Singularity Theory for Non-twist Tori - MAiA
Transcription
Singularity Theory for Non-twist Tori - MAiA
Singularity Theory for Non-twist Tori A. González A. Haro R. de la Llave Universitat de Barcelona & University of Texas at Austin 1st Swedish-Catalan Conference, Barcelona 2010 Alex Haro (Univ. Barcelona) Singularity Theory for Non-twist Tori Barcelona 2010 1 / 28 Index 1 Outline 2 Motivating example 1: A collision of invariant tori 3 Motivating example 2: Integrable symplectomorphisms 4 Methodology 5 Example 1: A collision of invariant tori (cont.) 6 Example 2: The birth of meandering tori 7 Conclusions Alex Haro (Univ. Barcelona) Singularity Theory for Non-twist Tori Barcelona 2010 2 / 28 Outline KAM Theory Existence and persistence of quasi-periodic motions in Hamiltonian systems Under twist conditions (' diffeomorphic frequency map): Persistence of quasi-periodic motions (Kolmogorov, Arnold, Moser...) A posteriori results of existence of invariant tori with fixed frequency, based on reducibility (de la Llave, González, Jorba, Villanueva) Existence of Cantor families of tori under weaker conditions: Unfoldings of quasi-periodic tori (Broer, Huitema, Moser, Pöschel, Sevryuk, Takens, ...) Persistence of invariant tori under Rüssmann condition (Sevryuk, Rüssmann, Xu, You, Zhang, ...) Alex Haro (Univ. Barcelona) Singularity Theory for Non-twist Tori Barcelona 2010 3 / 28 Outline Non-twist tori with fixed frequency Previous results Numerical results in non-twist area preserving maps: del Castillo-Negrete, Greene, Morrison (1996, 1997): periodic orbits and transition to chaos (Apte, Wurm, Petrisor, Shinohara, Aizawa, ...) Haro (2002): computation of non-twist tori and normal forms. Rigorous results: Simó (1998): existence of meandering curves in area preserving non-twist maps (but the curves are twist!). Delshams, de la Llave (2002): existence and persistence of non-twist curves in 2-parameter families of apm. Dullin, Ivanov, Meiss (2006): normal forms for the fold and cusp singularities for 4D maps. Alex Haro (Univ. Barcelona) Singularity Theory for Non-twist Tori Barcelona 2010 4 / 28 Outline Non-twist tori with fixed frequency This talk Singularity Theory for non-twist tori (arbitrary dimension and any finite-determined singularity) Bifurcations of invariant tori, with fixed frequency. At the bifurcation points, the invariant tori are non-twist. Classification of the possible degeneracies of invariant tori. Unfolding Hamiltonian systems around non-twist tori. Persistence of non-twist invariant tori. Efficient numerical methods to study bifurcations. Alex Haro (Univ. Barcelona) Singularity Theory for Non-twist Tori Barcelona 2010 5 / 28 Motivating example 1: A collision of invariant tori Motivating example 1 A family of quadratic standard maps Consider the quadratic standard family of symplectomorphisms fκ : T × R → T × R, defined by: 2 x̄ = 0.375 + x + ȳ , ȳ = y − κ sin(2πx) . 