Evolution of a Clinical Research Informatics Group within a Service
Transcription
Evolution of a Clinical Research Informatics Group within a Service
Evolution of a Clinical Research Informatics Group within a Service-oriented Clinical Trials Data Management Organization B. McCourt, D. Fasteson-Harris, S. Chakraborty, C. Bova Hill AMIA CRI Summit San Francisco, March 2010 Topics Context Challenges Organizational Design Solution 2 Year Experience Now and next steps 1 DCRI Context What is DCRI? DCRI is the largest academic clinical research organization (ARO) in the world A global coordinating center for multimulti-center clinical trials that integrates the medical expertise of Duke University Medical Center with the operational capabilities of a fullfull-service CRO 2 DCRI Facts Founded in 1969 with the development of the Duke Databank for Cardiovascular Diseases 21 years of experience in coordinating multimulti-center trials in over 20 therapeutic areas 900+ staff and 120 clinical/statistical faculty FullFull-Service Capabilities 4,600 manuscripts in peerpeer-reviewed journals More than 420 projects completed in 64 countries enrolling more than 579,900 patients DCRI – Trials Experience by Phase and Size 3 CDM Challenges History (1997 – 2007) History & Organizational Design Causal Issues • Capacity for change • Industry trends Environmental Issues • Organizational changes • Qualitative studies 4 Existing Org Structure (1997-2007) Clinical Data Integration Highly nested team units Clinical Data Managers Clinical Programming Data Management Teams Duke FollowFollow-up Quality Control Case Report Form Design Medical Coding 10 Year Headcount Trend 5 10 Year Headcount Trend Large paper trials locked Adopted new network Industry Trends (2007) Increasing number of projects with increasing complexity and decreasing data processing Increased demand for EDC (vs. paper) and increased demand for CDI consulting with sponsor EDC tools & implementations Increasing infrastructure initiatives supporting DCRI, DTMI, NIH & Industry to develop and adopt innovative operational methods. 6 Industry Trends (cont) Increased reliance on standards and technology to meet increasing variety of CDM requirements Emerging industry recognition of increasing CDM scope and trends Environmental Studies DCRI wide telephone survey Departmental web survey Horizontal focus groups 7 What did the studies tell us? Opportunities for improvement: • Inconsistent management decisions • Career progression • More effective communications • Trust • Collaboration Mastery of administrative, technical, training and project management was difficult to achieve Organizational Design Solution 8 Resulting Org Structure (Dec 2007) Clinical Data Integration Clinical Data Management Clinical Research Informatics Debra Fasteson-Harris Brian McCourt Associate Director Associate Director Clinical Data Managers Data Management Teams Research Informatics Quality Control Clinical Programming Case Report Form Design Duke FollowFollow-up Medical Coding Impact of matrixed CDM teams Administrative Reporting Relationships • 90 of 138 Employees switching managers Project Teams Intact • 88 projects total • 69 have no changes to CDM Lead • 12 the new lead has been involved already and lead role being formalized • 4 leads will change after