here - Pateo.nl

Transcription

here - Pateo.nl
THE SCALE OF
THE ELECTRON
Explaining the Atomic Dynamics
Johan Oldenkamp
The Scale of the Electron
Explaining the Atomic Dynamics
First, Digital Edition, October 9th, 2012
Second, Digital Edition, October 11th, 2012
Third, Digital Edition, October 12th, 2012
Fourth, Digital Edition, June 2nd, 2014
TABLE OF CONTENTS
To contact the author of this book:
[email protected]
www.pateo.nl
Publisher:
ISBN:
NUR:
1. Explaining the Atomic Dynamics..................... 3
2. Showing the Electrons’ Structures.................... 6
3. Geometrical Foundation of Scelth .................. 34
4 The Periodic Octahedron of the Elements ....... 38
Acknowledgements............................................. 40
Pateo
978-94-90765-11-8
910
© 2012 – 2014, Dr. Johan H. Oldenkamp
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of the author.
2
The Scale of the Electron – Explaining the Atomic Dynamics
The Scale of the Electron – Explaining the Atomic Dynamics
3
1. Explaining the Atomic Dynamics
The purpose of science is to provide explanations. Scientific progress
results in an increase of explanatory strength, explanatory simplicity
or both at the same time. Nearly all academic theories, however,
offer us mere descriptions instead of genuine explanations. That is,
for instance, what we find when we try to understand the so called
“periodic table of the elements”, put together in 1869 by the Russian
chemist Dmitry Ivanovich Mendeleyev (1834 – 1907), as shown on
the previous page.
When I, as a high school student, saw this table hanging in my
chemistry classroom, I felt something very essential was missing.
Every natural structure expresses harmony in its own way. Contrary
to this, the periodic table showed no harmony at all. I am therefore
very happy to reveal in this booklet the underlying structure that
explains the ordering of Mendeleyev’s table.
The Scale of the Electron
For each and every atom, its electrons are arranged according to a
pyramidal structure. At the top of this pyramid, we
find the level of Do, as the final tone of each
musical scale (and the starting tone of the following
scale). The levels below this top level of Do are
respectively Si, La, Sol, Fa, Mi, Re, and again Do.
Each lower level offers more space for the
electrons. At level 1 (Do) this amount of space
equals 12 (= 1). At level 2 (Si) this amount of space
again equals the square of this level’s number (22 =
4). The level with the maximum space is level 4
(Sol) with the amount of (42 =) 16.
This squaring regularity does not only occur top
down, but also bottom up. Because of this
regularity, the numbers of electrons per shell create
a kind of double pyramid or octahedral shape.
This pyramidal scale is merely a model to help us
understand the atomic structure. We should not
take it literally. First of all, the top of this pyramid is pointed
4
The Scale of the Electron – Explaining the Atomic Dynamics
inwards, and is closest to the core of the atom. The bottom layer is
furthest away from this core, and in most cases contains the so-called
free electrons.
Each electron has a spin. When this spin is
in the same direction as the electron’s
orbital direction around the atom’s core, I
refer to this spin orientation as positive or
Yin. The reverse orientation I refer to as
negative or Yang. Please read my other
books on Wholly Science, which are
mostly freely available as e-book on Pateo.nl, to learn more about
this.
In each space of the pyramidal scale structure, pictured as a block
on the previous page, there is room for two electrons with opposite
spins. In order to represent such a balanced couple of
counter spinning electrons, I use the symbol of Tao,
showing the perfect dynamic balance between Yin and
Yang.
To represent a space with just one electron, I use the white circle for
a Yin electron and a black circle for a Yang electron. When situated
in the bottom or outer layer of the pyramidal scale structure, the
black circles represent free electrons. When these free electrons have
jumped over to another atom, the remaining ion has a positive
charge. Each white circle indicates a space where an additional free
electron is required to create a balanced couple. When this happens,
the ion has a negative charge.
This is in fact all we need to know in order or to be able to explain
the ordering of Mendeleyev’s table. When you are unfamiliar with
aspects of this short theoretical foundation, then I advise you to first
study those aspects, for example on the internet, before reading the
remaining of this booklet.
The Scale of the Electron – Explaining the Atomic Dynamics
5
2. Showing the Electrons’ Structures
Based on the principles explained in the previous chapter, this
chapter shows the double pyramidal scale structure of each atom’s
electrons. Each building block is now represented as a square.
