Stage of a Nuclear Fireball - CSIRO Research Publications Repository
Transcription
Stage of a Nuclear Fireball - CSIRO Research Publications Repository
A Numerical Model of the Late (Ascending)Stageof a Nuclear Fireball I. E. Galbally, P. C. Manins, L. Ripari and R. Bateup D[VISION OF ATMOSPHERIC RESEARCH TECHI\ilCAL PAPER No. 16 COMMONWEALTH SCIENTIFIC AND INDUSTRIAL 1987 AUSTRALIA RESEARCH ORGANISATION, A Numerical Model of the Late (Ascending)Stageof a Nuclear Fireball By I. E. Galbally, P. C. Manins, L. Ripari and R. Bateup Division of Atmospheric ResearchTechnicalPaper No. L6 CommonwealthScientificand Industrial ResearchOrganisation,Australia 1987 A NUMERICAL MODEL OF THE LATE (ASCENDTNG) STAGE OF A NUCLEAR FIREBALL r.E. Galbally, P.C. Manins, L. Ripari and R. Bateup ABSTRACT a nuclear of ascending stage the late A numeri.cal model of equations covering the The model is based on five firebatl is presented. loss, the buoyancy, radiative entrainment, of mass including conservation relationship. The distance and the velocity energy balance of the fireball pressure, and volume and temperature gas to relate law is used ideat the (1971) free energy minimization scheme is used to calculate Erikssonrs The air. model the fireball of enthalpy composition and molecular and the of selected behavior dependent of the time Parameters simulations data from mid latitude with available heights compare favourably rise final physical for only this mode1, suitable of A simplification explosions. in an appendix. is discussed calculations, CONTENTS 1. fntroduction ) Tnitial. 2.L 2.2 J . Ambient atnospheric conditions Energy partitioning following near-surface nuclear explosion FirebaIl 3.L 3.2 3.3 3.4 3.5 3.6 A Conditions a description Conservation of mass ancl entrainment Conservation of momentum Composition and enthalpy Radiative loss Energy balance Sufiunary of model equations Characteristics of the Fireball Model Conclusion 6. Acknowledqements 7. References ^nnanAi nac A. A simpler model of stage of a nuclear B. Fireball model flow C. Fireball model code the late fireball diaqrams (ascending) F 1. TNTRODUCTION in the study of nuclear has been renewed interest there Recently (Ambio L982). There have been impact on the atmosphere explosions and their releasing postfires explosion effects of the about new discoveries concerning and the more well known questions pollutants into the atmosphere, burning and pu1se, flash electromagnetic radioactivity, oxides, nitrogen (Pittock 1986). However while et al. strock wave darnage have been reexarnined is known, fireball very little by the nuclear are generated these processes about these fireballs. the open literature, within of nuclear impact of the environmental to analyses As an aid of a nuclear stage ascendi.ng, moclel of the 1ate, a numerical explosions the shock wave has This model conmences after firebatl has been developed. the concerning and thus cannot address questions from the fireball separated flash intensity, radiation oxides, The production of nitrogen shock wave. the be examined with can all debris of the radioactive of rise and height fireball questions concerning other Furthermore presented here. model can be addressed with this model. composition (e.g. erode and Bjork, 1960) and models do exist Complex numerical to Howeverr according detail. in great explosions nuclear these describe of (1968), and mid tjme histories the early only .1964\ and Brode Bethe - are - before begins rj se of the hot vapour buoyant development fireball been at fate times has apparently The behaviour considered by these models. but no information (Glasstone and Dolan L977, Fiq.10,p158) at length studied is presented results provide for basis the which the models about forthcoming. the with dealing report accessible as we know, the only As far is singularly fireball is by Waltman (1975) and the model presented rising The dynamlc model presented observed behaviour. in simulating unsuccessful associated and reactions (i.e., the chemical without the model here presented by to that similar superficially processes) is thermodynamic input identical with models the two However when waltman og75). After obtained. are results differing widely p arameters are compared, -detailed numerical the to understdnd still unabLe we are examination presented in Waltman (1975). solutions of the new the basis is to document Report of this The purpose of the description a detailed rise, to provide fireball model of nuclear present to it' may utilize others that so model the implements code which and to demonstrate available data, with of model output comparisons limited It is not intended assumptions. of the model to various the sensitivity problems: these ne$/ research deal with significant should that the Report elsewhere. of papers to be presented are the subject 2. INITIAI, fireball entrained fireball AND AMB]ENT CONDITTONS case where the the represents nuclear explosion A near-surface is material and no surface surface earth's touch the does not as a clean be described subsequently This will the fireball. into be those from ambient air. present will and the only constituents 2 nuclear i-s that of a surface here, Another case, not considered of fitebal.I and the composition It may be described as a dirty explosion. during the from the surface entrained materials would include the fireball early stage of the explosion. 2.1 Ambient (l,gg5) in mid 11km. atmospheric conditions atmospheric conditions used by Manins slandard The ICAO (1964) and is taken to be at mean sea level The surface are employed here. (t30o to +70o latitude) of the tropopause is at an altitude latitudes prevail conditions assumes hydrostatic The ICAO standard atmosphere :E dz (1.| 0 q g is acceleration due to gravity' pressure, 0 is the where p is atmospheric The conditions. denotes ambient leve1 subscript density z and the at pressure from and density of tempetature, vertical distributions standard The of 40kn as given in ICAO (1964) are used. to an altitude the surface from in Table 1 and has been adapted is given composition of the atmosphere into account recent data for Co, and water vapour. Va11ey (1965) taking (up to 200 is so large fireballs The rate of rise of thermonuclear , may be of the fireball the influence of anrbient winds on growth * s-') that of and transport spread the subsequent determine Wj-nds will ignofed. of rise. height at the ultimate fireball material 2.2 Energy partitioning following a near-surface nuclear explosion The is uncertainexplosion in a nuclear The energy partitioning (and fission from the amount of can be calculated energy release total and to Glasstone According has taken place. that fusion if appropriate) the beJ-ow 40,000 ft' p.7, nuclear explosion for a fission Dolan G977) initial 358, air shock 50t. radiation thermal into is partitioned enerqy 10*. The residual radiation nuclear radlation 54, and residual nuclear ylelcl a nuclear of energy included when the not radiation is nuclear Hence the yield in terms of the TNT eguivalent. is stated, e.g., explosion 95* of the total fission-fusion fission en€irgy .(or 9Ot of the total is -. partitioning Thus the energy as a for explosion) a thermonuclear energy explosion would be thermal- radiation W, for a fission function of yieId, 5t. llowever two details radiation nuclear air ancl initial 39t, shock 56t, loss' source of energy picture. there is another this Firstly complicate of this and buoyant rise entrainrnent energy dissipated via is the this to Furthermore accordingr later. this will be discussed fireball and explosive for various classtone and Dolan (\97'7) p3L3, the thermai partition (39E) clerived to the 0.39 yields is 0.35, in contradiction at sea leve1 above. 1 ryield', W, The total energy, or expressedo in Mt of TNT equivalent. 4.18 x 10- MJ of energy. is of a thermonuclear explosion releases 1 Mt of TNT equivalent Tab1e 1: (a) of The composition ATMOSPHERIC I4IXING RATIO FOR DRY AIR ambient (V,/V) Mixing Ratio species (b) air (V,/V) N. 0. 780836 o2 coz o.209487 Ar 0. 009343 0. 000340 VJATERVAPOUR MIXING RAT]O AS FUNCTTON OF HEIGHT Height ltcm) l4ixing Ileight Ratio (km) (v /v) Mixing Ratio (v/v) 0. 0L0129 2.O 0.006110 4.O 0.003055 6.0 0.oo7447 8.0 0.000434 1 0 .0 0.000059 0 . 0 0 0 0 37 1-4.0 0. 00001-6 1 6 .0 0.00001,4 1 8 .0 0. 000010 20.o 0.000010 22.O 0.000010 24.O 0.00001-0 26.O 0.000010 28.0 0.000010 30.0 0.000010 31.0 0.000010 0.0 1 t n Actual mixing ratio ory mixing ratio of species (apart frorn Hro) is: x (l - Water vapour mixing ratio) 4 while acknowledging the of that efficiency a blast depends (weakly) on bomb design, Brode (1968) in a review of nuclear Ueapons effegts gives a formula for thermal yielil,/total yield i= 0.4 + (0.06w''\/\t + O.5w-')) where W is in Mt. This indicates that the thermal partition fraction is generally greater than 0.4 and equals O.44 for a 1 Mt yield explosion. Some early measurements of the thermal radiation from a nuclear detonation (Broido et a1. 1953) indicate in the range 0.34 to thermal efficiencies 0.45, decEl-sing with increasing yield over the range 1kt to 30 kt. There is some uncertainty about the Theoretical around 0.40 t 0.05 are appropriate. (Taylor 1950a) suggest that half the energy is wave and the other half remains behind the shock in the case of nuclear explosions is the firebal1. but values thermal yield, studLes of large explosions partitioned into the blast wave as wasted hot air that This energy partitioning is essentially the time integral over the (^,1 min) of the energy used in a particular lifetime of the explosion process as a fraction of the total energy releaseil by the hreapon at the time The sequence of events in such an explosion is described. of the explosion. Initially, a nuclear explosion generates a massive quantity of soft x-rays which are imrnediately absorbed by the surrounding few metres of atmosphere (Glasstone 1977). and Dolan A hot isothermal bubble of spherical It dissociated air and bomb products at very high pressure is formed. by radiative expands primarily transfer. A blast wave propagates outward, shocking surrounding air to high temperature and pressure and for a short period of time this shock wave is opaque. For definiteness, consider a 1 Mt expJ-osion. As witnessed- from afar, the temperature of the explosion decreases rapidly but wlthin a few tenths of a second the blast wave has expanded so far away from the directly heated gases (the fireball) that the air in the shock wave is no longer shocked to high enough temperature to be opaque. The fireball is then visible through the shocked air and begins to (Brode 1968). The to the far field cool rapidly by emission of radiation supply of radiant energ'y can be thought of as coming from a cooling wave propagating of the into the fireball, and is manifest by a slow shrinking (Bethe l-964). However, to an observer, the apparent radiating surface temperature of the fireball at first begins to rise as the much hotter The shock wave fireball becomes visible through the clearing shocked air. fireball and this is then moving ahead of the central stage is termed rbreakawayr. By about 0.9s after detonation of the device the 'second The temperature of the fireball thermal maximumr is reached. stabilizes at a value between 6000K and 10,000K, independent of device yield, before Bethe (1964) indicates that the second thermal maximum for a again. falling near surface expJ.osion occurs when the fireball is at a pressure of 500 kPa. However the shock wave expands quickly and the fireball rapidly relaxes to presented in Brode (1968) show that Model calculations arnbient pressure. from a 1 Mt explosion while a fireball in near surface air reaches its second thermal maximurn at 0.9 secoRds (120*) the fireball has relaxed to The maximum radius ambient pressure at some tine around 1.3 seconds. (a parameter observed around this d:r to be used in the model time, presented to ambient here) will oicur w1len the fireball has relaxed pressure. is most intense, but At this stage the radLation to the far field decreases to below a it decays rapidly to zero thereafter as the tenperature has temporariLy ceased to few thousand K. Also at this time the fireball Soon after, hydrodynamic forces start to expand and even begins to shrink. begins to rise and grow again by entrainment of dominate, the fireball ambient air. 5 We take the time just after the second thermal maximum when the (tine t=0) for the pressure has relaxed to ambient as the initial state model to be presented here. The fireball is treated as a hot isothermal spherical thermal of radius a and characteristic density the P. Actually proximity fireball initially is distorted by its to the ground and by reflected blast waves, and later by the development of a strong internal circulation Its density and stem-cLoud. also varies due to radiative The thermal is assumed to be at a.mbient effects and incomplet-e rnixing. pressure throughout the model calculati.ons. The temperature of the initial T., is set at 8000K in conformity with the data of Glasstone and state, Dolan (1977). Independence of this initial temperature on device yield implies that the volume of the fireball then is proportional only to the yie1d. The initial excess energy of (above ambient conditions) is E, = t 8x4.18x1015xw (J) the whole flreball or thermal, E., (2) , of the initial W, (in Mt) remaining where B is the fraction explosive yieId, in the firebal-I at time t=0. If at t=0, 0 ls density, and V = 4/3n a.3 is the volume of the sphere, E. is given by the enthalpy excess of the {rne specific p.V{h(T. ) -h(T-) }. fireball, enthaLpy of the fireball is represented'by h(t) where T is. tenperature and the subscripts i and 6 (fireball) represent initial and anibient conditions and a variabLe without a subscript is that variable for the fireball. Note that initially, at least, gases some of the energy is stored as chemical energy in the dissociated making up the fireba1l. This is discussed further when the thermodynamic We have equation for the thermal is presented. ^i" fr = ^ gx|.tsxto" 1 5 4 ]:|r.9. {n (ri) -h (r_) } . (3) (L950a). Observational This scaling is the same as that used by Taylor (1950b), characteristics is presented in Taylor evidence about firebalL The avail-able data on Glasstone (1962) , Brode (1968) and waltman (1975). initial fireball radius for bombs ranging from 1kt to 1Mt are summarised in Table 2.o Fron_rthis table a representative value of a.37'W is approximately t 0.5 x 1-0" m3Mt and by application of Eq.(3) this co-rresponds to a B of (To calculate O.44. the enthalpy at T. = 8000K does require the full procedure discussed in Section 3.3). The constraint that B = 0.44 is used as the standard case in model As tine increases most of the energry initially in the calculations. fireball subsequently radiated to the far field and the rest is is dissipated as it rises. we note by mixing of ambient air into the fireball lost to the far field is radiated before that 20* of the ther,mal radiation As the model the secontl thermal maximum (Glasstone and Dolan 1977). presented here cornmences just after the second thermal maximum, then the loss must be increased by 25t to account for this calculated total radiant early radiant loss. 7 FTREBALL DESCRIPTION There are . . five processes which Conservation the firebal-l. These are: conservation of mass including entrainment conservation of rnomentum variation of chernical composition and enthalpv with temperature radiative loss conservation of energy These processes are described 3.1 describe in the following sections: of mass and. entrainment Followingr Baines and Hopfinger (1984), we assume that the rate of gtowth of the thermal depends only on its gaseous mass, m, momentum (which implicitly contains the speed and density of the thermal) and the density qives To lowest of the ambient air, p_ order this dm dt oo ^r"r[kJ"' t4l The growth due to influx of ambient air occurs at a rate proportional to the surface area, A, the mean speed, u, of the rising thermal, and the 2/3 power of the ratio This latter of densities of thermal and ambient air. growth when the term accounts for the difficulty of effecting turbulent density across the sheared interface of the very light thermal is large (Batchelor 1954). The constant of proportionality e, is an entrainment coefficient: its constancy depends on an assumption of self-similarity of the thermalrs which takes a few thermal radii structure of rise height to develop. Since the density difference is stilI large during that tine, from Eq. (4), is sma1l and little entrainment, error can arise from the assumption. The initial organisation of the thermal is an important (Turner 1957). determinant of the value of the entrainment coefficient A thermal with littIe disorganized initial density difference has an o of O.25, while a buoyant vortex ri-ng - a very organized thermal- - has an entrainment coefficient which, while almost always less than 0.25, increases with buoyancy force and decreases as the square of the irnparted circui-ation. (7973) , reviewing Escudier and Maxworthy the situation, come to the conclusion that d is rarely subject to precise specification, even under Values in the range 0.01- and 0.35 can be expected. laboratory conditions. Mantrom and Haigh (1973) present data for a "1ow yield, J.ow altitude event" from which a value of q, can be derived. Probably based on these same data, Waltman (1975) quotes values of q in the range 0.13 to O.26 from nuclear tests. The data of Mantrom and Haigh are plotted in Fig.1 as height of the centre of the firebalI, z, vs. Iateral half-width of by the half-width the cloud, a, both nondimensionalized of the fireball when a,. By considering available evidence on rise it commences buoyant rise, (e.9., time to reach altitride fireball diameters heights, and initial 18 Weapons data ( scaled to equivalent sphere) 16 a=0.05 I , 14 / I a=0.10 I I V/ / 12 weaponsdata ./ (toroidal shape) u=O.15 z 1 0 =0.20 2ai I a=O.25 6 4 2 1 2 3 4 a 5 6 7 qi Figrure 1: entrainment varying with calculations model of Comparison and Haigh from Mantrom data weapons coeificients, or with of half-width against is plotted (l-973). of centre Height h a l f w i d t h ' i n i t i a l t h e b y b o t h s c a l e d firebalL 9 Glasstone and Do1an 7977), we conclude that the data presented by Mantron and Haigh are actually for an event with yield near J. Mt. Thus in Figure 1 we compare the prototype observations from the model developed rrith results here for several values of a for a 1 Mt explosion. Note that the range of q quoted by Waltman (1975) is in agreement with our simulations of the Mantrom and Haigh (l-973) data. However, closer Figure 1 shows that study of the fireball's l-ateral extent at first increases more strongly than the dianeter of model thermals, and this is due to the development of a toroidal shape, probably with a hollow centre and certainly with a strong circulation, in the (Glasstone and Dolan 1977) and laboratory prototype analogn:e (Mantrom and Haigh 1973). In view of the discussion above it would be quite surprising to find an entrainment coefficient near 0.25 since this characterises a glance crudely disorganized fits thermal, and at first the observations presented for in Figure 1. Recognizing that, a sphere of equivalent surface area to the prototype toroidal structure, the radius will be significantly less than the l-ateral extent of the toroid, we find that the best agreement throughout the range of heights is obtained if the observed values of a are reduced by a factor of 7.75 to faII along the line characterised The correspondence shown in Figiure 1by a = 0.1 in the model. is then particularly The factor of 1.75 was determined by trial close. and error. It incorporates a deal of information about toroid structure which prototype Its is unavailable for fireballs. constancy implies self-similarity in the fireball structure and this is required by the model. We take q = 0.1 as the standard case in model calculations. 