Slides
Transcription
Slides
Numerical solution of the three body scattering problem Leonid Rudenko Numerical solution of the three body scattering problem Leonid Rudenko Department of Computational Physics, St Petersburg State University 3 April, 2009 Numerical solution of the three body scattering problem Outline Leonid Rudenko • Introduction • The Three-body scattering problem • Faddeev Equation • Solution expansion • Malfliet-Tjon potential • Numerical calculations: eigenvalues, eigenfunctions, geometrical connections • Conclusions Numerical solution of the three body scattering problem Leonid Rudenko Introduction Numerical solution of the three body scattering problem Introduction Leonid Rudenko • Expanding of the tree body wave function • Basis of hyperspherical adiabatic harmonics • The standard projection procedure leads to effective equations for the expansion coefficients • How can be solved? • Have to find out properties of the basis functions Numerical solution of the three body scattering problem Introduction Leonid Rudenko • Geometrical connections Aij = hφi , ∂ρ φj i • Develop a formalism to study different models - scattering of a particle off a two body bound state - scattering of a particle off a resonant state of a pair of particles • Investigate eigenvalues λk , eigenfunctions φk , and geometrical connections Aij of the operator h(ρ) = −ρ−2 ∂θ + V (ρ cos θ). Numerical solution of the three body scattering problem Leonid Rudenko Faddeev Equation in {ρ, θ} Coordinates Numerical solution of the three body scattering problem Faddeev equation in {ρ, θ} coordinates Leonid Rudenko The Faddeev s-wave equation in polar coordinates µ ¶ µ ¶ 1 1 2 2 −∂ρ − 2 U(ρ, θ) + − 2 ∂θ + V (ρ cos θ) U(ρ, θ) − 4ρ ρ √ Z θ (θ) + 3 d θ0 U(ρ, θ0 ) −EU(ρ, θ) = −V (ρ cos θ) 4 θ− (θ) where θ+ (θ) = π/2 − |π/6 − θ| and θ− (θ) = |π/3 − θ| Numerical solution of the three body scattering problem Faddeev equation in {ρ, θ} coordinates Leonid Rudenko The boundary conditions should be imposed for the scattering solution: • Regularity of the solution U(0, θ) = U(ρ, 0) = U(ρ, π/2) = 0 • Asymptotics as ρ → ∞ U(ρ, θ) ∼ ϕ(x)ρ1/2 sin(qy )/q + √ +a(q)ϕ(x)ρ1/2 exp(iqy ) + A(θ, E ) exp(i E ρ), where x = ρ cos θ. Numerical solution of the three body scattering problem Faddeev equation in {ρ, θ} coordinates Leonid Rudenko • The bound-state wave function of the two body target system ϕ(x) obeys the equation {−∂x2 + V (x)}ϕ(x) = ²ϕ(x) • It is assumed that the discrete spectrum of the Hamiltonian −∂x2 + V (x) consists of one negative eigenvalue ² at most Numerical solution of the three body scattering problem Leonid Rudenko Basis functions Numerical solution of the three body scattering problem Expansion basis Leonid Rudenko • As basis we choose the eigenfunctions set