1H
The first atom can have a Yin or Yang electron at the
top level, which is also the only level this atom has. In
the Yang case, this atom’s name is Hydrogen. The
name Hydrogen comes from the Greek hydro
(meaning: water) and genes (meaning creator). Together with the
atom of Oxygen, this atom indeed creates water. Its ion is H+. In the
Yin case, this atom’s name is Hydride. Its ion is H-. Both Hydrogen
and Hydride are abbreviated as H.
2 He
Also the atom of Helium only has the top level. In the
case of Helium, this level is filled with a balanced
couple of counter spinning electrons. Now the top
level of Do is complete. Helium is therefore a so-called noble gas.
The additional electrons of the following atoms have to descend to a
lower level.
3 Li, 4 Be, 5 B, and 6 C
At that next level, the first four
atoms have free electrons. Each
following atom has one more. The ion of
Lithium is Li+. Next, the ion of Beryllium is
Be2+. Then, the ion of Boron is B3+. And
fourthly, the ion of Carbon is C4+. That last ion
is however the Yang ion of Carbon. Carbon
also has a Yin ion, as shown on the following
page.
6
The Scale of the Electron – Explaining the Atomic Dynamics
The Yin ion of Carbon has a charge of C4-.
That means it has room for four free
electrons. Next, Nitrogen, meaning the
creator (gen) of native soda (nitro), has room
for three free electrons. Its ion is therefore
N3-. In some cases however, Nitrogen gives
away all its electrons in the second shell
(N5+). The atom of Oxygen has room for two
free electrons. Its ion is O2-. When both
spaces have been occupied by a free electron
from an Hydrogen atom, then indeed water
(H2O) has been created. Next in line,
Fluorine has room for just one free electron.
Its ion is therefore F-. Last in this line up, we
find Neon. For Neon, all available spaces at the second
hierarchical level of Si have been filled up with balanced
couples of counter spinning electrons. Therefore, Neon is
the second noble gas.
11 Na, 12 Mg, and 13 Al
Initially, also the third level has four
spaces, since it is for the atoms
numbered from 11 up to 18 also the
bottom level. The atom with 11
electrons is called Sodium in English
and Natrium in Latin. That is why its
name is abbreviated as Na. Its ion is
Na+. Next, we find Magnesium and its
ion is Mg2+. Third and last in this line up is Aluminum in English or
Aluminium in Latin. Its ion is Al3+.
14 Si
The features of the atom of Silicon in
English or Silicium in Latin resemble
those of the atom of Carbon. The Yang
ion of Silicon has a charge of Si4+, while
its Yin ion has a charge of Si4-.
The Scale of the Electron – Explaining the Atomic Dynamics
7
15 P, 16 S, 17 Cl, and 18 Ar
Next, Phosphorus has room for three
free electrons. Its ion is therefore P3-.
The atom of Sulfur has room for two
free electrons. Its ion is S2-. Next in
line, Chlorine has room for just one
free electron. Its ion is therefore Cl-.
Last in this line up, we find Argon.
For Argon, all available spaces at the
third hierarchical level of La have
been filled up with balanced couples of counter spinning electrons.
Therefore, Argon is the third noble gas.
19 K, 20 Ca, 21 Sc, and 22 Ti
All atoms up from
number 19 have four
layers (or more). The
atom with 19 electrons
is called Potassium in
English and Kalium in NeoLatin, on which the abbreviation
of K is based. Its ion is K+.
Next, we find Calcium and its
ion is Ca2+. Third in this line up
3+
is Scandium. Its ion is Sc . Fourthly, we encounter Titanium with its
ion Ti4+. Titanium, however also has two different type of ions.
Those ions occur when the amount electrons in the third layer (of La)
exceeds the maximum of the 2×2 format for paired electrons. Then,
the third layer expands to
the much wider
3×3 format for
paired electrons.
That
explains
why Titanium
also has the ions
of Ti2+ and Ti3+.
8
The Scale of the Electron – Explaining the Atomic Dynamics
23 V, 24 Cr, and 25 Mn
For the next atom, Vanadium,
there are two similar types of
ions: V2+ and V3+. There is
even a third type of ion for
Vanadium. For this third
possibility,
the
layer
structures of the third and
fourth level have been swapped. Now the bottom layer
suddenly has a 3×3
format, which very
occasionally
is
possible (as an
exception that proves the general rule).