3.2 Conservation Escudier of momentum and Maxworthy (1973) presented the momentum equation for a thermal: d ilt . . L \P + kp_)uVl = v(p_ - p)g (s) (5), In Escudier setting down equation and Maxworthy have made the relatively minor assumption that there is no loss of momentum from the thermal to a wake, :1.e., that there is no drag force on the thermal. The j-nertia kp_ due to of the thermal in Eq. (5) is enhanced by a factor displacement of the surrounding air. The added mass coefficienl, k, is assumed to be that for a sphere in potential flow, viz I/2 (Lanb 1952). The buoyancy of the thermal relative to its surroundings changes the momentum of the upward-moving air. 3.3 Composition and enthalpy has two components. The elemental composition of the fireball Firstly at the moment of cornmencement of the model vre define a fireball of moist composition, which for a clean explosion consists air of The fireball composition app'ropriate at the earthrs surfacei see TabLe 1. composition is specified according to the number of atoms (in mole amounts) material. During the running of the of each element per kg of fireball rnodel additional mass of ambient air is entralned into the fireball. The 10 is defined of this air composition the so that kept for each element, known at any time. according elemental A mass balance to Table 1. of the firebal-I composition is is record, there are elemental composition this Accompanying firebirll the and its of composition chemical tikely of the calculations A limited set temperatures. range of fireball for the appropriate enthalpy according to their 50 are chosen Iess than chemical species of range of elemental for fireball the in the occurring likelihood of minimization scheme of A free energy being considered. compositions (1971) is used to calculate composition and enthalpy the chemical Eriksson of the fireball the elemental conposition having mixture of an equilibrium liquiil solid' This scheme can handle and pressure. for a given temperature elements in each of up to ten phases species, and charged and gaseous is drawn from a species for the various data Thermochemical calculation. (Turnbutl and Wadsley 1984). library of information computer-based (1'971') procedure'for version of Eriksson's The efficacy of this in two ways. A equilibria is tested chemical high temperature calculating (1955) the Gilmore of that of to duplicate !{as performed calculation in is presented of dry air at 8OOOK. The comparison composition equilibrium good though slightly in agreement, are all The 3 (a) . results table properties of !.hermodynamic values due to changes in the accepted different the currently is 0 , where to this The one exception the species. of (JANAF 1971) is approximately 70 kcal,/nole higher heat of formation accepted (1955). than the value used bv Gilmore Z coefficients the dissociation comparing invol-ves The second test specific air at STP) and the of (= moles state/moles air in heated of by program with those presented in the present h(T) as calculated enthalpy (Table 3(b)) comparable, are closely (1965). the results Again Reynolds values of thermomight be due to changes in accepted that differences with dynamic properties. predicted the but is fireball of the enthalpy Because the mode1, an iterative in the step at each time is unknown temperature procedure the fireball In this temperature. procedure is used to calculate are used to temperature pressure and an estimated composition, elemental against the compared is enthalpy calculated The enthalpy. calcufate with is repeated a the calculation and if necessary model enthalpy fireball A quadratic agree. the two enthalPies until of temperature further estimate is calculated and range in the desired versus temperature fit of enthalpy process. this used to facilitate state for the The volume of gas an ideal pV = firebal-l is calculated from the of (6) nRoT and n is for air where R^ is the gas constant gaseous"chemical.species in the fireball. The density of the firebal_l considering al1 species - solid, liquid mass. equation the total number of moles of using this volurne but is calculated of and gaseous - for the calculation tl rable 3 (a) : Comparison of equilibrium composition at 8000 Kelvin and (ratioed varying density to ilensity of air at STp) for the Eriksson procedure and the RAND calculations of Gilmore (1955) . Units moles/(mole air at STP) . The syrribol e represents free electrons. Iog10(density Species Eriksson procedure co" NO; o - Cd 9. 088-10 3.39E-09 -') N-+ NO NO+ -t "t 9.59E-11 ? oqF-1n l_.40E-10 3.7 AF.-]-O 4. bb.H;--t-J 4. L0E-o5 7.46E-O7 1-.388-05 1.37E-05 9. 05E-08 1. 65E-01 l - "0 7 E - 0 4 2.45E-O3 7.A7E-O4 1.00E-10 1. b5.Ei-Ul 6.99E-O2 8.308-05 9.00E-04 5.31E-O4 A ? J . U5.E;-U5 1 lE-nq 3.22E-O3 2.728-04 N 1.23E+00 N+ N++ N+++ z - zYL-v oo o+ o++ o+++ 1.788-06 J 4. .LbE-UJ. 9.04E-06 o 1.1-1E-04 2.37E-O3 8.40E-04 I3r;-u I I. b5.E;-U5 Ne Ne+ AT Ar+ Ar++ ! . 5 Z!;-UY +. ozE- !z t. c Eriksson procedure 4.l_6E-05 CO+ N, 1og1-0(density ratio) -2.O ratio) ??F-n? 7.72E-06 9.928-06 4.54E-O7 J.348-UJ 2.63E-04 1.47E-05 1.23E+00 2.03E-03 8.36E-41 1.94E-O6 4. 16E-01 5.38E-04 9.44E-20 L.77E-4A 3.98E-05 9.34E-03 7.05E-06 4.968-1.7 O'7F-r)) 8.64E-05 8.728-04 5.69E-O4 3.92E-l-L 9.72E-06 3.27I.-07 O. UJTJ-UJ 2.85E-04 3. 1_68-05 7.42E+OO 4. 868-03 9 -728-07 4. 188-01_ 1.67E-05 o ??F-n? 1.428-05 2.778-O4 2.85E-05 1.42E+00 4-34E-O3 6. 138-40 1.05E-06 4.Lt}1-VL 9.998-04 3.27Ij-19 7.098-47 3.98E-05 L.268-7I 9.34E-03 1. 308-05 1.69E-16 z' coefficients' Cornparison of dissociation and specific enthalpy' h(T), of heated dry (1965; and Reynolds air fron this study Fig.B.9) at 1 atm. units of h(T) are MJ/kg. Table 3(b): Reynolds (1965) This study Temp. z h (r) h (r) z N 8000 7000 6000 5000 4000 3000 2000 1000 248 1.88 1. 60 L.32 L.2I 1. l_5 L.02 L.00 L.00 1: 00 2? 2 zJ.d 15.0 o o ' 7 4 3.8 2.O rr'7 0.o l_.90 1-..58 1.35 L . Z L 7.r2 L. 06 1.03 1. 00 1.00 38.5 26.O 15.7 1 0 .3 1 i 4.3 2.3 1.L 0.3 3.4 the Radiative loss Radiation Stefan-Boltzmann of a thennal from the surface as law which can be written K = 4 is expressed 4 eoA(r- - T-) in terms of (7) opacity, of the or more correctly the effective emissivity, where e is The fireball composition is a function of it thermal: _gnd _$:mp;:rature. -K n and A is the o' has the value 5.67 x tO'w constant, Stefan-Boltztnann radiation In Eq. (7) the environmental firebaIl. the area of surface level of the at the ambient temperature the is taken as T-r temperature to a complex situation. approximation This is an unimportant thermal. heated air opacity of the discussions of There are detailed 1964) and radiation 7961, Gifmore 7960, Armstrong et a1., et aI., (gethe 1964, Brode 1968). details are Certain fireballs loss from nuci.ear of be opaque at temperatures wil] The air the fireball within known. well 1000 to around lower temperatures at and transparent 6000 K and above probably be opaque at all will within the fireball The bomb debris 2OOO K. (Gilmore of the fireball to the opacity and thus contributes temperatures burst we use for a near-surface effects these To accommodate both 1.964). with an as a opaque sphere acts fireball that the assumption the simple procedure. by the following calculated surface at the outer emissivity (Meyerott Planck mean absorption (1964) of provides table a Gilmore The and air density. of temperature of heated air as a function coefficient (1964) as by GiLnore P, is defined coefficient, Planck mean absorption P = (1964) Thus we use Gilmorels in Eq. (7) where e = table --* of -RPa 1-e (8) ^ i/aoer4 . P to derive the effective emissivity e (e) of a transformed table interpolation The values of P are derived by linear and coefficient scales of PLanck mean absorption logarithmic involving The value of P is extrapolated scale for temperature. density and a linear The down to L000K using the same transformed scales as for interpolationThese data value of P is held at that for 1000K for alt lower temperatures. are presented in Table 4(a). the loss of energy by factor which affects There is a further rnust The atmosphere surrounding the firebatl from the fireball. radiation is lost from the so that the emitted radiation transparent be sufficiently is absorbed in the If the radiation and its imrnediate surrounds. fireball (i.e., radius distances << a fireball of the fireball inunediate vicinity will from the surface) then the air which has been heated by the radiation fn this case the radiative and be entrained into it. rise with the fireball to the buoyant system and contributes energy is not lost from the fireball rise of the fireball. I4 Table 4(a): Planck mean absorption for highcoefficient -. (Gilmore 1964) Units: temperature air cm Temperature Ratio* Density (K) 10 1 0 - 1 0 - _A 1 0 - 10 2000 5.4E-05 1".7E-06 5.48-08 I.7E-O9 3000 1.3E-03 4.4F'-05 1.6E-06 7.0E-08 2.7E-O9 7.1E-11 4000 1.0E-02 5.78-04 2.6E-O5 7.78-07 2. 1E-08 6. 7E-l-0 6000 1.8E-01 6.1E-03 7.9D-O4 6.6E-O6 J.5E-Ul r.d-Ei-ut 8000 4.5E-01- 1.4E-O2 5.1E-04 l-.9E-05 5.9E-07 1.8E-08 : Density ratio * Table 4(b): Fraction, the 0.25 = density heated 248 air at STP Tr, of black body radiation emitted in 1976). Lo 2.5 pm window (Paltridge & Platt i2.5um a^cltrlot4 Jo. zsuro Temperature (K) 1000 air/density 0 u. rol 2000 0.634 3000 o. 834 4000 0.9L4 5000 o.946 6000 0.954 7000 o.944 8000 0.919 15 the the its The factor to be considered is what field?. fireball can be lost to the far transmission of fireball radiation through immediate surrounds to the far fieId. fraction of the We define this air at ambient radiation from factor as T*, temperature in distances radiation absorbed at short by Ultraviolet is strongly bands of 0^ at all absorption the Schumann-Runge temperatures. Complete -metres within of of the thermal is assumed for all a distance several l e s s t h a n 0 . 2 5 u m . wavelengths tr processes but the At longer wavelengths there are many absorption rnost important of these insofar the transmission of radiation as determining from the thermal to some distance is due to water vapour and carbon dioxide greater There are many absorption in the atmosphere. bands for wavelengths than 2.51m (Paltridge and Platt 1976). We assume cornplete absorption for | > 2.51m. ' range 0.25pm < \ < 2.5pm the atmosphere surrounding the In the The transmission for black factor fireball is assumed to be transparent. of temperature from the fireball is computed as a function body radiation parameters Paltridge and Platt tabulated in e.g., using the Plank function (1976, Table 2.2) to evaluate the integral rr = 12.5pm 4 B.dtlor| Jo . 2 5 u m A Tt Table 4 (b) . The resuLts in are presented constant at a value transmission is practically temperatures above 5000 K but below that temperature peak thermal emission moves to longer wavelengths. at the lower temperatures. 3.5 (10) that the is evident of 0.95 for fireball it fa1ls rapidly as thE Tr o TApproximately, Energy balance of the thermal growth and rise process over a tirne for thermal A two-stage a mass dm of Firstly' the thermal entrains increment ilt is considered. ambient air which is at the same pressure p as the thermal at the level z. The expanding against the enveloping air. fhe thermal then rises further, to the far field. only heat loss from the thermal, dQ' is due to radiation So we have d Q = - R d t clH = dQ+vdp+dH' and of Here H is the enthalpy due to entrainment thermal dHt = h_ dm and so the thermal, of ambient dHr air of the is the change in enthalpy h_. Thus of specific enthalpy I6 dH dt = h "- dm dt * rrdP-e dt alh -'dr An An - + \ / : r 1 m - o[ - R oz (11) sl-nce dz. (12) c1t The thermodynamic unique solution for the temperature for any given l-ikelv chemical srrecies are relations described in Section 3.3 provide a relationship bet-ween fireball enthalpy and (provided fireball elemental compositionr the known and ideal behaviour is assumed). Theories of (non-radiating) thermals rising into stably stratified atmospheres are usually expressed in terms cf the buoyancy of the thermal, - p), (e.9., gv(prather than the thermal energy Morton et al,_ L956). Eq. (11) can be rewritten in terms of the buoyancy utilizing the equation of Eq. (6). If state, dissocation and temperature dependence of the specific (c^ = (ahlaT)^), heat, could be neglected, Eq. (11) would reduce to a Y familiar Torm: dt lgv(P- - P)l - -P- *" - ^o f,r_ (13) The buoyancy of the thermal changes due to its motion relative to given in terms of N(z), the Brunt-Veis;f; ambient thernal stratification frequency, and by radiative loss of heat to its surroundings. In equation wake. 3.6 it both the thermodynamic and buoyancy formulations has been assumed that there is no loss of internal Sunmary put F* = gV*(l-pr). of model d ,if i of the above energy to a equations gt = e/e_ = m*/v*, m* = ga3, v* = p_a3, Then the working equations can be written dz alt the n [(P'+ - (.r4) I4*/V* k)M*] ? M* = p@a-u as = F* f l ql and I7 dm* i+ = 3 ' l 5 l@ ' ) 2 / 3 dh /T\ In (r) -tr(r_) ] - 3 T e o (16) ?fr lulp'-1-/3 {.n4-n 4 } t - g!/P' (17) ap enthalpy and a new specific integrated These four equations are numerically the fireball each time for after composition are predicted and elemental procedure equilibrium is then used in the thermodynamic An iterative step. (see Section chemical the fireball temperatur:e, 3.3), to calculate module and elemental the enthalpy volume to corresponding composi tion and process of numerical and the This one tirile step completes composition. The numerical integration with is performed integration is conrmenced again. (Margenau 1956). The Murphy and Runge Kutta method fourth a order for numerical and it was found that stabifity integration scheme was tested produced on average an increase of 4t in in timesteps a factor of 8 increase runs, by, on separate values. The scheme was also tested the final- variable q, g and o to The model behaviour was in zero. the constants setting for these from the simplified set of equations agreement with that predicted z = 0 at from th.e level from rest The thermal commences to rise T. of 8000K, and temperature are an initial t = 0. The standar<l conditions c = 0.1, The entrainment coefficient radius a. given by Eg.(2). an initial opacity and the enthalpy' k = 1/2, and c-oefficient the mass added described in calculations by the are specified transmission function are those of the mid-latitude The ambient conditions 3.3 and 3.4. sections (section 2.1). TCAo standard atmosphere A CHARACTERISTICS OF THE FIREBAI,L MOTJEL comes from about firebal-ls published information Most of the against which form the standard These data will 1 Mt explosions. that ft is not the model merely be judged. sufficient the model will fireball, balance the The of energy rise heights. correct reproduce period, high-temperature nust be reasonably particularly during the critical (and hence chemical is composition) history the ternperature accurate so that well simulated. rclean' a 1 lvlt behaviour of 2 presents simulated temporal the Figure from rest at a rate very close initially accelerates The thermal explosion. in a dense spherical bubble for rate a weightless the theoretical to 2'g, by (Mi1ne-Thonpson until' builds up_,, speeC 1967). The thermal fluid -. Thereafter the of 164 m s 19 s, it is rising at a rate approximately dominate. air of ambient and acceleration as entrainment speed decreases buoyancy rise its neutral overshoots Eventually, by about 2!O s, the thermal in A damped oscillation again. to fal1 back, overshooting height and begins 370 s, period close to the buoyancy of ensues with and height velocity to rise height altitude. We take the final period at that of the atmosphere material extent of fireball maximum and the vertical be equal to the first to span this level and the subsequent minimum. E o o o- 15 o hrop I Mt observations (Glasstone and Dolan 1977) o U o h r o p/ 1 , 0 o 0 F a, s 1 0 o o q : G 0.6 ? 