resources available • 2 new projects not yet assigned • 1 project transition is being scheduled 9 DCRI Research Informatics Support research data integration projects with complex research requirements. Evaluate and operationalize new ideas for data management tools and methods (‘data management pipeline’) Develop and implement clinical data standards 10 Year Headcount Trend 10 Emergence of CRI Papers on issues Clinical Research Informatics context Duke Translational Medicine Institute (DTMI) DTRI DCRU DCRI 11 DNRI DCCR GHI 2 Year Experience BioSignatures \ Biomarker Studies class Ortel TEST ELISA_AV G_DATA Design «column» *PK AVGDATID: NUMBER(10) SPECMCD: VARCHAR2(40) *FK PLATEID: NUMBER(6) *FK TESTID: NUMBER(6) RPTRESC: VARCHAR2(2048) = NULL RPTRESN: FLOAT CALSD: FLOAT CALCV: FLOAT RPTRFLG: VARCHAR2(10) «FK» + FK_ELISA_AVG_DATA_ELISA_PLATE(NUMBER) + FK_ELISA_AVG_DATA_TEST(NUMBER) 100% eSource Metadata heavy Sample management New workflow ELISA_RAW_ DATA «column» «column» *PK TESTID: NUMBER(6) *PK RAWDATID: NUMBER(10) TSTCD: VARCHAR2(20) *FK PLATEID: NUMBER(6) TSTNAM: VARCHAR2(100) SPECMCD: VARCHAR2(40) +PK_ELISA_TEST RPTU: VARCHAR2(20) *FK TESTID: NUMBER(6) (TESTID = TESTID) LBTEST: VARCHAR2(100) 1 WELLNUM: VARCHAR2(10) +FK_ELISA_RAW_DATA_TEST LBTESTCD: VARCHAR2(20) «FK» RPTRESC: VARCHAR2(2048) = NULL 0..* RAWVALU: FLOA T «PK» DILUTION: NUMBER(6) = NULL +PK_ELISA_TEST + PK_ELISA_TEST(NUMBER) CALCVALU: FLOAT RPTRFLG: VARCHAR2(10) 1 +PK_ELISA_TEST 1 * TRANSMID: NUMBER(6) +FK_ELISA_RAW_DATA_ELISA_PLATE «FK» +FK_ELISA_AVG_DATA_ELISA_PLATE (TESTID = TESTID) + FK_ELISA_RAW_DATA_ELISA_PLATE(NUMBER) 0..* + FK_ELISA_RAW_DATA_TEST(NUMBER) ELISA_ PLATE 1..* (PLATEID = PLATEID) «PK» «FK» (PLATEID = PLATEID) «column» + PK_ELISA_RAW_DATA(NUMBER) «FK» +PK_ELISA_PLATE *PK PLATEID: NUMBER(6) «FK» +FK_ELISA_STD_DATA_TEST * TRANSMID: NUMBER(6) 1 PLATENAM: VARCHAR2(40) +PK_ELISA_PLATE ELISA_ STD_ DATA TSTDTM: DATE +sample 1 1 TSTTYP: VARCHAR2(22) = S +commentCollection «column» TSTDESC: VARCHAR2(40) SAMPLES_4488 0..* *PK STDDATID: NUMBER(6) TSTSTAT: VARCHAR2(13) = D 0..* *FK TESTID: NUMBER(6) «column» RPTRTYP: VARCHAR2(12) = N +elisaPlate STDNAM: VARCHAR2(40) SPECMCD: VARCHAR2(40) BATTRNAM: VARCHAR2(40) = Elisa Quantific... +commentCollection FK PLATEID: NUMBER(6) FK TRANSMID: NUMBER(6) 1 BATTRID: VARCHAR2(20) = AIM2 WELLNUM: VARCHAR2(10) SPECMNUM: VARCHAR2(20) +PK_ELISA_PLATE SOFTWARE: VARCHAR2(4 0) 0..* +sample CONC: FLOAT SPECSEQ: VARCHAR2(10) INSTRMT: VARCHAR2(40) (PLATEID = PLATEID) CALCVALU: FLOAT 1 SUBJID: VARCHAR2(20) INSTMSER: VARCHAR2(40) «FK» 1 +FK_ELISA_STD_DATA_ELISA_PLATE RPTRESN: FLOAT = NULL «FK» (TESTID = TESTID) VISIT: VARCHAR2(40) RPTRSTAT: VARCHAR2(11) = F + FK_COMMENT_4488_TRANSMISSION(NUMBER) +FK_COMMENT_4488_TRANSMISSION CALCV: FLOAT 1..* VISITNUM: VARCHAR2(20) = NULL FILENAME: VARCHAR2(40) «FK» 0..* CALSD: FLOAT +commentCollection 0..1 VISITTYP: VARCHAR2(11) = S FILCRDTM: DATE RPTRESC: VARCHAR2(2048) = NULL LBDTM: VARCHAR2(25) = NULL STUDYID: VARCHAR2(20) = 4488 RAWVALU: FLOA T STUDNAM: VARCHAR2(200) RAWAVG: FLOA T STUDYID: VARCHAR2(20) = 4488 «PK» RAWSD: FLOAT = NULL LBSPEC: VARCHAR2(40) = PLA S + PK_ELISA_PLATE(NUMBER) RAWCV: FLOAT = NULL PROCNAM: VARCHAR2(100) * TRANSMID: NUMBER(6) SHPPLBDT: DATE SHPTO: VARCHAR2(50) «FK» +FK_SAMPLES_4488_TRANSMISSION +FK_ELISA_PLATE_TRANSMISSION 0..