of the operator h(ρ) ¡ −2 2 ¢ −ρ ∂θ + V (ρ cos θ) φk (θ|ρ) = λk (ρ)φk (θ|ρ) • ρ is an external parameter for h(ρ) • EV and EF of h(ρ) inherit parametrical dependence on ρ Numerical solution of the three body scattering problem Leonid Rudenko Spectral properties • The main spectral properties of the operator h(ρ) as ρ → ∞ and of the two body Hamiltonian −∂x2 + V (x) λ = lim λ0 (ρ) = ², ρ→∞ φ0 (θ|ρ) = √ ρ ϕ(ρ cos θ)(1 + O(ρ−µ )) • Excited states φk (θ|ρ), k ≥ 1, when ρ → ∞ the asymptotic behavior is given by the formulas µ λk (ρ) ∼ 2k ρ ¶2 , 2 φk (θ|ρ) ∼ √ sin(2kθ) π Numerical solution of the three body scattering problem Leonid Rudenko Perturbation Theory Numerical solution of the three body scattering problem Leonid Rudenko Perturbation theory - introduction • If the parameter ρ is large the support of the potential V (ρ cos θ) is small on the interval [0, π/2] • The estimates for EV and EF of the operator h(ρ) can be obtained by the perturbation theory considering the potential V (ρ cos θ) as a small perturbation λk ∼ λ0k + λ1k , φk (θ|ρ) ∼ φ0k (θ|ρ) + φ1k (θ|ρ) • The leading terms λ0k and φ0k for k ≥ 1 are given by λ0k = (2k)2 /ρ2 , 2 φ0k (θ|ρ) = √ sin(2kθ) π Numerical solution of the three body scattering problem Leonid Rudenko Correction terms • The first order correction terms λ1k and φ1k are defined in terms of the matrix elements of the potential V (ρ cos θ) Z Vnk (ρ) = hφ0n | V | φ0k i π/2 = 0 d θ φ0n (θ|ρ)V (ρ cos θ)φ0k (θ|ρ) • As the model situation, the function V (x) is taken in the form of Yukawa potential V (x) = C exp(−µx) x where C and µ are some parameters. Numerical solution of the three body scattering problem Leonid Rudenko Calculation of corrections • As we set ρ → ∞, we can approximately calculate integral Vnk (ρ) ∼ (−1)n+k 16nkC [1 − exp(−µR)(1 + µR)] 1 . π µ2 ρ3 • The first order correction term λ1k is λ1k = Vkk ∼ ρ−3 • The second order correction term λ2k is λ2k = X |Vnk |2 (0) n6=k (0) λk − λn λ2k ∼ ρ−4 , Numerical solution of the three body scattering problem Leonid Rudenko Calculation of corrections • For eigenfunctions the first correction term is given by φ1k = X Vnk (0) n6=k λk − (0) λn φ0n ∼ ρ−1 • From equation ¶ µ 1 2 − 2 ∂θ + V (ρ cos θ) φk (θ|ρ) = λk (ρ)φk (θ|ρ) ρ one can obtain formula for Aij Aij = hφi | ∂V ∂ρ | φj i λi − λj Numerical solution of the three body scattering problem Aij Leonid Rudenko • Rough calculation of Aij leads to dependence Aij ∼ ρ −2 , i, j 6= 0 Aij ∼ ρ −5/2 , i = 0 or j = 0 Numerical solution of the three body scattering problem Leonid Rudenko Solution Expansion Numerical solution of the three body scattering problem Leonid Rudenko Solution expansion • The operator h(ρ) is Hermitian on [0, π/2] interval and its eigenfunction set {φk (θ|ρ)}∞ 0 is complete. X φk (θ|ρ)Fk (ρ) U(ρ, θ) = φ0 (θ|ρ)F0 (ρ) + k≥1 • Substituting this expansion in Faddev equation and projecting on basis functions lead to the following system of equations for Fk (ρ), k = 0, 1, ... µ ¶ 1 −∂ρ2 − 2 + λk (ρ) − E Fk (ρ) = 4ρ µ ¶ ∞ X ∂Fi (ρ) 2Aki + Bki (ρ)Fi (ρ) − Wki (ρ)Fi (ρ) ∂ρ i=0 Numerical solution of the three body scattering problem Solution expansion Leonid Rudenko • The nonadiabatical matrix elements Aki (ρ), Bki (ρ) and potential coupling matrix Wki (ρ) are given by integrals Z Aki (ρ) = hφk | ∂ρ φi i = 0 Z Bki (ρ) = hφk | ∂ρ2 φi i π/2 = 0 π/2 d θφ∗k (θ|ρ) d θφ∗k (θ|ρ) ∂φi (θ|ρ) , ∂ρ ∂ 2 φi (θ|ρ) , ∂ρ 2 √ Z π/2 Z θ+ (θ) 3 Wki (ρ) = d θφ∗k (θ|ρ)V (ρ cos θ) d θ0 φi (θ0 |ρ) 4 0 θ− (θ) Numerical solution of the three body scattering problem Solution expansion Leonid Rudenko • Presence of first derivative Fi0 (ρ) in the right part of the expression • Matrix form of equation µ ¶ 1 2 −∂ρ − 2 + Λ(ρ) − E F (ρ) = 2AF 0 (ρ)+(B −W )F (ρ) 4ρ Numerical solution of the three body scattering problem Solution expansion Leonid Rudenko • Transform equation in form F 00 (ρ) + PF 0 (ρ) + QF (ρ) = 0 ³ ´ where P = 2A and Q = 4ρ12 − Λ(ρ) + E + B − W are two-dimensional infinite matrices • Introduce F = UG and elements of G are new unknown quantities Numerical solution of the three body scattering problem Solution expansion Leonid Rudenko ¡ ¢ ¡ ¢ UG 00 + 2U 0 + PU G 0 + U 00 + PU 0 + QU G = 0 • Equation for matrix U 1 U 0 = − PU = −AU 2 • As ρ → ∞ Z U(ρ) = I + ∞ AUd ρ ρ Numerical solution of the three body scattering problem Solution expansion Leonid Rudenko • Form without first derivative µ ¶ 1 0 1 2 UG + − P − P + Q UG = 0 2 4 00 • Substitute expressions for P and Q 1 − 4ρ2 −Λ(ρ) + E + B − W )UG = 0 G 00 + U −1 (−A0 (ρ) − A2 (ρ) + Numerical solution of the three body scattering problem Leonid Rudenko Solution expansion • As ρ → ∞ asymptotic behavior U(ρ) ∼ I µ ¶ 1 −∂ρ2 − 2 I + Λ(ρ) − E G = 4ρ ¡ ¢ = −A0 (ρ) − A2 (ρ) + B(ρ) − W (ρ) G • The right hand side terms vanish for large ρ faster than ρ−2 . Hence this terms can be neglected. µ ¶ 1 −∂ρ2 − 2 + λas (ρ) − E Gk (ρ) = 0 k 4ρ 2 2 as here λas 0 (ρ) = ² and λk (ρ) = (2k) /ρ , k ≥ 1 Numerical solution of the three body scattering problem Leonid Rudenko Solution expansion • Solutions to these equations with appropriate asymptotics can be expressed in terms of the Bessel (Y , J) functions and the Hankel (H (1) ) functions of the first kind as following r πqρ Y0 (qρ) − J0 (qρ) √ G0 (ρ) ∼ + 2 2q r πqρ (1) a0 (q) H (qρ)e iπ/4 2 0 s √ π E ρ (1) √ Gk (ρ) ∼ ak (E ) H2k ( E ρ)e i(π/4+kπ) 2 Numerical solution of the three body scattering problem Leonid Rudenko Malfliet-Tjon Potential Numerical solution of the three body scattering problem Leonid Rudenko Malfliet-Tjon potential • A potential, which describes the modeling