2 c o.4 8 oo 5 F o.2 to F ' t o o o.o t -o.2 -5 o.1 Figmre 2(a): 1.O 100 10 Time (sec)from Tmax The height of the top of the fireball, h*^-, its rate of rise, u, its temperature T and its dianefdf D(=2a), as a function of time for a 1 Mt - yield nodel simulation compared with observations from classtone anal Dolan (1977\. 1.O o.g F x o t 0.6 :E o o o.4 3 F o.2 0 .e, .G 1.O Figure 2(b): 100 10 Time(sec)from Tr"t The temperature, radiant scalecl to radiant loss at loss time=O, A/R^, integrated loss scaled to fireball radiant energy at tYme t=0, !Rdt/H^ and the fraction of the black *fireballbody radiance lost from the at each stage, ExTr, see text. I9 this because grow by entrainment thennal cannot At first the However the and atmosphere. thermal between velocity relative requires by responds which sphere, the coolinq raciate strongly, does thermal takes but it is sJight The shrinkage Figure 2(a). <lecreasing in diameter, coolinqt growth over radiative to dominate entrainment seconcls for several As maximum drops. as the temperature in irnportance decreases which rapidly would grows rapidly anc in practice the thermat hej qht is approached rise by the ambient wind. carried spread horizontally' rnaximum thermal second the 3 s from approximately After percent of Ninety to 42OO K. has dropped of the thennal temperature lost, and been has by then the thermal from radiated energy total strength. initial flux is only 48 of its radiative the the the decay may be compared with data presented radiative Tbe predicted As shown by Figure 2(b) the agreement and Dolan (!91'7, Ch.7). by classtone simulated is well In particular it may be noted that the timescale i's good. The predicted rise must also be satisfactory. variation so the temperature report'ed observations is also in good agreement with of tine as a function is s1i9ht1y height rise but the ultimate Do1an, and classtone by of data on the rate reported with The model agrees well underestimated. by as the maximum velocity times, but perhaps overestimates at later rise much as 128. t = 0 is fireball at the in energy the 81t of Ultimately, of the device Since the fraction to the far field. predicted to be radiated after to be 44t (see discussion is predicted in the thermal yi.ta i.titially to is expected emitted radiation thermal Eq.3 above) , and 2Ot of the total (Glasstone and the model conmences to be relevant before have been lost is model description in this energy radiated the total Dolan 1977, Ch.1), the thermal- partition than higher w. This is yield, the device 45t of and Dolan and is in good agreement of f = 35t, quoted by Glasstone fraction f = 444, quoted by Brode (1969). with the fraction in at t=0 is dissipated About 19* of the energy in the firebalf with this corresponds of the fireball: rise via the buoyant mixing turbulent loss of This way. in this being dissipated about 8% of the weapons yield (Glasstone and Dolan 1977, Brode texts in classical energy is not discussed for in accounted energy is erroneously Vle can only presume that this 1968). as it is unlikely partition". The latter the shock wave or in the "thermal and the results our modelling between discrepancy a serious woul-d create in of the energy fraction whereas as far as we know the exact observations, known. the shock wave is l-ess accurately Itwouldbeasimplemattertofine-tunethernodelbyvarying fireball of detail published of lack the view of in but parameters study s e n s i t i v i t y o f a I n s t e a d , r e s u l t s n o t w a r r a n t e d . t h i s i s Lehaviour, the setting it can be seen that From the Table in Table 5. are presented value of to a constant of the air and transmission of the firebatl op..ity does not have a great temperature it to vary with of allowing instead unity radiates The thermal behaviour. of fireball on the major indicators effect the than rapidly more litt1e a so cools and field far to the more energy Neglecting by 5*' of rise, is a lovrer height The result case. standard 20 Table 5: model of the present fireball The sensitivity standard of parameters from the to variation cdse. (T. = 8000K, 0 = 0.11 B = O.44, molespecified Tr and e all cular com$osition, Units are MKS. functions of temperature). T @3.5s @ t u max top G t D m1n IR avno 5 /5 0.81 1,7925 2L5 570 0.84 30567 20r 796 0.00 ! IbY) Z! 5Zr 0.81 19 198L4 20'7 ozr 0.81 159 77 18054 2L5 J3 3804 -Lu5 ZZ 22379 20L o = 0.05 3998 229 26 27354 cl = 0.15 3 t t6 136 15 L6Z J5 /J L ZL 2L380 Standard 3878 164 79 ta82'7 € x Tr = 1.0 3872 161 76 e x Tr = 0.0 7 451. 232 35 U.JJ 3767 f,f,5 ! A 39A2 1,71 T 1, = 1 0 0 0 0 K 56ZO T. = 6000K P = Q _ RR t 2LL r I A A A 74A 0. 58 189 trf,f, 0. 84 Z+J 587 n 7 q 277 781 u. of l_ Composition fixed TJ I I 2I (by quite e = 0 or T* = 0) losses is radiative entirely setting The thermal does not cool correctly and th6 maxinum velocity unacceptable. The physically realistic lower bound to and rise height are far too high. losses involves using the opacity of heated air alone (Gilmore the radiative Tn fact low 7964) as is done here. the opacity may be higher at temperatures due to the presence of bomb debris (Gilrnore L964). Variation in the energy of the fraction of device yield initially radius of the thermal at to varying the initial of the thermal (equivalent proportional temperature) response in constant causes an almost directly ft also has a large effect on the fraction of enerqy ultimate rise height. (Note the fractlon radiate$. of the device yield radiated is equal to 1-.25 BIRdt/H^.') This comes about because the fraction of device yield in and the only between energy radiated the thermal" can be partitioned thermal. Reducing B by 258 of kinetic dissipation energy by the rising it drops the radiated energy to only 33t of device yie1d, while increasing Both extremes by 20t increases the radiated energy to 568 of total yielil. (and fireball in the initial are unacceptable, so the energy partitioning Note is constrained to be close to that proposed here. thus its radius) that the ratio of radius to bomb yield derived for the standard case is that observed from nuclear explosions (Section 2.2). is not a sensitive The initial thermal temperature of the parameter, but a value as low as 6000 K does lead to a rj.se height which is (onIy because not enough energy is lost by radiation too large, prirnarily temperature used in the standard case is 32* of device yield). The initial that observed from nuclear explosions. A 50* lower entrainment coefficient is much too low, with maximum the due to reduced retardation. and rise too high velocity height a to 0.15 is less drastic but the enhanced mixing does lead to rncreasing The comparison of height than observed. lower rise a significantly diameter to rise height for the model, and a real event, have been fireball presented in Fig.L. was held at that for Finally, if the composition of the fireball allowed, i.e. N^, o^, Ar, CO^' H^o, and no dissociation ambient conditions, zpartitionfng the fireball has f.s maintained, .tr.fgy then when the initial The initial has a fireball guite clifferent behaviour to the standard case. 14t higher and loses only 34t of the total diarneter, rises 36* larger Initially the fixed composition fireball explosive energy as radiant 1oss. This arises one. than the dissociated falls in temperature more rapidly for four times higher at 8000K is nearly because the specific enthalpy air, whereas by 3O0OK the compared with the undissociated dissociated difference is only 35*. We conclude from the sensitivity study that it is not possible to from the proposed parameter values in the have a great deal of variation behaviour are to major indicators of fireball standard model if realistic parameters except the This is very satisfying since all be obtained. to of the necessity coefficient were chosen independently entrainment performance. predict ultimate fireball 50 Modol top ^40 E g ----.-. Mid latilude top I from Chinesetests Mid latilude bottom, (Telegadas 1979) g o '6 30 +...'..) Chinese 3 Mt tests (Bauor 1979) E E 5 -9 /,/ Model /'bottom/ o E 2 0 .g o .o 9ro II o o.o1 o.oo1 Figure 3(a): 10 1.O o.1 Bombyield (Mt) 100 and fron from the rnodel simulations heights Fireball rise as described in rnid latitudes various atmospheric explosions in the text' where the explosions'were near mean sea level. E ! 2 . o Mid latitude top I Mid latituda bottom .l individual U.S. tests in Nevada (Glasstone 1962) E .9 o .c o a E a o o = I t o 1 t ' (! Model toP a o Model bottom c = o .o o .: lr e qo o o.oo1 o.ol o.1 Bomb yield (Mt) Figure 3(b): Fireball rise heights atmospheric explosions the nodel calculations took place explosions level " ancl from from the model simulations in Nevada, uSA, (Glasstone 1962) h'here are referenced to, and the atmospheric 2 km above nean sea at, approximately of rise with variation height show the rigures 3 (a) and 3 (b) testing has nuclear Most of the atmospheric yield device for the model. (2-17'N) by the USA and in pol-ar latitudes in equatorial been conducted (75oN) by the USSR (Bauer 1979). The main data from mid latitudes latitudes this to be good agreement between There appears comes from Chinese tests. (1979) and Bauer by Telegadas of the Chinese tests model and the analysis (1979) as shown in Fig.r:re 3(a), ranges from 0.001 to 10 Mt. with overlapping mid latitude nuclear presents heights from other cloud classtone 0962) tests were of burst in these The helghts in north-eastern Nevada. tests on which in turn is 400m above the local surface, approximately 300 to level, leading to an 2 km above mean sea less than average slightly These data are of around 2 km above sea Ievel. approximate height of burst where the frorn nodel calculations cloud heights 3(b) with compared in Figure rt that the sea level. appears 2 km above height of explosion is is the cloud top calculations, but the model bracket observations of 0.01 to 0.1 Mt whereas it is in the model for bomb yields underestimated qlightly for bomb yields of 0.001- Mt. overestimated from this simple heights of cloud Overall the predictions for most bomb yields obs;:rvations within the scatter of the actual lie 0.001.Mt to 10 Mt, a dynamic range of l-0-. model from CONCLUSION (ascending) fireball has stage of a nuclear A model of the late parameters has in basic to variations and its sensitivity been presented permitting little The model has been shown to be robust, been presented. with by comparison values established parameters of avtay from variation observations. independent The model is sufficiently - to address issues many extensions oxide nitric and elemental of radiactive bursts. 6. complex such as: to be useful as the basis for soot by fireballs, into the stratosphere injection injection from "dirty" explosions' carbon injections of air radar signature into the atmosphere, isotopes ACKNOWT,EDGE}4ENTS and Mr. Mike Wadsley for supplying to we thank Dr. Alan Turnbull (1971) chemical composition and us the code implementing the Eriksson procedures. This work would not have been possible enthalpy calculation We thank Professor Paul Crutzen for discussions that stimulated without it. Year of Peace, We also thank the Committee of the International this work. for financial support for Lou Ripari and the Department of Foreign Affairs proj ect. 2l+ 7. REFERENCES (1982): Reference Anrlcio advisers Ambio 1L, 94-99. fought. Armstrong, (1984): Thermals Hopfinger 1"8, 1051-1057. Atmos.Environ., density G.K. (1979): E. be rnight e r v v v . (l-954): Q.J.Roy.Met.Soc.' Bauer, war nuclear Meyerott J.Quant. E.J. W.D. and difference. Batchelor, a D.H. Holland and R.E. R.W. Nicho1ls, B.H., J. Sokoloff, air. (1"961): properties temperature of high Radiative qna^fr^qn-P,adiant L, 1-43-162. Transfer, v g v v Baines, How scenario: ozone, and Heat convection 80, 339-358. large with in effects buoyancy on influences of perturbing A catalogue 84, 6929-6940J.Geophys.Res., 7955-1975. fluids. stratospheric Bethe, Alamos scientific Los fireball. the Theory of H.A. (1964): New Mexico' Los Alamos, California, of University Laboratory, 85pp. LA-3064, UC-34, PHYSTCS, TrD-4500 (30th Ed.), Brode, H.L. (1968): 18' Sci., Brode, (l-960): from a megaton Cratering R.L. H.L. and Bjork, Memorandurn RM26O0, The Rand Corporation, Research USA' 60PP. Broido, Review of 753-202. weapons nuclear Ann.Rev. effects. Thermodynamic G. (197L): ACTA Chemica Scandinavica, Escudier, M.P. and thermals. Maxworthy T. Mech. J.Fluid (1973): On 541-552. equilibr5.a' temperature of high studies 25, 265L-2654. 61, surface burst. Monica' santa and s.B. Martin from a Nuclear U.S. Naval 8.3]. NTIS AD-8951 585. Hillendahl' R.w. Day, R.P. Butler' A., C.P. (1953): Radiation Thermal A.B. Willoughby Tumbler-Snapper lProject Operation Detonation. san Francisco. Defence Laboratory, Radiological 109pp. Eriksson, motion the Nuclear of turbulent Gilmore, properties and thermodynamic (1955): composition Equilibrium F.R. RM-1543 ASTTA Document No. AD84o52' The Rand to 24,0o0K. of air 68PP. Santa Monica. CorPoration' Gilmore, properties of radiation Approximate F.R. (1964): (ARPA Order Memorandurn RM-3997-ARPA and 8OO0K. Santa Monica. Rand Corporation, Gl-asstone, The effects S. (1962): 730PP. Office, Printing Glasstone, S. and Do1an, P.J. Government Printing (]-977) z Office, of nuclear The effects 653pp. air between No.189-61-). weapons. of nuclear us 2000 The Government weapons. us 25 Manual ICAO (1954): 32 kilometres nv rr aYrsnr r f z q e i f zv r rr+t i nn rMr ^v n. r+er a r v: s 4 . extended to atmosphere standard civil Aviation International ICAo Edn). the (2nd of l D.R. Stull and 2nd ed. Tables Thermochemical JANAF (1971), JANAF Bureau of National of Standard Reference Data' H. Prophet, Office ser. ' Nat.Bur. Nat.Stand.Ref.Data D.C., Washington Standards, (U.S.), 37, 1]-47p. plus 1976 and 1982 supplements. stand. Lamb, Sir Manins, H. (1952): 738pp. 6th Edn. Hydrodynamics. (l-973): entrainment Fireball w.W. D.D. and Haigh, Final Calif. Beach, Redondo Group Systems september 1973, NTIS-AD-780 L92. 18895-6004-RU-OO. Margenau, (1956): Murphy, H. and G.M. Van Nostrand Co., Chemistry. Meyerott, R.w. and R.E., J. Sokoloff Geophysies of air. coefficients Air Research Division, Research Massachusetts. Bedford, Morton, pittock, Reynolds, Taylor, study. Report 1l-1pp. of The Mathematics USA, 604pp. Princeton, Physics TRw No. and (1960) : Absorption Nicholls Force Air Research Directorate, Command. USAF' and Development (1956): gravitational Turbulent Taylor and J.S. Turner 8.R., G.I. sources. - Proc.Roy. and instantaneous from maintained convection Soc. A., 234, 7-23. (1967) z L.M. Milne-Thompson, Macmillan. 660PP. paltridge, Press. resulting injections and stratospheric t9, I245-t255. Atmos.Env. Cloud heights P.C. (19e5): t^'ar. from a thermonuclear Mantrom, Carnbridge University G.W. and c.M.R. and climatology. Theoretical 5th hydrodynamics. (1976): Radiative Platt 318pp. Ansterdam. process in Edn. meteorology C.S. Shapiro M.C. Maccracken, crutzen, P.J. Ackernan, A.8., T.P. (1986): consequences of nuclear The environmental and R.P. Turco John Wiley and effects, and atmospheric Vo1ume 1, Physical war' UK' 359PP. Sons, Chichester, w.C. (1965): (1950a) : G.I. explosion. 159-17 4. Thermodynamics. The formation Theoretical I. McGraw-Hi1l, a blast of discussion. Ne\'7York, 458pp. wave by a very Proc.Roy.Soc., intense A. 2W, Taylor,e.I.(1950b):Theformationofablastwavebyaveryintense Proc.Roy.Soc', of 1945. The Atomic Explosion Tr. explosion. 2O1-,175-L86. A' 26 atmospheric Estimation of maximum credible TeJ-egadas, K. \979t from nuclear and dose rates concentrations activity Atnos.Env., L3, 327-334. Turnbull, - (1984): of Thermodynamic Modelling A.c. and M.w. Wadsley Processes by the CsIRO-SGTE Thermodata system. Metallurgical Proc.slzmp. on Extractive Metal-Lur9y, Aqs.f.M.M. Nov. 1984. p79-85. Turner, J.s. valley, radiotests. (1957): Buoyant vortex rings. Proc.Roy.Soc., A. 42, S.t. (ed.) 1965, Handbook of geophisics Mccraw-Hill, N.Y., USA, 683PP. and 6I-75. space environments. Waltman, D.D. (1975): A simple description of an ascending nuclear fireball of Air Force Institute M.Sc. thesisr solution. and a fortran 78pp. Technology, Ohio, USA. NTIS AD-A017 780/7. A simpler model If the only purpose of and no detail behaviour can be greatly computation for heated air, retationship Fig.B.9) in place of the free in code reduction substantial factor of 2 to 10 depending scheme. chemical equilibria of the Late (ascending) stage of a nuclear model is to examine physical of the fireball required then the model is the chenical by using an enthalpy,/temperature simplified such as may be obtained from Reynolds (1965t energy minimization scheme. This leads to a (tu 309) and the running time is reduced by a in the on the nurnber of species evaluated is computed for the same relationship rf the enthalpy,/temperature species and air of the same elemental composition in the simple and the full parameters are (by of other physical model then the model predictions indistingr:ishable. def inition) Appgndix B: Fireball Model Flow Diagrams *rnitialize rnitialize_Output Differential Equations ambient l4ass Balance *see next page Update enthalpy Initialize Dif f erential Equations ambient Mass_Balance_Update enthalpy 29 PROGRAM OUTLINE -T. Read initial conditions and open output files from read "D.fil" in data r_T rnitialize all variables and set esuations up simultaneous differential Write headers the nine Write data to output files Determine to time step output if files required fnitialize t T Initial ize_Output T Output Data value -f adjustrnents to DErs using Calculate Runge Kutta and then solve order 4th Find the temperature that corresponds to the known enthalpy Momentum stop Runge Kutta _L ri"f r I_ criterion? Time stop Output data to files for last step less than time? Output T Data ! I 30 rnitialize Subroutine variables Initialize T CLEAN FIREBAI,L molar fraction Calculate ambient air gases I I T GRAM ATOM nurnber of moles of Calculate air element per kg fireball I I pressure and density temperature' calculate height air for initial of anbient ICAO Air data for each Read thermochemical from "NEWDATA.DAT" in fireball read of enthalpy/kg temperature calculate initial I species T in_CHNOS I I air fireball TI for I I I scramble Ca1cu1ate mole all suns of in species data for Read thermochemical from "A-t'lB.AIR" of enthalpy 1 kg air ambient fireball calculations II air I T read_amb_air T Calculate enthalpy of ambient for air the by dividing mass of fireball Calculate of by the enthalpy,/kg of fireball enthalpy enthalpy minus ambient temperature initial and height temperature Initialize differential number of total Calculate air species in fireball equations moles for height initial enthalpy ambient I _ initial air at at initial variables each elemental T Set up differential equations Equations Differential t- Subroutine - (hite, CLEAN FIREBAIL calculates the Water molar vapour MFH2O, MFN2' IvlFo2, !1FCO2, I4FAC) vapour, fractions of aribient gases air Set molar fraction H^O to zero z included? molar fraction Calculate of H^o for given heiqht calculate molar fractions of ambient air qases of molecules Check that mole fractions H.o' including making up ambient air, very close to unity Function : is MF H2o(z) returns the molar fraction Set of index Hro variable IncremenE. Height at (I) j the given (I) to zero (I=Ifa, g z < Height Calculate the molar at given height, z, interpolation height (I+1) ? of fraction uslng linear Hro - of JZ GRAM-ATOM (tlFH2O, MFN2, MFO2, IrfCO2' I{FAr' nN' nO, nH, nC, nAr) Subroutine - calculates fractions the number of noles per of the molecoles of each element given kg of ambient air Calculate molecule the number of moles of per kg of ambient air the number of moles Calculate element per kg of ambient air ambient-enthalpy Subroutine - calculates the enthalpy molar of each each (z,tenp) of the enthalpy Calculate air at rnake up ambient Calculate molar weight molecular the relative Calculate of ambient air the new ambient air composition molecules for all given temperature which air gases of fractions ambient T ENTH l_ T CLEAN FIREBALL -L molecular relative Calculate air composition ambient Calculate Function the enthalpy of weight 1 kg of of new ambient air ENTH (I,T) by indexed air species of the ambient the enthalpy calculates This function T where T is up to 60O0"K. I for the temperature been read in from the has already data used for this The thermodynamic and stored into the arrays ER(6), which is the heat of file'amb.air' and C(6,6) which contains at 298.15oK for each of the six species, formation heat at of specific the variation that describe the numeric coefficients, needed for the calcufation pressure as a function of temperature, constant of enthalpy. 