of charge traps
Transcription
of charge traps
Charge-Trap Charge Trap NAND Flash Memory Souvik Mahapatra p E E Dept, IIT Bombay, India Contributions: C t ib ti S d C, Sandya C Pawan P Singh, Si h S Suyog G Gupta, t K Kshitij hitij Auluck, A l k Piyush Dak, Sandeep Kasliwal, Udayan Ganguly, Dipankar Saha, Gautam Mukhopadhyay, Juzer Vasi Support: Applied Materials, Intel Corporation, SRC/GRC 1 Outline FG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot Flash Scalability simulation of m-ND Flash 2 NAND Flash Background CG DSL CD 15nm FG 50nm TO 9nm WL SL SSL Figure: Samsung L=35nm No. of cells BL Memory state •Electron transfer between substrate & FG define memory state (write & erase) •FG surrounded by TO & CD acts as electron storage well (non-volatility, need 10yrs), though leak out occurs over time (retention loss) •Repeated Write/Erase (10-100K needed) causes memory3 wear out (cycling endurance) NAND Flash Scaling CG CD 15nm FG 50nm TO 9nm L=35nm •More memory, faster access, reduced cost •Guideline (ITRS roadmap): L=35nm (2009), (2009) 28nm (2010/11), 22nm (2013/14)… •SLC SLC (1bit/ (1bit/cell), ll) MLC (2 or 3 bits/cell) bit / ll) for f higher hi h density, higher reliability issues Scaling penalty: (1) Loss of CG – FG coupling (2) Cell C ll to t cell ll cross talk t lk (3) Non-scaling of TO, FG and CD thickness (4) Non-scaling of operating voltage (5) Higher reliability concern Solution: Discrete trapbased charge storage CG CD, 12nm SiN, 6nm TO, 6nm 4 Planer CTF Devices & test chip demonstrated (Samsung) •Memory window close down with W/E cycling •Data keeps leaking out (worse than FG!) •Loss of memory operation ti CTF reliability worse than FG, no product yet 5 Retention Issue Lateral or Vertical charge g migration g Trap depth of SiN is key to control charge migration Solution – to cut SiN above STI (Samsung, 2007) 6 NAND 3D Memory 3D CTF p proposed p as a way y to move forward below 20nm node: BiCs (Toshiba), TCAT (Samsung) 7 Motivation CTF reliability y improvement p needs: Understanding g impact p of device processing p g on material and electrical properties Proper device design (structure, composition) Detailed electrical characterization & modeling – feedback for intelligent g manufacturing g 8 SANOS Device Structure Trap parameters: Nt,elec, Φt,elec Nt,hole, Φt,hole 12 nm 15 nm 20 nm 6 nm 3-6 nm Al2O3 Si+ SixNy N+ Dis stance (nm m) Gate N+ Trap dist. dist (A.U.) Φt,elec Φt,hole Si+ Ev TO Channel Ec SixNy Al2O3 SiO2 Charge tunnel from substrate to SiN via TO, Al2O3 used for leakage blocking 9 P/E Transients 12 4 N-rich Si-rich Si rich 2 0 -2 P/E Wind P dow (V) 10 6 ΔVFB (V) P E R.I. Total memory window 8 6 4 2 0 N0 N1 N2 N3 N4 N+ Si+ W11 W2 W3 W6 W8 -2 -4 -8 10 -5 -2 10 10 Time (s) 1 10 -4 W 11 W2 W3 Splits W6 Refrractive Ind dex (R.I.) 8 P/E at +18V/-18V 1.95 1 95 2.00 2.05 2.10 2.15 W8 High-k blocking dielectric: ¾ Better coupling to channel ¾ Larger memory windows P / E state (memory window) depend on SiN composition 10 ISPP and ISPE N0 N1 N2 N3 N4 6 5 VFB(V V) 4 N+ 3 Si+ 2 1 0 -1 10 15 Vg (V) 20 6 5 4 3 2 1 0 -1 1 -2 -3 -4 0 VFB(V V) 7 25 N0 N1 N2 N3 N4 N+ Si+ -5 -10 -15 Vg (V) N+ SiN ¾Higher electron trapping efficiency ¾Poor erase characteristics Si+ SiN ¾Low P saturation levels ¾Higher erase efficiency -20 -25 11 Charge loss (Retention) 0.8 N+ 5.5 04 0.4 0.6 N1 N2 N3 N4 -1.6 -1.7 -1.8 -1.9 -2.0 -2.1 Si+ ΔVFB(V) 4.5 N+ 0.3 04 N 0.4 + Si + 0.2 0.2 ΔVFB(V) VFFB (V) 50 5.0 0.5 E state loss P state loss 0.1 Si+ 10 2 3 10 Time (s) 10 4 0.0 1.95 2.00 2.05 2.10 RI R.I. 0.0 2.15 N+ SiN ¾ Deep electron traps - shallow hole traps Si SiN Si+ ¾ Shallow electron traps - deep hole traps P/E state retention dependent on SiN composition 12 Tunnel oxide thickness dependence VFB(V V) 55 5.5 5.0 2.5 ΔVFB (V V) 2.0 0.04 3/6/12 4/6/12 5/6/12 6/6/12 VFB= 2.5V 0.00 -0.04 1 10 2 10 10 Time (s) 3 10 4 Thinner TO Æ Increased electron tunnel out from SiN 13 Retention – T dependence VFB = 5.5V ΔVFB(V) 0.0 -0.4 0.0 ΔVFB(V) 43 10 38 10 33 10 28 10 23 10 18 10 13 tr (s) -0.8 10 VFB = 2.5V -0.4 25oC 150oC -0.8 1 10 2 125oC 180oC 3 10 10 Time (s) 4 10 10 8 10 3 N1:Ea = 1.88 eV N2:Ea = 1.38 eV N3:Ea = 1.01 eV 25 30 35 -1 1 1/kT( V ) 1/kT(eV 40 Higher activation energy in N+ → Deeper electron traps 14 Retention – E state TO thickness & T effect 0.4 25oC 150oC ¾ TO independent for > 3nm No Trap to Band tunneling of holes 0.2 VFB = -2.0V 0.0 0 0 0.4 ΔVFB(V)) ¾ T independent No thermal emission of holes ΔVFBB(V) E state retention loss 3/6/12 5/6/12 4/6/12 6/6/12 0.2 VFB = -2.0V 0.0 1 10 Different charge loss mechanisms for electrons and holes 125oC 180oC 2 3 10 10 Ti ((s)) Time 4 10 15 Endurance – SiN Composition 5 VFB(V V) 4 3 2 P 16V 5ms 1 N1 N2 N3 N4 E -15V 1ms 0 Memory y Windo ow, VFB(V V) 5 4 N1 N2 N3 N4 3 2 N+ 1 0 10 0 1 2 10 10 10 P/E Cycles 3 10 4 10 0 1 2 10 10 10 P/E Cycles 3 Si+ 10 4 Endurance degradation SiN composition dependent Si rich devices cycle with negligible erase state degradation Si-rich 16 Summary • Comparison of SiN Compositions Parameter N+ Si+ Deep Shallow Hole trap depth Shallow Deep Hole trap density Very low High Split window operation Not possible Possible Endurance degradation High Low Electron trap depth 17 P/E Simulation of SiN Flash • Develop D l a Simulation Si l ti framework f k capable bl off providing idi useful insight into the physics involved during Program /Erase (P/E) operations operations. • Accurately yp predicting g P/E behavior of SANOS/SONOS memories • Simulation Si l ti up to t long l time ti instants, i t t large l biases bi • For different gate stack dimensions • For different Nitride Compositions p 18 Simulation Methodology •Set P/E bias •Compute Poisson throughout gate stack •Assume Assume TO and CD as pure tunnel barriers, compute tunneling currents in and out of SiN •Compute transport, continuity and SRH (trapping detrapping) in SiN •Compute Co pute ttrapped apped c charges, a ges, update Poisson •Continue till end of P/E time 19 Simulation Flow 20 Key Models Incorporated Tsu-Esaki tunneling formulation Field dependent p capture p cross section Poole Frenkel detrapping from traps T Trap to t band b d tunneling t li 21 P/E: Stack Energy Band Diagrams 22 SANOS sample stack properties SiN Si2H6/N3 type flow ratio Dep. Temp (°C) Gate Stack Dimensions (nm) RI TO SiN CD N2 0 005 0.005 650 2 006 2.006 4 6 15 N2 0.005 650 2.006 6 6 12 N2 0 005 0.005 650 2 006 2.006 4 6 12 N0 0.01 800 1.987 4 6 12 N0 Æ More N rich SiN; N2 Æ More Si rich SiN Diff Different t stack t k di dimensions i used d to t check h k robustness b t 23 ISPP Matching 7.5 Employing the field d dependent d t σ enables bl accurate prediction of ISPP 6.5 5.5 V) Δ Vfb (V Less than 1V change in VT (or VFB) for every 1V increment in applied VG (ISPP slope <1V/V) Exp Lower Field dep. σ (n = 3) Vfb Shift σ = const (n = 0) n σ = σ0/(1+(E/Esat) ) 4.5 3.5 2.5 Lower ISPP Slope 1.5 0.5 -0.5 5 10 15 20 Vg (V) 24 ISPP Matching 9.5 Same parameter S t values used during P/E transient matching (to follow) 8.5 75 7.5 3 σ = σ0/(1+(E/Esat) ) 6.5 V) Δ V fb (V Good matching with ISPP data for varying gate stack