nucleon-nucleon interaction acting in the triplet state with the spin 3/2 • Form of the Yukawa terms superposition V (x) = V1 exp(−µ1 x) exp(−µ2 x) + V2 x x with parameters listed in the table Coefficient V1 V2 µ1 µ2 Value −626, 885MeV 1438, 72MeV 1, 55 Fm−1 3, 11 Fm−1 Numerical solution of the three body scattering problem Malfliet-Tjon potential Leonid Rudenko 3 V(x) V(x), Fm^(-2) 2 1 0 -1 -2 0 1 2 x, Fm 3 Numerical solution of the three body scattering problem Leonid Rudenko Unit system • Proton-neutron interaction ¶ µ 2 ~ 2 − ∂x + V (x) ψ(x) = E ψ(x), 2µ • Reduced mass mp mn m2 m ' = , mp ' mn = m mp + mn 2m 2 ³ m m ´ −∂x2 + 2 V (x) − 2 E ψ(x) = 0 ~ ~ • [V ] = [E ] = MeV µ= Numerical solution of the three body scattering problem Unit system Leonid Rudenko • ~2 ' 41, 47 Fm2 ∗ MeV m • Obtain equation ³ ´ e (x) − E e ψ(x) = 0 −∂x2 + V e ] = [E e ] = Fm−2 where [V • Set x = ρ cos θ in polar coordinates and ρ is parameter Numerical solution of the three body scattering problem ρ=1 Leonid Rudenko V(rho*cos(Theta)), rho=1 30 25 V(rho*cos(Theta)) 20 15 10 5 0 -5 0,0 0,2 0,4 0,6 0,8 Theta 1,0 1,2 1,4 1,6 Numerical solution of the three body scattering problem ρ = 10 Leonid Rudenko V(rho*cos(Theta)), rho=10 3 V(rho*cos(Theta)) 2 1 0 -1 -2 1,2 1,4 Theta 1,6 Numerical solution of the three body scattering problem ρ = 100 Leonid Rudenko V(rho*cos(Theta)), rho=100 4 V(rho*cos(Theta)) 3 2 1 0 -1 -2 1,52 1,53 1,54 1,55 Theta 1,56 1,57 1,58 Numerical solution of the three body scattering problem Leonid Rudenko Numerical Calculations Numerical solution of the three body scattering problem Numerical calculations Leonid Rudenko • Finite-difference approach −φk (θ − h) + 2φk (θ) − φk (θ + h) + ρ 2h 2 +V (ρ cos θ)φk (θ) = λk φk (θ) where h = θi+1 − θi , i = 1, ..., N and N ∼ 100000 • Boundary conditions φk (0) = φk (π/2) = 0 Numerical solution of the three body scattering problem Software Leonid Rudenko • CLAPACK • Intel Math Kernel Library 10.0.1 for Unix • ’DSTEVX’: computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices. Numerical solution of the three body scattering problem Leonid Rudenko Eigenvalues Numerical solution of the three body scattering problem Asymptotics Leonid Rudenko • k =0 lim λ0 (ρ) = ² ρ→∞ • k ≥1 µ λk (ρ) ∼ 2k ρ ¶2 Numerical solution of the three body scattering problem Leonid Rudenko λ0 (ρ) 0,04 lambda0 0,02 0,00 -0,02 -0,04 -0,06 -0,08 0 10 20 30 rho 40 Numerical solution of the three body scattering problem Leonid Rudenko λ10 (ρ) 100 lambda10 asymptotic 80 60 40 20 0 0 2 4 6 8 10 rho 12 14 16 18 20 Numerical solution of the three body scattering problem Eigenvalues Leonid Rudenko lambda0 lambda1 0,30 lambda2 lambda3 0,25 lambda4 lambda5 0,20 Eigenvalues 0,15 0,10 0,05 0,00 -0,05 -0,10 0 5 10 15 20 rho 25 30 35 40 Numerical