33 Subroutine - fCAO-Air calculates the given (2, temp,pressurerdensity) temperature, height of the Set pressure fireball variable index rncremenE leve1 Calculate fireball (J) J, and density (J) to of the ambient air zero (J=J+-L, 5 z < level (J+1) ? the temperature of the interpolation using linear lapse (J) = 9z and calculate the pressure by density of the fireball a given set of equations SET A the pressure and Calculate of the fireball density by a given set of equations SET B for JLI Subroutine - scramble (temprpressure) molar amounts for uses the output of CHNOS3, stores all f i n a l various in rHoldn' array and calculates species in fireball properties of the cornposition of the f i r e b a l l Calculate the enthalpy per kg of fireball and air gtiven the pressure, temperature, molar arnounts of each element in the fireball molar amounts for each array in the 'Holdnr Store aII in fireball final air Calculate per kg of the mole fireball sum of air all gaseous Calculate per kg of the mole fireball sum of air all solid Calculate of fireball the mole air sum of all species species species species per kg Calculate the nole sum of species per kg of firebaLl positively all air chargted the mole sum of Calculate species per kg of fireball all negatively air charged Calculate per kg of the mole fireball sum of air a1I charged species T CHNOS3 I 35 Subroutine - CITNOS3 ( t e m p , p r e s s u r e , caLculates the enthalpy holding Set array element per kg of aN, aO, aH, aC, aAr, aS, aE, Enthalpy per kg of fireball molar amounts fireball air per kg) air for each calculate Gibbs free energy air in fireball soecies for each per mole air for each T I ENTR T I CENTH enthalpy Calculate species in fireball gn:ess of the number of Set initial of each species per kg of fireball the number of moles of Calculate air species per kg of fireball I moles air each T I I Cafcufate fireball the air enthalpy per kg of 36 Subroutine - finds Find-T the temperature that less counter than T scramble I I enthalpy temperature CaIculate enthalpy for gn-ress temperature Update temperature and enthalpy pairs used for quadratic fit enthalpy compare calculated with known enthalpy Error > 0.01t? 4? Use quadratic fit to guess temperature corresponding to enthalpy Approximate guess temperature corresponding to enthalpy using linear fit method CaIculate for guess a known enthalpy to corresponds enthalpy Compare calculated with known enthalpy Error > 0.1t? Difference temperature temperature between guess and previous used in fit < 1.0? Add or subtract 1.0 fron this guess temperature so that the pairs used for the fit are at least 1"K apart TI matrix I 37 Subroutine - matrix A 2nd order temperature Have fit Polynonial corresponding used by Find to enthalpy .F o2 a z 2 le: -1 "a T to approximate f, x = T guess need to solve for x ,F -2 "2 .F -3 -3 J in variables lnitialize and in T matrix matrix F Reduce F to an uPPer natrix triancrular solve for :!, that for a, b arid c Function CENTH (I T) and Function is ENTR (r,T) and entropy respectively the enthalpy The functions CENTH and ENTR calculate T. T, for any temperature and any fireball species, has already been for these calculations The thermodynamic data required 'newdata.dat' HR(50), the heat in the arrays and stored read from the file the enthalPy of the species at of species at 298.15K, sR(50), of formation 298.15K, cl(50,5) , c2(5o,5), c3(50,5), c4(50,5), TM(50'5) and HH(50,5)-which the variation of specific describe contain that the numeric coefficients pressure of temperature. heat at constant as a function Subroutine -A Runge-Kutta (Nrt) approximation 4th order Runge Kutta numerical equations. differentiaL the time by the This subroutine increnents to the tinestep. solution of the N 38 Subroutine Dif f erential_Equations - recalculates differential ecruations Update variables equations solved based on differential in 'Runge Kuttar Calculate temperaturer of the arnbient air for Calculate fireba1l. increase T pr€ssure and density the new heioht i.n mass of atoms in the ICAO Air I I T t r l l l4ass Balance_Update Calculate the new number of moles of per kg of fireball species in fireball Update the volume, radius, buoyancy of the fireball. Calculate the arnbient air. enthalpy Ca1culate the energy due to radiation. Recalculate differential of lost each air. l 1 speed and the to entrained far field ambient Tenthalpy Loss T Radiant 1 ecruations. 39 Subroutine - (oLD MASS' BMass, Mass-Balance-Update the calculates present time in increase mass of in atoms hite) fireball and updates for T calculate air gases the for fractions molar the given height number of moles of Calculate air element per kg ambient number fireball new total Calculate in of each element number of moles Calculate element per kg of fireball Subroutine - (T, Loss-Radiant the calculates energy lost rad. to r of of anbient CLEAN FIREBALL I T GRAM ATOM each f moles of each air amb) far field due to radiation by cthich ever transmissivity Calculate temperature for current is valid fornula Sum of Set opacity to 1.0 of all condensed species of fireball opacity Calculate using P1anck Mean Absorption coefficient fireball product Calculate and transmissivitv > 3x10 -? of energy lost Calculate field due to radiation opacity to far T I I PMAC I I 40 Function - returns PMAC (r the fb) Planck Mean Absorption First Coefficient tine? fnitialize the table of coefficients to the values (1964) given by Gilmore Ca1culate density ratio given by density of fireball/density of ambient air Linearly interpolate table using logarithmic density ratio sca1e, temperature scale and logarithmic PMAC scale Subroutine - Initialize_Output sets initial output files information in headers Initialize for a1I data character Write header output files information write labels column to output to screen and variables to each all file 9 4T Subroutine - outputs data to the screen and output files. five timesteps and for the final timestep Subroutine - reads opens Subroutine - data thermochemical for called ambient air every the gases from read-in-CHNOS read-in-data the the initial outPut conditions files Do-enth-halt and other input data from "D.FTL" and - it is message subroutine, is an error this per Equations if the enthalpy Differential enthalpy. fireball greater than the initial of the Program and stops execution Subroutine - is only the thermoand all from "D.FIL" reads the species in the fireball from "NEWDATA.DAT". Counts the nunber data for these species chemical gases and condensed species and sets up the atoms matrix of elements, for use in the Eriksson Procedure Subroutine - It read-amb-air the reads and stores trAMB.AIR" the file Subroutine - output-Data from the subroutine called mass is kg of fireball message It prints an error Show-Status from the subroutine which is called message subroutine error another is less than zero of the fireball temperature Find T if the calculated message and stops out an error It prints than 10r000"K. or gieater of the Program execution 42 Appendix I,IST 9: Tireball Model Code OF VARIABI,ES USED IN PROGRAI'I VARIABI.E TYPE aXX Real Character*80 anXX ReaI atirfle ReaI Atnos b(0:3) beta Bllass Character*20 ReaI Array ReaI Constant Real c ( 0 : 3) ReaI Array c(5,5) ReaI Array cala calb calc ch ReaI Character*1 DESCRIPTION - U s e t l i n " C H N O S 3 " .M o l a r amount value for entity XX per kg fireball. XX : Ar,C,E,H,N,0,S - Used in "reacl_in_CHNOS3". Reads a line of clata frout "D.FIte". - Calculated in "GRAM-ATOM" and used in "Hass_BaIance-Uptlate". Molar amount of XX per kg of anbient air. XX: Ar,C,E,H,N,0,S - Used in "Output_Data". Program calculatecl time. - Used in "reail_in-data" antl TYpe of "Initialize-Output". atmosphere usecl. - Used in "Runge-Kutta". Coefficient array used in Runge Kutta integration scheme. - Read fron "D.FfIre" and usecl Fraction of in "Initialise". at bombyield in fireball start tine. For 8000 Kelvin at start teurp, beta has value of 0.443942345. - Dunny variable (same as Mass). used in "!lass_Balance_Update". Mass of firebalt air. Unit : kg. - Used in "Runge_Kutta". Coefficient array used in Runge Kutta integration schen6. - Used in "read-amb-air" to store the numeric fron "AMB.AIR" coefticients allowing the calculation of entropy anil enthalpy. - Usecl in "Find T" antl "Hatrix". Coefficient of enthalpy/ tenperature polynornial calculated in "Matrix", used in "Find-T" to estimate tenperature given enthalpy. _ l l l r l l - l t l t r l - Used in "read_in-CHN0s"anal "read_in-clata". Readsa character from "D.FILe". chan z Real Charged Logical counE I nt eger counter Integer cVol ReaI D aurbient ReaI D_grouncl ReaI D_1og ReaI d. file File Nane DL ReaI nt ReaI Ddash ReaI Delta Enth Real delta nass Real 43 - U s e di n "Dif f erential Equatons". Difference in height between current anil previous tine srep. - s e t i n " r e a d i n C H N O Su"s e d i n " C H N O S 3a"n d " 0 u t p u t - D a t a " . - U s e r li n M a i n p r o g r a ma n d "output_Data". It counts the n u m b e ro f t i n e s t h a t t h e n a i n progran loop is cycletl and allows the output alatato be sent to the output file every five cycles. - U s e di n " I n i t i a l i s e " a n d " F i n c l T " . H o l c l st h e n u n b e r o f ture Enthalpy/ Ternpera calculations clone. - U s e di n "Dif f erential Equations". volune ot the tireball. Unit : cu metre. - Useclin "Diff erential Equations". A m b i e n tD e n s i t y . Unit : kg ,l tn*r'3' - U s e di n " P M A C "D . ensitY ambientat groundlevel. Unit:kg/m**3. - U s e d i n " P i l A C " .L o g t o t h e base ten of the ratio of required density to ground density. - The naneof the file which contains the fireball specifications to be entered into the "Bonbs" program and run. - U s e c li n " L o s s R a d i a n t " . Interpolatecl log base ten density tor lower tenperature. - Usedin "l,oss Racliant". Interpolatecl log base ten density for upper tenperature. - U s e di n "Di f f erent iaI-Equations " . Ratio of fireball tlensitY to D arnbient. - Usedin "Fincl T". Is a n e s s u r e o f t h e c l o s e n e s so f the enthalpy, calculated for a given temperature,to the required enthalpy. - U s e di n . "Hass_BaIance_Uptlate" Difference in nass between current and Previous tine steps. 44 Den Real density ReaI Density ReaI df ReaI Array ReaI Array dm ReaI D},IFXX ReaI Dratio Real att Real Et Real E2 rl Elsqr E2sqr E3sqr E1nu1 E2nu1 E3nuI ENTII r ReaI enth anbient Real enth_fb3er_l{ass Real EnthaI U s e d i n " P M A C " .R a t i o o f required density to ground density. Dunnyvariable (saureas D_aurbient) usetl in "ICAO_Air".Density of anbient air. Unit : kg/n**3. U s e di n ". " Dif f erent i a1_Equations Density of fireball. Unit : kg/6**3. Usedin ' r D i ff e r e n t i a l E q u a t i o n s " . Array of ilifferential eguations qhich alescribes fireball behaviour. Useclin "P!{AC".Log to the base ten of the density ratio taken from Gilnore. Usedin "Dif f erential Equations". Increnent in nass of Fireball. Unit : kg. R e a df r o n " D . F I L e " a n d u s e d i n " C 1 e a n _ F i r e b a l 1 " .D r y n o l e f r a c t i o n o f a m b i e n ta i r X X . XX : Ar,COz,N2,02 Usetl in "Pl,tAC".Ratio shich irill aIlow interpolation of 1og to the base ten density. Used in Main progran antl " R u n g e _ K u t t a " .T h e t i m e increment. Unit : second U s e c li n " M a t r i x " . V a r i a b l e s used in natrix inversion. t i l l r l r l l I tl rr : ReaI Array lr : : ll , : : U s e d i n ' E N T H " .E n t h a l p y . Unit:cal/rro1e Calculatetl in "ambient_enthalpy_". Enthalpy of anbient air. Unit:.Ioule/nole. Usealin "Dif f erential Equations". Enthalpy per kg fireball nass. Usedin "Intialize" and "Find_T". Enthalpy per hg of fireball air. Unit:iloule/mole. 45 ENTHAI. ReaI Array enthalpy Real Array Enthalpy3er_kg entrain ReaI ReaI Constant ER ReaI Array f new Real Array f old Real Array Real Array ReaI Fb file name G G GilivR C h a r a c t e r * 2 2A r r a y ReaI Constant Real Array ReaI Constant HEIGHT Real Array Holiln Real Array Read in "read-anb-air" and used in "anbient_enthalpy". Holds enthalpy per nole of g i v e n a m b i e n tg a s . Unit:Joule/mole. U s e d i n " C H N O S 3 "A. r r a y o f enthalpy per nole values for species in fireball air. Unit:Joule/mo1e. U s e c li n " I n i t i a l i z e ' , " C H N O S 3 " and "Fincl_T". Enthalpy per kg of fireball air. Unit:Joule/kg R e a df r o n ' ! D . F I L e " a n d u s e d in "Dif f erential_Equations". N o r r n a l l y , e g u a lt o 1 . 0 , i t i s fireball entrainnent coefficient or the fraction of the fireball nass entrained. Read f ron "ADIB.AIR"antl holtls heat of fornation at 298.15 KeIvin. U s e di n " R u n g e _ K u t t a " . Equations used to clescribe ilifferent f ireball behaviour processing. after Runge_Kutta U s e c li n " R u n g e _ K u t t a " . E q u a t i o n su s e d t o d e s c r i b e different fireball behaviour before Runge_Kutta processing. U s e di n "Diferential Equations". E q u a t i o n su s e d t o d e s c r i b e ilifferent fireball behaviour. Used in "Dif erential Equations". Firebal.l Buoyancy/ (A / 3 x pi). Unit : kg n / s*t,z R e a df r o m " D . F I L e " a n d h o l i l s output file nanes. Read tron "D.FILe" and used in "Dif f erential Equations". Geopotential constant equals 9 . 8 0 5 5 5m / s t * 2 . U s e t l i n " C H N O S 3 "G. i b b s nininization energy of species. Used in "ICAO_Air". = 0.034164d0. Useil in function "MF-H2O". Array of height in metre above ground corresponding to $ater vapour IIATERp.which contains nole fraction of H20 in anbient air. Useil in "scramble" as a holcler for the nole nunber of species per kg firebaIl. 40 Integer Array IN initial dt Real Constant Ini t i a I_fb_enthal py Real init iaI_fb_tenp R e a1 initial mornentun Real initial radius Real initial z ReaI ISN Integer Array Tn I adar .lunk Character*5 ReaI 1_density ReaI Array l3ress ReaI Array I_tenp ReaI Array Iapse last count ReaI Array Integer Constant level ReaI Array I ine Character*80 R e a c lf r o m " D . f I L e " . I N ( , 1 ) contains the positlon number i n t h e " N E I I D A T A . D A Tf i"l e o f the thermochemical data for species J. Read fron "D.FILe" and used in "Initialize". Initial timestep Unit : Second Used in "Initialize". Equal to 44l- of energy in fireball at t = 0 for initial fireball temperature equal to 8000.0 K e l v i n . R e c l u c e sl o 2 2 4 f . o r initial fireball temperature equal to 5000 kelvin. Unit : Joule. Reatl from "D.FILe" and usetl in "Initialize". Start time temperature. Unit : Kelvin. Used in "InitiaIize". Start time monentun. Unit : kg m/s. Used in "InitiaIize". Start tine radius. Unit : Metre. R e a c lf r o n " D , F I L e " a n c l u s e t l in "Initialize". Start tirne height. Unit : Metre. Numeric order representation of ambient gases as present in "AMB.AIR". Read f ronr "D.FILe". 'JI holds a value which tel1s "CHNOS3" the Ith orcler that an entity tuas reatl . This allols thd array variable "B" in " C H N o S 3 "t o r e a d t h e c o r r e c t entity mole value. "f" ranges from 1 to 10. Used to read unused data from "AMB.AIR" to allow reading of u s e f u l d a t a o n s a m el i n e . Read from "D.FILe" and used in "Dif ferential_Equations". A d d e d : m a s sc o e f f i c i e n t . Used in "ICAO-Air". Density at given level. Unit : kg/ITl**3. Usetl in "ICAO_Air". Pressure at given level. Unit : Pascal. Usecl in "ICAO_Air". Tenperature at given 1eve1. Unit : Kelvin. Used in "ICA0 Air", Read trom "D.FILe" and used in Main program and "0utput_Data" . Maxinum nunber of time steps. Usetl in "ICAO_Air". Height at given 1eve1, Unit : netre. Usetl in "read_anb_air" to read lines of data fron "AllB.AIR" which are not useil. 