* + FK_ELISA_STD_DATA_ELISA_PLATE(NUMBER) (TRANSMID = TRANSMID) «FK» +testDat e 1 + FK_ELISA_STD_DATA_TEST(NUMBER) 0..* «FK» +sample + FK_SAMPLES_4488_TRANSMISSION(NUMBER) «PK» «FK» CLOTTING_ DATA «unique» [SPECMCD = SPECMCD] + PK_ELISA_STD_DATA(NUMBER) (TRANSMID = TRANSMID) +PK_TRANSMISSION 1 1 + UQ_4488_SAMPLES_SPECMCD(VARCHAR2) +clottingDataCollection «column» «FK» 0..* CLDATID: NUMBER(6) TRANSMISSION«flow» «table» CDISC_UNKNOWNS *FK TESTID: NUMBER(6) +PK_TRANSMISSION *FK TRANSMID: NUMBER(6) «column» CDISC_UNKNOWNS SPECMCD: VARCHAR2(40) 1 *PK TRANSMID: NUMBER(6) RPTRESC: VARCHAR2(2048) *FK LABID: NUMBER(5) «column» RPTRESN: FLOAT VERSION: VARCHAR2(7) = V1.0.01 SITEID: VARCHAR2(20) +PK_TRANSMISSION +FK_CLOTTING_DATA_TEST RPTU: VARCHAR2(20) TRMSRNUM: VARCHAR2(20) = ORTEL INVID: VARCHAR(20) TSTDTM: DATE 1 TRMSRNAM: VARCHAR2(40) = Duke Hemostasis... INVNAM: VARCHAR2(80) 0..* TSTTYP: VARCHAR2(22) = S TRMTYP: VARCHAR2(11) = I SCRNNUM: VARCHAR2(20) +FK_CLOTTING_DATA_TRANSMISSION TSTDESC: VARCHAR2(40) FILENAME: VARCHAR2(40) SUBJSID: VARCHAR2(20) +PK_TRANSMISSION (TRANSMID = TRANSMID) TSTSTAT: VARCHAR2(13) = D LACTDTM: VARCHAR2(25) SUBJNIT: VARCHAR2(4) 0..* «FK» SOFTWARE: VARCHAR2(40) = ACL TOP 2.8.7 1 RECEXTYP: VARCHAR2(25) = BASE SEX: VARCHAR2(1) INSTRMT: VARCHAR2(40) = ACL TOP LOADDTM: DATE SEXCD: VARCHAR2(40) INSTMSER: VARCHAR2(40) = 04090184 STUDYID: VARCHAR2(20) = 4488 BRTHDTM: DATE BATTRNAM: VARCHAR2(40) = Functional Assay FILCRDTM: DATE RACE: VARCHAR2(20) +FK_TRANSMISSION_LABORATORY BATTRID: VARCHAR2(20) = AIM1 TRANCOMM: VARCHAR2(200) RACECD: VARCHAR2(4 0) RPTRTYP: VARCHAR2(12) = N VISITMOD: VARCHAR2(20) 0..* RPTRSTAT: VARCHAR2(11) = F (LABID = LABID) «FK» ACCSNNUM: VARCHAR2(20) SPECNUM: VARCHAR2(10) + FK_TRANSMISSION_LABORATORY(NUMBER) «FK» +PK_LABORATORY LABORATORY PTMEL: VARCHAR2(9) «FK» «PK» «flow» PTMELTX: VARCHAR2(40) + FK_CLOTTING_DATA_TEST(NUMBER) 1 + PK_TRANSMISSION(NUMBER) «column» COLENDTM: DATE + FK_CLOTTING_DATA_TRANSMISSION(NUMBER) *PK LABID: NUMBER(5) RCVDTM: VARCHAR2(25) TRMSRNUM: VARCHAR2(20) = ORTEL SPECICOM: VARCHAR2(2048) TRMSRNAM: VARCHAR2(40) = Duke Hemostasis... AGEATCOL: NUMBER(3) PLBNAM: VARCHAR2(40) = Duke Hemostasis... AGEU: VARCHAR2(6) «table» CDISC_UNKNOWNS PLBNUM: VARCHAR2(20) = ORTEL FASTSTAT: VARCHAR2(7) LBNAM: VARCHAR2(40) = Duke Hemostasis... LBLOINC: VARCHAR2(10) LBNUM: VARCHAR2(20) = ORTEL LOINCCD: VARCHAR2(40) RPTRESCD: VARCHAR2(40) RPTRESNP: VARCHAR2(5) «PK» RPTNRLO: VARCHAR2(40) + PK_LABORATORY(NUMBER) RPTNRHI: VARCHAR2(40) RPTUCD: VARCHAR2(40) CNVRESC: VARCHAR2(204 8) CNVRESCD: VARCHAR2(4 0) CNVRESN: VARCHAR2(20) CNVRESNP: VARCHAR2(5) CNVU: VARCHAR2(20) CNVUCD: VARCHAR2(4 0) SIRESC: VARCHAR2(204 8) SIRESCD: VARCHAR2(40) SIRESN: FLOAT SIRESNP: VARCHAR2(5) SINRLO: VARCHAR2(4 0) SINRHI: VARCHAR2(40) SIU: VARCHAR2(20) SIUCD: VARCHAR2(4 0) ALRTFL: VARCHAR(14) DELTFL: VARCHAR2(2) TOXGR: VARCHAR2(1) TOXGRCD: VARCHAR2(40) EXCLFL: VARCHAR2(14) BLNDFL: VARCHAR2(24) RPTDTM: VARCHAR2(25) COMMENT_4488 «column» SPECMCD: VARCHAR2(40) FK TRANSMID: NUMBER(6) SPECCOM: VARCHAR2(2048) SPECCND: VARCHAR2(2048) PLATENAM: VARCHAR2(40) TSTCOM: VARCHAR2(2048) TECHNAME: VARCHAR2(40) COMMDATE: DATE DILUTION: NUMBER(6) PLBNUM: VARCHAR2(20) = ORTEL STUDYID: VARCHAR2(20) = 4488 BATTRID: VARCHAR2(20) +PK_ELISA_TEST (TESTID = TESTID) +FK_ELISA_AVG_DATA_TEST1 «FK» 0..