thickness and nitride compositions Exp: N2 (4/6/15nm) Exp: N2 (4/6/20nm) Exp: N0 (4/6/12nm) N2 5.5 4.5 3.5 2.5 N0 1.5 Symbol : Exp Line : Sim 05 0.5 -0.5 4 6 8 10 12 14 16 18 20 Normalized Vgg ((V)) 25 22 P/E Matching 6 5.5 4.5 Symbol: Exp Line: Sim 5 4 Δ Vfb (V) Δ V fb ((V ) 3.5 2.5 1.5 3 2 Vg : -17V - -12V 1 Vg : 12V-16V 0 Symbol: Exp 0.5 Line: Sim -0.5 -6 10 10 -5 10 -4 10 -3 Time (s) 10 -2 10 -1 10 0 -1 -6 10 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 Time (s) Program g and Erase transients (N2-4/6/12 ( nm SANOS)) 26 P/E Matching (Change in TO) 5.5 4.5 6 Symbol: Exp Line: Sim 5 4 V) Δ V fb (V Δ V fb ( V ) 3.5 2.5 3 2 Vg : -18V - -13V 1.5 1 0.5 -0.5 -6 10 Vg : 12V-17V 0 Symbol: Exp Line: Sim 10 -5 10 -4 10 -3 Time (s) 10 -2 10 -1 10 0 -1 -6 10 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 Time (s) Program and Erase transients (N2 (N2-6/6/12 6/6/12 nm SANOS) 27 P/E Matching (Change in CD) 6.5 7 Symbol: Exp 5.5 Line: Sim 6 5 V) Δ Vfb (V V) Δ Vfb (V 4.5 35 3.5 2.5 1.5 3 Vg : -18V - -13V 2 1 Vg : 13V-18V 0.5 -0.5 -6 10 4 0 10 -5 10 -4 10 -3 Time (s) 10 -2 10 -1 10 0 Symbol: Exp Line: Sim -1 -6 10 10 -5 10 -4 10 -3 10 -2 10 -1 10 Time (s) Program and Erase transients (N2 (N2-4/6/15 4/6/15 nm SANOS) 28 0 P/E Matching (Change in SiN) 7 7.5 Symbol: Exp 6 6.5 Line: Sim 5 4.5 Vfb (V) ΔV b (V) Δ Vfb 5.5 35 3.5 2.5 4 3 Vg : -17V - -13V 2 1 1.5 Vg : 12V 12V-17V 17V N0-4/6/12nm 0.5 -0.5 -7 10 10 -6 10 -5 10 -4 10 Time ((s)) -3 10 -2 10 -1 10 0 0 Symbol: S b l E Exp Line: Sim -1 -6 10 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 Time (s) Program g and Erase transients (N0-4/6/12 ( nm SANOS)) 29 Extracted parameters (SiN dependence) Parameter N0 N2 Parameter N0 N2 Electron trap depth ((eV)) 1.8 1.63 Hole Trap Depth (eV) 1.73 1.95 Electron trap density (1019cm-3) 3.3 3.9 Hole Trap Density (1019cm-3) 1.6 2.6 Electron σ const. , σ-0 (10-12 cm2) 5.7 5.7 Hole σ const. , σ-0 (10-10 cm2) 8 8 Trap-band emission f freq. υ-tbt(1013 s-11) 4 4 Saturation electric field 6.25 6.25 Esat (105 V/cm) V/ ) Values of carrier effective masses masses, band gaps and dielectric constants taken from published literature 30 Summary • New N models d l for f electric l t i field fi ld dependent d d t capture t cross section has been proposed which gives excellent agreement with experimental results • The robustness of the simulator is verified across different stack thicknesses and different nitride compositions to accurately predict the P/E and ISPP transients 31 Metal Nanodot (m-ND) Flash: Motivation Nanodot Cell – discrete nanodots as storage node • Floating Gate Cell – poly-Si storage gate Control Gate Control C t l Di Dielectric l ti Floating Gate Nanodots Tunnel Dielectric e e e e e e e Source Drain Ch Channel l Complete charge loss e e e e e Source Defect in Tunnel Oxide Drain Ch Channel l Only yp part of stored charge is lost Charge storage in discrete nanodots increases immunity to tunnel oxide defects 32 m-ND Flash Process Flow SL DL Wafer Clean Tunnel Oxide 40Ǻ Metal Deposition Anneal -- ILD deposition Metal Deposition Anneal Control Oxide: 120Ǻ Al2O3 Post Deposition Anneal Metallization: 1000Ǻ Pt Si Si Si l Layer Single L (SL) D lL Dual Layer (DL) 33 Pt Nanodot formation 500oC 700oC 900oC 5Å Initial Deposited Thickness 10Å Anneal Temperature Optimization of deposition and annealing processes results in large density 12cm-2 2), ( (~4x10 ) small size (~3nm) ( ) and large area coverage (~30%) ( %) 34 Cross-Section TEM CD CD ILD TO TO Si Discrete SL and DL nanodot formation clearly y visible 35 SL Memory