2π Problem: Look for invariant tori with frequency ω = respect to parameter κ. Alex Haro (Univ. Barcelona) Singularity Theory for Non-twist Tori √ 3− 5 , 2 with Barcelona 2010 6 / 28 Motivating example 1: A collision of invariant tori A collision of invariant tori Numerical observations K= 1.000000 0.2 0.15 0.1 0.1 0.05 0.05 y y K= 0.000000 0.2 0.15 0 -0.05 0 -0.05 -0.1 -0.1 -0.15 -0.15 -0.2 0 0.2 0.4 x 0.6 0.8 -0.2 1 0 0.2 0.4 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0 -0.05 0.8 1 0 -0.05 -0.1 -0.1 -0.15 -0.15 -0.2 0.6 K= 1.500000 0.2 y y K= 1.361408 x 0 0.2 0.4 x Alex Haro (Univ. Barcelona) 0.6 0.8 1 -0.2 0 0.1 0.2 0.3 0.4 Singularity Theory for Non-twist Tori 0.5 x 0.6 0.7 0.8 0.9 1 Barcelona 2010 7 / 28 Motivating example 2: Integrable symplectomorphisms Motivating example 2 Frequency map of an integrable symplectomorphism Consider the integrable system f0 : Tn × Rn → Tn × Rn , x + ∇W (y ) f0 (x, y ) = , y where W : Rn → R. Observations: θ For p ∈ Rn , the torus Kp (θ) = is invariant for f0 with p frequency ω̂(p) = ∇W (p): f0 (Kp (θ)) = Kp (θ + ω̂(p)) . Kp is twist if Dω̂(p) = Hess W (p) is non-degenerate. Alex Haro (Univ. Barcelona) Singularity Theory for Non-twist Tori Barcelona 2010 8 / 28 Motivating example 2: Integrable symplectomorphisms Integrable symplectomorphisms Invariant tori with frequency ω Problem: Look for invariant tori with frequency ω. Define the counterterm λ(p) = ∇W (p) − ω. Define the modified family λ(p) fλ(p) (x, y ) = f0 (x, y ) − . 0 θ For p ∈ R , the torus Kp (θ) = is invariant for fλ(p) with p frequency ω: λ(p) f0 (Kp (θ)) − = Kp (θ + ω) . 0 n Alex Haro (Univ. Barcelona) Singularity Theory for Non-twist Tori Barcelona 2010 9 / 28 Motivating example 2: Integrable symplectomorphisms Integrable symplectomorphisms Invariant tori as critical points of the potential A Define the potential A(p) = W (p) − p> ω. Obviously: λ(p) = ∇p A(p). Then: Kp∗ is an f0 -invariant torus with frequency ω if and only if p∗ is a critical point of the potential A(p). Kp∗ is a twist f0 -invariant torus with frequency ω if and only p∗ is a non-degenerate critical point of the potential A(p). Alex Haro (Univ. Barcelona) Singularity Theory for Non-twist Tori Barcelona 2010 10 / 28 Motivating example 2: Integrable symplectomorphisms Integrable symplectomorphisms The simplest degenerate example Assume A(p) = p3 3 (ω̂(y ) = ω + y 2 ) p = 0 is a degenerate critical point of A(p). θ The torus K0 (θ) = with frequency ω is non-twist. 0 Unfolding: A(p; µ) = µp + p3 3 Counterterm: λ(p; µ) = µ + p2 . (ω̂(y ; µ) = ω + µ + y 2 ) λ(p; µ) µ>0 µ=0 p µ<0 Alex Haro (Univ. Barcelona) Singularity Theory for Non-twist Tori Barcelona 2010 11 / 28 Methodology Methodology Setting Tn × U is an annulus, where U ⊂ Rn is open simply connected. P ⊂ Rm is an open subset of parameters. fκ : Tn × U → Tn × Rn is a smooth family of exact symplectomorphisms, with κ ∈ P: Dfκ (x, y )> J Dfκ (x, y ) = J, where J = On −In ; In On There exists a primitive function Sκ : Tn × U → R, such that dSκ = fκ∗ (y dx) − y dx. Let ω ∈ Rn be fixed and Diophantine: > ` ω − m ≥ γ |`|− τ , ∀` ∈ Zn \ {0}, m ∈ Z. 1 Alex Haro (Univ. Barcelona) Singularity Theory for Non-twist Tori Barcelona 2010 12 / 28 Methodology Methodology Modified family and invariant Lagrangian deformations 1) Consider the modified family λ f(κ,λ) (x, y ) = fκ (x, y ) − , 0 where λ ∈ Rn is the counterterm. 