The atom of Chromium has
two types of ions: Cr2+ and
Cr3+. Although the third level
is not completely filled with
paired
electrons,
each
constellation is always very
well balanced. As this booklet
shows, each atomic structure shows a not only a natural balance, but
also a striking simplicity.
As the atomic numbers
increase, the ionic charges
hardly
do
not.
Also
Manganese has two types of
ions: Mn2+ and Mn3+.
Compared to the previous
atoms, only the arrangement
on the third level has changed.
26 Fe, 27 Co, 28 Ni, and 29 Cu
The next atom has 26 electrons. In Latin, its name is Ferron,
abbreviated as Fe. In English it is Iron. Iron is able to retain magnetic
energy because of the characteristics of its third layer of electrons. In
The Scale of the Electron – Explaining the Atomic Dynamics
9
non-magnetic Iron, the distribution of the Yin and Yang electrons is
balanced, as shown below.
After Iron has been magnetized,
the Yin electrons are on one side
of the third layer, and the Yang
electrons are on the other side.
This theory called the Scale of
the Electrons therefore not only
explains the ordering of the
periodic system, it also explains the magnetic features of the metals
such as Chromium, Manganese, Iron, Cobalt, and Nickel. Below, we
will also see how this theory irrefutably proves why Copper can not
hold magnetic energy.
Just like Chromium, Manganese,
and Iron, Cobalt has also two
types of ions, charged with
respectively values of two
positive and three positive. For
Cobalt these ions are Co2+ and
Co3+.
The very same is true for Nickel.
Its ions are Ni2+ and Ni3+. At
Nickel’s third layer, we see that
it is still possible to move the Yin
electron(s) to one side, and the
Yang electron(s) to the other
side.
However, in the case of Copper, this division is no longer possible.
In the case its ion is Cu2+, there is
only one space left at the third
layer where we find a single
electron (either Yin or Yang).
Furthermore, when its ion is Cu+,
all spaces of the third layer are
filled with paired electrons.
10
The Scale of the Electron – Explaining the Atomic Dynamics
30 Zn and 31 Ga
The atom of Zinc always has two
free electrons. Its ion therefore is
Zn2+. Next, the atom of Gallium
always has three free electrons.
Its ion therefore is Ga3+. Neither
of these two metals is able to
retain magnetic energy.
32 Ge
Just like Carbon and Silicon, the
atom of Germanium has two
opposing ion types: Ge4+ and
Ge4-.
33 As, 34 Se, 35 Br, and 36 Kr
The atom of Arsenio has room
for three free electrons. Its ion is
therefore As3-. The atom of
Selenium has room for two free
electrons. Its ion is Se2-. Next in
line, Bromine has room for just
one free electron. Its ion is
therefore Br-. Last in this line up,
we find Krypton. For Krypton,
all available spaces at the fourth
hierarchical level of Sol have
been filled up with balanced
couples of counter spinning
electrons. This means that
Krypton is the fourth noble gas.
37 Rb, 38 Sr, 39 Y, and 40 Zr
All atoms up from number 37 have five layers (or more). The atom
with 37 electrons is called Rubidium. Its ion is Rb+. Next, we find
Strontium, and its ion is Sr2+. Third in this line up is Yttrium. Its ion
is Y3+. Fourthly, we encounter Ziroonium, and its ion is Zr4+.
The Scale of the Electron – Explaining the Atomic Dynamics
11
The atom of Niobium has two configurations. In the 1-4-9-9-4
configuration, its ion is Mn3+. In the 1-4-4-9-9 configuration, its ion
is Mn5+. Both Molybdenum and Techneticum have that same
exceptional configuration of 1-4-4-9-9. Their ions are respectively
Mo6+ and Tc7+.
44 Ru and 45 Rh
From the atom of Ruthenium upwards, we return to the regular 1-49-9-4. It has two types of ions: Ru3+ and Ru4+.
41 Nb, 42 Mo, and 43 Tc
With the 40 electrons of Ziroonium, the pyramidal structure of 1-4-94-4 offers no more space for an additional electron. Therefore, a 4spaced layer gets widened into a 9-spaced layer, starting with
Niobium.
The atom of Rhodium has just one type of ion: Rh3+.
46 Pd
The
atom
of
Palladium has two
types of ions: Pd2+
and Pd4+. When, in
the first case, both
free electrons would
join the fourth layer,
its configuration would be like the perfect one of a noble gas.