* 12 «PK» + PK_ELISA_AVG_DATA(NUMBER) +elisaDataCollection 0..* T1 Challenges in CDM Services Context Evolving science causes evolving data requirements • Scope, pricing, workflow, bio and information science skills Discovery based work now within scope of FDA regs and pharma traditions • Mismatch of burden/benefit and common understanding of regulations Data Management systems are immature or don’t exist. • Bioinformatics tools lack data management workflow • IT -> Research IT\Computer Science Decision support methodology: implementation on a clinical trial Site contact information Web-based Study Database Enrollment and randomization information Lab results Treatment arm (as needed) Decision Support Tools (21CFR Part 11 compliant) Computer-assisted treatment recommendations Web-based reports Study participants (patients) Site investigators MD reviewer evaluates and enters a Treatment Decision Clinical Operations reviews and manages site communications Wilgus, Wilgus, et al. Poster presented at AMIA Annual Meeting, 2009. 13 T2 Challenges in CDM Services Context New risk profile of research tasks within patient care process. EHR’s -> Disease cohorts -> Trials -> EHR • Complex governance • Consent; research vs quality improvement; future use; Identification. • Data collection design Interoperability • CDISC : HL7; WHO Drug : RxNorm; MedDRA : … ; Metadata! 14 Duke CDR & Knowledge Repository Study Meta Data Consent Geospatial/ Environmt. Sample Data CRF/ Clinical Data Omics Data CDR & Knowledge Repository Operational Data Imaging Data Electronic Health Records Decision support Discovery External sources Cohort selection Key Issues Unanticipated acceleration of trends • CTSA, ARRA, Duke Center for Health Informatics, DCRI BioSignatures Program What is informatics? • Depends on who you ask • Functional bounds of interdisciplinary domain Field is still immature • Too few examples • Talent gap Cost constraints & allocation • Project vs infrastructure 15 Where Next? Practical need for CRI will meet vision (bottom up meets top down) Grow as research partner, beyond service provider • CRI Faculty Data Infrastructure • Adopt HL7 Development Framework as methodology • Heavily use & contribute to standards • Leadership, data governance Conclusions The challenges discussed at this meeting have corresponding business challenges The research trends driving the growth of CRI exist • Not only as CTSA phenomena • Can be expected to impact services market CRI is not yet well defined or established Need to demonstrate value 16 Acknowledgements Swati Chakraborty, Chakraborty, M.Eng. M.Eng. Connor Blakeney Carol Hill, PhD Robert Harrington, MD Cindy Kluchar, Kluchar, MS Meredith Nahm James Topping, MS James Tcheng, Tcheng, MD Becky Wilgus, Wilgus, RN, MSN Evolution of a Clinical Research Informatics Group within a Service-oriented Clinical Trials Data Management Organization B. McCourt, D. Fasteson-Harris, S. Chakraborty, C. Bova Hill AMIA CRI Summit San Francisco, March 2010 17
Similar documents
supplementary figures - QIMR Genetic Epidemiology
Each odds ratio is based on comparison of CpG sites within 250kb of the 1,497 age-associated genes with significant Sobel test p-values (N=8,234) vs. other CpG sites within 250kb of the 1,497 age-a...
More information