Window 8 7 VFB (V) 6 4 2 Virgin VFB 0 -18V -> -20V -2 -5 INT 10 -4 10 -3 10 -2 10 Time (s) -1 10 Memo ory Windo ow (V) +18V -> +20V 6 SL S1 SL-S1 SL-S3 5 T = 10ms 4 3 2 1 0 17 18 Gate Voltage (V) 19 Large Memory window & significant over erase ((split p window possibility) p y) 36 Memory Window: SL vs. DL SL DL Improvement in memory window i over SL 6 Sa aturation n VFB (V) Satu uration VFB (V)) 10 8 6 4 2 0 -2 2 -4 (b) 12nm 17nm 4 2 Improvement : A hi d 38% Achieved: Expected: 42% 0 -2 -4 17 18 19 20 21 22 Eq. Gate Voltage (V) (w.r.t SL) -6 T =10ms 16 17 18 Thick CD Split 19 20 21 22 Eq. Gate Voltage (V) • 90% improvement in DL window over SL due to increased CD thickness and charge storage in 2nd layer • Memory y window improvement p only y with thick CD: 38%,, expected (40%) 37 8 DL 6 o 25 C o 80 C o 150 C 4 SL 2 0 DL 0 10 1 10 2 10 3 10 4 10 -2 2 Time (s) ΔVFB (V) 9 8 7 6 5 4 3 2 1 0 VFB (V V) VFB (V) High Temperature Retention 0.4 0 4 0.2 E-state gain 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 10 P-state loss DL-S1 DL-S2 DL-S3 DL-S9 DL S9 o o o 25 C 80 C 150 C o Retention Temperature ( C) Insignificant retention loss Retention better than SiN memory due to deeper potential well for m-ND’s 38 SL vs. DL P/E Endurance 6 5 4 3 2 1 0 -1 6 VFB (V)) 5 VFB (V) Solid: SL-S1 Open: SL-S3 DL S1 DL-S1 DL-S2 DL-S3 DL-S9 4 3 2 1 0 0 10 1 10 2 3 10 10 # P/E Cycles 4 10 10 0 10 1 2 10 10 # P/E Cycles 3 10 4 Better endurance for DL w.r.t SL No window closure till breakdown 39 P/E Endurance (DL-S9) ( ) 8 5 4 3 2 1 0 -1 4 6V 2 0 -2 0 10 1 10 6V VFB(V V) VFB (V V) 6 2 3 10 10 # P/E Cycles 4 10 0 10 75000 1 10 2 3 4 10 10 10 # P/E Cycles 5 10 • 10 04 cyc cycles es with t 6 6V a and d 7V memory e o y window, do , 2x10 03 cyc cycles es with 8V memory window • Maximum endurance seen when P/E-states are within +6V/-2V 40 • No window closure till breakdown MLC Operation (DL-S9) 4 11 4 VPASS= 6V 10 2 VFB(V) VFB(V) 3 2 o 3 T = 80 C 1 0 01 10 0 -1 -1 -2 2 1 00 -2 -2 2 10 -1 10 0 10 1 10 Disturb Time (s) 2 10 3 10 0 10 1 10 2 10 3 10 Retention Time (s) Excellent separation maintained between the P/E levels g retention stress after read disturb and high-T 41 4 Summary • Single and dual layer Pt metal Nanodot memory gate stacks demonstrated • Excellent memory window, cycling endurance (>10K with ith 6V window), i d ) pre- and d post-cycling t li retention • MLC capabilities • No fundamental reliability show stopper for metal dots in gate stack • Need feasibility demonstration in scaled (sub 20nm node) cells 42 Simulation of m-ND Flash • To demonstrate viability of m-ND cells in sub 20nm cells (impact of cell size, size no no. of dots, dots area coverage coverage, fluctuations, missing dots, dot to dot leakage…..) • Full 3D electrostatics and tunneling implementation • Solve S l Laplace L l for f potential t ti l & electric l t i field fi ld in i gate t stack t k • Non Non-local local tunneling implementation (Tsu (Tsu-Esaki) Esaki) for charging of dots (substrate to dot, dot to gate, dot to dot) • Calculate charges in iterative manner • Port P td dott charges h in i equivalent i l t device d i simulated i l t d using i 43 Sentaurus Device for VT calculation Potential, E-field, Tunnel current (2D cuts) 44 Charge Transients 45 Prediction…. Area coverage, Channel length, No. density, Missing dots… 46 Summary • Full 3D electrostatics – tunneling framework to study mND Flash viability below 20nm node • Immunity to fluctuations (good) • Memory window reduction with L scaling (issue) • Cells becomes edge critical (issue) 47