However, the general rule is that the bottom layer is always 4-spaced,
and not 9-spaced as it would have been in this theoretical case.
12
The Scale of the Electron – Explaining the Atomic Dynamics
The Scale of the Electron – Explaining the Atomic Dynamics
13
47 Ag, 48 Cd, and 49
From the atom with 47
electrons up, the fourth
layer is perfectly filled
paired electrons. The
first atom that has this
perfect fourth level
configurations is called
Silver in English and
Argentum in Latin, abbreviated as Ag. Its ion is Ag+. Next in line, we
find Cadmium, and its
ion is Cd2+. After that,
the atom of Indium is
the next one. Its ion is
In3+.
52 Te, 53 I, and 54 Xe
From the atom of Tellurium upwards, we find the 1-4-9-9-4 structure
again.
50 Sn
The atom with 50
electrons is called
Tin in English and
Stannum in Latin,
abbreviated as Sn.
Tin has two types of
ions. The first one
follows the same
structure as its predecessors Silver, Cadmium, and Indium. Its ion is Sn4+. For the other
ion, the fourth 9-spaced layer is widened into a 16-spaced level. The
ion that corresponds to that 1-4-9-16-4 structure is Sn2+.
51 Sb
The atom with 51 electrons is called Antimony in English and
Stibium in Latin, abbreviated as Sb. Just like Tin, Antimony also has
two types of ions. The first one has the very unusual 1-4-9-9-9
structure. Its ion is Sb5+. For the other ion, the spacing for the
electrons is based on the 1-4-9-16-4 structure. That ion is Sb3+.
14
The Scale of the Electron – Explaining the Atomic Dynamics
The bottom layer of Tellurium has room for two free electrons. Its
ion is Te2-. Next in line, Iodine has room for just one free electron. Its
ion is therefore I-. Last in this line up, we find Xenon. For Xenon, all
available spaces at the fifth hierarchical level of Fa have been filled
up with balanced couples of counter spinning electrons. This means
that Xenon is the fifth noble gas.
55 Cs, 56 Ba, and 57 La
All atoms up from number 55 have six layers (or more). The atom
with 55 electrons is called Caesium. Its ion is Cs+. Next in line, we
find Barium, and its ion is Ba2+. Thirdly, we find. Its ion is La3+.
These three atom have the 1-4-9-9-4-4 structure for their electrons.
The Scale of the Electron – Explaining the Atomic Dynamics
15
61 Pm and 62 Sm
Also the atoms with 61 and 62 electrons have the 1-4-9-16-4
structure. The ion of Prometium is Pm3+.
58 Ce, 59 Pr, and 60 Nd
Most atoms starting with Cerium have an ionic charge of three
positive. Since the 1-4-9-9-4-4 structure offers no space for
additional electrons, these atoms have the 1-4-9-16-4 structure.
The atom of Samarium has two types of ions: Sm3+ and Sm2+. In the
latter case, the fourth layer of 16 spaces is perfectly filled with paired
electrons.
63 Eu, 64 Gd, and 65 Tb
The ion of Cerium is Ce3+. The ion of Praseodymium is Pr3+. Thirdly,
the ion of Neodymium is Nd3+.
16
The Scale of the Electron – Explaining the Atomic Dynamics
The atom of Europium has two types of ions. The first one
corresponds to the 1-4-9-16-4 structure. This is Eu3+. The other one
corresponds to the 1-4-9-9-9-4 structure. This is Eu2+.
The atom of Gadolinium shows very much resemblance to its
predecessor, Europium. Just like Europium, also Gadolinium has an
ion that corresponds to the 1-4-9-16-4 structure. This is Gd4+. Nextm
The Scale of the Electron – Explaining the Atomic Dynamics
17
the other one also corresponds to the 1-4-9-9-9-4 structure. This is
Gd3+.
respectively Dy3+ and Ho3+. Starting with the atom of Erbium, the 14-9-16-9-4 structure appears. Its ion is Er3+.
69 Tm and 70 Yb
The structure of the atom of Thulium very much resembles its
predecessor Erbium. Its ion is Tm3+.
Since there is no more space in the 1-4-9-16-4 structure, the atom of
Terbium has just one ion, corresponding to the 1-4-9-9-9-4 structure,
which is Tb3+.