solution of the three body scattering problem Deviation from asymptotics Leonid Rudenko • ρ ∼ 10 – deviation is big and varies from 10% up to 90%. For small k the absolute deviation is bigger than for big k. • ρ ∼ 100 – deviation is about 5 − 7% • ρ = 700 – deviation is less than 1% • ρ ∼ 1000 – deviation is about 0, 7% Numerical solution of the three body scattering problem Leonid Rudenko Eigenfunctions Numerical solution of the three body scattering problem Leonid Rudenko φ0 (θ), ρ = 1 1,4 phi0(Theta), rho=1 1,2 1,0 0,8 0,6 0,4 0,2 0,0 0,0 0,2 0,4 0,6 0,8 Theta 1,0 1,2 1,4 1,6 Numerical solution of the three body scattering problem Leonid Rudenko φ0 (θ), ρ = 3 1,4 phi0(Theta), rho=3 1,2 1,0 0,8 0,6 0,4 0,2 0,0 0,0 0,2 0,4 0,6 0,8 Theta 1,0 1,2 1,4 1,6 Numerical solution of the three body scattering problem φ0 (θ), ρ = 5 Leonid Rudenko phi0(Theta), rho=5 1,4 1,2 1,0 0,8 0,6 0,4 0,2 0,0 0,0 0,2 0,4 0,6 0,8 Theta 1,0 1,2 1,4 1,6 Numerical solution of the three body scattering problem φ0 (θ), ρ = 10 Leonid Rudenko phi0(Theta), rho=10 1,8 1,6 1,4 1,2 1,0 0,8 0,6 0,4 0,2 0,0 0,0 0,2 0,4 0,6 0,8 Theta 1,0 1,2 1,4 1,6 Numerical solution of the three body scattering problem φ0 (θ), ρ = 30 Leonid Rudenko phi0(Theta), rho=30 3,0 2,5 2,0 1,5 1,0 0,5 0,0 0,0 0,2 0,4 0,6 0,8 Theta 1,0 1,2 1,4 1,6 Numerical solution of the three body scattering problem Leonid Rudenko φ0 (θ), ρ = 1 18 16 14 12 10 8 6 4 2 0 0,0 0,2 0,4 0,6 0,8 Theta 1,0 1,2 1,4 1,6 Numerical solution of the three body scattering problem Leonid Rudenko φ0 (θ), ρ = 3 18 16 14 12 10 8 6 4 2 0 0,0 0,2 0,4 0,6 0,8 Theta 1,0 1,2 1,4 1,6 Numerical solution of the three body scattering problem Leonid Rudenko φ0 (θ), ρ = 5 18 16 14 12 10 8 6 4 2 0 0,0 0,2 0,4 0,6 0,8 Theta 1,0 1,2 1,4 1,6 Numerical solution of the three body scattering problem Leonid Rudenko φ0 (θ), ρ = 10 18 16 14 12 10 8 6 4 2 0 0,0 0,2 0,4 0,6 0,8 Theta 1,0 1,2 1,4 1,6 Numerical solution of the three body scattering problem Leonid Rudenko φ0 (θ), ρ = 30 18 16 14 12 10 8 6 4 2 0 0,0 0,2 0,4 0,6 0,8 Theta 1,0 1,2 1,4 1,6 Numerical solution of the three body scattering problem Leonid Rudenko φ0 (θ), ρ = 100 18 16 14 12 10 8 6 4 2 0 0,0 0,2 0,4 0,6 0,8 Theta 1,0 1,2 1,4 1,6 Numerical solution of the three body scattering problem Leonid Rudenko φ0 (θ), ρ = 300 18 16 14 12 10 8 6 4 2 0 0,0 0,2 0,4 0,6 0,8 Theta 1,0 1,2 1,4 1,6 Numerical solution of the three body scattering problem Leonid Rudenko φ0 (θ), ρ = 500 18 16 14 12 10 8 6 4 2 0 0,0 0,2 0,4 0,6 0,8 Theta 1,0 1,2 1,4 1,6 Numerical solution of the three body scattering problem Leonid Rudenko φ0 (θ), ρ = 1000 18 16 14 12 10 8 6 4 2 0 0,0 0,2 0,4 0,6 0,8 Theta 1,0 1,2 1,4 1,6 Numerical solution of the three body scattering problem Leonid Rudenko Step-by-step 18 17 16 rho=1 15 