4t M Real Mdate Character l{t im Character Mass MFXZ ReaI ReaI rnonentun_stop Logical M< Integer nwa n1 n2 n3 NEIIDATA.DAT ReaI Real - U s e di n "Dif f erential Equations". MornentumUnit : kg rn / s. - U s e di n " I n i t i a l i z e _ O u t p u t " . Date progran run. - U s e c li n " I n i t i a l i z e _ O u t p u t " . Timeprogran run. - M a s so f f i r e b a l l a i r . U n i t : k g . - Calculated in "CLEANFIREBALL" and useil in "ambient-enthalpy" ancl "GRAltAT0M". Hole traction of arrbient XZ. X Z = A r , H 2 0, C O z , N 2 , O z - Used in llain program, deternines whether lhere is a time stop or a nonentunlstop criterion on the run. - R e a df r o n " D . F I L e " . M S i s t h e nunber of species making up the fireball air. - Molecularweight of air. - U s e di n " l { a t r i x ' l . V a r i a b l e s used in natrix inversion. _ tl Input File nxx ReaI nxz ReaI nfXX ReaI NgasS Integer NNS Integer NOM Character Array NPS Tnteger _ i l [ l i l l l t l l - U s e c l i n " C H N O S 3 " .C o n t a i n s thernocheurical clata for species in firebal1. - Used in "anbient_enthalpy". Ilole nunber of XX per kg fireball air at 298 Kelvin. X X : A r , C , H 2 0 ,H 2 , C 5 H 5 . C 8 H 1 8 , 0 2 - Dunny variable (same as anXX) used in "GRAMATOl,l". Mole nunber of XZ per kg of ambient air. X Z : H 2 0 ,N 2, Q 2, C O 2 , A r, Q ,N , C , H - Used in "l,lass_EaLance_Update". MoIe number of XX per Kg fireball air. XX : Ar,C,E,H.N,O,S - Reatl fron "D,FILe". NgasS is the nunber of gaseous species in the firebalI. - R e a c lf r o n " D . F I t e " . N N S i s the nunber of negatively charged species in the fireball. - Read fron "D.FILe". NOM(J) contains the character discription for the "Output_Data" subroutine for species il. - Read fron "D.FILe". NPS is the nunber of possitively chargetl species in the fireba1l. 48 TID fnt eger NsolS Integer nTotalCharged Number of des Real Thl6dar -..evYvr OLD I,IASS Real 0p_fb Real OpTr ReaI P ambient ReaI Readfrom "D.FILe". NS is the number of gaseous uncharged species in the fireball air. R e a c lf r o m " D . F I L e " . t t r s o l S i s the number of condensed species in the fireball. Used in "scramble" as the sum of all chargecl species. Used in l,lain program and "Runge_Kutta". Nunber of Sirnultaneous Dif f erential Equations. Used in Equations" and "Differential " M a s s _ B a l a n c e _ U p d a t e " .M a s s from previous time step. Used in "Loss Racliant". Opacity of Fireball. Uni.t : cm**-L. Used in "l,oss Radiant" 0pacity x Transmission coef f icient . Used in "Dif f erential Equations" Anbient Pressure. Unit : PascaI. pgrn pii PMAC PMAC_IJog C h a r a c te r Real Constant Real ReaI Array PHAC_1o910 ReaI pressure Real REAI K rad ReaI Constant neal Usetl in "Initialize_Output" 3.14159d0 Useil in "PMAC". Planck Hean Absortion Coefficient of for given fireball tenperature. Unit : crn**-1. Used in "PMAC".Log to the base ten of Planck Mean Absortion Coefficients at iliffering densities and temperatures. U s e c li n " P M A C " . L o g t o t h e base ten of Planck Mean Absortion Coefficients at required density and tenperature. Dunny variable (same as P_anbient) used in "ICAO_Air" representing ambient pressure at given 1evel. Unit : Pascal. U s e d i n " C H N o S 3 "P. r e s s u r e Unit : Atnosphere. U s e d i n " C H N O S 3 "G. a s constant. Units : callKelvin/mole. (=1.98?1?). Dunnyvariable ( s a n e a s radius) used in " L o s s R a d i a n t " . Radius of firebalI. Unit : metre. L A rad loss0 Real Radiant Loss ReaI RadInCM Real radius ReaI RATIO Real RltI{ ReaI Setting_up srgma Logical Real Species_nun TnladAr SR ReaI Array SR ReaI Array start tine ReaI Constant SUMPS Real SU}INS ReaI t ReaI T Real T anbient Real Used in "Initialize" ancl "Output_Data". Radiation lost to far field at time zero. Racliant Fireball flux at t=0. Used in "Loss Radiant" and "Differential Eguations". The energy lost as radiation to the f ar f i.elil. Unit : Joule. Used in 'iloss Racliant". Radius of fireball. Unit : cm. Used in "Dif f erentail Eguations". Radius of Fireball. Unit : metre. Used in "MF H20". Useil to interpolate for the rnole fraction of H20 in ambient air given the height. Used in "anbient_enthalpy" and "GRAI'I_ATOM". Relative molecular weight of arobien! air. Unit : gram / mole. Used in function "PMAC". Allows the function to read the data, require<I for calculation, only the first time that the function is entered. R e a c lf r o m " D . F I L e " a n d u s e i l in "Loss Radiant". StefanBoltznann contant. Used in "scramble". Read from "D.FIIre" as number of species in fireba1I. Calculated in "read_in_CHN0s" and used in ENTR. Enthalpy of fireball species at 298.15 Kelvin. Used in "read_amb_air" to read fron "AMB.AIR" the entropy at 298.15 Kelvin. Used in "Initailize" as time that progran starts at. Unit : second. Used in "scramble" as the sum of the possitively charged spec].es. Used in "scramble" as the surn of the negativeLy chargecl species. Used in "Runge_Kutta" as time variable. Unit : second. Used in "ENTH", "Loss_Radiant " . Teroperature. Unit : Kelvin. Usecl in "Dif ferential Equations". Anbient Temperature. Unit: Kelvis. ReaI ReaI Used in "Dif f erentail Equations", "Loss_Radiant". Temperature of Fireball. Unit : Kelvin. Used in "Matrix". Variables usecl in matrix inversion. tl tl Real ReaI tenper Elme Time E].mes_up nt TI, TMT Tnum TNT_equivalent ReaI Array Real Real Constant Real Real Array Real Integer ReaI Constant TotalGasllole Real TotaIHoIe ReaI TotalnfXX Real Tot al Sol idl'loIe Real Tr ReaI Used in "C1ean FirebalI". Sun of dry rnole fractions of molecules rnaking up anbient air. Dumrnyvariable (sane as T_ambient) used in "fCAO Air"and "arnbj.ent_enthalpy" . Tenperature at given level. Unit : Kelvin. Usetl in "Intialize" and "Finil_T". Temperature corresponding to enthalpy per kg of fireball. Unit:Joule/mole. Current tine. Unit : seconcl. Read fron "D.FILe" and used in Main program to stop the program when the tine reaches "tines_up". Unit : seconcl. Used in , "CENTH" and "ENTR". Temperature lower Iimit. Unit: Kelvin. Used in "PMAC".Array of tenperatures corresponding to P M A Cv a l u e s g i v e n b y G i l n o r e . Used in "Clean Fireball". Sum of rnole fractions of molecules making up ambient air Iincluding H201. Read from "D.FIIre" as nunber of gases in ambient air. U s e c li n " I n i t a l i s e " as conversion factor for energy in joule of given size bomb. Unit:,Ioule/Megaton ( 4 . 1 8 5 e 1 5j o u l e p e r n e g a t o n ) . Used in "scramble" as the mole sum of all gaseous species per Kg fireball. Used in "scramble" as the mole sun of all species per kg fireball. Usecl in "Mass_Balance_Update" as the total fireball mole of XX.XX: Ar,C,E.H,N,0,S Used in "scranble" as the mole sun of all condensed species per kg firebalI. Used in "l,oss_Racliant". Transnissivity. )I Tratio R ea I TU ReaI u R ea I V R e aI vapour ll water liATERp water include weight Y Logical ReaI Constant Character*3 ReaI Array r ^-i ^^f !u9 ru4r ReaI Real Array Real zfb Real Zdsh Real - U s e d i n " P M A C " .T e n p e r a t u r e ratio which will allow for interpolation of Iog to base ten of PMAC. - Used in "ENTH"."CENTHa " nd "ENTR". Temperature upper limit. Unit : Kelvin. - Usetl in "Diff erential Eguations". S p e e do f F i r e b a l l . Unit:metre/second. - Used in "Dif f erential Equations". Dirnensionless rrass of fireball. - D u m m yv a r i a b l e ( s a m e a s water include) used in "CIean Fireball". Deterrrines whether water vapour to be includetl in ambient air. - Read trom "D.fILe" and used Yield of in "Initialise". blast in }legaton. Unit: Megaton. - Used in "Initialise-OutPut"' Allows the output to state whether $ater vapour included in the systen. - Used in "MF-H20". ArraY of mole fractions of H20 in arnbient air. Corresponds to array variable HEIGHTiihich contains the height above ground in metre. - Read from "D.FILe" and determines whether water vapour is to be included in the calculations. - Used in "Runge-Kutta". - Used in "scramble" as the number of rnole of the species per kg fireball. - Used in "ICAO-Air", "MF-H20". Height above ground. Unit : Metre. - Used in "scramble" as the dissociation coeff icient. - Used in "scramble" as the dissociation coef f icient. Forrnula : TotalGasMole * mwa / 1000.0d0 ccccccccccccccccccccc N 0.00 0.44 9.80665 0.10 0.01 8000.0 0.00000 N R D. F t L E ccccccccccccccccccccc stop Tine stop else l,lomentun tine for run beta 9 . 8 0 6 6 5G r a v i t . y ; M e t r e p e r s e c o n ds q u a r e d . e n t r a i n ( n o r a m a l l y0 . 1 ) Initial increnent in tirne (nornalIy 0.02) Initial tireball tenperature Initial <letonation height k IJast count MoIecular lleight 0f Ambient Air 0 . 5 5 7 i 1 - 0 7s i g m a : S t e f a n - B o l t z n a n nc o n s t a n t Type of atmosphereusetl file name 1 ) file nane 2 ) 30000 28.9607 0.567ar-0? N2/02/Ar/HZo/CoZ fBouBsSl.dat FBoilBS82 . dat FBOUBSS3.dat f i l e n a m e 1',| F B o M B S 8d4a.t file name 4 ) FBol.lBs85 . dat file_name q l FBOIIBSS6. file naure b , dat FBOIIBSST. dat file_nane 1 l FBoMBs88 . dat file name 8 ) FBOI{BS89. dat : file nane q l 1.00 : B o m bs i z e ( H t ) Y : llater vapou r i n c l u d e d i n a m b i e n t a i r c a l c u l a t i o n s [ Y / N ] ) MFN2 ; clry nole fraction ot N2 0.780835 : (0.78084D ) Mf02 ; dry mole fraction of 02 0.209481 : ( 0 . 2 0 9 4 8D ) : ( 0 . 0 0 0 3 4 Dl'lFCO2 0.000340 ; dry mole fraction of C02 ) 0.009343 : ( 0 . 0 0 9 3 4 3Dl,lFAr t dry mole fraction of Argon 49 : T o t a l n u m b e ro f s p e c i e s . 48 : Total nunber of gaseous species. 3 4 1 . . . n C H . . .3 . . n c ( c ) . . 6 . . n C H 2 . . 1. 0 . . . n C N . . .1 2 . .4 1 4 . . . n C O . . .1 5 . . n C O z . . .1 9 . . . n C 2 . . 2 I . . n C 2 t 1 2 2 2 7 . . . n C 3 . . .2 9 . . . n C 4 . . .3 1 . . . n C 5 . . .3 2 . . . n H . . . . 3 3 3 4 . . n H N O . . .3 5 . n H N O 2 g 3 . .6 . n H N 0 2 g 13.8 . . . n H O . . . 3 9 4 1 . . . n H 2 . . . 4 2 . . n H 2 N . . .4 4 . . n H 2 O . . .4 5 . . n H 2 0 2 . 5 . 0 5 1 . . . n N O . . .5 2 . . n N O 2 . . .5 5 . . . n N 2 . . . 5 5 . . n N 2 0 . . .5 0 6 1 . . . n 0 .. . . 6 4 . . . n 0 2 . . 5 6 . . . n o 3 . . L 2 2 . . . n A r . . . : T o t a l n u m b e ra n d d e s c r i p t i o n o f u n c h a r g e ds p e c i e s . : chargealspecies incLudeil [Y/N] 1 0 8 5 . . n N O +. . 9 7 . . . n H + .. . 9 8 . . n A r + .. . 9 9 . . . n C + . . 1 0 4 . . . n N + . . . 1 0 5 . . n N 2 + . . .1 0 6 . . . n 0 + . . . 1 0 ? . . n 0 2 + . . . 1 1 1 114 ..nHO+... : Total numberancl description of possitively chargetl species. 4 9 3 . . . n 8 - . . . 9 5 . . . n 0 - . . . 1 0 0. . . n N - . . . 1 0 1. . n N 2 - . . . : T o t a l n u n b e r a n d d e s c r i p t i o n o f n e g a t i v e l y c h a r g e ds p e c i e s . 1 89 ..nC(s).. : TotaL nunber and clescription of non gaseous species. C = l H = 2 N = 3 0 = 4 S = 7A r = 5 E = 5 : C = l , H = 2 , N = 3 , 0 = 4 , $ = $ , | 6 = S , f , = ( + , - ) = 7 : Order of introduction of the different entities. 5 1 2 3 4 5 : F r o m " N 2 . d e t " . A n b i e n t a i r g a s e o u ss p e c i e s . : Fractional part of H2 in H2O 0.000 53 c c c c c c c c c c c c c c c c c c c c c c c ccc0 M M 0 N . P UcTc c c c c c c c c c c c c c c c c c c c c c c c c LoGICALCharged LoGICALwater include, Setting-up, nonentum-stop count, Nunber-of-des, TYPE INTECER , counter I N T E G ES Rp e c i e s - n u n , N S , N P S , N N s , N s o l S , N g a s S , l ' t S Atnos*20 f ite_nane*22,NOI{*9, CHARACTER R E A L * 8i n i t i a l _ d t , i n i t i a L _ f b _ t e n p , i n i t i a 1 _ 2 , k REAL*8Initial-tb-enthalpy, MtC c o l l l { o N/ O n e A / f i l e - n a n e ( 9 ) , t i n e s - u p , T Y P E , l { t c col{t{oN / O n e / c o u n t , d(f5 ) , d t , f ( 5 ) , k , L a s t - c o u n t , Mr ,a d - I o s s 0 COUI{ON /two/chan_2,cVol, Dtlash,Density, Fb,u, G COI{MON / three / ini tial-tlt, init ial-f b-tenp, ini t i al-z C O I { l { O/ f}of u r , / b e t a , D - a n b i e n t , e n t r a i n , I n i t i a l - f b - e n t h a l D y ' 9 i i , . T , n t { a COlll{oN/ f ive / enth-anb i ent, Tot alMoI'e, Nunber-of -des COlllloN/six/atiue, Mass,P-anbient. radius, T-anbient, T-f b, z, Z -tb COI{MON / s even/enth-f b3e r-l{as s, EnthalpyJter-kg cot'tMoN /eight/Charged, Setting-up, nonentun-stop c o M M O/N u n o / T o t a l n f N ,T o t a l n f 0 ,T o t a I n f H, T o t a I n f C ColilMON /rlue/Tot alnf Ar, Tota1nfS,Totalnf E coltUON / q u a t / n f N ,n f 0 , n f A r , n f C ,n f S ,n f H ,n f E COllltON lB / Op-fb,Tr, Radiant Loss,signa COl{l{oN/h2o/ watet-include,Atrnos c o l ' t M o/Nc c c/ p r ( 2 o ) , P T o r ,T , Y ( 5 0) , Y O( 5 0) , Y F( 5 0) , Y T O (T2 0) C O I { } I O/ hNo l / H o l d n( 5 0 ) , T o t a l G a s M o l e , T o t a l S o I i i l M oZl e<' l s h , g a s sI,N ( 5 0) , M S , N SN, s o l S N Col{}toN / n s l / S p e c i e s - n u nN, O t({5 0) , N s ,N P SN , ,n02,nTotalCharged C o l { l , l o/No u t / n N , n N O , n Nn2O col'lMON /output/opTr c o l t i l o N/ U s E / E n t h a(I2 0 0 0 ) ,t e m p e r( 2 0 0 0 ) ,c a l a , c a 1 b ,c a l c , c o u n t e r )4 BOI'1BS PROGRAM CC****************************rt*****t(*****t<*****tt******Jr***ttr(***CC nanely D.FILe' CC CC - whether or not a stop tine is set for the run and CC CC rC the value of the stoP time. - the values of the following constants : - beta, the fraction ot bombyield in the at start time firebatl - k, the atlded-rnass coetficient - entraln. the fireball entrainnent coefficient - G, gravity - signa, Stefan-boltznann constant - nwa, the molecular weight of anbient air - t h e maximum b e carried out t o be carrie o f tirne s t e p s to t i n e steps m a x i m u mnunber n u n b e r of CC - the bomb size, CC CC T h i s p r o g r a mr e q u i r e s t h r e e i n p u t f i l e s , CC CC and AMB.AIR. NEIIDATA.DAT The file D.FILE contains the following cc : - whether or not water vapour is to be included in the anbient air calculations - the type of aturosphereusecl - the nine output file names initial detonation height, initial CC CC fireball tenperature and initial time increnent - t h e d r y m o l e f r a c t i o n s o f a m b i e n ta i r g a s e s (.(. - lhe total nuuber of species, the number'of gaseous and non-gaseous species - whether or not charged species are included - the total nunber and description of uncharged, possitively charged and negatively charged species - the order of introcluction of the different species CC CC cc CC cc cC - the nurnberof anbient gases and their nunerical o r d e r a s p r e s e n t i n t h e A M B . A i Rd . a t af i l e . cc Cc cc CC T h e f i l e s N E W D A T A . D AaTn d A M B . A I R c o n t a i n t h e t h e r n o an<l the CC chenical data for all the species in the fireball ambient air gases respectively. CCt!**tr**t(*****tr**********r.rrr!**J,***********Jr*********************CC (A-H,M-Z) PRECISION IMPI,ICITDOUBIJE include 'conrnon.put' Nunber_of_des = $ CaII read-in_data CaII Initialize CalI Initialize_Output count = 0 2 0 i f ( n o a l ( c o u n t , 5 .)E Q . 0 . O R . c o u n t . E Q . l a s t - c o u n t ) C a 1 1 *Output_Data (atine .cT. 0.299) dt = 0.025d0 if (atine.cT.2.99) dt = 0.25d0 if (atine .cT. 49.99) dt = 0.5i10 if ( a t i r n e. c T . 9 9 . 9 9 ) d t = 1 . 0 d 0 if (Number_of Call Runge_Kutta _des,atine) CaIl Find T count=count+1 ( m o m e n t u m - s t o P )t h e n if (M .GE. 0) go to 20 else if (atime .1,T. tines-uP) go to 20 endif Cal1 Output-Data D o 2 5 I = 1 ' 9 if 1I+1) "ro." 25 continue Stop END Initialize SUBROUTINE PRECrsroN(A-H'l{-z) rMPLrCrr D0UBLE . Put ' inclutle ' comnon R e a l * 8 i n i t i a l - m o m e n t u n ,i n i t i a l - r a d i u s counter initial nomentum initial ratlius TNT-equivalent start tine Setting-up pii C C C = Q = 0.0d0 = 0.0d0 = 4.186d15 = 0.0d0 =.true. = 3.14159d0 This sets up the 'lata CLEAN-FIREBAII,Ca1I to SUBROUTINE g o i n g i n t o " C H N O S 3f o" r a n o n - s u r f a c e b l a s t c o n c l i t i o n ' A l s o s e t c o n c l i t i o n s f o r c o m p o s i t i o no f t h e a t n o s p h e r e ' f caII CLEAN_FIREBALL(initial_z,water-incIutle,MFH20,l{fN2,t(loz,}1FC02' ,,IIFAr) c C C C c c c C c c C c This returns the nunber of GRAM-AToMS. Call to SUBRoUTINE rnote of the of each elenent, N,O,H,C antl Ar given the mole fractions of the nolecules per kilogram oi ambient air' (HFH2O. MfN2,MfO2,I{FCO2,HFAr, nf N, nf 0, nf H' nf C' nf Ar ) CALL GRAM-ATOM = 0.0d0 nfS = 0.0d0 nfE = 0-0d0 enth-fb3er-Mass = initial-z z = initial-radius ratlius = initial-dt dt = start-time atime CALL IcAo-Air ( ini t ial-2, T-ambient, P-ambi ent, D-anbi ent ) It 1s necessary to calculate the enthalpy of the species ' which at ambient enthalpy. This will be will nake up the fireball, temperature. fireball subtracted tron the enthalpy at initial given the riilI be calculated, of fireball Mass the the llence energy. fireball knowledge of the initial T-fb = initial-fb-tenp r i r i t e ( 0 , 4 ) n f N , n f o , n f C ,n f H , n f A r , n f S ,n f E 56 Call read_in_CHNOS CaII scramble(T_fb, P_arnbient ) CaIl read_anb_air C a I l a u b i e n t _ e n t h a l p y( i n i t i a l _ 2 , T _ a r n b i e n t ) write (0,15) enth_ambient = beta * ll * TNT-equivalent Initial-fb-enthalpy = initial_fb_tenp t e n p e r( 1 ) = Initial_f b_enthalpy/ (Enthalpyjer_kg-enth_arnbient) l{ass = Initial-fb-enthalpy / Mass Enthal(1) = initial z f (1) = initial-monenturr f (2) = 3 . 0 d 0 * M a s s/ 4 . 0 d 0 / p i i f(3) = Entbalpy_per_kg f ({) f (5) ts energy radiated fron fireball. C a s s u n e dz e r o a t s t a r t = 0.0d0 f (s) w r i t e ( 0 , 1 0 ) M a s sI,n i t i a l _ f b _ e n t h a l p y , E n t h a l p y 3 e r _ k g =Mass*nfN TotalnfN write (0,12) TotalnfN =Mass*nfO TotalnfO prite(0,12) TotaLnfo =Mass*nfC TotalnfC write (0,12) TotaInfC =Mass*nfH TotalnfH write(0,12) TotalnfH = l,tass* nfAr TotalnfAr write(0,12) TotalnfAr =Mass*nfS Totalnfs w r i t e ( 0 . 