66 Dy, 67 Ho, and 68 Er
The atom of Ytterbium has two types of ions: Yb2+ and Yb3+.
71 Lt, 72 Hf, and 73 Ta
Also the atoms of Dysprosium and Holmium have a single type of
ion, corresponding to the 1-4-9-9-9-4 structure, which are
18
The Scale of the Electron – Explaining the Atomic Dynamics
The Scale of the Electron – Explaining the Atomic Dynamics
19
For the atoms of Lutetium, Hafnium, and Tantalum, the
configurations of the first five layers are identical. That is why we
see a climbing of the number of free electrons of these atoms. Their
ions are respectively Li3+, Hf4+, and Te5+.
74 W, 75 Re, and 76 Os
With the atoms of Tungsten or Wolfram, abbreviated as W, and
Rhenium, this series continues. Their ions are respectively W6+ and
Re7+.
Just like Osmium, also the atom of Iridium has four free electrons Its
ion is Ir4+. The atom of Platinum has two types of ions: Pt4+ and Pt2+.
79 Au
Perhaps the most well-know metal is Gold. In Latin this is Aurum,
abbreviated as Au.
The atom of Gold has two types of ions: Au3+ and Au+. In the
structure corresponding to the latter ion, we see a completion of the
fifth layer with nine paired electrons.
From Osmium upwards, the fourth layer is now completely filled
with paired electrons. The ion of Osmium is Os4+.
80 Hg
Another well-known metal is Mercury. In Latin this is Hydrargyrum,
abbreviated as Hg. The atom of Mercury also has two types of ions:
Hg2+ and Hg+.
77 Ir and 78 Pt
81 Tl
Just like is predecessors Gold and Mercury, the atom of Thallium
also has two types of ions: Tl3+ and Tl+.
20
The Scale of the Electron – Explaining the Atomic Dynamics
The Scale of the Electron – Explaining the Atomic Dynamics
21
84 Po
The atom of Polonium also has two types of ions: Po4+ and Po2+.
82 Pb
Another well-known metal is Lead. In Latin this is Plumbum,
abbreviated as Pb. We also see this Latin origin in the word
plumbing, literally meaning ‘working with lead’. The atom of Lead
also has two types of ions: Pb4+ and Pb2+.
85 At and 86 Rn
With the atom of Astatine, we are back at the perfect filling of the
first five layers of the 1-4-9-16-9-4 structure. In the case of Astatine,
there is room for one more electron. Its ion is At-.
83 Bi
For Radon, also all available spaces at the sixth hierarchical level of
Mi have been filled up with balanced couples of counter spinning
electrons. This means that Radon is the sixth noble gas.
The atom of Bismuth also has two types of ions: Bi3+ and Bi5+.
22
The Scale of the Electron – Explaining the Atomic Dynamics
87 Fr, 88 Ra, 89 Ac
From the atom of Francium upwards, the structure develops as
before.
The Scale of the Electron – Explaining the Atomic Dynamics
23
The atom of Thorium completes the series of Francium, Radium and
Actinium. Its ion is Th4+. Next, we find that the atom of Protactinium
has two types of ions: Pa4+ and Pa5+.
92 U
The well-know atom of Uranium has two types of ions: U4+ and U6+.
The ions of Francium, Radium and Actinium are respectively Fr+,
Ra2+, and Ac3+.
93 Np
The atom of Neptunium has just one type of ion: Np5+.
90 Th and 91 Pa
94 Pu
Just like Uranium, also the atom of Plutonium has two types of ions:
Pu4+ and Pu6+.
24
The Scale of the Electron – Explaining the Atomic Dynamics
The Scale of the Electron – Explaining the Atomic Dynamics
25
With Plutonium, the six layers structure ends.
99 Es
96 Cm
With the atom of Curium, the seven layers structure starts. Its ion is
Cm3+.
The ion of the atom with 99 electrons is Es3+.
100 Fr
97 Bk
The atom of Berkelium also has two types of ions: Bk3+ and Bk4+.
The ion of the atom of Fermium with exactly 100 electrons is Fr3+.
101 Md
98 Cf
From now on, the names given to the atom become even more
strange. The atom of Californium is Cf3+.
The atom of Mendelevium has two types of ions: Md2+ and Md3+.
103 Lr
26
The Scale of the Electron – Explaining the Atomic Dynamics
The Scale of the Electron – Explaining the Atomic Dynamics
27
The atoms with numbers 102 and 103 have been reversed because
the page layout. The ion of the atom of Lawrencium with 103
electrons is Lr3+.