rho=3 14 rho=5 13 12 rho=10 11 rho=30 10 9 rho=100 8 rho=300 7 rho=500 6 5 rho=1000 4 3 2 1 0 0,0 0,2 0,4 0,6 0,8 Theta 1,0 1,2 1,4 1,6 Numerical solution of the three body scattering problem Leonid Rudenko Step-by-step 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 rho=1 rho=3 rho=5 rho=10 rho=30 rho=100 rho=300 rho=500 rho=1000 3 2 1 0 1,48 1,50 1,52 1,54 Theta 1,56 1,58 Numerical solution of the three body scattering problem φ0 (θ): conclusions Leonid Rudenko • As ρ → ∞ eigenfunction φ0 transforms into δ-function • Computational problems: decreasing of spacing, time of computation, size of data, useless zero-area Numerical solution of the three body scattering problem φk (θ), k ≥ 1 Leonid Rudenko phi_k(Theta), rho=1 k=1 k=2 k=3 1,0 k=4 k=5 0,5 0,0 -0,5 -1,0 0,0 0,2 0,4 0,6 0,8 Theta 1,0 1,2 1,4 1,6 Numerical solution of the three body scattering problem φk (θ), k ≥ 1 Leonid Rudenko k=1 phi_k(Theta), rho=3 k=2 k=3 k=4 1,0 k=5 0,5 0,0 -0,5 -1,0 0,0 0,2 0,4 0,6 0,8 Theta 1,0 1,2 1,4 1,6 Numerical solution of the three body scattering problem φk (θ), k ≥ 1 Leonid Rudenko k=1 phi_k(Theta), rho=5 k=2 k=3 k=4 1,0 k=5 0,5 0,0 -0,5 -1,0 0,0 0,2 0,4 0,6 0,8 Theta 1,0 1,2 1,4 1,6 Numerical solution of the three body scattering problem φk (θ), k ≥ 1 Leonid Rudenko k=1 phi_k(Theta), rho=10 k=2 k=3 1,0 k=4 k=5 0,5 0,0 -0,5 -1,0 0,0 0,2 0,4 0,6 0,8 Theta 1,0 1,2 1,4 1,6 Numerical solution of the three body scattering problem φk (θ), k ≥ 1 Leonid Rudenko k=1 phi_k(Theta), rho=30 k=2 1,2 k=3 1,0 k=4 0,8 k=5 0,6 0,4 0,2 0,0 -0,2 -0,4 -0,6 -0,8 -1,0 -1,2 0,0 0,2 0,4 0,6 0,8 Theta 1,0 1,2 1,4 1,6 Numerical solution of the three body scattering problem φk (θ), k ≥ 1 Leonid Rudenko k=1 phi_k(Theta), rho=100 k=2 1,2 k=3 1,0 k=4 0,8 k=5 0,6 0,4 0,2 0,0 -0,2 -0,4 -0,6 -0,8 -1,0 -1,2 0,0 0,2 0,4 0,6 0,8 Theta 1,0 1,2 1,4 1,6 Numerical solution of the three body scattering problem φk (θ), k ≥ 1 Leonid Rudenko k=1 phi_k(Theta), rho=300 k=2 1,2 k=3 1,0 k=4 0,8 k=5 0,6 0,4 0,2 0,0 -0,2 -0,4 -0,6 -0,8 -1,0 -1,2 0,0 0,2 0,4 0,6 0,8 Theta 1,0 1,2 1,4 1,6 Numerical solution of the three body scattering problem φk (θ), k ≥ 1 Leonid Rudenko k=1 phi_k(Theta), rho=500 k=2 1,2 k=3 1,0 k=4 k=5 0,8 0,6 0,4 0,2 0,0 -0,2 -0,4 -0,6 -0,8 -1,0 -1,2 0,0 0,2 0,4 0,6 0,8 Theta 1,0 1,2 1,4 1,6 Numerical solution of the three body scattering problem φk (θ), k ≥ 1 Leonid Rudenko phi_k(Theta), rho=1000 k=1 1,2 k=2 1,0 k=3 0,8 k=4 k=5 0,6 0,4 0,2 0,0 -0,2 -0,4 -0,6 -0,8 -1,0 -1,2 0,0 0,2 0,4 0,6 0,8 Theta 1,0 1,2 1,4 1,6 Numerical solution of the three body scattering problem Step-by-step φ1 (θ) rho=1 Leonid Rudenko rho=3 phi1(Theta) rho=5 rho=10 1,0 rho=30 rho=100 rho=300 0,5 rho=500 rho=1000 0,0 -0,5 -1,0 0,0 0,2 0,4 0,6 0,8 Theta 1,0 1,2 1,4 1,6 Numerical solution of the three body scattering problem Orthogonality and deviations Leonid Rudenko • Check orthogonality on each step • When does eigenfunction reach its asymptotic behavior? max |φk,ρ (θ) − sin(2kθ)| θ Numerical solution of the three body scattering problem Leonid Rudenko ρ = 500 k 1 2 3 4 5 6 7 ... 