1 2 )T o t a l n f s =l{ass*nfE TotalnfE write (0,12) TotalnfE C a 1 1D i f f e r e n t i a l _ E q u a t i o n s r a d _ I o s s O= d f ( 5 ) C------AI,IJ THS FORMAT STATEMENTS c 4 F o r n a t ( ' n f N= ' , d 1 0 . 4 , ' n f O= ' , d 1 0 . 4 , ' n f C = ' , d 1 0 . 4 , *' nfH=',d10.4,' nfAr=',d10.4,, nfS=',d10.4,' nfE=',d10.4) 1 0 F o r n a t ( ' M a s s= ' , d 1 2 . 6 , ' k g f B E N T H= ' , D 1 2 . 6 , ' , J e n t h / k g = , , t d . L z. 6 , ' . I / k g ' ) !z F o r m a t ( 'I T = ' , d 2 0 . 1 4 ) F o r n a t ( ' e n t h _ a n b i e n= t ',4114.8) RETURN END 57 S U B R O U T I NCEI . E A N - T I R E B A L I , ( h i t E ' V A P O U T , M F H 2 O . M F N 2 ' l T O z ' M F C O 2 ' I , I F A T ) c the nolar fractions of anbient air gases for a c.......Calculates c.......non-surface blast condition. c.......DIIF indicates nolar fraction of species in dry air. PRECISION(A-H't'l-Z) IIIPLICIT DOUBIJE Logical vapour conmon /now/ nMrl2,D!lF02,DHFCo2'DMFAT (vapour) THEN M F H 2 0= M F - H 2 0 ( h i t e ) ELSE I.IFH2O = 0.000D0 ENDIF = Dl,lFN2't (1.0D0 - $fHzO) UFN2 = D l { F 0 2 * ( 1 . 0 D 0- M r H 2 0 ) MFO2 IF urco2 = D M F C o*2 ( 1 . 0 D 0 - [ ! F H 2 O ) = DHFAr * (1.0D0 - l'tFlt2O) l{FAr = + TMF l,lFH2o ltFN2 + t{F02 + MfC02 + ilFAr i f ( d a b s( 1 . 0 d 0 - T t ' l F ) . G 8 . . 1 . 0 d - 5 ) t h e n write (0,4) TMF,MFH2O,ltFN2,MF02'llfCOZ'MfAr StoP endif C-----AI,I, THE FORMATSTATEI,IENTS 4 F o r m a t ( ' T M F s h o u l c le q u a l 1 . 0 0 , b u t i n s t e a c l i t e q u a l s ' , D 2 0 . 1 4 , ' . ' *,/,'This program is now terrninatetl. check the data file "d.file". * , , / , ' M F I I 2 O = ' , , d L 4 . 8 , ' l ' l F N 2= l ' l F O =2 . , a I 1 4 . 8 , / ' ' , d 1 4 . 8 ) , . d 1 4 . 8 , ' = * ' M F C O =2 MFAr "d14.8,J RETURN END c c---------c (Z) DOUBLEPRECISIONFUNCTIONI'IF-H2O I c.....Returns the volunetric nixing ratio (v/v) or rrolar fraction of c.....H20 at a givenheight. a II.{PLICIT DOUBI,EPRECISION (A-H ' I{-Z ) ( 1 ? ) , t { A T E R (p1 7 ) D I H E N S I o NH E I G H T INTEGERI , . 0 D 3 ,8 . 0 D 3 ,1 0 . 0 D 3 ,1 2 . 0 D 3 '1 4 . 0 D 3 ' 0 .O 1 D 32,. 0 D 3 ,4 . O D 3 6 D A T AH E T G H T / O * 1 6 . O D 3, 1 8 . O D 3, 2 0 . O D 3 2 , 2 . 0 D 3, 2 4 . 0 D 3, 2 5 . 0 D 3 ,2 8 . 0 D 3 ,3 0 . 0 D 3, 3 1 - 0 D 3/ DATA l{ATERp /t}t29 .OD-6, 6110.0D-5 , 3055- 0D-6 ,1447 '0D-5 ,434 ' 0D-5 ' * 5 9 . O D - 5 ,3 ?. O D - 6 ,1 6 . O D - 6 ,1 4 . O D - 6, 1 0 . O D - 6 ,1 0 . 0 D - 6 ,1 0 . 0 D - 6 ,1 0 . 0 D - 6, * 1 0 . o D - 6 ,1 0 . O D - 5 1 , 0 . 0 D - 6 ,1 0 . 0 D - 6 / IF (z .GT. !tF-lI2O = RETURN ENDIF IF (z .LE. MF H2O= RETURN ENDIF I = 0 31.0d3) THEN 10.0D-6 HEIGHT(1)) THEN 10129.0D-5 58 1 I = I + 1 I F ( z . L T . H E I G H T ( I+ 1 ) ) T H E N R A T I O= ( z - H E I G H T ( I ) ) / ( H E I G H T ( I+ 1 ) - H E I G H T ( ] ) ) = I , I A T E R p ( I )+ ( R A T I O * ( i l A T E R p ( I + 1 ) - W A T E R p ( I ) ) ) I'!F_H2O RETURN ELSE IF (I.I,T.15) THEN GOTO1 EIJSE WRITE(0,2) (' ERROR 2 FORI{AT IIRONGIN DB FUNCTIONMT H2O ') SOI1THING STOP ENDIF ENDIF RETURN END ( MFH2O, SUBRoUTINE GRAI,I_AToM MFN2,MF02,ilFCO2,MFAr,nN, n0, nH, nC, nAr ) c C.....Returns the nunber of noles of each of the elenents N,O,H,Cand Ar C.....given the nole fractions of the molecules per kilograrn of ambient C.....air.It first calculates the relative molecular weight of the C.....system, c II,IPLICIT DOUBI,EPRECISION(A-H.M-Z) * 2 8 . 0 1 4 D 0 +) ( M r O 2 ' t 3 1 . 9 9 8 D 0 ) R M t [ = ( l , t F H 2*o 1 8 . 0 1 5 D 0+) ( M F N 2 + ( H F C O '2t 4 4 . 0 0 9 D 0 )+ ( M F A i l t 3 9 . 9 5 0 D 0 ) 1 nH2O= MFH20,, 1000.0D0/ Rl'lll nN2 = MFN2 't 1000.0D0/ Rl,ltl n02 = llF02 ,, 1000.0D0/ Rt{W nCO2= I{FCO2* 1000.0D0/ R]'liI nAr = MFAr * 1000.0D0/ RMI{ n O = n H 2 0+ ( 2 . 0 d 0 * n C 0 2 )+ ( 2 . 0 d 0 * n 0 2 ) nN =2.0d0*nN2 nC = nC02 nH =2.0d0*nH20 nAr = nAr RETURN END ambient-enthalpy ( z, temp) SUBRoUTINE C....,Calculates relative molecular weight of new ambient air c. . . . . conposition and enthalpy of lkg ainbient air . c P R E C I S I O N( A - H , I { - Z ) IMPLICIT DOUBLE Locrical water include integer Tnun, Number-of-cles C H A R A C T EARt m o s * 2 0 COMIION / f ive / enth-ambi enL, To t al}tole, Nurnber-of-tles common/h2o/ water-include,Atnos c o n m o n/ a m b / T n u mI,S N ( 5 ) , E N T H A L ( 6 ) Save Do40J=l,Tnun D o 5 0 I = 1 , 6 if (1sN(J) .EQ. I) then E N T H A(L, J ) = E N T H( . 1 ,l e m p ) * 4 . 1 8 6 D + 0 0 endif 50 continue 40 continue c c ( z, wat er-inc lude, t'lfHZO,llFN2,HFO2,MFC02']'lFAr) Ca11 CLEAN-FIREBALL R l { l i = ( M F H 2 o * 1 8 . 0 1 5 D 0+) ( M f N 2 * 2 8 ' 0 1 4 D 0 )+ ( M F 0 2 * 3 1 . 9 9 8 D 0 ) + ( l ' t F c o 2* 4 4 . o o 9 D 0 ) + ( M F A r * 3 9 . 9 5 0 D 0 ) nlt20 = I4FH2O* 1000.0D0 / RMIf nN2 =MFN2 *1000.0D0 lRl'Iil n02 = MF02 * 1000.0D0 / R}lll nCo2 = I'lFcO2* 1000.0D0 / RMH nAr = l'lFAr * 1000.0D0 / RMW nH2 = 0.0d0 e n t h a m b i e n t = ( E N T H A L ( 1 )* n N 2 ) + ( E N T H A L ( 2 )* n O 2 ) + ( E N T H A L ( 3 )* N A T ) + ( E N T H A I , ( 4 )* N H 2 O )+ 1 ( E N T H A L ( S )* n C 0 2 ) + ( E N T H A L ( 5 )* n H 2 ) 2 I2O RETURN END 1 60 c FUNCTION ENTH(I,T) C . . . . . C a l c u 1 a t e st h e e n t h a l p y o f t h e a u b i e n t a i r s p e c i e s f o r t e n p e r a t u r e C . . . . . T , w h e r eT i s u p t o 5 0 0 0K e l v i n . c c IMPIJICIT DOUBI,EPRECISION(A-H,O-Z) Connon /det/ E R ( 6 ), C r c , 6 ) (I) ENTH=ER I F ( T . L T . 2 9 8 . 1 5 )T H E N TL = 298.15 T U = T E N T H = E N T+H ( C ( I , 1 ) + C(I,2)r,Tt I + C(I,3)*TIJ*TL 2 + c(r,4)*(?L:**(-2.0)))*(Tu-TL) 3 RETURN ENDIF TL=298.15 TU=T E N T H = E N T H(+I ,C1 ) * ( T U - T L ) + C ( I , 2 ) t r ( T U r . T U - T L * T/ I2I .) 1 +c(I,3)*(TU*TUiiTU-TL*TL*TL)/3. 2 -c(r,4)*(1./TU-l./TL) 3 RETURN END c c---------c c SUBROUTINE ICAO_Air( z, t ernp,pressure, tlensity) c . - - . . c a l c u L a t e s t h e t e m p e r a t u r e ,p r e s s u r e a n d i l e n s i t y o f t h e a m b i e n t C.....air frornthe height of the fireball. (A-H,O-Z) II{PIJIC]TDOUBI'E PRECISION R e a l * 8l e v e l ( 5 ) , l a p s e ( 5 )I,_ t e m p ( 6 ) , I j r e s s( G ) , 1 _ d e n s i t y ( 5 ) Datalevel/ 0.0000,11000.0,20000.0,32000.0,4?000.0,51000.0/ D a t a l a p s e / - 0 .0 0 5 50, . 0 0 0 ,0 . 0 0 1 ,0 . 0 0 2 8 0, . 0 0 0 ,- 0 . 0 0 2 8 / D a t a l _ t e n p / 2 8 8 . t 5 0 , 2 L 6 . 6 , 2 L 6 . 6 , 2 2 8 . 6 , 2 7 0 . 6 , 2 '/1 0 . 6 D a t a l j r e s s / L 0 L 3 2 5 .2, 2 6 3 0 . 35, 4 7 5 0. 0 ,8 6 7 .9 2 1 ,1 1 0 .9 8g , 6 6 . 9 2 O 1/. D a t a l _ d e n s i t y / 1 . 2 2 5 4 + 03, . d 39 4 d - 1 ,8 . 8 0 3 d - 2 ,t . 3 2 2 5 d , - 2t ., A Z j' td , - 3 , *8.515d-4/ = 0.034164d0 GilivR J = 0 10, J=iI +1 i f ( z . c E . l e v e 1( , t + 1 )) g o t o 1 0 t e m p= I _ t e n p ( . I ) + l a p s e ( J ) * ( z - I e v e l ( J ) ) if (Iapse(.t).eq. 0.0) then p r e s s u r e= I j r e s s ( J ) * d e x p ( - G d i v R * ( z - I e v e 1 ( J ) ) / l _ t e n p ( t ) ) density = I_density(,t) * pressure / I1lress(J) else p r e s s u r e= l j r e s s ( . I ) * ( ( t e n p / I _ t e n p ( J )) * ' , ( - G d i v R / l a p s e ( ,)t)) d e n s i t y = I _ < l e n s i t y ( , t ) * ( ( t e n p / ] _ t e m p ( . 1) )t * ( - ( ( G d i v R / 1 a p s e ( .)t+) 1 1 . 0 )) ) endif RETURN END 6l S U B R O U T I NsEc r a m b l e ( t e m p ,p r e s s u r e ) c C.....Stores atl final molar amountsfor species in fireball in Holtln C . , . . . a r r a y a n d c a l c u l a t e s t h e s u r no f a l l g a s e o u s s p e c i e s , a l l s o l i d all species, all negatively charged species and all c.....species, c h a r g e ds p e c i e s . c.....positively L P R E C I S I O N( A - H , M - Z ) IMPLICIT DOUBLE include c ' c o m m o np. u t ' C a I l C H N O S( t3e m p ,p r e s s u r e , n f N , n f o . n f H , n f C , n f A r , n f S , n f E ' E n t h a l p y 3 e i r_kg) c L4 ilo 14 1=l,Species-num Holdn(I) = Y(I) TotalcasMole = 0.0d0 Do16I=l,Ngass 15 TotalGasl{ole = Tota]GasMole + y(I) Zdsh = TotalGasMole * mwa/ 1000.0d0 TotalSolidl'lole = 0.0d0 Do 1g I = lrfg6sg+l,species_num 18 TotalSolidMole = TotalSolidMole + Y(I) Totaluole = TotalGasuole + TotalSolidMole Z tb = TotalGasMole * mi{a / 1000.0d0 = 0.0d0 SUMPS = 0.0d0 SUMNS Do24I=NS+L,NS+NPS 2 4 S U I { P S= S U U P S+ Y ( I ) Do 25 I = NS+NPS+I,NS+NPS+NNS 26 SUI'INS= SUI{NS+ Y(I) nTotalCharged = SUMPS- SUI'INS RETURN END S U B R 0 U T I NC EH N O3S( t e m p ,p r e s s u r e , a N , a O ,a H ,a C ,a A r , a S. a E ,E n t h a l p y 3 e r *-kg ) C,.,..Calcu1ates the enthalpy per kg of fireball air given the pressure, C . . . . . t e m p e r a t u r e a n d m o l a r a m o u n t so f e a c h e l e m e n t i n t h e f i r e b a l l a i r . TEST PROGRAM T'ORFREE ENERGYMINIMIZATIONROUTINE a I } I P L I C I T D O U B I JPER E C I S I O N( A - H . O - Z ) DIMENSIONenthalpy ( 50) c C o M M 0 N / A A A( 5/ A0 , 1 0 ) , A K T( 5 0 ) , A K T F( 5 0 ) , B ( 1 0 ) , B 0 ( 1 0 ) . c ( 5 0 ) c o M M o N / B BrBV/A R K , H( 2 0) , L , L 1 , M ,I , t 1t,l A ,M B ,M p ,M S ,l l F ( 1 5 ) , M L( 1 5) c o M M o N / c c c / p(r2 0 ) , p T o T ,T , y ( 5 0 ) , y 0 ( 5 0 ) , y r ( 5 0 ) , y T o T( 2 0 ) comnon /xaa/ I'lc,MR C O I , I M O N / N/ IJNTE,J 2 , J 3 , J 4 , J 5 , J 6 , J 7 ENTERGM ATOMSOF ELEMENTS c B(Jl) B(J2) B(J3) B(J4) B(J5) B(J5) B(,I7) = = = = = = = aC aH aN a0 as aAr aE c ENTERTEMPERATURE, PRESSURE e (\ c a c c = tenp T P T O T= p r e s s u r e / 1 0 1 3 2 5 . 0 d 0 CAI.CUI.ATE GIBBS ENNRGIESOF SPECIES R=1.98717 D0 70 I=I,MS (1.T) ) /R/T G ( I ) = ( C E N T(HI , T ) - T * E N T R The value of CENTH(I.T) has units Kcal/rnole. Ilowever enthalpy(I) needs to have units of J/mote. It is then necessary to multiply CENTH(I,T) by 4.185D+00 to convert ca}/mole to ,I/rnole. enthalpy(I) = 4 . 1 8 5 D + 0 0* 6 E N T H ( I , T ) 7 0 CONTINUE c a c ENTERINITIAIJ GUESS YTOT(1)=HG D0 ?5 I=I,MS Y(I)=1. 7 5 CONTINUE CALI, GAUSS IF (U. GT. MP) TIIEN r{RrTE(0,117) M,},tP stop ENDIF 63 = 9.969 Enthalpy3er-kg D0 80 I=1,MS Enthalpy3er-kg = Enthalpyjer-kg 80 CONTINUE RETURN ',I3,' MP= ',I3,/' 1 1 ? F O R I I A T ( 1' 1= END + (enthalpy(I) * Y(I)) EQUILIBRIUN MO T A T T A I N E D ' ) c---------c Find-T SUBROUTINE a C.....Finds the tenperature that corresponds to the enthalpy. c (A-II,}1-Z) PRECISION II{PLICIT DOUBI,E put ' inclutle 'cornnon. counter=qqunfsl+1 if (counter .I"T. 4) then Enthal (counter) = enth-fb-Per-l'tass 2 0 C a l I s c r a n b l e( T - f b , P - a n b i e n t ) DeIta-Enth = (enth-fbjer-l'lass-Enthalpyjer-kg) / * (enth-f b3er-l'lass) i f ( d a b s ( D e l t a - E n t h ). G T . 0 . 0 0 0 1 d 0 )t h e n T _ f b = T - f b * s q r t ( ( D e l t a - E n t h+ 1 . 0 D 0 ) ) goto 20 else temper(counter)=T-fb endif else 40 CalI matrix T-fb = cala * (enth-fbjer-Mass 't enth-fbjer-Mass) + calb * r.enth-fbJer-l{ass + calc I f ( T - f b . 1 , T . o o o . o i l o . o R . T - f b . G T . 1 0 0 0 0 . 0 d 0 )c a l l s h o w s t a t u s C a I l s c r a m b l e( T - f b , P - a m b i e n t ) tenper (counter)=T-fb EnthaI (counter) =EnthaIpyJer-kg Delta-Enth = (enth-fbjer-Mass - EnthalpyJer-kg) * / (enth-fb3er-Mass) i f ( i l a b s ( D e I t a - E n t h ). c r . 0 . 0 0 1 ) t h e n ) . 1'0) then i f ( d a b s ( t e r , p e r ( c o u n t e r ) - t e m p e r ( c o u n t e r -. lL) T i f ( ( t e m p e r ( c o u n t e r - 2 ) - t e n p e r ( c o u n t e r) - l.)G E . 0 . 0 ) t h e n t e m p e r ( c o u n t e r=) t e n p e r ( c o u n t e r - 1 )- 1 . 0 else tenper(counter) = tenperlq6unlss-l) + 1.0 endif CalI scranble (tenper (counter),P-anbient) Enthal (counter) = EnthalpyJer-kg enilif counter=counter+1 goto 40 endif endif RETURN END SUBROUTINE natrix C . . . . . 4 2 n d o r d e r p o l y n o n i a l f i t used by Find_T to approxinate guess C . . . . . t e n r p e r a t u r e c o r r e s p o n i l i n gt o e n t h a l p y . c (A-H, !r-Z ) IMPLICITDOUBI,E PRECISION Integer counter R e a L * 8T 1 .T 2 ,T 3 ,8 1 , E 2 , 8 3E, 1 s q r E , 2 s q rE , 3 s q rE , 1 n u lE , 2 n u 1E, 3 n u I R e a l * 8 c a 1 a ,c a I b , c a l c , t e r n p e r , E n t b a l R e a l r , 8n l , n 2 , n 3 C o n n o n/ U S E / E n t h a(I2 0 0 0 ) ,t e m p e r( 2 0 0 0 ) ,c a 1 a , c a l b , c a l c ,c o u n t e r =tenper(counter-3) T1 =tenper(counter-2) TZ =temper(counter-1) T3 Elsqr = Enthal(counter - 3) ** 2.0d0 = E n t h a l ( c o u n t e r- 3 ) , , * 1 . 0 d 0 E1 E l n u l = E n t h a l ( c o u n t e r- 3 ) t * 0 . 0 d 0 E2sqr = Enthal(counter- 2) ** 2.0d0 = E n t h a l ( c o u n t e r- 2 ) * * 1 . 0 d 0 E2 E 2 n u l = E n t h a l ( c o u n t e r- 2 ) * * 0 . 0 d 0 E3sqr = Enthal(counter- 1) 't* 2.0d0 = E n t h a l ( c o u n t e r- 1 ) * * 1 . 0 d 0 E3 E3nul = Enthal(counter- 1) ** 0.0d0 =E2sqr/Elsqt n1 =E3sqr/E1sqr n2 E 2 s q r= 0 . 0 d 0 =E2- (n1*E1) E2 E2nul = E2nul - (n1 * Elnul) E3sqr = 0.0c10 =E3-(n2*El) E3 E 3 n u 1= E 3 n u I - ( n 2 * E L n u l ) =T2- (n1*T1) T2 =T3-(n2*T1) T3 =E3/E2 n3 =E3-(n3*82) E3 E 3 n u 1= E 3 n u l - ( n 3 * E Z n u I ) =T3-(n3*T2) T3 calc =T3lE3nuI c a l b = ( T 2 - ( E 2 n u 1* c a l c ) ) / E z ca1a = {T1 - (E1 * calb) - (Elnul * calc)) / nlsqr RETURN END 65 CENTH(I,T) FUNCTION c C.....Calculates the enthalpy of any fireball species at any tenperature II{PLICIT DOUBI,EPRECISION(A-H,O-Z) 50 , 1) ,c 2( 5 0 ,5 ) ,c 3( 5 0 ,5 ) ,C 4( 5 0 ,5 ) c o u r . { o N / D A( T / c5 ( 5 05 ,) (5 0 ) ,H H(5 0 ,5 ) , T M c o l , r M o N / D A(5T0/ )H,SRR(5 0 ) , N R c (I ) cENTH=HR N=NR(I) IF (T.I,T.298.15) THEN U - I TL = 298.15 T U= T + T(HC 1 ( I , J ) CENTH=CEN + C2(r,J)*TL 1 + c3(r,,t)*TL'tTL 2 + C4(I,J)*(TL**(_2.0)))*(TU_TIr) 3 CENTH=CENTH+HH(I,.t) ELSE D0 30 'J=1,N TL=298.15 I F ( J . G T . 1 )T L = T M ( I , . i - 1 ) TU=T I F ( T . G E . T l t ( r , ,)I ) T U = T M ( r , . t ) * (TU-TL) )1 C E N T H = C E N T(HI ,+JC + C 2 ( I ' , 1 ) *( T U * T U - T L * T/I2J.) 1 + C 3( I , J ) * ( T U , , T U * T U - T L * T L /*3T.L ) 2 -C4(r,J)*I./TV-r./TL) 3 r F ( T . L T . T l t ( r , J )) G O T O 40 CENTH=CENTH+HH(I,,I) 3O CONTINUE Itr' (T . GT. TI.1(I,N)) THEN TL = TM(I,N) T U = T = CENTII+ (C1(I,N) CENTH + C 2( r , N )* T L 1 + C 3( I , N ) * T L * T L 2 + C4(I,N)r!(TL**(_2.0)))*(TU_TIJ) 3 ENDIF ENDIF 40 RETURN END 66 TUNCTION ENTR(I,T) c C.....Calculates c the entropy of any fireball species at any temperature. II'IPIJICIT DOUBIEPRECISION(A-H,O-Z) c ( 5/ C 0 ,15 ) , C 2( 5 0 ,5 ) , C 3( 5 0 ,5 ) , c 4 ( 5 0 ,5 ) col,tMoN/DAT ( 5/ H coMr'toN/DAT 0 )R,s R( 5 0 ) ,N R( 5 o ) ,H H( 5 0 ,5 ) , T M( 5 0 ,5 ) (I ) ENTR=SR N = N (RI ) I F ( T . I , T . 2 9 8 . 1 5T) H E N iI =1 TL = 298.15 T U=T E N T R = E N+T R( C 1 ( I , J ) + C2(I,J)*TL L + C 3( I , , 1 )* T L * T L 2 3 + C 4( I , . 1 ), ,( T I J * *( - 2 . 0 ) ) ) * D L O(GT U I T L ) ( I, J) /Tl,l( I.,t ) ENTR=ENTR+HH ELSE D O3 0 J = 1 , N TL=298.15 If (,t.cT.1) TL=TI{(I,.1-1) TU=T I F ( T . G E . T(lI1, . 1 )) T u = T l I ( I , J ) (I, J) *LOc(TU/TL) ENTR=ENTR+C1 +C2(I..t)*(TU-TIr) 1 z + C 3( I , . I ) * ( T U * T U - T 6 * T/L2,. - c 4 ( r , . r ) * ( 1 . / T U / T U - I ./ t L / T L I 2 . / I F ( T . L T . T l , l ( I , , t)) G O T O 40 I ,H . tH ) / T M( I , , t ) E N T R = E N T R( + 3O CONTINUE IF (T .GT. TM(I,N)) THEN TL = TM(I,N) T U = T E N T R = E N T+R ( c l ( I , N ) 1 2 3 ENDIF ENDIF 40 RETURN END + C 2( f , N ) , t T I r + c 3 ( I , N )* T L , r T L + c 4 ( I , N )r 3( T L * *( - 2 . 0 ) ) ) * D L O G ( T U / T t ) o t GAUSS SUBROUTINE c t h e n u m b e ro f m o l e s o f e a c h s p e c i e s i n f i r e b a l l c.....calculates C.....kilogram of fireball ai.r. c C c c air ERIKSSONFREE ENERGYMINIMIZATIONROUTINE P R E C I S I O N( A - I T ' O - Z ) IMPLICIT DOUBI,E ( 5/ 0A,1 0 ) ,A K T( 5 0 ) ,A K T (F5 0 ) ,B( 1 0 ) ,B 0( 1 0 ) ' c ( 5 0 ) collMoN/AAA . F( l ' 5 ) . M L( 1 5) , AM . BI.' t PI,' l SM c o M M o N / B B B / r v; KAH R( 2 0 ) ,t . 1 1 ,M ,M 1 M 2 r0 ) ,P T o TT, ,Y ( 5 0 ) ,Y 0( 5 0) ' Y F( 5 0 ) ,Y T o r( 2 0 ) c o M t { o N / c c c /(P c D r u E N S r oFN( 5 0 ) , r F A S ( 1 0 ) , 1 S O L ( 1 0 ) , N S U M ( 2 0 0 ) ' 0 P r ( 2 0 ) ( 2N0 .2 1 ) , Y r r o r( 2 0 ) ' Y x ( 5 0 ) D T M E N S TRO I5=-I MSUM=0 NG=0 1 ISUt'l=O l,lSA=0 rr (us . GE. Itl ) TI{EN D0 2 I=Ml'HS ) [N r r ( Y ( r ) . N E . o r. H MSA=MSA+l' I S O L( M S A=) I I S U M = I S U H + 2 *( I*+ M p - M l) ENDIF 2 CONTINUE ENDIF 3 MPA=0 NG=NG+1 I F ( N G . 8 Q . 5 0 1 )N G = t =ISUI'I NSUII(NG) YSUM=0. D0 4 M=1,MP ) HEN I F ( Y T O T ( H ) . N E . O .T llPA=MPA+1 IFAS(MPA)=M (Nc) +2** (}t-1) NSUI{(NG)=NSUM (M) YSUM=YSUM+YToT ENDIF 4 CONTINUE ) E . I S . A N D . T T P A + } I S A . I . EG .G . tO , ) T O1 1 IF (NSUM(NG 5 IS=IS+2 DO 6 N=l,MPA M = I F A S( N ) Y T O T( M )= 0 . 6 CONTINUE ISUM=0 MPA=L YTOT(1 ) =1 . I F ( I { S A . N E . O )T H E N DO7 N=I,MSA I = I S O L( N ) Y(I)=0. ? CONTINUE MSA=0 ENDlF IF (IS.NE.1) THEN IT=IS 8 M=0 9 l'l=M+1 I T ( 2 * * M . I . E . I T ) G O T O9 IF (M.I,E.ilP) TIIEN MPA=MPA+1 IFAS (MPA)=lt Y T o T( t { )= 1 . HA=MF(il) (M) HB=MI, D0 10 I=ilA,MB Y(I)=YsUlI 1O CONTINUE EIJSE I=}l+ML(MP)-ltp IF(I.GT.MS)RETURN HSA=MSA+1 I S O L( M S A=) I I S U i l = I S U M + 2 *(*H - 1) Y(I)=YSUil ENDIF IT=IT-2** (tt-1) r r ( r T . E Q . 1c) o T o8 IF (}IPA+MSA.GT.L)GOTO5 ENDIF I F A S( 1 ) = 1 IF (NsUlI(NG).GT.Is)NG=NG+I NSUII(NG)=IS 1 1 I F ( N G . N E . 1 )T H E N DO 12 K=2,NG r F ( N S U r , t ( N c ) . E Q . N S U M ( K) - 1G) O T O5 L2 CONTINUE I F ( N s u l ' l ( l l c - l ) . E Q . M S U MN ( N c - j . )= - N S U M ( N G - 1 ) ) SUM ( N c - 2) . N E .- M S U I , I . O R . N S( U r F ( N c .L T . 3 . 0 R . N S U M NM C ). E Q . M S U MG ) O T O1 3 NSUH(NG-2) =-Nsul,t(NG-2) ENDIF 1.3LX=0 t4 D0 15 ,I=l,L B 0 ( , t ) = B( , J ) 1 5 CONTINUE D0 18 M=l ,lIP (M) MA=MF !18=lIL(11) I F ( Y T O T ( M ) . I , 8 . 0 . )T H E N DO 15 I=l'lA,MB AKT(I)=0. AKTF(I)=1. Y(I)=0. YF(I)=0. CONTINUE EIISE D0 17 I=l{A,}18 I F ( Y ( I ) . L T . 1 . E - 8 )y ( I ) = 1 . E - 8 AKTF(I)=1. L1 CONTINUE CAI,L ABER r F ( Y T O T ( M ) . E Q . 0 . )G O T O3 ENDIF 18 CONTINUE 69 D M I N = 1E. - 6 IVAR=0 IVAR.I=ML( 1) -l{S LS1=L+l{PA+MSA LS=LS1-1 tr5!=l,g+2 1 9 D 0 2 0 J = 1, L S 1 D0 20 K=\],LSZ R ( , 1, K ) = 0 . 