102 Nb
105 Db
The ion of the atom of Dubnium with 105 electrons is: Db4+.
The atom of Nobelium with 102 electrons has two types of ions:
Nb2+ and Nb3+.
106 Sg
103 Lr
By now, the application of the principles of the double pyramidal
structure of the distribution of the electrons to atoms with 103
electrons or more should be straightforward. From Lawrencium (103
Lr) upwards, also the fifth layer (of Fa) is completely filled with
paired electrons.
107 Bh
The ion atom of Lawrencium with 103 electrons is: Lr2+.
The ion of the atom Bohrium with 107 electrons is: Bh4+.
104 Rf
The ion of the atom of Rutherfordium with 104 electrons is: Rf3+.
108 Hs
The ion of the atom Hassium with 108 electrons is: Hs4+.
28
The Scale of the Electron – Explaining the Atomic Dynamics
The ion of the atom of Seaborgium with 106 electrons is: Sg4+.
The Scale of the Electron – Explaining the Atomic Dynamics
29
109 Mt
113 Uut
The ion the atom Meitnerium with 109 electrons is: Mt4+.
The ion of the atom Ununtrium with 113 electrons is: Uut4+.
110 Ds
114 Fl
The ion of the atom Darmstadtium with 110 electrons is: Ds4+.
The ion of the atom Flerovium with 114 electrons is: Fl4+.
111 Rg
115 Uup
The ion of the atom Roentgenium with 111 electrons is: Rg4+.
The ion of the atom Ununpentium with 115 electrons is: Uup3-.
112 Cn
The ion of the atom Copernicium with 112 electrons is: Cn4+.
116 Lv
The ion of the atom Livermorium with 116 electrons is: Lv2-.
30
The Scale of the Electron – Explaining the Atomic Dynamics
The Scale of the Electron – Explaining the Atomic Dynamics
31
is the heaviest noble gas. I suggest to change its name into Pateon
(Pn).
117 Uus
The ion of the atom Ununseptium with 117 electrons is: Uus1-.
118 Uuo
Ununoctium is a noble gas.
119 Uue
The ion of the atom Ununennium with 119 electrons is: uue1+.
120 Ubn
The current preliminary name of the atom with 120 electrons is
Unbinilium. This atom with the highest possible amount of electrons
32
The Scale of the Electron – Explaining the Atomic Dynamics
The Scale of the Electron – Explaining the Atomic Dynamics
33
3. Geometrical Foundation of Scelth
The formula for the maximum amount of
electrons in each following shell is 2n2, where
n represents the number of the electron shell.
The theory of the Scale of the Electron, as
described in the previous chapters of this
booklet, offers an explanation for this description. First of all, the
Scaled Electrons Theory, abbreviated as ScElTh or Scelth, explains
that each couple of a Yin electron and a Yang electron form a stable
unit that perfectly fits the space of each building block of the double
pyramid structure of the electrons. The fact that this structure is not a
single, but a double pyramid is the second explanation offered by
Scelth. Each layer of this double pyramid, where the top one is
pointing inwards and the bottom one is pointing outwards, offers n2
spaces, where n represents the number of layers of the top pyramid.
The bottom pyramid is then a kind of mirror image of the top one.
Furthermore, Scelth also offers a new model for studying the
features of the atoms. It also explains why some metals like Iron can
be magnetized, while others like Copper cannot. It also help to
understand the phenomena of superconductivity.
Now let us look at the geometrical foundation of Scelth. There are
five three-dimensional shapes, each of which consists of identical
surfaces, edges, and vertices. As an homage to the ancient Greek
Plato, these shapes are called Platonic solids. The table below shows
these five perfect, three-dimensional, solid shapes.
Shape
Faces
4
Edges
6
Vertices
4
Namee Tetrahedron
34
6
12
8
8
12
6
12
30
20
20
30
12
Hexahedron
Octahedron
Dodecahedron
Icosahedron
The Scale of the Electron – Explaining the Atomic Dynamics
The maximum number of electrons in each shell or layer is 2n2, as
mentioned above. The highest number of electrons per level is 32, as
described in the previous chapter. When we combine the shapes of
the icosahedron and the dodecahedron, precisely fitting into the same
sphere, we get exactly 32 vertices. In this combined shape, the 12
vertices of the icosahedron are exactly above the centers of the 12
pentagonal faces of the dodecahedron. The opposite is also true: the
20 vertices of the dodecahedron are exactly above the centers of the
20 triangular faces of the icosahedron, in this combined shape. These
32 combined vertices are the dynamic locations of the 42 pairs of
electrons in the fourth layer (of Sol), when is it completely filled.
