA project. Am J Epidemiol 2004;159:116879. 96 Goldstein H, Browne W, Rasbash J. Partitioning variation in generalised linear multilevel models. Understanding Statistics 2002;1:223-32. 97 Larsen K, Petersen JH, Budtz-Jorgensen E, et al. Interpreting parameters in the logistic regression model with random effects. Biometrics 2000;56:909-14. 98 Larsen K, Merlo J. Appropriate assessment of neighborhood effects on individual health - integrating random and fixed effects in multilevel logistic regression. Am J Epidemiol in press. 99 Katz J, Carey VJ, Zeger SL, et al. Estimation of design effects and diarrhea clustering within households and villages. Am J Epidemiol 1993;138:994-1006. 100 Katz J, Zeger SL, West KP, Jr., et al. Clustering of xerophthalmia within households and villages. Int J Epidemiol 1993;22:709-15. 101 6. 55 Rosenthal TC, Fox C. Access to health care for the rural elderly. JAMA 2000;284:2034- 102 Lambert D, Agger MS. Access of rural AFDC Medicaid beneficiaries to mental health services. Health Care Financ Rev 1995;17:133-45. 103 Halldorsson M, Kunst AE, Kohler L, et al. Socioeconomic differences in children's use of physician services in the Nordic countries. J Epidemiol Community Health 2002;56:200-4. 104 Casey MM, Thiede Call K, Klingner JM. Are rural residents less likely to obtain recommended preventive healthcare services? Am J Prev Med 2001;21:182-8. 105 Shannon GW, Bashshur RL, Lovett JE. Distance and the use of mental health services. Milbank Q 1986;64:302-30. 106 Duncan TE, Duncan SC, Hops H. Latent variable modeling of longitudinal and multilevel alcohol use data. J Stud Alcohol 1998;59:399-408. 107 Tak YR, McCubbin M. Family stress, perceived social support and coping following the diagnosis of a child's congenital heart disease. J Adv Nurs 2002;39:190-8. 108 Pearlin LI, Mullan JT, Semple SJ, et al. Caregiving and the stress process: an overview of concepts and their measures. Gerontologist 1990;30:583-94. 109 Weitzner MA, Haley WE, Chen H. The family caregiver of the older cancer patient. Hematol Oncol Clin North Am 2000;14:269-81. 110 Covinsky KE, Goldman L, Cook EF, et al. The impact of serious illness on patients' families. SUPPORT Investigators. Study to Understand Prognoses and Preferences for Outcomes and Risks of Treatment. JAMA 1994;272:1839-44. 111 Gemperli A, Vounatsou P, Kleinschmidt I, et al. Spatial patterns of infant mortality in Mali: the effect of malaria endemicity. Am J Epidemiol 2004;159:64-72. 112 Diggle P, Moyeed R, Rowlingson B, et al. Childhood Malaria in the Gambia: A Case– Study in Model–Based Geostatistics. J R Stat Soc Ser C Appl Stat 2002;51:493-506. 113 Banerjee S, Gelfrand AE, Carlin BP. Hierarchical Modeling and Analysis for Spatial Data. Boca Raton, FL, USA, 2003. 114 Banerjee S, Wall MM, Carlin BP. Frailty modeling for spatially correlated survival data, with application to infant mortality in Minnesota. Biostatistics 2003;4:123-42. 115 Rushton G, Lolonis P. Exploratory spatial analysis of birth defect rates in an urban population. Stat Med 1996;15:717-26. 116 Carrat F, Valleron AJ. Epidemiologic mapping using the "kriging" method: application to an influenza-like illness epidemic in France. Am J Epidemiol 1992;135:1293-300. 117 Burton P, Gurrin L, Sly P. Extending the simple linear regression model to account for correlated responses: an introduction to generalized estimating equations and multi-level mixed modelling. Stat Med 1998;17:1261-91. 56 118 Wood SN. Thin plate regression splines. J. R. Stat. Soc. Ser. B Stat. Methodol. 2003;65:95--114. 119 Burnett R, Ma R, Jerrett M, et al. The spatial association between community air pollution and mortality: a new method of analyzing correlated geographic cohort data. Environ Health Perspect 2001;109 Suppl 3:375-80. 120 Cakmak S, Burnett RT, Jerrett M, et al. Spatial regression models for large-cohort studies linking community air pollution and health. J Toxicol Environ Health A 2003;66:1811-23. 121 Boyle MH, Willms JD. Place effects for areas defined by administrative boundaries. Am J Epidemiol 1999;149:577-85. 122 Littel RC, Milliken GA, Stroup WW, et al. SAS System for Mixed Models. Cary, North Carolina, USA: SAS Institute, 1996. 123 Borgoni R, Billari FC. Bayesian spatial analysis of demographic survey data: An application to contraceptive use at first sexual intercourse. Demogr Res 2003;8:online journal. 124 Zonage d'Etudes [Geographic subdivisions of the territory] (in French). Paris, France: Institut National de la Statistique et des Etudes Economiques (http://www.insee.fr/fr/nom_def_met/nomenclatures/zonages_etudes/index.htm). 125 Lucas-Gabrielli V, Tonnellier F, Vigneron E. Une typologie des paysages socio- sanitaires en France. Paris: CREDES, 1998. 126 Rushton G. Public health, GIS, and spatial analytic tools. Annu Rev Public Health 2003;24:43-56. 127 Bingenheimer JB, Raudenbush SW. Statistical and substantive inferences in public health: issues in the application of multilevel models. Annu Rev Public Health 2004;25:53-77. 128 Curtis S, Southall H, Congdon P, et al. Area effects on health variation over the life- course: analysis of the longitudinal study sample in England using new data on area of residence in childhood. Soc Sci Med 2004;58:57-74. 57