2 0 CONTINUE D0 24 N=I,MPA LL=L+N M = I F A S( N ) !,tA=l{F(M) MB=I{L(M) D0 23 I=MA,MB IF (Y(I).NE.O.) THEN F ( I ) = G( I ) + L o c ( A K T( I ) ) R ( L l , L S 2 ) = R( L l , t S 2 )+ F ( I i * y ( I ) DO 22 J=L,L r F ( A ( r , . r ) . N E . 0 .) T H E N AY=A(I,J)*Y(I) R (.t , L1) =R(!T, IJl ) +Ay R ( . t , L S 2 )= R( J , L S Z )+ A y * F( I ) DO 21 K=.LII R (.1. K) =R('J,K) +AY*A( I , K) 2T CONTINUE ENDIF 22 CONTINUE ENDIF 23 CONTINUE D0 24 J=l,L R ( , t ,L S 2 )= R( . t ' L S 2 )- R ( , t ' L 1 ) 24 CONTINUE I F ( M S A . N E . O . )T H E N D0 25 N=1,llSA I=IsoL (N) K=L+l{PA+N R(K,tS2)=G(I) DO25 J=1.L R(J'K)=A(I',1) 25 CONTINUE ENDIF D0 25 .I=2,1,S1 N=J-1 D0 26 K=1,N s 1 g. K 1 = x( K , J ) 26 CONT]NUE DO 28 K=l,L I T ( K H ( K ) . N E . O )T H E N D 0 2 7 . I = 1, L S 1 R ( J , L S 2 )= R( , t , t S 2 ) - P I ( K ) / , R( . 1, K ) CONTINUE 27 ENDIF R ( K ,L S 2) = R( K , L S 2) + 8 0( K ) 28 CONTINUE DO 32 K=1,IrS I F ( K H ( K ) . E Q . O )T H E N ELMAX=O. 70 D0 29 J=K,LSI I F ( A B S ( R ( . ' , K)). I J E . E L H A X . O R . K H .(N J )E . O ) G O T O2 9 MROli=J (R(,t, K) ) ELIIAX=ABS 29 CONTINUE IF (EI.I'IAX.tE.O.) THEN r F { B 0 ( K )) 5 , 3 2 , 5 ENDIF IF (}IROI{.NE.K)THEN D0 30 N=K,LS2 (l,lROI{,N) RADBYT=R { ,) = R( K . N ) R ( M R O IN R( K , N )= R A D B Y T 30 CONTINUE ENDIT KA=K+1 D0 31 .I=KA,LSI , 1, r ) 7 p 1 1 , 6 1 R K V O T =(R DO 31 N=KA,LS2 R ( . t , N ) = R( . 1, N ) - R K V O T * R ( K ,N ) 31 CONTINUE ENDIF 32 CONTINUE D0 34 N=l,LSl K=LS2-N I F ( K H ( K ) . E Q . O )T H E N r F ( R ( K , K ). E 9 . 0 . . A N D . R ( K , r , S.2E)Q . O ). T H E N P r ( K )= 0 . K=K-L-MPA I F ( K . I , E . O ) G O T O3 4 I = I S O L( K ) Y(I)=0. GOTO1 ENDIF P I ( K )= R( K , L S 2) / R ( K , K ) KA=K-1 I F ( K A . N E . O )T H E N D0 33 J=1,K4 33 R(.t,LS2)=R(,I,LS2)-pI(K)*R(.r,K) ENDIF ENDIF 34 CONTINUE r F ( I V A R . E Q . 0 . 0 R . M R . t . G E . 0 . O R . S t A l r . t T . o . 1c) o T o 4 5 D0 35 J=1,L I F ( A B S( P I ( J ) ) . G T .1 . E - 8 . A N D . A B(SO P I( J ) / P I ( J ) - 1 . ) , G T . D M I N ) G O T O4 4 35 CONTINUE NR=0 IF (NG.NE.1) THEN D0 35 K=2,NG I F ( N s u M ( N c .)E Q . - N s u l ' t ( K - 1) N R = N R + I 36 CONTINUE ENDIF D0 38 M=I,MP I F ( Y T O T( M ) . I , E .O . ) T H E N HA=MF {M) (M) MB=ML CAIJLXEER YFTOT(M)=0. DO 37 I=tlA,MB (M)+Yr ( r ) YFTOT(M)=YFTOT Yx(I)=YF(I) A K T( I ) = 0 . YF(I)=0. 3 7 CONTINUE Ir (u.E9.1) YFToT(l{) =YFToT(H) /PToT ENDIF 3 8 CONTINUE 3 9 DIFM=1. D0 40 l{=1 ,HP ) T . O . . O R . Y F T O T (.II{. )E . D I T M )coTo 40 I F ( Y T O T ( M. G KA=M DIFII=YFTOT(M) 40 CONTINUE I F ( D I F M . N E . 1 . . )T H E N I F ( N R . N E . O )T H E N NR=NR-1 YFTOT(KA)=1. coro 39 ENDIF (NG) MSUtI=NSUI{ YTOT(KA)=1. MA=Mf(KA) (KA) MB=ML DO 41 I=}IA.MB .Y I ) / Y F T O T( K A ) ( I ) = Y S U M * Y(X 4L CONTINUE GOTO3 ENDIF IT (}IS.GE.Ml) THEN DIFM=0. D0 43 I=MI,MS IF (Y(I).I.8.0.) THEN PIA=-G ( I ) D0 42 il=l ,Ir PIA=PIA+A(I, J) ,,PI ('J) 42 CONTINUE IF (PIA.GE.DIFM)THEN KA=I DIFM=PIA ENDIF ENDIT 43 CONTINUE IF (DIFM.NE.O.) THEN Y (KA)=YSUM GOTO1 ENDIF ENDIF IVAR'J=0 GoTO 46 44 DO45 J=1,L 0PI (J)=PI (.t) 45 CONTINUE 46 SLAM=I. DO 48 N=I,MPA L1=L+N - I{=IFAS(N) !tA=!lF (t{) (M) ME=ML 72 DO 48 I=MA,MB I T ( Y ( I ) . N E . O .) T H E N P I A = F( I ) - p I ( 1 1 ) D0 47 J=l,L P I A = p I A - A( I , J ) * p I ( , t ) 47 CONTINUE YX(I)=PrA*Y(r) IF (PIA.cT.SLAM) SLAI{=pIA ENDIF 48 CONTINUE IF (stAM.cT.1. ) SLAM=0.9/stAil I F - ( M S A . N E . OT) H E N DO 49 N=l,!lSA I = I S O L( N ) K=[+l,lpA+N IF (Pr(f).LT.0.) [1=0 y (or T )o r F ( r v A R . E g . 0 . 0 R . p r ( K ) . c T ). - G 49 ) T O4 9 I F ( S L A M . L T . 1 . . A N D . - P I ( K ) / Y S U M . I , T . 1 , EG8O Y(I)=0. GOTO1 49 Y(I)=ABS(PI(K)) ENDIF DO 50 ,I=1,L B 0 ( J ) = B( , I ) 50 CONTINUE YSUM=O. D0 52 N=1,l,lpA I.l=IfAS(N) MA=I{F(M) MB=IIL(M) D0 51 I=MA,MB IF (Y(I).NE.O.) THEN Y(I)=Y(I)-sLAM*yX(I) I F ( Y ( I ) . r , T . 1 . E - 1 0 )Y ( r ) = 9 . ENDIF 51 CONTINUE CALI, ABER r r ( Y T o T ( U ) . E 0 . 0c.o) T o3 (t{) YSU}I=YSUH+YTOT 52 CONTINUE IVAR=IVAR+1 IF (MR.EQ.25.OR.MR.EQ.50) DMrN=100.*DMrN rF (MR.E9.?5) coTo 5 I F ( r v A R J . L T . 0 . O R . L l . E g . 0 . o R . S L A M . L T .)1 .C O T O1 9 IVAR,J=IVARJ+1 IF (IVARJ.NE.10) THEN DO 53 N=I,MPA M=IFAS(N) MA=IIF(M) ltB=ML(H) DO 53 I=MA,MB IT (Y(I).GT.O.) THEN r F ( A B S ( y X ( r ) ) / y ( r ) . G T . 1 . E - 6 )G O T O1 9 ENDIF 53 CONTINUE ENDIF 73 D0 54 N=I.,MPA l.l=IFAS(N) (M) MA=MF MB=ML(M) CAIL XBER DO 54 I=MA,$B IF (Y(I).tE.O.) THEN Y ( I ) = Y T O T( M )* Y F( I ) ) 0 T 05 4 r r ( Y ( r ) . 1 T . 1 . E - 1 0 . 0 R . 1 X . E 0 . 1G r v-l !A- I GoTO 14 ENDIF 54 CONTINUE IF (IVARJ.EQ.10)t't=O RETURN END c---------SUBROUTINE ABER CAIJCULATE ACTMTIES C c 0F SPECIES FROUMOLEFRACTIONS IMPITICIT DOUBLEPRECISION(A-H'O-Z) c c o u i l o N / A A A( 5 / A0 ,1 0 ) ,A K T( 5 0 ) ,A K T r( 5 0 ) ,B ( 1 0 ) ,B 0( 1 0 ) ,G( 5 0 ) c o l t M o N / B B B / r v A R , K I l ( 2 0 ) , ,LM , L, l1, t,l l l A , l ' l B , l l P , M s , t t F ( 1 5 ) , l ' t l ( 1 5 ) , , Y ( 5 0 ) ,Y O( 5 0 ) ,Y r ( 5 0 ) ,Y T O(T2 0 ) c o t t M o N / c c c /(P2 r0 ) ,P T o r T c 2 4 6 8 Y T O T( M )= 0 . D0 2 I=MA,ilB YTOT(M)=YToT(M)+Y (I) CONTINUE I F ( Y T O T ( H ) . I . T . 1 . 8 - 8 )T H E N Y T O T( M )= 0 . ELSE If (l,l .eq. 1) YToT(1) = YTOT(1)/PToT DO 5 I=MA,I{E YF (I ) =Y ( I ) /YToT (l'l) CONTINUE DO 8 I=MA,!{B AKT(I) =AKTF(I) *YF (I) CONTINUE ENDIF RETURII END XBER SUBROUTINE c C c CAITCUTATE MOLEFRACTIONSOF SPECIES fROll ACTMTIES (A-H.O-Z) PRECISION IMPLICITDOUBI,E ( 5 0 ) ,B( 1 0 ) ,B 0( 1 0 ) ,G( 5 0 ) ( 5/ 0 coilMoN/AAA A,1 0 ) ,A K T( 5 0 ) ,A K T F - col{l{oN/BEB/ l{A,llB,UP,}lS,l{F( 15), ML( 15) rvAR,KH( 20), L, t1, M,}.11, ( 2 0) , , Y ( 5 0 ) ,Y O( 5 0 ) ,Y F( 5 0 ) ,Y T o T c o l t M o N / c c c l(p2r0 ) ,P T o r T OYF(50) DII{ENSION 74 (PTOT) PLOG=LOG I F ( P I r O C . L T . 1 0). P L 0 G = 1 0 . D0 5 I=l{A, MB IF (Y(I).I.E.0.) THEN PIA=-G ( I ) D0 2 J=L,L I F ( A ( I , . ' ) . N E . O .) T H E N I F ( P r ( , r ) . 8 0 . 0 . ) G 0 T 04 P I A = P I A + A( I , J ) * p I ( J ) ENDIT 2 CONTINUE IF (PIA.GT.PL06) PIA=PLOG IF (PIA.I,T.-200.) GOTO 4 A K T( I ) = E X P( P I A ) YF(I)=AKT(I) GOTO 6 4 A K T( I ) = 0 . YF(I)=0. ENDIF 6 CONTINUE IVAR=0 8 IVAR=IVAR+I D0 10 I=MA,MB o Y F( I ) = Y F( I ) Y F ( 1 ) = A K T( I ) / A R T F( I ) TO CONTINUE DO 12 I=MA,MB IT (YF(I).GT.O.)THEN I F ( A B s ( o Y F ( I ) / Y F ( I ) - 1 . ) . c T . 1 . E - 4 )c o T o ENDlT 12 CONTINUE RETURN END 8 v c---------c SUBROUTINE Runge_Kutta (N, t) C . . . . . 4 t h o r d e r R u n g e - K u t t af o r s o l v i n g d i f f e r e n t i a l c equations. (A-H,O-Z) IIIPLICIT DOUBI.E PRECISION Integer count R e a l * 8k , H D i n e n s i o n f _ n e w ( 1 0 ) f, _ o l r l ( 1 0 ) D i n e n s i o nc ( 0 : 3 ) , b ( 0 : 3 ) D a t a c / 0 . 0 d 0 ,0 . 5 d 0 , 0 .5 d 0 ,1 . 0 d 0 / Data b/1.0it02 , . 0 d 0 ,2 . 0 4 1 0 1 ,. 0 a 1 0 / C o n n o n/ O n e / c o u n t , d f( 5 ) , d t , f ( 5 ) , k , l a s t _ c o u n t , l ',fr a d _ l o s s 0 Do 10 ,l = 1,N f -new(.t) = f (.I) f_o1d(J) = f(J) 10 continue Do40I = 0 ,3 del_t=c(I)*dt w e i g h t = b ( I )* d t / 9 . 0 d 0 Do20J=1 ,N f (.t) = f _old (rt) + del_t * df (.t) 20 continue /) CaIl Dif f erential-Eguations Do 30 ,J = 1.,N f _new(J) = f_nes(.I) + weight * df (J) 30 continue 40 continue D o 5 0 J = l . N f (.I) = f -nev (.I) 50 continue 1 = t + d t RETURN END c c---------c Dif f erential-Equations SUBROUTINE I M P I , I C I T D O U B I JPER E C I S I O N( A - H , M - Z ) inclutie ' common . Put ' = f(1) - z chan*z = t[l z = f (4) enth-fb3er-Mass call Do-enrh-hart rnitial-fb-enthalpy) rf (enth-fbjer-Mass'GT' CaI1 ICAo-air (z,T-ambient,P-anbient,D-arnbient) OLD'MASS= Mass = f (3) * 4.0d0 / 3.0d0 * pii I'tass S, l'lass, z ) Cal l Mass -Ba1ance-Update (OLD-fiAS = l l a s s * T o t a l G a s M o l e* 8 . 3 1 4 3 * T - f b / P - a n b i e n t cVol = ( ( c V o I * 3 . O d O/ ( 4 . 0 d 0 ' t p i i ) ) * * ( 1 . 0 d 0 / 3 . 0 d 0 ) ) radius = (radius ** 3.0d0) * D anbient v =f(31 /Y Dtlash = D c l a s h* D - a m b i e n t Density = t ( 2 ) / ( D d a s h+ k ) Itl = M / V u =G*V*(1.0d0-Ddash) Fb = 3 . 0 d 0 * e n t r a i n * d a b s ( M / r a d i u s ) * D d a s h * * ( 2 . 0 d 0/ 3 . 0 d 0 ) tlrn Ca1I anrbient-enthalpy ( z , T-anbient ) = u df(1) = Fb df (2) = dm df (3) CaIl Loss-Radiant (T-fb, radius, T-anbient ) = Radiant-l,oss df (5) =- (f(4) -enth-anbient) *dn*4.0d0 / 3.0d0*pii/Uass df(4) - df (5) / Mass 1 - (G'*u/Ddash) 2 RETURN END to SUBROUTINE Mass_Ba1ance_Upclate ( OID_MAS S, BMass, hi te ) c-.-..calculates the increase in nass of atoms in firebalr C.....for present tine. and uodates (A.H,I,I-Z) I}TPLICIT DOUBIJE PRECISION include'con$on.put' a a The "an" stands for the arnount per kilograrn of ambient air. Thus "anN" means the amount of atomic nitrogen, in mole, per kilogran of anbient air. These values are returnetl frorn the GRAMATOMSUBROUTINE. Cal1 CI,EAN_FIREBALI,(hite,water_incIude,llFH20,MFN2,MFO2.MFCO2,MfAr) (l{FH20,MFN2, MFO2, MFCO2 CALI GRAM_ATOI'I , }lFAr , anN, anO, anH, anC, anAr ) = BMass - OLD_MASS delta nass = 0.0d0 nfS = 0.0c10 nfE = 0.0ct0 anS = 0.0d0 anE = T o t a l n f N + (tlelta_nass * TotaLnfN = Totalnf0 + (delta_nass * Totalnfo = T o t a 1 n f H + (delta_urass* Totalnfll = T o t a l n f C + ( d e l t a _ m a s s* TotalnfC = T o t a l n f A r + (tlelta_nrass* Tota1nfAr = Totalnfs + (delta_nass* TotalnfS = T o t a l n f E + ( d e l t a _ n a s s* TotalnfE nfN =Tota1nfN/BHass nfo = TotalnfO ,/ Bl{ass nfH =TotalnfH/BMass nfAr=TotalnfAr/BMass nfC =TotalnfC/Bl,lass nfS =TotalnfS/BMass nfE =TotalnfE/8Mass RETURN END anN) ano) anH) anC) anAr) anS) anE) 77 SUBROUTINE Loss_Radiant (T, rad, T_anb) c C.....Calcu1ates the energy lost to far field clueto radiation. L (A-H,O_Z) IHPLICIT DOUBI.E PRECISION R e a l * 8 I n i t i a l _ f b _ e n t h a l p ym , wa ConnonloutputlopTr Connon/f our /beta, D_arrbient,ent rain. f ni t ial_f b_enthalpy,pi i, tl, mwa C o r n n o/nh o l / H o l d n( 5 0 ) , T o t a l G a s M o l e , T o t a I S o l i d M oZI ed,. s h C o m n o /nB / O p _ f b , T r , R a d i a n tL o s s , s i g n a i f ( T . c T . 3 0 3 5 . 0 d 0 t)h e n T r = 0 . 9 5 4 d 0- 1 . 0 d - 8 * ( ( T - 6 0 0 0 . 0 d 0 )* * 2 . 0 d 0 ) eLse i f ( T . c T . ? 0 4 . 0 d 0 )t h e n T r = 0 . 5 3 5 d 0* d l o g ( T ) - 3 . 5 0 7 7 d 0 else Tr = 0.0d0 endif endif If (TotalSoIidltole .cT. 3.0d-05) then op_fb = 1.0d0 else RadInCM=100.0d0*rad o p - f b = 1 . 0 d 0 - D e x p ( - 4 . 0 d 0 ' t 2 . 0 d O * R a d I n C l l * P M)A C ( T ) endif = op-fb * Tr 0pTr = 4.0d0 rt pii r, (rad * rad) Radiant Loss 1 * OpTr * sigma * ( (T ,, T) + (T_anb * T_amb) ) ,, (T t T_amb) * (T - T_anb) 2 RETURN END a c Function PMAC(T fb) C.....Returns the Planck llean Absorption Coefficient (PI{AC) I (A-H,M-Z) IUPIJICITDOUBIJE PRECISION L o g i c a l C h a r g e d , S e t t i n g _ u p , m o t n e nst ut omp C o n n o n/ t v o / c h a n _ 2c, V o l . D d a s hD, e n s i t y , F b , u ,G Comnon/ eidtrt /ctrirged, Set t i ng-up, mornen tun-s top C o m m o/ n Din/ DL(4),TL(7),PMAC_Log(8,4) If (Setting_up) then Setting-up = .false. D_grounal= 1.225D+00 T L( 1 ) = 0 . 0 i l 0 TIr(2) = 1000.0d0 TL(3) = 2000.0d0 TL(4) = 3000.0d0 TL(5) = 4000.0d0 TL(6) = 6000.0d0 TL(7) = 8000.0d0 D L ( 1 )= 0 . 0 d 0 D L( 2 ) = - 1 . 0 a 1 0 DL(3) =-2.0d0 DL(4) =-3.0d0 P M A c _ L o(g1 , 1 ) = P I I A CL o s ( 2 , L ) = P M A C _ l r o g ( 3 , 1=) PI.IAC_Log(4,1= ) P M A C _ l , o g ( 5 , 1=) P M A CL o g ( 6 , 1 ) = P M A CI J o g ( 7 ' 1 ) = P M A CL o g( 8 , 1 ) = P l , l A CL o g ( 1 , 2 \ = P M A CL o g ( 2 , 2 1 = P M A CL o s ( 3 , 2 ) = P M A C _ L o( 4 g, 2 \ = P l ' l A C _ L o( g5 , 2 1 = P I l A C _ L o(g6 , 2 1 = P M A C _ L o(g1 , 2 ) = P l ' l A CI J o g $ , 2 ) = P M A C _ l r o g ( 1 , 3=) P M A CI r o g ( 2 , 3 ) = P M A C _ L o s ( 3 , 3 =) P M A CL o g ( 4 ' 3 ) = P M A c _ L o g ( 5 , 3 )= Pl,lAC Log(6,3) = P I I A CL o g ( 7 , 3 ) = P l ' l A C _ I r o g ( 8 , 3= ) (1'4) = PHAC-Log P M A CL o g ( 2 , 4 ) = P H A CL o g ( 3 , 4 ) = P M A CL o g [ , a ) = P M A C _ l , o g ( 5 , 4 )= P M A CL o g ( 5 , 4 ) = P M A C _ L o(g1 , a \ = PuAc-Los(8'A) = endif D1os10(5.4d-08) DtosL0(5.4d-08) D l o g 1 (01 . 7 d - 0 6 ) D l o g 1 0( 4 . 4 d - 0 5) (5.7d-04) DlosL0 D 1 o s 1(06 . 1 d - 0 3 ) D l o s l 0( 1 . 4 d - 0 2 ) D 1 o s L(01 . 4 d - 0 2) D I o g 1 0( 1 . 1 d - 0 9 D l o g 1 0( 1 . 7 d - 0 9 D 1 o s 1 0( 5 . 4 d - 0 8 D l o g 1 0( 1 . 6 c 1 - 0 6 Dlogl0 (2. 6d-05 D I o g 1 0( 1 . 9 d - 0 4 DIog10(5.1d-04 D1og10(5.1d-04 D 1 o s 1(05 . 3 d - 1 1 ) DIoslO(5.3d-11) D I o g l O( 1 . ? d - 0 9) D1og10(7.0d-08) D1og10(7.7d-07) D1os10(6.6d-05) Dlos10(1.9d-05) DloglO(1.9d-05) DIog10(1.7d-12) D 1 o s 1(01 . 7 d - 1 2) D 1 o g 1(05 . 3 d - 1 1 ) D1os10(2.7d-09) D l o s 1 0( 2 . 1 d - 0 8) Dlos10(3.3d-07) D I o s l O( 5 . 9 d - 0 7) D1os10(5.9d-07) Den=Density/D_ground D - I o g = D I o g 1 0( D e n ) D o1 I = 1 , 3 I f ( D _ 1 o g . L E .D L ( I ) . a n d . D _ l o g . G E . D L ( I + 1 ) ) K = I Continue DoZ I =L, 7 r f ( T f b . G E .T t ( r ) ) ' J = I Contlnue Dratio = (D-log - Dt(K) | / (DI'(K+1) - DL(K)) D l . = P M A C - L o g ( . I , K )+ ( D r a t i o " ( P t { A C - L o g ( J , K + l ) - P M A CL o g ( , t ' K ) ) ) D 2 = P H A C _ L o g ( J +, 1K ) + ( D r a t i o * ( P I ' l A C _ L o g ( J + 1 , K + l )(.t+1, K) ) ) I PMAC_Log T r a t i o = ( T - f b - T L ( , 1 )) / ( T l "( , t + 1 ) - T L ( J ) ) P M A C _ 1 o 9 1= 0 D 1 + ( T r a t i o * ( D 2 - D 1 )) P}IAC= 10.0d0 ** PMAC_Iog10 RETURN END t9 f nitialize-OutPut SUBROUTINE c c . . - . . s e t s i n i t i a l i n f o r n a t i o ni n h e a d e r sf o r c l a t ao u t p u tt o s c r e e n C.....and output files. c I}4PL1CIT DOUBI,EPRECISION(A-H.M-Z) inclucle 'conmon.put' Character water*3, pgrn*25 C h a r a c t e r * 8 M t i m ,l l d a t e Character*13 sub,sub2 Character*50 Forn, Forml pgrm if(water include) then water = 'Yes' else water = 'No ' endif ='FB10.F0R L'I/L1/L986' CalI Date(Mdate) CalI Tine (Mtin) D o 1 0I = 2 , I 0 w r i t e ( I , 2 ) l { , t t da t e , f i l e - n a m e ( I - 1 ) , M ti u t , p g r n , S p e c i e s - n u n , A t n o s , * beta, Z_fb, T_fb, entrain, t irnes_upG , , s i g m a ,i { a L e r 10 continue write(3,4) write (4,6) ?'-fb ' TGasMole Tsoll'lole TotalMol T-fb Form = ' Tirne I K nrole/kg rnole/kg rnole/kg s Fornl=' ( C h a r g e d ) then If If (Species-nurn .I,E. 6) then ' TotChargetl' w r i t e ( 5 , * ) F o r n ,( N O l 4 ( I ) , , , , I = T , S p e c i e s _ N u m ) ,n ' I=1, Species-num) ' nrole/kg' wtite (5, *) Forrrl, ( ' roole/kg , , else w r i t e ( 5 , * ) F o r n , ( N o M ( I ) I, ' , f = 1 , ? ) w r i t e ( 5 , * ) F o r m l ,( ' m o l e / k g endif "r=1,7) endif If( .not. Charged) then if (Species-nurn.LE. ?) then w r i t e ( 5 , * ) F o r m ,( N o l { ( I ) , " , f = l , S p e c i e s - n u n ) w r i t e ( 5 , * ) F o r m l ,( ' m o l e , / k g ' , I = l , S p e c i e s - n u n ) else w r i t e ( 5 , i ) F o r n , ( N o t ' l ( I,)' ' , f = 1 , ? ) ' w r i t e ( 5 , * ) F o r m 1 ,( ' m o l e / k g ,I=1,7) endif enilif write(6,7) Time Tfb' sub =r K ' s sub2=' Do 20 .IK = 1'3 ( ( . I K - 1 )* 1 1 ) - 1 J = 8 * If(Species-num .GT. 'J-1 .and. Charged) then if(Species-num .LE. ,t+10) then w r i t e ( J K + 5 ,* ) s u b , ( " , N O M ( I ) , I = r J + l ,S p e c i e s - n u r n ) , ' n T o t C h a r g e c l ' write(JK+5,*) sub2,(' nole/kE',t=il{l,Species-nurr+l) else w r i t e ( J K + 5 , i) s u b , ( , ' , N 0 1 { ( I ) , I = J + l , i 1 + 1 1 ) w r i t e ( , l K + 6 , * ) s u b 2 ,( ' n o l e / k g ' . I = , 1 + 1 , J + l 1 ) endif endif i f ( S p e c i e s _ n u m . G T . , l . a n ( l. . n o t . C h a r g e d ) t h e n i f ( S p e c i e s _ n u m. l r E . J + 1 1 ) t h e n write (JK+5, sub, ( ",NOM (I), I=J+l. Species_num) ") w r i t e ( J K + 5 ,* ) s u b 2 , ( ' r n o l e / k g ' , I = r l + L .S p e c i e s _ n u m ) e 1s e w r i t e ( , l K + 5 *, ) s u b , ( ' ,1=J+1,,1+1.L) w r i t e ( J K + 6 , * ) s u b 2 ,( ' " NnooM l e( /I k) g ' , I = J + 1 , . 1 + 1 1 ) endif endif 20 Continue I f ( S p e c i e s _ n u r n. G T . 3 9 . a n d . C h a r g e d ) t h e n i f ( S p e c i e s _ n u m. L E . 5 0 ) t h e n w r i t e ( 1 0 , * ) s u b . ( ' ' , N O l l ( I ) , I = 4 L , S p e c i e s _ n u m ) ,n' T o t C h a r g e d ' w r i t e ( 1 0 , * ) s u b 2 ,( ' n o l e / k g r , I = 4 1 , ,S p e c i e s _ n u u r + 1 , ) else write (0,1) Stop endif endif i f ( S p e c i e s _ n u m. G T . 4 0 . a n d . . n o t . C h a r g e d ) t h e n i f ( S p e c i e s _ n u m. L E . 5 1 ) t h e n w r i t e ( 1 0 , * ) s u b , ( ' ' , N O (MI ) , I = 4 7 , S P e c i e s - n u m ) w r i t e ( 1 0 , * ) s u b 2 (, ' else w r i t e( 0 , 1 ) mole/kg',1=4L,Species_num) Stop endif endif w r i t e ( 0 , 8 ) i l , M d a t e ,M t i m ,p g r n , b e t a , Z _ fb , T _ f b , e n t r a i n RETURN C--------AI,IJ THE FORMATSTATEMENTS c 1 Forrrat('There are too manyspecies in the system lmore than 51] * ',/, ' See Initialize_Output S U B R O U T I N EP.r o g r a m n o w T e r m i n a t e c l . ' ' ! ) 2 F o r n a t ( t 7 . 4 , ' M e g a t o n B o n r bY i e t d . Date data taken on ',A8,/,' Th *is clata was storecl in file : ',AL2,' at time ',A8,/,' Data generat *ed from program : ',A25,/.' Input data read by program frorn file : * D.file Inclutles ',f2,' S p e c i e s . T y p e o f a t m o s p h e r e, , , A 2 0 , / , *' Beta = ',f5,3,' Init Z = ',f.6.4,' Init Tf = ',f6.1.' Entrain = ' t , f 4 . 2 , / , ' T i n r ef o r r u n : ' , f 5 . L , ' * G r a v i t y : ' , t 7 . 5 , ' S i g n a : ' , d 9 . 3 , ' l f a t e r v a p o u r i n c l u r l e c l: ' , A 3 ) 4 Forrrat(47x,'f(1) alf(1),u',/,' Time T_fb H_top H_bot raal * cVol z speed ch_z OpTr R TotR/ii R/Ro Zdsh *',/,' s K m ITr m n**3 m n/s * m J/s') ' 6 F o r n a t ( 1 5 x , ' i l f( 1 ) , u ' , 3 3 X , ' d f ( 2 ) , f b Tirne T_fb speecl ,/ ,' *cVo1 llass Den Ddsh Buoyancy P_amb T_amb fb_N fb_O * fb_H fb_Ar fb_C TotalHole' , /, *r s * P a K m/s n**3 kg kS/m3 kg.rn/s2 K rnol/kgnoI/kg nol/kg nol/kg mol/kg nole/kg') 81 df (1) df(2),fb f (3)',7X,'t(4) 7 F o r m a t ( 1 5 x , 'l f) ' , L z X , ' t Q ) * T _ a m b M( D d + k ) V.Ddash e tlf (3\' , / ,' Tinre T_tb z *nth_fb dt enth-amb Ent u Bouyancy dm df (4) *hperkg',/,' Jou K kg s n kg.m/s K *Ie J/s s Joule/kg Joule/ m/s ks/ s kg.n/s2 *kg' ) 8 F o r n a t l K , f ? . 