Please not that within this sphere of 32 vertices, we also find exactly
four hexahedrons.
When the third layer (of La) is fully filled with paired electrons,
this level or shell offers room for 32 pairs of electrons. We find these
18 electrons at the 18 vertices of the combination of three
octahedrons, each having 6 vertices.
The second layer (of Si) offers room for 22 pairs of electrons. We
find these 8 electrons at the 8 vertices of the combination of two
opposite tetrahedrons, together forming a so-called star tetrahedron.
The first level, closest to the atom’s core, offers
room for 12 pair of electrons. The Yin and Yang
electron of this single pair spiral in opposite
directions according to the dynamic vortex
movement of the so-called energetic apple, as
described in the book ‘The Bigger Picture’,
available as free online e-book on Pateo.nl. The figure on the left
hand side shows this movement.
1 (Do)
2 (Si)
3 (La)
4 (Sol)
12
22
32
42
single ‘apple’
double tetrahedron
triple octahedron
quadruple hexahedron
8 (Do)
7 (Re)
6 (Mi)
5 (Fa)
The figures on the next pages show these compound shapes.
The Scale of the Electron – Explaining the Atomic Dynamics
35
drawing three orthogonal lines from each of the vertices to opposite
vertices, we find exactly three hexahedra or cubes within this
compound shape.
The compound of two tetrahedra gives a star tetrahedron:
The compound of three octahedra looks like this:
This shows that the platonic solids together with the energetic apple
shape offer the required geometrical foundation for the Scaled
Electrons Theory.
On the left hand side, we see this
compound of three octahedra,
each with a different color (i.e.
grey, green, and purple).
The figure on the next pages
shows the compound of an
icosahedron and a dodecahedron.
This shape has 32 vertices. By
36
The Scale of the Electron – Explaining the Atomic Dynamics
The Scale of the Electron – Explaining the Atomic Dynamics
37
4 The Periodic Octahedron of the Elements
The underlying structure of the elements is not two-dimensional, but
three-dimensional. That is why a 2D table fails to reveal this
underlying structure.
The figure below show the underlying 3D structure of the 120
types of atoms. This shape resembles an octahedron in the same way
as the electrons shell structure does. This is why it is called the
periodic octahedron of the elements. It consists of eight layers.
Layer
1
Do
2
Si
3
La
4
Sol
5
Fa
6
Mi
7
Re
8
Do
Amount of Elements
2
8
18
32
32
18
8
2
Cumulative
2
10
28
60
92
110
118
120
The figure below shows the corresponding atomic numbers.
The elements that lie on the same vertical axis have corresponding
features. Presented in this way, the natural logic of the atoms or
elements becomes crystal clear.
38
The Scale of the Electron – Explaining the Atomic Dynamics
The Scale of the Electron – Explaining the Atomic Dynamics
39
Acknowledgements
First of all, I wish to express my gratitude to Jan Wicherink. His
input helped me to discover the geometrical foundation of Scelth, as
described in the previous chapter. Furthermore, I like to thank Frank
Bonte, who has brought me into contact with many interesting
theories and scientists during the past four years. Both Frank and Jan
are open minded researchers (and creators) based in Netherlands, just
like I am. Internationally, I am very happy to work with a number of
leading scientists form all over the world. Some of their names are
listed on the webpage of the Pateo Academia on the English section
of Pateo.nl.
Scelth focuses on the particle nature of electrons. Elementary
physics shows that electrons have at the same time wave-like
features. They occur as clouds around nucleus of atoms and are in
phase-lock conjugation existing first as one type of scalar wave, then
another alternating between charges. Scelth does not take these
wave-like features of electrons into account, and neither does it
include the protons and the neutrons in the core of the atom.
Please feel free to contact me about Scelth or other scientific issues.
You find my e-mail address on second page of this booklet.
Zeist, The Netherlands,
October 12th, 2012
Johan H. Oldenkamp, Ph.D.
40
The Scale of the Electron – Explaining the Atomic Dynamics