2) Use KAM techniques to find a family (p; κ) ∈ U × P → (λ(p; κ), K(p;κ) ) such that: f(κ,λ(p;κ)) ◦ K(p;κ) (θ) = K(p;κ) (θ + ω) , θ Kp;κ (θ) − = 0. p Alex Haro (Univ. Barcelona) Singularity Theory for Non-twist Tori Barcelona 2010 13 / 28 Methodology Methodology Potential and countertem 3) Define the potential D E A(p; κ) = p> λ(p; κ) + Sκ ◦ K(p;κ) (θ) , where Sκ is the primitive function of fκ . The following holds: λ(p; κ) = ∇p A(p; κ) Hence, fixed κ = κ∗ : K(p∗ ;κ∗ ) is fκ∗ -invariant with frequency ω if and only if p∗ is a critical point of the potential A(p; κ∗ ). Alex Haro (Univ. Barcelona) Singularity Theory for Non-twist Tori Barcelona 2010 14 / 28 Methodology Methodology Potential and torsion 4) The torsion of K(p;κ) is the n × n symmetric matrix D E > T̄ (p; κ) = N(p;κ) (θ + ω) J Dz f(κ,λ(p;κ)) (K(p;κ) (θ)) N(p;κ) (θ) , −1 where N(p;κ) (θ) = J Dθ K(p;κ) (θ) Dθ K(p;κ) (θ)> Dθ K(p;κ) (θ) . There exist n × n matrices W1 (p; κ) and W2 (p; κ) such that: T̄ (p; κ) W1 (p; κ) = W2 (p; κ) HessA(p; κ) . Hence, if W1 (p∗ ; κ∗ ) and W2 (p∗ ; κ∗ ) are invertible: The co-rank of p∗ as a critical point of A(p; κ∗ ) equals the co-rank of the torsion T̄ (p∗ ; κ∗ ). Alex Haro (Univ. Barcelona) Singularity Theory for Non-twist Tori Barcelona 2010 15 / 28 Example 1: A collision of invariant tori (cont.) Example 1 Applying the methodology Modified family: 2 κ 0.375 + x + y − 2π sin(2πx) − λ f(κ,λ) (x, y ) = . κ sin(2πx) y − 2π The primitive function of fκ is Sκ (x, y ) = 3 κ 2 κ y − cos(2πx) + sin(2πx) . 4 π2 3 2π The co-rank of the torsion of a torus is either 0 (twist) or 1 (non-twist). Alex Haro (Univ. Barcelona) Singularity Theory for Non-twist Tori Barcelona 2010 16 / 28 Example 1: A collision of invariant tori (cont.) A fold singularity A collision of invariant tori K= 0.000000 0.2 0.15 0.1 T = 0.1669253 T = −0.1669253 y 0.05 0 -0.05 -0.1 -0.15 -0.2 0 0.2 0.4 0.6 x 0.8 1 0.01 0.0004 0.0002 ! A 0.005 0 0 -0.0002 -0.005 -0.0004 -0.1 -0.05 0 p Alex Haro (Univ. Barcelona) 0.05 0.1 -0.1 -0.05 Singularity Theory for Non-twist Tori 0 p 0.05 0.1 Barcelona 2010 17 / 28 Example 1: A collision of invariant tori (cont.) A fold singularity A collision of invariant tori K= 1.000000 0.2 0.15 0.1 T = 0.1123464 T = −0.1123464 y 0.05 0 -0.05 -0.1 -0.15 -0.2 0 0.2 0.4 0.6 x 0.8 1 0.01 0.0004 0.0002 ! A 0.005 0 0 -0.0002 -0.005 -0.0004 -0.1 -0.05 0 p Alex Haro (Univ. Barcelona) 0.05 0.1 -0.1 -0.05 Singularity Theory for Non-twist Tori 0 p 0.05 0.1 Barcelona 2010 18 / 28 Example 1: A collision of invariant tori (cont.) A fold singularity A collision of invariant tori K= 1.361408 0.2 0.15 0.1 T = 0.6558 · 10−8 T = −0.6558 · 10−8 y 0.05 0 -0.05 -0.1 -0.15 -0.2 0 0.2 0.4 0.6 x 0.8 1 0.01 0.0004 0.0002 ! A 0.005 0 0 -0.0002 -0.005 -0.0004 -0.1 -0.05 0 p Alex Haro (Univ. Barcelona) 0.05 0.1 -0.1 -0.05 Singularity Theory for Non-twist Tori 0 p 0.05 0.1 Barcelona 2010 19 / 28 Example 1: A collision of invariant tori (cont.) A fold singularity A collision of invariant tori K= 1.500000 0.2 0.15 0.1 y 0.05 0 -0.05 -0.1 -0.15 -0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 x 0.7 0.8 0.9 1 0.01 0.0004 0.0002 ! A 0.005 0 0 -0.0002 -0.005 -0.0004 -0.1 -0.05 0 p Alex Haro (Univ. Barcelona) 0.05 0.1 -0.1 -0.05 Singularity Theory for Non-twist Tori 0 p 0.05 0.1 Barcelona 2010 20 / 28 Example 2: The birth of meandering tori Example 2 Another family of quadratic standard maps Consider a quadratic standard family of symplectomorphisms fκ : T × R → T × R, defined by: x̄ = x + (ȳ + 0.1)(ȳ − 0.2) , ȳ = y − κ sin(2πx) . 