4 , ' M e g a t o n B o m bY i e l c i . D a t e t l a t a t a k e n o n ' , A 8 , / , ' T *his data uas stored in files : d?.dat at tirne ',A8,/,' Data gener * a t e d f r o m p r o g r a m: ' , 4 2 5 , / , ' B e t a = ' , f 5 . 3 , ' I n i t Z = ' , f 5 . 4 , ' I n *it Tf - ' ,f6.1,/,' e n t r a i n = ' , f 4 . 2 , / , 4 6 x , ' f ( L l d f ( 1 ). u ' * , / ,' z speed c Time cVoI T_fb H_top H bot rad *h_z opTr n n**3 s K. m n Ro , ,/ ,, ') -* lo m/s m Jls END ;---------a SUBRoUTINE 0utput_Data C...,.Outputs data to screen and output files. c IMPIJICIT DOUBI'EPRECISION(A-H.I{-Z) include 'connon.put' C h a r a c t e r F o r r u 2 * 4 7F , o r m 3* 4 1 , F o r m 4 * 4 5 ,F o r m 5* 3 9 w r i t e ( 0 . 1 ) n T o t a l C h a r g e d c, o u n ! r r r i t e ( 3 , 4 ) a t i m e , T _ f b . z i r a d i u s , z - r a d i u s , r a d i u s , c V o 1 ,z . u , c h a n _ Z , * O p T r ,R a d i a n t I J o s s ,f ( 5 ) / I n i t i a l _ f b _ e n t h a l p y , d f ( 5 ) / r a d _ l o s s 0 , Z d s h i { r i t e ( 4 , 5 ) a t i r n e , T _ f b , u , c V o l , l , l a s s ,D e n s i t y , D d a s b ,F b , P _ a n b i e n c , * T _ a m b i e n t, n t N , n f O i n f l { , n f A r , n f C , T o t a l M o l e F o r m 2= ' ( F 6 . 2 , F 7 . 1 , 3 D 1 0 . 3 , X , F 5 . 3 /, '/ c h a x ( S p e c i e s _ n u + m4 8 )/ */'D10.3,d10.3)' F o r m 3= ' ( F 6 . 2 , F 7 . 1 , 3 D 1 0 . 3 , X , F 5 . 3 , 7 D 1 0 . 3 ) ' If (Charged) then ' If(Species_nurn .LE. 5) then w r i t e ( 5 , F o r m 2 ) a t i m e , T _ f b ,T o t a l G a s M o l e , T o t a l S o I i d M o l e , T o t a l M o l e * , Z _ f b , ( H o l d n ( I ) , I = 1 , S p e ci e s _ n u m ), n T o t a l C h a r g e d e 1s e w r i t e ( 5 , F o r m 3 ) a t i n e , T _ f b , T o t a l G a s f i o l e ,T o t a l S o l i d M o l e , T o t a I M o l e * , 2 - f b , ( H o l d n( I ) , I = 1 , 7 ) endif endif If (.not. Charged) then if(Species_nun .1,8. ?) then write (5,6) atine,T_fb,TotalGasMoIe,TotaISolidMole,TotalMole, * Z _ f b , (H o l d n ( I ) , I = 1 , S p e c i e s _ n u n ) eI se w r i t e ( 5 , F o r m 3) a t i m e , T _ f b , T o t a l G a s M o l e ,T o t a I S o I i d l 4 o 1 e , T o t a l M o l e * , 2 _ f b , ( l t o l d n( I ) , I = 1 , 7 ) endif endif 82 w r i t e ( 6 , 7 ) a t i r n e ,T _ f b , z , T _ a n r b i e n tf, ( 2 ) , f ( 3 ) , f ( 4 ) * M a s s ,u , F b , * d f ( 3 ) , d f ( 4 ) , d t , e n t h _ a m b i e n t f, ( 4 ) Do 10 ilK = 1,4 J=8+((,tK-1) ',11) I f ( S p e c i e s _ n u u r . G T . J - 2 . a n a l . C h a r g e c l. a n d . S p e c i e s _ n u m. L E . J + 9 * ) then L =Species_num-,J+2 L L = I r - 9 write(0,2) L,LL,J,.tK if (u..GE.1) then F o r m 4= ' ( X , F 5 . 2 , F 6 . 0 , 9 d 1 0 . 3 , ' , / / c h a(rt L + 4 8 ) / / ' , d L 9 . 3 , D 1 0 . 3 ) ' else F o r r n 4= ' $ , f 6 . 2 , F 6 . 0 , ' / / c h a r ( t + 4 8 )/ / ' d L } . 3 , D 1 0 . 3 ) ' endif , o r m 4 ) a t i n e , T _ f b , ( H o l d n ( I ) , I = J , S p e c i e s _ n u n ) ,n T o t a I C write (.IK+6F *hargetl enilif IF(Species_num .GT. J-1 .ancl. .not. 't LE. J+10) then L =SpeCies_nun-.t+1 Charged .and. Species_nun . L . L = . L - v if (tL.GE.1) then F o r m 5= ' ( X , 1 6 . 2 , F 5 . 0 , 9 d 1 0 . 3 , ' / / c h a r ( L t + 4 8 )/ / ' d l l . 3 ) ' else F o r m 5= ' ( X , F 6 . 2 , F 5 . 0 , ' / / c h a r( L + 4 8 )/ / ' d 7 0 . 3 \ ' endif write(JK+5,Form5) atime,T_fb, (Ho1dn(I),I=J,Species_nurn) endi f If(Species_nun .GT. ,J+9 .and. Charged) * then w r i t e ( J K + 5 , 3 ) a t i r n e , T _ f b ,( H o I d n ( I ) , I = J , J + 1 0 ) endif IF(Species_nun .cT. J+10 .and. .not. Charged ) then $ r i t e ( J K + 5 ,3 ) a t i m e , T _ f b , ( H o l < I n ( l ) ,I = J , J + 1 0 ) endif 10 Continue w r i t e ( 0 , 8 ) a t i m e , T _ f b , z + r a d i u s , z - r a d i u s , r a a l i u s ,c V o l , z , u , c h a n _ 2 , *OpTr,Radiant Loss RETURN c C=--------ALL THE FORMATSTATEI1ENTS 1 F o r n a t ( ' O n T o t a l C h a r g e d= ' , D 1 0 . 4 , ' c o u n t = ' , 1 3 ) 2 F o r m a t ( 'L = ' , 1 3 , ' L L = ' , 1 3 , ' , J = ' , 1 3 , ' J K = 3 F o r m a t( X .f 5 . 2 , F 6. 0 , 1 1 d 1 0 . 3) 4 F o r m a( tX , t 6 . 2 , f 6 . 0 , t .70 , f 7. 0 ,f 7 . 1 . D 1.14 , f 8 . L , f 7. 2 , f 5 . 1 , * f 6 . 3 , D 1 0 . 3 , X . F 5 . 4 , X ,41, 6 1 .5 3 . ) 5 F o r m a(tF 7. 2 , f ' 1 .1 , F ? .2 , 2 D I 0 3. , 2 F 6 3. , D 1 0 3. ,F 9 .1 , f 5 . 1 , 5 F 7 3 . ,D 1 0 3. ) 5 F o r m a(tF 6 . 2 , F .7L , 3 D 1 03., X , F 53. , ? D l 0 3 . ) f o r m a (t X , F 62. ,F 6 .0 , F 8 .1 , F 5 1. , " , D 1 03. ,D 1 03. , " , D 1 03. , " ', ' *r5.1,' ',2D10.3.' ,F4.2,' ,DLo.3) 8 r o r n a t( x ,F 5. 2 , F ?. 1" D , FL?.00.,3F ,7'. 0 . F 5 . 0, " " ,DD190.3., 3 F ,8' .L , F ' .I 2 , 8 6. 1 , 1F6.2,'"09.3) END 83 read amb air SUBRoUTINE c C . . . . . R e a d s a n d s t o r e s t h e t h e r m o c h e r n i c a ld a t f o r t h e a m b i e n t a i r C . . . . . c a l c u l a t i o n s o f e n t h a l p y f r o r nt h e f i I e A l ' l B . A I R - c T ] ' I P L I C I TD O U B L EP R E C I S I O N( A - H , M - 2 , Logical water-inclucle i n t e g e r T n u m , N u n b e r - o-f d e s u n k * 5 ,l i n e * B 0 , A t m o s * 2 0 C H A R A C T EJ R c o m m o n/ d e t / E R ( 6 ) . c ( 5 , 6 ) r -o f -des COM)'ION / f i ve / en th-ambi ent, TotalMo I e, Numbe c o m m o n/ h 2 o / w a t e r - i n c l u d e , A t n o s c o m m o n/ a m b / T n u m ,I S N ( 5 ) , E N T H A(L6 ) SR(6) DIMENSION 30 20 10 write(0,101) r e a d ( 1 2 ,* ) T n u n .( I s N ( I ) , I = 1 . T n u m ) w r i t e ( 0 , * ) T n u m (, r s N( r ) , 1 = l , T n u m ) w r i t e ( 2 , * ) T n u n , ( 1 S N( I ) , I = l , T n u m ) Do10I=l,Tnum 'amb.air',status='old') O p e n ( u n i t= L l , f i l e = Do 20 J = 1,5 if (IsN(I) .EQ. J) then r e a d ( 1 1 , 1 0 2 )J u n k . E R ( I ) , S R ( I ) w r i t e ( 0 , 1 0 3 ) . I u n k , E R ( I .) S R ( I ) r e a c l ( 1 1 , 1 0 4 )l i n e w r i t e ( 0 , 1 0 5 )l i n e r e a d( 1 1 . 1 0 4 ) l i n e ' * r r i t e( 0 . 1 0 5 )l i n e r e a d ( 1 1 , 1 0 6 () c ( I , K ) , R = L , 6 ) w r i t e ( 0 , 1 0 7 )( c ( I , K ) , R = l , 6 l r e a d( 1 1 , 1 0 4 ) l i n e w r i t e ( 0 , 1 0 5 )l i n e E N T H A L ( I )= E N T H ( I , I C M P )* 4 . 1 8 6 D + O O w r i t e ( 0 ,1 0 8 ) T , E N T H A L ( r ) else d o 3 0 K = 1 , 5 read(11,104)line continue endif continue close (unit=L1) conti.nue RETURN C-------ALI. c STATE}IENTS THE FOR}TAT ' 1 0 1 F o r m a (t ' E n t e r t h e n u m b e ro f g a s e o u sm o l e c u l e s t o b e e n t r a i n e d ,' )/ * ,' followetl by the nolecule nunber lseparatedby spaces] .. 1 0 2 F o r r n a(tA 5, r 1 1. 2 , F 8. 3) L 0 3 F o r m a(tX , 4 5 , F 1 12 ., F 8 .3 ) 1 0 4 F o r m a (t l ) 1 0 5 F o r r n a(tX ,A ) 1 0 5 F o r n a t( 4 D 1 2 . 62, F 1 02. ) 2 ,F f 0 . 2 ) 1 0 ? F o r m a(tX , 4 D 1 2 . 5 1 0 8F o r m a t ( E ' N T H A L ( ' , f l ,= ' )' , d 2 0 . 1 4 ) END 84 SUBROUTINE reaal_in_CHNOS l. C . . . . . R e a d s a n c l s t o r e s a l l t h e t h e r n o c h e r n i c a ld a t a f o r t h e s p e c i e s C.....in the fireball from the file NEIIDATA.DAT. c IMPIJICIT DOUBI,EPRECISION(A-H,O-Z) c c Logical Chargecl,Setting_up, momen!um_stop C H A R A C T EERL A * 2 , E I J F * 2 , E L N * 2 , A N F * 8 0 , N O U * 9 , c h Tnteger Species_num DIHENSIOE N L A( 5 0 , 6 ) , A T A( 5 0 , 6 ) , N E A( 5 0 ) , E L N( 5 0 ) D I M E N S I OD N A( 5 , 6 ) , E I . F( 5 0 ) , A T F( 5 0 ) DIMENSION IN(50) ( 5/ A c0Hr,r0N/AAA 0 , 1 0 ) , A K T( 5 0 ) , A K T F( s 0 ) , B ( 1 0 ) , B 0( 1 0 ) . C ( 5 0 ) C O M I . I O N / BIBVBA/R ,K H( 2 O) , t , 1 1 , I ' I ,} I 1 ,M A ,M B ,M P ,M S ,M F( 1 5) , I , I L( 1 5) C o D 1 M O N / C C(C2l0p)r, p T o T ,T , y ( 5 0 ) , y o ( 5 0 ) , y r ( 5 0 ) , y r o r ( 2 0 ) C o H H o N / D A T (/ 5 C01, 5 ) , C 2( 5 0 ,5 ) , c 3 ( 5 0 ,5 ) , c 4 ( 5 0 ,5 ) 50 C 0 I { M o N / D A T /(H R) , S R( 5 0 ) , N R( 5 0 ) , H H( 5 0 , 5 ) , T M( 5 0 , 5 ) C o m n o n/ m s l / S p e c i e s _ n u m , N O l , l ( 5 0 ) , N S , N P S , N N S , N s o I S , N g a s s connon /xaa/ MC,tlR connon /eight/Charged, Setting_up,nonentum stop CoMI{oN/NIN J L , J 2 , J 3 , J 4 , , J 5 ,J 6 , J 7 /E a C ( U N I T = 1 3F . ] L E = ' N E I . I D A TDAA. T S T A T U S = ' O L )D ' OPEN " ENTERTHE SPECIESTO BE USED I c C C C C w r i t e ( 0 , 1 0 1) The input data is read on all species. MS j,s the total number of species to be reaal. NS is the number of non charged species. NpS is the number of possitively charged species. NNSis the nunber of negatively charged species. READ(12,*)MS ( 1 2 ,* ) N g a s S READ (J),J=l,NS) R E A (DL 2 , ' t )N S ,( I N ( , I ) , N o M R e a d( 1 2 , 1 0 2 )A N F Read(12,*)ch T{RITE(2,103)MS IIRITE(2,104)NgasS w R r ? E ( ? *, ) N S , ( r N ( . t ) , N o M ( , r ) , J = ,1N S ) n r l t e ( 2 , 1 0 2 )A N F w r i t e ( 2 , 1 0 5 )c h C h a r g e d= . f a 1 s e . if (ch .eq. 'y' .or. ch .eq. 'y') then Charged = .true. ( , t ) , J = N S + LN, S + N p S ) R e a d( 1 2 , * ) N P S ,( I N ( J ) , N O M I { R I T E( 2 , * ) N P S ,( I N ( J ) , N 0 1 { ( . I ) , J = N S + 1 , N S + N P S ) R e a d( 1 2 , 1 0 2) A N F write (2,102)ANF ( . 1 ) ,i t = N S + N p S +N R e a d( 1 2 , ' t ) N N S ,( I N ( , t ) , N O M 1S , + N p S + N )N S (J ) , , I = N S + N P S + N I I R I T E( 2 , * ) N N S ,( I N ( , 1 ) ,N O M 1 ,S + N P S + N)N S Read(12,102)ANF w r i t e ( 2 , 1 0 2) A N F endif if(ch .eq. 'n' .or. ch .eq. 'N') then R e a d ( 1 2 , 1 0 5 )N P S , N N S 85 I I R I T E ( 2 , 1 0 5 )N P S , N N S write(0,10?) NPS,NNS endif ( , I ) , J = N S + N P S + N N SN+S R e a d( 1 2 , * ) N s o I S , ( I N ( , t ) , N O M I ,+ N P S + N N S + N s o I S ) I { R I T E( 2 , * ) N s o I S , ( I N ( . t ) , N o M( J ) , r I = N S f N P S + N N SN +S 1 ,+ N P S + N N S + N S) o I S Read(12,102)ANF I { R I T E( 2 , 1 0 2 ) A N F I F ( N S + N P S + N N S + N S o. INSE . M S ) t h e n w r i t e ( 0 , 1 0 8) stop endif R E A D ( 1 21 ,0 9 ) , J 1 , , t 2 J, 3 ,J 4 , J 5 , J 6 , J 7 l { R r T E ( 2 L, L 0 ) J L , J 2 , J 3 , J 4 , J 5 , J 6 , J 7 READ(12,102)ANF I{RITE(2, 102) ANF w r i t e ( 0 , * ) l { s , ( I N ( , t ) , N 0 l .( 1. 1 ) , J = 1, } I s ) Species_nun = MS REI{IND13 NREC=0 10 REID(131 , 11.END=35)NE,NN,ND,DH,DS NREC=NREC+1. ) T F ( J ) ' , 1 = 1' N E ) R E A D ( 1 3 ' 1 1 2()E I , F ( . 1' A ( 1 3 , 1 1 3 )A N F( 1 : N N ) READ D0 15 .I=1,ND 15 R E A D ( 1 3 , 1 1 4( D ) A ( , t , K,)K = 1 , 6 ) C STORESPECIES DATA IN }IE$ORY c 20 D0 30 I=1.I{S I F ( N R E C . E Q . I N ( I ) )T H E N D0 20 J=1,NE ELA(I,J)=ELF(J) ATA(I,.I)=ATF(J) CONTINUE NEA(I) =NE HR(I)=DH s R( I ) = D s 25 N R( I ) = N D DO 25 .I=1,ND C l ( I , J ) = D A( J , 1 ) C2(I,,J)=DA(,I,2) C 3( I , . I ) = D A ( J , 3 ) C 4( I , J ) = D A( J , 4 ) TM(I,J)=DA(J.5) 111 s 1 ,g ) = p A( J , 6 ) CONTINUE coTo10 ENDIF 3O CONTINUE GoTO 10 86 e COUNTELEMENTS,GASESAND CONDENSED SPECIES 35 L=0 l,lG=0 MR=0 D0 50 I=1,MS I F ( E I , A ( I , N E A ( I ).)8 9 . ' G ' ) T H E N MG=MG+1 EI,SE MR=MR+1 ENDIT N=NEA(I)-1 D0 45 J=l,N IF (L.Eq.O) THEN t=L+1 E L N( L ) = E L A( I , J ) c0T0 45 EIJSE D O 4 0 K = 1 ,L r F ( E r . A ( r , J ) . E Q . E r N ( K )c) o T o 4 5 40 CONTINUE L=L+1 E t N ( t) = E L A ( I , . I ) END]F 45 CONTINUE 5O CONTINUE LL=L+1 H1=MG+L MP=1 MF(1.)=1 Mt(1)=Mc I { R I T E( 0 , 1 1 5 ) t , M G , M R C c SET UP ATOMMATRIX D0 55 I=1,MS DO 55 K=I,L 55 A(I, r) =9. D0 55 I=I,MS N=NEA(I)-1 D0 50 ,I=l,N DO 60 K=1,L I F ( E L A ( I , . t ) . E g . E t N ( K) ) A ( r , K ) = A T A ( r , J ) 5 0 CONTINUE I { R I T E ( 0 , 1 1 6 )I , ( A ( I , K ) , K = l , L ) 5 5 CONTINUE close(13) RETURN C--------AIIJ THE FOR},IAT STATEffENTS 1 0 1 F o r n a t( ' E n t e r t h e n u m b e ro f s p e c i e s t o b e p r o c e s s e d ,f o l l o w e d ' , / * , ' b y t h e s p e c i e s n u m b e ra c c o r t l i n g t o t h e N E I T D A T A . Dt aAbTl e , , , / , * ' a l l n u n b e r s i n i n t e q e r f o r m a n d s e p a r a t e db y a space. ',/, * l r \ 1 0 2 F o r n a t( x , A ) 1 . 0 3F o r n a t ( ' M S= ' , 1 2 , ' 1 0 4 F o r m a t ( 'N g a s S= ' , T . 2 , ' 1 0 5 F o r m a(tx , A 1 ,' : Total species nunber. ') : T o t a l g a s e o u ss p e c i e s n u n b e r . ' ) : C h a r g e ds p e c i e s i n c l u d e d [ y / N ] . ' 1 6t 1 0 5 F o r m a(tI 3 , / / , ! 3 , / ) ',13) ' P S= ' , 1 3 , ' N N S= 1 0 ?F o r m a t ( N 1 0 8 F o r r n a t ( ' T h e c h a r g e da n d n o n - c h a r g e ds p e c i e s ' l o n o t s u m t o " M S' ,"/' ' * ' 1 , / , ' 1 t h e n u m b e ro f t o t a l s p e c i e s . C h e c kD . f i l e , t h i s p r o g r a m * ' i s n o wt e r m i n a t e d . ' ) 1 0 9 F o r n a t( ? ( 4 x ,I 1 ) ) F o r m a t (C ' = ' , 1 1 , 'l l = ' , 1 1 , 'N = ' , 1 1 , '0 = ' , 1 1 , ' S = ' , 1 1 , 'A r = " 1 1 " E 1.10 *=,,11) 3 r 2 ,F 1 1 .2 , F 8 .3 ) 1 1 1 -r O R l t A( T 1 12 F O R M (A1T0( A 2 ,F 5 . 3) ) 113 FORUAT(A) ( 4TF 1 2 . 02, F 1 0 . 0 ) 114FORUA ',12,' CONDENSED ',12,' GASES 1 1 5 F O R ] ' I A T (E/ 'L E I ' I E N T S ( 2 X , ( I X , I 2 , 1 0 3 ) F5. ) "12) 115FORMAT END c---------read-in-data SUBRoUTINE C.....Readsalt the initial conditions fron the input file D'FIL' t. P R E C I S I O N( A - H ' M - Z ) IMPLICIT DOUBI,E inclucle ' comnon. Put ' C h a r a c t e r * g M t i m , l { d a t e ,c h i l DMFAr DMF02,DMFCo2, Comrnon/now/ DMFI'I2, 'd.file',Status = 'old') o p e n ( 1 2 , f i 1 e= Reuind 12 R e a d( 1 2 , 1 ) c h , t i m e s - u p , b e t a , G , e n t r a i n , i n i t i a l - a l t ' w r i t e ( 0 , 2 ) c h , t i m e s - u p , b e t a , G ,e n t r a i n . i n i t i a l - d t ' nolfientun-stop = .true. i f ( c h . E 9 . ' Y ' . o R . c h . E Q . ' y ' )t h e n monentun-stop = .false. else ) ' then if (ch.NE.'N'.AND.ch.NE.'n write (0.3) stop endif endif ini tial-f initiaL-f z,k,last-count,mwa,signa'Atnos Read(12,3) initial write(0,4) initial-z,k,1ast-count,nwa,signa,Atnos write (0, 5) Number-of-cles D o 1 0 0 1 = L , 9 R e a d ( 1 2 ,6 ) f i I e - n a m e( 1 ) write (0,7) I,fi1e-name (I) ' n e w ' , R E C L= 1 3 0 ) open(I+1,file = file-name(I),Status = 100 continue b-tenp b-temp C a l I D a t e( l l d a t e ) C a I l T i m e( M t i m ) write(2,8) Mtim,Mdate w r i t e ( 2 , 2 ) c h ,t i r n e s _ u pb, e t a , c , e n t r a i n , i n i t i a l _ d t , i n i t i a l _ f b _ t e n p write (2,4) initial_z,k,Iast_count,rnwa,sigma,Atmos w r i t e ( 2 , 5 ) N u n b e ro f c t e s do 110i=1,9 write(2,7) I,fiIe 110 continue r e a d ( 1 2 , 9 )l i write (0,10) i{ w r i t e( 2 , 1 0 ) l i narre(I) vrite (0,11) initial_f b_ternp R e a d ( 1 2 , 6c) h write(2,12)ch write(0,12)ch water_include= .true. if (ch .eq. 'N' .or. ch w a t e r _ i n c l u d e= . f a 1 3 e . else if (ch .ne. w r i t e ( 0 , 1 3) 'n' ) then .and. ch .ne. 'Y') then stop endif enilif write(0,15) initial z Read( 12, 19) Dl,lFN2 DMFCo2, DMFAr , DMF02, write (0,20) DMFN2,DMFO2,DltFCo2,DMfAr w r i t e ( 2 , 2 0 ) D M F ND 2 ,M F o 2 D,M F c o 2 , D M F A r TDHF= Dl'lFN2+ DMF02+ DMFCO2 + Dl,lFAr i f ( T D M F. N E . 1 . 0 d 0 ) t h e n write(0,21) TDI4F Stop endif RETURN 1 F o r n a (t / x , A l , / x , f 5 . L , / x , f 4 . 2 ,/ x , f j . 5 , / x , t 4 . 2 , / x , f 4 . 2 ,/ x , f 6 . I ) F o r n a t ( ' T i m e s t o p e l s e n o n e n t u rsnt o p [ y / N ] : , , A L , / , 1 ' C o m p u t esrt o p t i n e : ' , f 5 . 1 , / x , ' b e t a ' , 1 G x , , : ,, , f 4 . 2 , 2 / x , ' G t a v l t y ' , 1 3 x ,: '' , f 7 . 5 , / x , ' E n t r a i n c o e f f i c i e n t : , , t 4 . 2 , / x , 3 ' I n i t a i l _ i l t ' , 1 0 x , 'z ' , t 4 . 2 , / x , ' I n i t i a l _ f b _ t e m p5' ,x , ' : ' , f 6 . 1 ) 3 F o r m a(tx , f 7 . L , / x , f . 3 . 1 /, x , I 5 , / x , F 8 .5 , / x , d 9 .3 , / x , A 2 0 ) 4 F o r n a t ( I' n i t i a l _ z ' , L L x , ' : ' , f 7 . L , / x , , k , , 1 9 :x' , 'f 3 . 1 , I / x , ' I a s t _ c o u n t ' , 1 . 0 x , '' :, I 5 , / x , ' M l r w e i g h ta i r , , G x , ' : , , F 9 . 5 , 2 / x , ' s i g n a ' , 1 5 x:,' ', d 9 . 3 , / x ' A t n o s p h e tr ye p e ' , 5 x , :' ' A 2 0 ) 5 F o r n a t ( ' N u n b e r _ o 1 _ 6=s'5, 1 1 ) b F o r n a t( x , A ) I F o r m a t ( x ' 0 u t p uF t i l e N a r n *e' , 1 1 , ' : ' , A 1 2 ) I F o r r n a t ( 2 0 X , ' F b o m b s 8 1 .:d a Cto p yo f i n p u t f i l e ' , D . f i I " . p r o d u c e da t 1 'rA8,' on 'rA8) 9 Fornat(x,f6.3) 1 0 F o r n a t ( x , ' B o nsbi z e , ',t6.3,' Mt. ') 1 1 F o r n a t( ' i n i t i a l _ f b _ t e m p = ' , d 1 4 . ' 8 ) 12 Fornat(X.41.15x,': llater vapour inclucledin anbient air calculatio *ns [Y/N] ') 1 3 F o r m a t ( ' C h e c k" d . f i l e " a s a " y " o r " N " d o e s n o t a p p e a r c o r r e c t l y *,) 1 5 F o r n a(t' B o r n db e t o n a t i o nh e i g h t i s ' , d 1 0 . 4 , ' m e t r e . ') 89 1 9 F o r m a t ( x , f 8 . 6 ,/ x , f . 8 . 6 , / x , f 8 . 5 , / x , f 8 . 6 ) set of dry air 20 Forroat (' the nole fractions of the CI,EAN-FIREBALL * ate:.',f, 'DMFN2 * ,D16.10 ,/, 'DMF02 * ,D15.10 ,/, ' DMFCo2 * .... ,/, ' DMFAr i . . . . '",DD1156..1100 ) 2L Fornat('TDMF should equal 1.00, but instead it equals',D15.10,'. ') * This program is now terminated. Check the data fiIe "d.fiIe". END c---------c SUBROUTINE DO_enth_halt write (0,10) ' Enthalpy Error 10 Fornat ( StoP RETURN END ') c---------c ShowStatus SUBROUTINE (A-H,}'I-Z) IMPIJICITDOUBIJE PRECISION Integer counter c o n n o n/ s i x / a t i m e , l l a s s ,P _ a m b i e n tr,a d i u s , T _ a m b i e n tT, _ fb , z , Z _ t b common , nthalpyJer_kg / s e v e n / e n t h _bf 3 e r _ M a s s E c o n m o n/ U S E / E n t h a( 2l 0 0 0 ) , t e n p e(r2 0 0 0 ) , c a l a , c a l b , c a l c , c o u n t e r w r i t e ( 0 , 1 0 ) T _ fb , e n t h _ fb 3 e r _ M a s s / M a s s D o 3 0 I = ( c o u n t e r- 1 0 ) , e o u n t e r w r i t e ( 0 , 2 0 ) I , E n t h a l( I ) , I , t e m p e r( I ) 30 continue w r i t e ( 0 ,4 0 ) E n t h a l p y j e r - k g St o p RETURN 1 0 F o r m a t ( 'T _ f b = ' , D 1 0 . 3 , ' e n t h = ' , D 1 0 . 3 ) 2 0 F o r m a t (E ' nthal(',13,'= ) ' , D 1 0 . 3 , 'T e n p e r ( ' , 1 3 , '=) ' , D 1 0 . 3 ) 4 0 F o r n a t ( ' E n t h a l p y 3 e r - k g= ' , D 1 0 . 3 ) END