14 15 16 17 18 19 20 max deviation 0, 025055987697 0, 050095937266 0, 075103861927 0, 100064122846 0, 124961227783 0, 149780111430 0, 174506106355 ... 0, 343853748940 0, 367366621881 0, 390677267607 0, 413776421157 0, 436655434712 0, 459306336123 0, 481722165969 Numerical solution of the three body scattering problem Deviation in case k = 20, ρ = 500 Leonid Rudenko | phi_20 - sin(2k*Theta) |, k=20 0,5 0,4 0,3 0,2 0,1 0,0 0,0 0,2 0,4 0,6 0,8 Theta 1,0 1,2 1,4 1,6 Numerical solution of the three body scattering problem Leonid Rudenko ρ = 1000 k 1 2 3 4 5 6 7 ... 14 15 16 17 18 19 20 max deviation 0, 012548181991 0, 025094300382 0, 037636297454 0, 050172115034 0, 062699700358 0, 075217084552 0, 087722341482 ... 0, 174758410342 0, 187098541399 0, 199410537020 0, 211691972534 0, 223941583831 0, 236157876824 0, 248338419864 Numerical solution of the three body scattering problem Deviation in case k = 20, ρ = 1000 Leonid Rudenko | phi_k - sin(2k*Theta) |, k=20 0,25 0,20 0,15 0,10 0,05 0,00 0,0 0,2 0,4 0,6 0,8 Theta 1,0 1,2 1,4 1,6 Numerical solution of the three body scattering problem Leonid Rudenko Geometrical connections Numerical solution of the three body scattering problem Geometrical connections Leonid Rudenko • Off-diagonal matrix of geometrical connections A with elements Z Aki (ρ) = hφk | φ0i i = 0 π/2 d θ φ∗k (θ|ρ) ∂φi (θ|ρ) ∂ρ • Determines behavior of right part of equation µ ¶ 1 2 −∂ρ − 2 I + Λ(ρ) − E G = 4ρ ¡ ¢ = −A0 (ρ) − A2 (ρ) + B(ρ) − W (ρ) G Numerical solution of the three body scattering problem Geometrical connections Leonid Rudenko • Aki = • Aki = −Aik and Akk = 0 hφk | ∂V ∂ρ | φi i λk − λi Numerical solution of the three body scattering problem Aki , k = 0 or i = 0 Leonid Rudenko 1,0 num. calc. O(rho^(-2,5)) 0,8 O(rho^(-2)) A01 0,6 0,4 0,2 0,0 500 1000 rho 1500 2000 Numerical solution of the three body scattering problem Aki , k 6= 0 and i 6= 0 Leonid Rudenko 3 num. calc. O(rho^(-2)) O(rho^(-1,5)) A12 2 1 0 500 1000 rho 1500 2000 Numerical solution of the three body scattering problem Aki , k 6= 0 and i 6= 0 Leonid Rudenko 0,0 -0,2 -0,4 -0,6 num. calc. A13 -0,8 O(rho^(-2)) O(rho^(-1,5)) -1,0 -1,2 -1,4 -1,6 -1,8 -2,0 500 1000 rho 1500 2000 Numerical solution of the three body scattering problem The last note about Aki Leonid Rudenko • The behavior of geometrical connections Aki is regular (no singularity or special points) in case of Malfliet-Tjon potential. Numerical solution of the three body scattering problem Leonid Rudenko Thank you!