2π √ Problem: Look for invariant tori with frequency ω = respect to parameter κ. Alex Haro (Univ. Barcelona) Singularity Theory for Non-twist Tori 5−1 , 32 with Barcelona 2010 21 / 28 Example 2: The birth of meandering tori A fold singularity The birth of meandering tori K= 0.420000 0.5 0.4 0.3 0.2 y 0.1 0 -0.1 -0.2 -0.3 -0.4 0 0.1 0.2 0.3 0.4 0.5 0.6 x 0.7 0.8 0.9 1 -0.0016 0.00 -0.0018 ! A 0.01 -0.01 -0.02 -0.0020 0 0.02 0.04 p Alex Haro (Univ. Barcelona) 0.06 0.08 0.1 -0.0022 0 0.02 Singularity Theory for Non-twist Tori 0.04 p 0.06 0.08 0.1 Barcelona 2010 22 / 28 Example 2: The birth of meandering tori A fold singularity The birth of meandering tori K= 0.430396 0.5 0.4 0.3 0.2 T = −1.6261 · 10−7 T = 1.6261 · 10−7 y 0.1 0 -0.1 -0.2 -0.3 -0.4 0 0.1 0.2 0.3 0.4 0.5 0.6 x 0.7 0.8 0.9 1 -0.0016 0.00 -0.0018 ! A 0.01 -0.01 -0.02 -0.0020 0 0.02 0.04 p Alex Haro (Univ. Barcelona) 0.06 0.08 0.1 -0.0022 0 0.02 Singularity Theory for Non-twist Tori 0.04 p 0.06 0.08 0.1 Barcelona 2010 23 / 28 Example 2: The birth of meandering tori A fold singularity The birth of meandering tori K= 0.440000 0.5 0.4 0.3 0.2 T = −0.0211805 T = 0.0211805 y 0.1 0 -0.1 -0.2 -0.3 -0.4 0 0.1 0.2 0.3 0.4 0.5 0.6 x 0.7 0.8 0.9 1 -0.0016 0.00 -0.0018 ! A 0.01 -0.01 -0.02 -0.0020 0 0.02 0.04 p Alex Haro (Univ. Barcelona) 0.06 0.08 0.1 -0.0022 0 0.02 Singularity Theory for Non-twist Tori 0.04 p 0.06 0.08 0.1 Barcelona 2010 24 / 28 Example 2: The birth of meandering tori A fold singularity The birth of meandering tori K= 0.450000 0.5 0.4 0.3 0.2 T = −0.0309003 T = 0.0309003 y 0.1 0 -0.1 -0.2 -0.3 -0.4 0 0.1 0.2 0.3 0.4 0.5 0.6 x 0.7 0.8 0.9 1 -0.0016 0.00 -0.0018 ! A 0.01 -0.01 -0.02 -0.0020 0 0.02 0.04 p Alex Haro (Univ. Barcelona) 0.06 0.08 0.1 -0.0022 0 0.02 Singularity Theory for Non-twist Tori 0.04 p 0.06 0.08 0.1 Barcelona 2010 25 / 28 Conclusions Conclusions The infinite dimensional problem of finding invariant tori for Hamiltonian systems is reduced to the finite dimensional problem of finding critical points of the potential. Non-twist tori correspond to degenerate critical points of the potential. The Singularity Theory for invariant tori is provided by the Singularity Theory of the critical points of the potential. Alex Haro (Univ. Barcelona) Singularity Theory for Non-twist Tori Barcelona 2010 26 / 28 Conclusions Conclusions The method yields very efficient numerical algorithms to compute invariant tori and its bifurcations. The method is suitable to validate numerical computations; We are able to study any finite-determined singularity of the frequency map. The method can be also applied for obtaining small twist theorems. Our method is designed for the cases on which numerical evidence of bifurcations is known but the system is not close to integrable. Alex Haro (Univ. Barcelona) Singularity Theory for Non-twist Tori Barcelona 2010 27 / 28 Thanks! Alex Haro (Univ. Barcelona) Singularity Theory for Non-twist Tori Barcelona 2010 28 / 28
Similar documents
Singularity Theory for Non-twist Tori (I) - Methodology
Persistence of quasi-periodic motions Kolmogorov, Arnold, Moser, ... KAM results based on reducibility Celletti-Chierchia, Salamon-Zehnder, González-de la Llave-Jorba-Villanueva, ... Rüssmann condi...
More information